信号分析与处理实验报告(基于MATLAB)资料
- 格式:doc
- 大小:712.82 KB
- 文档页数:30
华北电力大学实验报告||实验名称FFT的软件实现实验(Matlab)IIR数字滤波器的设计课程名称信号分析与处理||专业班级:电气化1308 学生姓名:袁拉麻加学号: 2 成绩:指导教师:杨光实验日期: 2015-12-17快速傅里叶变换实验一、实验目的及要求通过编写程序,深入理解快速傅里叶变换算法(FFT)的含义,完成FFT和IFFT算法的软件实现。
二、实验内容利用时间抽取算法,编写基2点的快速傅立叶变换(FFT)程序;并在FFT程序基础上编写快速傅里叶反变换(IFFT)的程序。
三:实验要求1、FFT和IFFT子程序相对独立、具有一般性,并加详细注释;2、验证例6-4,并能得到正确结果。
3、理解应用离散傅里叶变换(DFT)分析连续时间信号频谱的数学物理基础。
四、实验原理:a.算法原理1、程序输入序列的元素数目必须为2的整数次幂,即N=2M,整个运算需要M 级蝶形运算;2、输入序列应该按二进制的码位倒置排列,输出序列按自然序列排列;3、每个蝶形运算的输出数据军官占用其他输入数据的存储单元,实现“即位运算”;4、每一级包括N/2个基本蝶形运算,共有M*N/2个基本蝶形运算;5、第L级中有N/2L个群,群与群的间隔为2L。
6、处于同一级的各个群的系数W分布相同,第L级的群中有2L-1个系数;7、处于第L级的群的系数是(p=1,2,3,…….,2L-1)而对于第L级的蝶形运算,两个输入数据的间隔为2L-1。
b.码位倒置程序流程图开始检测A序列长度nk=0j=1x1(j)=bitget(k,j);j=j+1Yj<m?Nx1=num2str(x1);y(k+1)=bin2dec(x1);clear x1k=k+1c.蝶形运算程序流程图五、程序代码与实验结果a.FFT程序:%%clear all;close all;clc;%输入数据%A=input('输入x(n)序列','s');A=str2num(A);% A=[1,2,-1,4]; %测试数据%%%%校验序列,%n=length(A);m=log2(n);if (fix(m)~=m)disp('输入序列长度错误,请重新输入!');A=input('输入x(n)序列','s');A=str2num(A);elsedisp('输入正确,请运行下一步')end%%%码位倒置%for k=0:n-1for j=1:m %取M位的二进制数%x1(j)=bitget(k,j); %倒取出二进制数%endx1=num2str(x1); %将数字序列转化为字符串%y(k+1)=bin2dec(x1); %二进制序列转化为十进制数%clear x1endfor k=1:nB(k)=A(y(k)+1); %时间抽取序列%endclear A%%%计算%for L=1:m %分解为M级进行运算%LE=2^L; %第L级群间隔为2^L%LE1=2^(L-1); %第L级中共有2^(L-1)个Wn乘数,进行运算蝶运算的两数序号相隔LE1%W=1;W1=exp(-1i*pi/LE1);for R=1:LE1 %针对第R个Wn系数进行一轮蝶运算,共进行LE1次%for P=R:LE:n %每个蝶的大小为LE% Q=P+LE1;T=B(Q)*W;B(Q)=B(P)-T;B(P)=B(P)+T;endW=W*W1;endendB %输出X(k)%%%验证结果:例6-4b.IFFT程序:%%clear all;close all;clc;%输入数据%A=input('输入X(k)序列','s');A=str2num(A);% A=[6,2+2i,-6,2-2i]; %测试数据%%%%校验序列,%n=length(A);m=log2(n);if (fix(m)~=m)disp('输入序列长度错误,请重新输入!');A=input('输入x(n)序列','s');A=str2num(A);elsedisp('输入正确,请运行下一步')end%%%码位倒置%for k=0:n-1for j=1:m %取M位的二进制数%x1(j)=bitget(k,j); %倒取出二进制数%endx1=num2str(x1); %将数字序列转化为字符串%y(k+1)=bin2dec(x1); %二进制序列转化为十进制数%clear x1endfor k=1:nB(k)=A(y(k)+1); %时间抽取序列%endclear A%%%计算%for L=1:m %分解为M级进行运算%LE=2^L; %第L级群间隔为2^L%LE1=2^(L-1); %第L级中共有2^(L-1)个Wn乘数,进行运算蝶运算的两数序号相隔LE1%W=1;W1=exp(-1i*pi/LE1);for R=1:LE1 %针对第R个Wn系数进行一轮蝶运算,共进行LE1次%for P=R:LE:n %每个蝶的大小为LE%Q=P+LE1;T=B(Q)*W;B(Q)=B(P)-T;B(P)=B(P)+T;endW=W*W1;endendB=conj(B); %取共轭%B=B/n %输出x(n)%验证结果:六、实验心得与结论本次实验借助于Matlab软件,我避开了用C平台进行复杂的复数运算,在一定程度上简化了程序,并添加了简单的检错代码,码位倒置我通过查阅资料,使用了一些函数,涉及到十-二进制转换,数字-文本转换,二-文本转换,相对较复杂,蝶运算我参考了书上了流程图,做些许改动就能直接实现。
基于MA TLAB的语音信号分析与处理的实验报告数字信号课程设计,屌丝们有福了一.实验目的数字信号课程设计,屌丝们有福了综合计运用数字信号处理的理论知识进行频谱分析和滤波器设计,通过理论推导得出相应的结论,培养发现问题、分析问题和解决问题的能力。
并利用MATLAB作为工具进行实现,从而复习巩固课堂所学的理论知识,提高对所学知识的综合应用能力,并从实践上初步实现对数字信号的处理。
此外,还系统的学习和实现对语音信号处理的整体过程,从语音信号的采集到分析、处理、频谱分析、显示和储存。
二.实验的基本要求数字信号课程设计,屌丝们有福了1.进一步学习和巩固MATLAB的使用,掌握MATLAB的程序设计方法。
2.掌握在windows环境下语音信号采集的方法。
3.掌握数字信号处理的基本概念、基本理论、原理和基本方法。
4.掌握MATLAB设计FIR和IIR数字滤波器的方法。
5.学会用MATLAB对信号进行分析和处理。
三.实验内容录制一段自己的语音信号,(语音信号声音可以理解成由振幅和相位随时间缓慢变化的正弦波构成。
人的听觉对声音的感觉特征主要包含在振幅信息中,相位信息一般不起作用。
在研究声音的性质时,往往把时域信息(波形图)变换得到它的频域信息(频谱),通过研究频谱和与频谱相关联的特征获得声音的特性。
)并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法或者双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号发生的变化;回放语音信号。
数字信号课程设计,屌丝们有福了四.实验的实现(1).语音信号的采集采用windows下的录音机或者手机、其他的软件,录制一段自己的话音,时间控制在一分钟左右;然后在MATLAB软件平台下,利用函数wavread对自己的话音进行采样,记住采样的频率和采样的点数。
课程名称:数字信号处理实验实验地点:综合楼C407专业班级:2014级生物医学工程姓名:leifeng学号:指导老师:第一次实验第一章 离散时间信号的时域分析Q1.1运行程序P1.1,以产生单位样本序列u[n]并显示它clf; n=-10:20;u=[zeros(1,10) 1 zeros(1,20)]; stem(n,u);xlabel('时间序号');ylabel('振幅'); title('单位样本序列'); axis([-10 20 0 1.2]);时间序号振幅单位样本序列Q1.2 命令clf ,axis ,title ,xlabel 和ylabel 的作用是什么clf :清除图形窗口内容; axis:规定横纵坐标的范围;title :使图像面板上方显示相应的题目名称; xlable :定义横坐标的名字; ylable :定义纵坐标的名字。
Q1.3修改程序P1.1以产生带有延时11个样本的延迟单位样本序列ud[n],运行修改的程序并且显示产生的序列。
clf; n=0:30;u=[zeros(1,11) 1 zeros(1,19)]; stem(n,u);xlabel('时间序号');ylabel('振幅'); title('单位样本序列'); axis([0 30 0 1.2]);时间序号振幅单位样本序列Q1.5 修改程序P1.1,以产生带有超前7个样本的延时单位阶跃序列sd[n]。
运行修改后的程序并显示产生的序列。
clf; n=-10:20;sd=[zeros(1,3) 1 ones(1,27) ]; stem(n,sd);xlabel('时间序号');ylabel('振幅'); title('单位样本序列'); axis([-10 20 0 1.2]);时间序号振幅单位样本序列Q1.6运行程序P1.2,以产生复数值的指数序列。
随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。
2.实现随机序列的数字特征估计。
实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。
即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。
定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。
山东建筑大学课程设计说明书题目:基于MATLAB的信号分析与处理课程:数字信号处理课程设计院(部):信息与电气工程学院专业:通信工程班级:通信学生姓名:学号:指导教师:完成日期:目录目录 (1)摘要 (2)正文 (3)1设计目的和要求 (3)2设计原理 (3)3设计内容 (4)3.1源程序代码 (4)3.2程序执行的结果........................................ (7)3.3调试分析过程描述 (12)3.4结果分析 ................................... 错误!未定义书签。
总结与致谢 (14)参考文献 (15)摘要随着科学技术的飞速发展,人们对信号的要求越来越高。
然而,学好《数字信号处理》这门课程是我们处理信号的基础。
MATLAB是一个处理信号的软件,我们必须熟悉它的使用。
本次课程设计利用MATLAB软件首先产生成低频、中频、高频三种频率信号,然后将三种信号合成为连续信号,对连续周期信号抽样、频谱分析,并设计低通、带通、高通三种滤波器对信号滤波,观察滤出的信号与原信号的关系,并分析了误差的产生,通对数字信号处理课程的理论知识的综合运用。
从实践上初步实现对数字信号的处理。
关键词:MATLAB;连续信号;采样定理;滤波器;频谱分析;正文1设计目的和要求(1)、产生一个连续信号,该信号中包含有低频、中频、高频分量,对其进行采样,用MATLAB绘制它们的时域波形和频域波形,对其进行频谱分析;(2)、根据信号频谱分析的结果,分别设计合适的低通、带通、高通滤波器,用MATLAB绘制其幅频及相频特性图;(3)、用所设计的滤波器对信号进行滤波处理,对滤波后的信号进行FFT 频谱分析,用MATLAB绘制处理过程中的各种波形及频谱图,比较滤波前后的时域波形及频谱,对所得结果和滤波器性能进行分析,阐明原因,得出结论;(4)学会使用MATLAB对信号进行分析和处理;2设计原理理论上信号的采样要符合奈奎斯特采样定律,就是采样频率要高一点,一般为被采信号最高频率的2倍,只有这样,才能保证频域不混叠,也就是采样出来数字信号中包含了被采信号的所有信息,而且没有引入干扰。
武汉工程大学电气信息学院2、四、思考:1、为什么图二中t=0处曲线是间断的,如何使其成为连续的曲线?因为axis函数对纵坐标的的上边界限定过小,使图形在边界处不能完整的显示。
2.3.四、思考:1、代数运算符号*和.*的区别是?*是矩阵相乘,是矩阵A行元素与B的列元素相乘的和.*是数组相乘,表示数组A和数组B中的对应元素相乘实验内容实验三连续时间信号的卷积一、实验内容1、已知两连续时间信号如下图所示,绘制信号f1(t)、f2(t)及卷积结果f(t)的波形;设时间变化步长dt分别取为0.5、0.1、0.01,当dt取多少时,程序的计算结果就是连续时间卷积的较好近似?2.实验内容1.2.实验内容实验五 连续时间信号的频域分析一、实验内容1、如图5.4所示的奇谐周期方波信号,周期为T1=1,幅度为A=1,将该方波信号展开成三角形式Fourier 级数并分别采用频域矩形窗和Hanning 窗加权,绘制两种窗函数加权后的方波合成图像。
时间范围取为-2~2,步长值取为0.01。
2、将图5.5中的锯齿波展开为三角形式Fourier 级数,按(2)式求出Fourier 级数的系数,并在频域分别采用矩形窗、Hanning 窗和三角窗加权,观察其Gibbs 效应及其消除情况。
时间范围取为-2~2,步长值取为0.01。
3、选做:编程计算连续时间周期信号的三角形式傅里叶级数展开的系数二、实验方法与步骤1、将方波信号展开成三角形式Fourier 级数并分别采用频域矩形窗和Hanning 窗加权 方波展开的三角式傅立叶级数为:()()t k k t x L k 1,5,3,1sin 4ωπ⋅∑=∞= 采用频域矩形窗加权,则展开式变为:()()()[]t k k t x K k 1012sin 124ωπ+⋅+∑==a0=2/T*int(f,t,0,T); %求函数f对t从0到T的定积分a0=simplify(a0) %得出结果syms kfa=t*cos(k*w*t);fb=t*sin(k*w*t);ak=2/T*int(fa,t,0,T); %求函数fa对t从0到T的定积分bk=2/T*int(fb,t,0,T); %求函数fb对t从0到T的定积分ak=simplify(ak)bk=simplify(bk)三、实验数据与结果分析1.2.3.根据绘制的幅频特性曲线,系统具有低通滤波特性2.根据绘制的幅频特性曲线,系统具有带通滤波特性。
matlab 数字信号实验报告MATLAB数字信号实验报告摘要:本实验使用MATLAB软件对数字信号进行处理和分析。
首先,我们使用MATLAB生成不同类型的数字信号,并对其进行采样和量化。
然后,我们利用MATLAB对这些数字信号进行滤波、傅里叶变换和频谱分析。
通过本实验,我们可以深入了解数字信号处理的基本原理和方法,并掌握MATLAB在数字信号处理中的应用。
1. 实验目的本实验旨在通过MATLAB软件对数字信号进行处理和分析,加深对数字信号处理原理的理解,掌握MATLAB在数字信号处理中的应用技巧。
2. 实验原理数字信号处理是对数字信号进行处理和分析的技术。
数字信号处理的基本原理包括采样、量化、滤波、傅里叶变换和频谱分析等。
MATLAB是一种强大的工具,可以方便地对数字信号进行处理和分析。
3. 实验内容(1)生成不同类型的数字信号在MATLAB中,我们可以生成不同类型的数字信号,如正弦信号、方波信号和三角波信号等。
通过改变信号的频率、幅度和相位等参数,可以得到不同的数字信号。
(2)采样和量化对生成的数字信号进行采样和量化,得到离散时间信号和离散幅度信号。
(3)滤波利用MATLAB对采样和量化后的数字信号进行滤波处理,去除噪声和干扰,得到清晰的信号。
(4)傅里叶变换和频谱分析对滤波后的数字信号进行傅里叶变换,得到信号的频谱图,分析信号的频率成分和能量分布。
4. 实验结果通过MATLAB对不同类型的数字信号进行处理和分析,得到了清晰的信号波形图和频谱图。
通过对比不同类型的数字信号,我们可以发现它们在频率、幅度和相位等方面的差异。
5. 结论本实验通过MATLAB软件对数字信号进行处理和分析,加深了对数字信号处理原理的理解,掌握了MATLAB在数字信号处理中的应用技巧。
数字信号处理在通信、音频、图像等领域有着广泛的应用,掌握数字信号处理技术对于工程技术人员具有重要的意义。
MATLAB作为一种强大的工具,为数字信号处理提供了便利和高效的解决方案。
matlab 及数字信号实验报告
《利用Matlab进行数字信号实验报告》
数字信号处理是一门重要的工程学科,它涉及到数字信号的获取、处理和分析。
Matlab作为一种强大的工程计算软件,被广泛应用于数字信号处理领域。
本实
验报告将利用Matlab进行数字信号处理实验,以展示其在数字信号处理中的应用。
实验一:数字信号的获取与显示
首先,我们将使用Matlab编写程序,通过声卡获取外部声音信号,并将其显示在Matlab的图形界面上。
这个实验可以帮助我们了解如何使用Matlab进行信
号的采集和显示,为后续实验做好准备。
实验二:数字信号的滤波处理
接下来,我们将利用Matlab对获取的声音信号进行滤波处理。
我们将设计一个数字滤波器,对声音信号进行去噪处理,以提高信号的质量和清晰度。
通过这
个实验,我们可以学习到如何在Matlab中设计和应用数字滤波器,以及滤波处理对信号质量的影响。
实验三:数字信号的频谱分析
最后,我们将对处理后的声音信号进行频谱分析。
通过Matlab的频谱分析工具,我们可以了解信号的频率成分和能量分布情况,从而更好地理解信号的特性和
结构。
这个实验将帮助我们掌握如何使用Matlab进行数字信号的频谱分析,为进一步的信号处理和分析奠定基础。
通过以上实验,我们可以深入了解Matlab在数字信号处理中的应用,掌握信号采集、滤波处理和频谱分析等基本技能。
同时,我们也可以通过实验结果对数
字信号处理的理论知识进行验证和实践,加深对数字信号处理原理的理解。
希望本实验报告能够对数字信号处理领域的学习和研究有所帮助。
matlab信号频域分析实验报告《Matlab信号频域分析实验报告》摘要:本实验通过Matlab软件对信号进行频域分析,探究信号在频域中的特性。
首先,我们使用Matlab生成了不同频率和幅度的正弦信号,并对其进行了傅里叶变换。
然后,我们利用频谱分析工具对信号进行了频谱分析,观察了信号在频域中的频率成分和能量分布。
最后,我们对信号进行了滤波处理,观察了滤波后信号在频域中的变化。
引言:信号的频域分析是数字信号处理中的重要内容,通过频域分析可以了解信号的频率成分和能量分布情况,对信号的特性有着重要的指导意义。
Matlab作为一种强大的数学计算软件,提供了丰富的信号处理工具,能够方便快捷地进行信号的频域分析。
本实验旨在通过Matlab软件进行信号频域分析,探究信号在频域中的特性。
实验过程:1. 生成不同频率和幅度的正弦信号首先,我们使用Matlab生成了不同频率和幅度的正弦信号,分别代表不同的信号特性。
通过绘制时域波形图,我们可以直观地观察到信号的波形特点。
2. 进行傅里叶变换接下来,我们对生成的正弦信号进行了傅里叶变换,得到了信号在频域中的频率成分和能量分布情况。
通过绘制频谱图,我们可以清晰地观察到信号的频率成分和能量分布情况。
3. 频谱分析利用Matlab提供的频谱分析工具,我们对信号进行了频谱分析,进一步观察了信号在频域中的特性。
通过频谱分析,我们可以了解信号的频率成分和能量分布情况,为后续的信号处理提供了重要参考。
4. 滤波处理最后,我们对信号进行了滤波处理,观察了滤波后信号在频域中的变化。
通过比较滤波前后的频谱图,我们可以了解滤波对信号频域特性的影响,进一步认识信号在频域中的变化情况。
实验结论:通过本次实验,我们对信号在频域中的特性有了更深入的了解。
通过Matlab软件进行信号频域分析,我们可以清晰地观察到信号的频率成分和能量分布情况,为信号处理和分析提供了重要参考。
同时,我们也了解到了滤波对信号在频域中的影响,为信号处理提供了重要指导。
matlab信号频谱分析实验报告《MATLAB信号频谱分析实验报告》摘要:本实验利用MATLAB软件对不同信号进行频谱分析,通过对信号的频谱特征进行分析和比较,探讨了不同信号的频谱特性及其应用。
实验结果表明,MATLAB信号频谱分析工具能够有效地帮助我们理解信号的频谱特性,为信号处理和通信系统设计提供了重要的参考依据。
引言:信号频谱分析是信号处理和通信领域中的重要内容之一,通过对信号的频谱特性进行分析,可以帮助我们了解信号的频率分布、能量分布和相位特性,为信号处理和通信系统设计提供重要的参考依据。
MATLAB作为一种强大的信号处理工具,提供了丰富的频谱分析函数和工具,能够帮助我们快速准确地分析信号的频谱特性。
实验目的:1. 掌握MATLAB中常用的信号频谱分析函数和工具;2. 对不同类型的信号进行频谱分析,比较它们的频谱特性;3. 探讨不同信号的频谱特性及其应用。
实验内容:1. 使用MATLAB中的fft函数对不同类型的信号进行频谱分析;2. 对比分析不同信号的频谱特性,包括频率分布、能量分布和相位特性;3. 分析不同信号的频谱特性对信号处理和通信系统设计的影响。
实验步骤:1. 生成不同类型的信号,包括正弦信号、方波信号和三角波信号;2. 使用MATLAB中的fft函数对生成的信号进行频谱分析;3. 分析不同信号的频谱特性,包括频率分布、能量分布和相位特性;4. 对比分析不同信号的频谱特性,探讨其应用和影响。
实验结果:1. 正弦信号的频谱特性:频率集中在一个点上,能量分布均匀,相位特性明显;2. 方波信号的频谱特性:频率分布为奇次谐波,能量分布不均匀,相位特性复杂;3. 三角波信号的频谱特性:频率分布为奇次谐波,能量分布均匀,相位特性简单。
实验结论:1. 正弦信号的频谱特性与其频率、幅值和相位有关,能够直观地反映信号的频率和相位特性;2. 方波信号的频谱特性包含丰富的谐波成分,能够用于频率多重复用通信系统的设计;3. 三角波信号的频谱特性简单明了,适合于频率调制和解调系统的设计。
matlab信号频谱分析实验报告Matlab信号频谱分析实验报告引言:信号频谱分析是一种常用的信号处理技术,它可以帮助我们了解信号的频率成分和能量分布情况。
在本次实验中,我们使用Matlab进行信号频谱分析,并通过实验结果来验证频谱分析的有效性和准确性。
实验目的:1. 了解信号频谱分析的基本原理和方法;2. 掌握Matlab中频谱分析函数的使用;3. 分析不同信号的频谱特性,并进行比较。
实验原理:信号频谱分析是将时域信号转换为频域信号的过程。
在频域中,信号的能量分布情况可以通过频谱图进行展示。
常用的频谱分析方法有傅里叶变换、快速傅里叶变换(FFT)等。
实验步骤:1. 生成信号:首先,我们需要生成一个待分析的信号。
可以选择不同类型的信号,如正弦信号、方波信号等。
在本次实验中,我们选择了一个包含多个频率成分的复合信号。
2. 采样信号:为了进行频谱分析,我们需要对信号进行采样。
采样过程将连续信号转换为离散信号,以便进行数字信号处理。
在Matlab中,可以使用`sample`函数对信号进行采样。
3. 频谱分析:使用Matlab中的频谱分析函数对采样信号进行频谱分析。
常用的函数有`fft`、`spectrogram`等。
通过这些函数,我们可以得到信号的频谱图,并可以进行进一步的分析和处理。
实验结果:通过对复合信号进行频谱分析,我们得到了如下的频谱图。
从图中可以看出,信号包含多个频率成分,且能量分布不均匀。
这些频率成分可以通过频谱图进行直观的观察和分析。
进一步分析:除了观察频谱图外,我们还可以通过频谱分析得到更多的信息。
例如,可以计算信号的功率谱密度,以了解信号在不同频率上的能量分布情况。
此外,还可以计算信号的频谱峰值、频谱带宽等参数,以进一步揭示信号的特性。
实验总结:通过本次实验,我们了解了信号频谱分析的基本原理和方法,并掌握了Matlab 中频谱分析函数的使用。
频谱分析是一种重要的信号处理技术,可以帮助我们了解信号的频率成分和能量分布情况。
信号与系统matlab实验报告信号与系统MATLAB实验报告引言信号与系统是电子工程、通信工程和控制工程等领域中的重要基础课程。
通过实验,我们可以更好地理解信号与系统的概念和基本原理,并掌握使用MATLAB进行信号与系统分析的方法。
本报告将介绍我们在信号与系统实验中的实验过程、结果和分析。
实验一:连续时间信号的采样与重构在这个实验中,我们研究了连续时间信号的采样与重构。
首先,我们通过MATLAB生成了一个连续时间信号,并使用采样定理确定了采样频率。
然后,我们对连续时间信号进行采样,并通过重构方法将采样信号还原为连续时间信号。
最后,我们通过观察重构信号与原始信号的相似性来评估重构的效果。
实验二:线性时不变系统的频率响应在这个实验中,我们研究了线性时不变系统的频率响应。
首先,我们通过MATLAB生成了一个输入信号,并设计了一个线性时不变系统。
然后,我们通过将输入信号输入到系统中,并记录输出信号的幅度和相位,从而得到系统的频率响应。
最后,我们绘制了系统的幅频特性和相频特性曲线,并对其进行了分析和讨论。
实验三:离散时间信号的采样与重构在这个实验中,我们研究了离散时间信号的采样与重构。
首先,我们通过MATLAB生成了一个离散时间信号,并使用采样定理确定了采样周期。
然后,我们对离散时间信号进行采样,并通过重构方法将采样信号还原为离散时间信号。
最后,我们通过观察重构信号与原始信号的相似性来评估重构的效果,并讨论了离散时间信号的采样与重构的特点。
实验四:离散时间系统的差分方程在这个实验中,我们研究了离散时间系统的差分方程。
首先,我们通过MATLAB生成了一个输入信号,并设计了一个离散时间系统。
然后,我们通过将输入信号输入到系统中,并根据系统的差分方程计算输出信号。
最后,我们对输入信号和输出信号进行了分析和比较,并讨论了离散时间系统的差分方程的特点和应用。
实验五:连续时间信号的傅里叶变换在这个实验中,我们研究了连续时间信号的傅里叶变换。
随机信号分析实验报告(基于MATLAB语言)随机信号分析实验报告——基于MATLAB语言姓名: _班级: _学号:专业:目录实验一随机序列的产生及数字特征估计 .. 2 实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试18 实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。
2.实现随机序列的数字特征估计。
实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。
即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:序列为产生的(0,1)均匀分布随机数。
定理 1.1 若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.M ATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。
数字信号处理课程设计摘要:本文基于 Matlab 设计了巴特沃斯数字低通滤波器、切比雪夫1型高通数字滤波器并用其来对音频信号进行低通滤波、高通滤波处理,仿真结果表明设计的滤波器均对音频信号进行了有效处理。
随后又利用Matlab对信号进行了分析,从而验证了奈奎斯特采样定理。
一、课程设计目的综合运用本课程的理论知识进行频谱分析以及滤波器设计,通过理论推导得出相应结论,并利用 MATLAB 作为编程工具进行计算机实现,从而复习巩固了课堂所学的理论知识,提高了对所学知识的综合应用能力,并从实践上初步实现了对数字信号的处理。
二、课程设计内容2.1滤波器的设计用windows自带的录音机录取语音“DSP”在文件“DSP.wav”内,时间大约1秒钟;画出语音信号的时域波形,并进行频谱分析;按照以下性能指标分别设计数字滤波器,并画出频率响应;滤波器可分别采用巴特沃斯型,切比雪夫1型滤波器。
a.低通滤波器:fc =1000Hz,fb=1200Hz,As=20dB,Ap=1dB;b.高通滤波器:fc =4800Hz,fb=5000Hz,As=20dB,Ap=1dB;(1)用上述设计的滤波器对语音信号进行滤波,并比较滤波前后语音信号的波形和频谱及声音的变化。
(2)对学有能力的同学,可设计该声音处理系统的用户界面,在该界面上可选择滤波器的类型,输入滤波器的参数,显示滤波器的频率响应,选择信号等。
2.2信号分析(1)x(t)=e|t|1000-,求其傅里叶变换x a(jΩ)。
画出模拟信号及傅里叶变换的a曲线图。
(2)以x()说明采样频率特性的影响,分别采用f=5000Hz,f=1000Hz。
绘出X(e W)曲线。
三、设计思想和系统功能分析3.1滤波器的设计3.1.1基础知识f 是模拟频率,单位HZ;Ω是模拟角频率,单位rad/s。
模拟角频率Ω和模拟频率f 存在Ω=2πf的关系。
对模拟信号采样(采样频率 f s )得到一个数字频率ω,它是模拟角频率Ω对采样频率 fs 归一化得到的,即ω = Ω/f s (rad)=2πf/fs=2πfT,对π归一化数字频率w=Ω/(π*fs)。
基于MATLAB的信号分析与处理————————————————————————————————作者:————————————————————————————————日期:山东建筑大学课程设计说明书题目: 基于MATLAB的信号分析与处理课程:数字信号处理课程设计院 (部): 信息与电气工程学院专业:通信工程班级: 通信学生姓名:学号:指导教师:完成日期:目录目录 (1)摘要 (2)正文 (3)1设计目的和要求 (3)2设计原理 (3)3设计内容 (4)3.1源程序代码 (4)3.2程序执行的结果........................................。
..。
7 ...........................................................................................................................3。
3调试分析过程描述 (12)3。
4结果分析................................. 错误!未定义书签。
总结与致谢 (14)参考文献 (15)摘要随着科学技术的飞速发展,人们对信号的要求越来越高.然而,学好《数字信号处理》这门课程是我们处理信号的基础。
MATLAB是一个处理信号的软件,我们必须熟悉它的使用.本次课程设计利用MATLAB软件首先产生成低频、中频、高频三种频率信号,然后将三种信号合成为连续信号,对连续周期信号抽样、频谱分析,并设计低通、带通、高通三种滤波器对信号滤波,观察滤出的信号与原信号的关系,并分析了误差的产生,通对数字信号处理课程的理论知识的综合运用。
从实践上初步实现对数字信号的处理.关键词:MATLAB;连续信号;采样定理;滤波器;频谱分析;正文1设计目的和要求(1)、产生一个连续信号,该信号中包含有低频、中频、高频分量,对其进行采样,用MATLAB绘制它们的时域波形和频域波形,对其进行频谱分析;(2)、根据信号频谱分析的结果,分别设计合适的低通、带通、高通滤波器,用MATLAB绘制其幅频及相频特性图;(3)、用所设计的滤波器对信号进行滤波处理,对滤波后的信号进行FFT 频谱分析,用MATLAB绘制处理过程中的各种波形及频谱图,比较滤波前后的时域波形及频谱,对所得结果和滤波器性能进行分析,阐明原因,得出结论;(4)学会使用MATLAB对信号进行分析和处理;2设计原理理论上信号的采样要符合奈奎斯特采样定律,就是采样频率要高一点,一般为被采信号最高频率的2倍,只有这样,才能保证频域不混叠,也就是采样出来数字信号中包含了被采信号的所有信息,而且没有引入干扰。
实验一 MATLAB 的基本使用【一】 实验目的1.了解MA TALB 程序设计语言的基本特点,熟悉MATLAB 软件的运行环境;2.掌握变量、函数等有关概念,掌握M 文件的创建、保存、打开的方法,初步具备将一般数学问题转化为对应计算机模型处理的能力;3.掌握二维图形绘制的方法,并能用这些方法实现计算结果的可视化。
【二】 MATLAB 的基础知识通过本课程的学习,应基本掌握以下的基础知识: 一. MATLAB 简介 二. MATLAB 的启动和退出 三. MATLAB 使用界面简介 四. 帮助信息的获取五. MATLAB 的数值计算功能六. 程序流程控制 七. M 文件八. 函数文件九. MATLAB 的可视化 【三】上机练习1. 仔细预习第二部分内容,关于MATLAB 的基础知识。
2. 熟悉MATLAB 环境,将第二部分所有的例子在计算机上练习一遍3.已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=123456789,987654321B A 。
求A*B ,A .* B ,比较二者结果是否相同。
并利用MATLAB 的内部函数求矩阵A 的大小、元素和、长度以及最大值。
解:代码:A=[1,2,3;4,5,6;7,8,9];B=[9,8,7;6,5,4;3,2,1]; A*B A.*B两者结果不相同A*B=30 24 18 84 69 54 138 114 90 A.*B= 9 16 21 24 25 24 21 16 9求A 矩阵的行和列: [M,N]=size(A)M =3N =3 求A 矩阵的长度:x=length(A)x =3 元素和:sum(sum(A))ans =45最大值:max(max(A))ans =94. Fibonacci 数组的元素满足Fibonacci 规则:),2,1(,12=+=++k a a a k k k ;且121==a a 。
现要求该数组中第一个大于10000的元素。
matlab 信号频谱分析实验报告Matlab 信号频谱分析实验报告引言:信号频谱分析是一项重要的技术,用于研究信号在频域上的特性。
在实际应用中,我们经常需要对信号进行频谱分析,以了解信号的频率成分和频谱特征。
本实验利用Matlab软件进行信号频谱分析,通过实验数据和结果展示,探索信号频谱分析的原理和应用。
实验一:时域信号与频域信号的关系在信号处理中,时域信号和频域信号是两个重要的概念。
时域信号是指信号在时间上的变化,频域信号则是指信号在频率上的变化。
通过傅里叶变换,我们可以将时域信号转换为频域信号,从而获得信号的频谱信息。
实验中,我们首先生成一个简单的正弦信号,并绘制其时域波形图。
然后,利用Matlab中的傅里叶变换函数对信号进行频谱分析,得到其频域波形图。
通过对比时域和频域波形图,我们可以观察到信号在不同频率上的能量分布情况。
实验二:频谱分析的应用频谱分析在许多领域中具有广泛的应用。
在通信领域中,频谱分析可以用于信号调制和解调、频率选择性传输等方面。
在音频处理中,频谱分析可以用于音乐合成、音频效果处理等方面。
在图像处理中,频谱分析可以用于图像压缩、图像增强等方面。
本实验中,我们以音频处理为例,展示频谱分析的应用。
首先,我们选取一段音频信号,并绘制其时域波形图。
然后,通过傅里叶变换,将信号转换为频域信号,并绘制其频域波形图。
通过观察频域波形图,我们可以了解音频信号在不同频率上的能量分布情况,从而进行音频效果处理或音频识别等应用。
实验三:信号滤波与频谱分析信号滤波是信号处理中常用的技术,用于去除信号中的噪声或干扰。
在频谱分析中,我们可以通过滤波器对信号进行滤波,从而改变信号的频谱特性。
本实验中,我们选取一段含有噪声的信号,并绘制其时域波形图。
然后,利用滤波器对信号进行滤波,并绘制滤波后的时域波形图和频域波形图。
通过对比滤波前后的波形图,我们可以观察到滤波器对信号频谱的影响,以及滤波效果的好坏。
结论:通过本实验,我们深入了解了Matlab在信号频谱分析中的应用。
实验一 根本信号的产生与运算一、 实验目的学习使用MATLAB 产生根本信号、绘制信号波形、实现信号的根本运算.二、 实验原理MATLAB 提供了许多函数用于产生常用的根本信号:如阶跃信号、脉冲信号、指数信号、正弦信号和周期方波等等.这些信号是信号处理的根底.1、 利用MATLAB 产生如下连续信号并作图.〔1〕51),1(2)(<<---=t t u t x〔2〕300),32sin()(3.0<<=-t t e t x t〔3〕1.01.0,3000cos 100cos )(<<-+=t t t t x〔4〕2000),8.0cos()1.0cos()(<<=t t t t x ππ答:〔1〕、>> t=-1:0.02:5;>> x=<t>1>;>> plot<t,-2*x>;>> axis<[-1,5,-3,1]>;>> title<'杨婕婕 朱艺星'>;>> xlabel<'x<t>=-2u<t-1>'>;〔2〕、>> t=0:0.02:30;>> x=exp<-0.3*t>.*sin<2/3*t>;>> plot<t,x>;>> title<'杨婕婕 朱艺星'>;>> xlabel<'x<t>=exp<-0.3*t>.*sin<2/3*t>'>;因为原函数在t=15后x<t>取值接近于零,所以将横坐标改成0到15,看得更清晰axis<[0,15,-0.2,0.6]>;〔3〕>> t=-0.1:0.01:0.1;x=cos<100*t>+cos<3000*t>;plot<t,x>;>> title<'杨婕婕 朱艺星'>;>>xlabel<'x=cos<100*t>+cos<3000*t>'>;因为t 的间隔取太大,以至于函数不够准确,缩小t 的间隔:t=-0.1:0.002:0.2;x=cos<100*t>+cos<3000*t>;plot<t,x>;title<'杨婕婕'>>> t=-0.1:0.0001:0.1;x=cos<100*t>+cos<3000*t>;>> plot<t,x>;title<'杨婕婕 朱艺星'>;>> xlabel<'x=cos<100*t>+cos<3000*t>'>;〔4〕、t=0:0.01:200;>> x=cos<0.1*pi*t>.*cos<0.8*pi*t>;>> plot<t,x>;>> title<'杨婕婕 朱艺星'>;>> xlabel<'x=cos<0.1*pi*t>.*cos<0.8*pi*t>'>;因为为周期函数,可以将横坐标t 间隔扩大以便于观察图像>> axis<[0,30,-1,1]>;2、 利用MATLAB 产生如下离散序列并作图.〔1〕⎩⎨⎧≤≤-=,055,1)(n n x 1515≤<-n〔2〕)]25.0cos()25.0[sin()9.0()(n n n x n ππ+=,2020≤<-n答:〔1〕、k=-15:15;x=[zeros<1,10>,ones<1,11>,zeros<1,10>];stem<k,x>axis<[-15,15,-0.2,1.2]>;title<'杨婕婕 朱艺星'>;xlabel<'x<n>'>;〔2〕、k=-20:20;x=<0.9>.^k.*<sin<0.25*pi*k>+cos<0.25*pi*k>>;stem<k,x>;title<'杨婕婕 朱艺星'>;xlabel<' x=<0.9>^k*<sin<0.25*pi*k>+cos<0.25*pi*k>>'>;将横坐标变小以便于观察>> axis<[-20,10,-12,8]>;3、 序列:]2,3,1,0,2,1[)(-=↑n x ,]1,1,1[)(-=↑n h ,计算离散卷积)()()(n h n x n y *=,并绘出其波形.答:>> x=[1,2,0,-1,3,2];>> h=[1,-1,1];>> y=conv<x,h>;>> stem<[-2:length<y>-3],y>;>> ylabel<'y[k]'>;xlabel<'k'>;>> title<'杨婕婕 朱艺星'>;三、 实验思考题1、两个连续信号的卷积定义是什么?两个序列的卷积定义是什么?卷积的作用是什么?答:连续信号的卷积的定义:⎰∞∞--τττd t y x )()( 序列的卷积定义:∑=-0)()(m m n y m x .利用作图法即将其中一个信号图翻转,平移,两信号相乘,再相加.傅立叶变换的卷积性质涵盖着时域相乘、频域卷积、频域相乘,时域卷积的对偶关系.前者假如代表两个信号相乘,如此因发生调制作用,在频域一定出现频谱搬家〔频移〕.后者假如一个是信号,另一个代表系统,如此系统起着加工处理的滤波作用.任何信号与冲激函数相卷积,其结果是在冲激出现的时刻〔位置〕再生原信号.卷积在实际中的应用有实现幅度调制与解调,实现多路频分复用,实现单边带调幅〔SSB-AM 〕.2、什么是单位冲激信号)(t δ?能够用MATLAB 产生单位冲激信号吗? 答:出现过程极短,能量极大的信号为冲激信号)(t δ,其定义式为:)(t δ=0,t 0≠⎰∞∞-=1)(dt t δ;上式明确,在t=0无定义,因为不能作为数学函数的取值.而且表示)(t δ与时间覆盖的面积或称)(t δ的强度始终等于 1.因为)(t δ属于奇异函数一类的信号,能量无限大,用MATLAB 不能产生该信号.函数ones<1,n>可以生成单位脉冲序列.3、产生连续信号时,首先要定义时间向量t=0:T :Tp.其中T 和Tp 是什么意思? 答:每两点之间的时间间隔为T,即步长为T.连续信号的时间从0到Tp.实验二 利用DFT 分析离散信号频谱一、 实验目的应用离散傅里叶变换〔DFT 〕,分析离散信号的频谱.深刻理解DFT 分析离散信号频谱的原理,掌握改善分析过程中产生的误差的方法.二、 实验原理根据信号傅里叶变换建立的时域与频域之间的对应关系,可以得到有限长序列的离散傅里叶变换〔DFT 〕与四种确定信号傅里叶变换之间的关系〔见教材〕,实现由DFT 分析其频谱.三、 实验内容1. 利用FFT 分析信号31,...,1,0),83cos()(==n n n x π的频谱; 〔1〕、确定DFT 计算的参数;此题中Ω/2π=3/16,如此周期N=16,因为此题信号无直流分量,所以取样点数可为2*N=32,但必须保证都是独立的样点. N=32;n=0:N-1;x=cos<3*pi/8*n>;X=fft<x,N>;subplot<2,1,1>;stem<n,abs<fftshift<X>>>;ylabel<'Magnitude'>;xlabel<'Frequency <rad>'>;title<'朱艺星 杨婕婕'>; subplot<2,1,2>;stem<n,angle<fftshift<X>>>;ylabel<'Phase'>;xlabel<'Frequency<rad>'>;附:另取N=16时:N=16;n=0:N-1;x=cos<3*pi/8*n>;X=fft<x,N>;subplot<2,1,1>;stem<n-N/2,abs<fftshift<X>>>;ylabel<'Magnitude'>;xlabel<'Frequency <rad>'>;title<'朱艺星 杨婕婕'>;subplot<2,1,2>;stem<n-N/2,angle<fftshift<X>>>;ylabel<'Phase'>;xlabel<'Frequency<rad>'>;附:N取64时;N=64;n=0:N-1;x=cos<3*pi/8*n>;X=fft<x,N>;subplot<2,1,1>;stem<n,abs<fftshift<X>>>;ylabel<'Magnitude'>;xlabel<'Frequency <rad>'>;title<'朱艺星杨婕婕'>; subplot<2,1,2>;stem<n,angle<fftshift<X>>>;ylabel<'Phase'>;xlabel<'Frequency<rad>'>;(2)进展理论值与计算值比拟,讨论信号频谱分析过程中误差原因与改善方法.答:在频谱分析过程中由于取样频率过低或者由于信号的截取长度不当将会产生误差.取样频率过低,可能会产生混频现象,可以适当提高取样率,增加样点数,来减少混叠对频谱分析所造成的误差.对于连续周期信号,其时域取样必须满足时域取样定理:其取样点数K≥2*N+1〔其中N为最高谐波分量〕,即kfo ≥2Nfo+fo;fs≥2fm+fo.截取信号长度不当,会产生功率泄露,对周期序列进展频谱分析时,为防止泄露应做到:截取的长度应取一个根本周期或根本周期的整数倍,假如待分析的周期信号事先不知道其确切的周期,如此可截取较长时间长度的样点进展分析,以减少功率泄露误差.当然,必须在取样频率满足取样定理的条件下进展,否如此混叠与泄露同时存在给频谱分析造成困难.此题)83cos()(n n x π=为周期信号,无直流分量,所以取样点数可为2*N=32,但必须保证都是独立的样点.从取样点数N=32和N=16可以看出,取样点数的不同,会造成频率谱和相位谱的不同.当N=16时,n=3或-3时有幅度值,而在N=32时,n=-10和22时有幅度值,在N=64时,n=-20和44时有幅度值,得到在N=32时,其频谱已经和N=64时一致〔刚好成2倍关系〕,且N=16时已经产生混频现象.综上得,此题取样点数可为32.附:对于非周期连续信号,时域取样定理:fs ≥2fm.频域取样定理:一个时间受限的信号其长度为2τ在频域取样间隔Fo<1/2τ条件下,能够从样点集合完全恢复原来信号的频谱.2. 利用FFT 分析信号)(8.0)(n u n x n =的频谱;(1) 确定DFT 计算的参数;当n 取30时n=0:30;x=<0.8>.^n;subplot<2,1,1>;stem<n,x>;title<'朱艺星 杨婕婕'>;subplot<2,1,2>;w=n-15;plot<w,abs<fftshift<fft<x>>>>;附:当n 取60时n=0:60;x=<0.8>.^n;subplot<2,1,1>;stem<n,x>;title<'朱艺星 杨婕婕'>;subplot<2,1,2>;w=n-15;plot<w,abs<fftshift<fft<x>>>>;(2) 进展理论值与计算值比拟,讨论信号频谱分析过程中误差原因与改善方法.答:信号)(8.0)(n u n x n =为离散非周期信号,且为无限长的信号.根据理论分析,一个时间有限的信号其频谱宽度为无限,一个时间无限的信号其频带宽度如此为有限,因此,对一个时间有限的信号,应用DFT 进展分析,频谱混叠难以防止.对一个时间无限的信号虽然频带有限,但在时间运算中,时间长度总是取有限值,所以频谱泄露难以防止.当原始信号事有限长,截取的长度等于原始信号的长度,如此可以不考虑泄露的影响.当原始的非周期信号为无限长或比拟长,而截取的长度有限或不等于原始信号的长度,如此需考虑频谱泄露引起的不良影响.为了减少泄露的影响,一般可适当增加长度To,也可以通过试探法,先取长度N1〔To=N1*T 〕,然后取N2=2*N1,进展运算.假如两者计算的结果很接近,如此可取N1作为截取长度,否如此继续去N3=2*N2,直至相邻两个长度的计算结果相近,取长度较小的N 为好.此题中,因为信号)(8.0)(n u n x n =为离散非周期信号,且为无限长的信号,用试探法:取n 为30和60,进展比拟,发现两者的频谱根本相似,所以取n 为30较好.因为n 取过大,fs 提高,要求存贮单元增加,硬件速度提高,其结果势必在经济上和技术上带来新的问题.3. 有限长脉冲序列]5,0,1,3,3,2[)(↑=n x ,利用FFT 分析其频谱. N=6;n=0:N-1;x=[2,3,3,1,0,5];subplot<3,1,1>;stem<n,x>;title<'朱艺星 杨婕婕'>;subplot<3,1,2>;w=n;plot<w,abs<fftshift<fft<x>>>>;subplot<3,1,3>;plot<w,angle<fftshift<fft<x>>>>;4. 〔选做题〕某离散序列,630),153.2cos(75.0)152cos()(≤≤+=n n n n x ππ利用FFT 分析其频谱.(1) 对)(n x 做N=64点FFT,绘出信号的频谱,能够分辨出其中的两个频率吗? 假设x<n>是由连续信号)3.2cos(75.0)2cos()(t t t x ππ+=以fs=15Hz 进展取样得来的,如此△f=〔2.3-2〕π/2π=0.15Hz,根据公式:N ≥fs/△f 得N 最小应该为100.假如取N=64,如此不能分辨其中的两个频率.N=64;n=0:N-1;x=cos<pi*2/15*n>+0.75*cos<2.3*pi/15*n>;X=fft<x,N>;subplot<2,1,1>;stem<n,abs<fftshift<X>>>;title<'朱艺星 杨婕婕'>;ylabel<'Magnitude'>;xlabel<'Frequency <rad>'>;subplot<2,1,2>;stem<n,angle<fftshift<X>>>;ylabel<'Phase'>;xlabel<'Frequency <rad>'>〔2〕对)(n x 补零到N=256点后计算FFT,能够分辨出其中的两个频率吗?时域补零的结果L 的数量增加到256,原本的频域N 为64,因为L 要小于等于N,所以此时的N 要扩大为256,致使频域的样点数也增加,所以此时采取时域补零的方法能提高频率分辨力.但如果是在时域补零法得到的L的个数仍小于频域样点数N,如此时域补零法并没有增加信息量,增加后但在频域的N并没有变化,所以采取时域补零的方法不能提高频率分辨力,因为分辨力主要取决于频域样点数N的变化.N=64;n=0:N-1;y=cos<pi*2/15*n>+0.75*cos<2.3*pi/15*n>;x=[y,zeros<1,256-64>];M=256;X=fft<x,M>;subplot<2,1,1>;stem<0:M-1,abs<fftshift<X>>>;title<'朱艺星杨婕婕'>;ylabel<'Magnitude'>;xlabel<'Frequency <rad>'>;subplot<2,1,2>;stem<0:M-1,angle<fftshift<X>>>;ylabel<'Phase'>;xlabel<'Frequency <rad>'>;〔3〕假如不能够很好地分辨出其中的两个频率,应采用哪些措施?答:可以提高取样频率,增加频域的取样点数.当然,如果在T不变条件下,真正增加时域取样长度L,使提供所载荷的信息量增加,功率泄露减少,也会在一定程度上改善频率分辨力,但这不是通过补零使时域长度延长的结果,因为补零不增加信息量.四、实验思考题1.既然可直接由DTFT定义计算序列DTFT,为何利用DFT分析序列的频谱?答:通过DFT 可以求出确定性信号相应的离散频谱或频谱的样值,变换到有限频谱序列,这样就可以用计算机实现对信号进展分析,数字化计算速度快,故提出了DFT 来分析序列的频谱2. 假如序列持续时间无限长,且无解析表达式,如何利用DFT 分析其频谱?答:当原始的非周期信号为无限长或比拟长,可截取一段时间内的序列值,长度为L,作N 点的DFT 变换,N ≥L.而截取的长度有限或不等于原始信号的长度,如此需考虑频谱泄露引起的不良影响.为了减少泄露的影响,一般可适当增加长度To,也可以通过试探法,先取长度L1〔To=L1*T 〕,然后取L2=2*L1,进展运算.假如两者计算的结果很接近,如此可取N1作为截取长度,否如此继续去L3=2*L2,直至相邻两个长度的计算结果相近,取长度较小的L 为好.再从L 点有限长序列x<n>相应的频谱X<Ω>中,在主周期[-π,π]内对X<Ω>进展离散化,随即得到N 个频谱样点 用公式可表示为3. 序列补零和增加序列长度到可以提高频谱分辨率吗?两者有何本质区别?答:如果采取时域补零法得到的L 的个数仍小于频域样点数N,如此时域补零法并没有增加信息量,增加后但在频域的N 并没有变化,所以采取时域补零的方法不能提高频率分辨力,因为分辨力主要取决于频域样点数N 的变化.但如果是补零后的时域序列个数增加到L2,且L2个数大于频域样点数N,因为要满足N 大于等于L,如此现在会使频域样点数也随之增加,所以此时采取时域补零的方法能提高频率分辨力.如果在T 不变条件下,真正增加时域取样长度L,使提供所载荷的信息量增加,功率泄露减少,也会在一定程度上改善频率分辨力,但这不是通过补零使时域长度延长的结果,因为补零不增加信息量.实验三 离散系统分析一、 实验目的深刻理解离散时间系统的系统函数在分析系统时域特性、频域特性与稳定性中的重要作用与意义,掌握根据系统函数的零极点设计简单的滤波器的方法.熟练掌握利用MATLAB 分析离散系统的响应求解、频响特性和零极点的方法.二、实验原理MATLAB 提供了许多可用于分析线性非时变离散系统的函数,主要包括有系数函数、系统时域响应、系统频域响应等分析函数.二、 实验内容1. 某离散LTI 系统的差分方程为(1) 初始状态2)2(,1)1(=-=-y y ,输入)()(n u n x =,计算系统的完全响应; N=100;b=[0.0675,0.1349,0.0675];a=[1,-1.143,0.4128];x=ones<1,N>;y=filtic <b,a,[1,2]>;y=filter <b,a,x,y>;<2> 当以下3个信号分别通过离散系统时,分别计算离散系统的零状态响应 <1>),()10cos()(1n u n n x π=N=100;n=0:N-1;x2=[ones<1,N>];b=[0.0675,0.1349,0.0675];a=[1,-1.143,0.4128];x=cos<pi/10*n>.*x2;y=filter<b,a,x>; <2>)()5cos()(2n u n n x π= N=100;n=0:N-1;x2=[ones<1,N>];b=[0.0675,0.1349,0.0675];a=[1,-1.143,0.4128]; x=cos<pi/5*n>.*x2;y=filter<b,a,x>; <3>)()107cos()(3n u n n x π= N=100;n=0:N-1;x2=[ones<1,N>];b=[0.0675,0.1349,0.0675];a=[1,-1.143,0.4128]; x=cos<pi*7/10*n>.*x2;y=filter<b,a,x>;〔3〕该系统具有什么特性.答:该系统是低通滤波器.频率越高,幅度衰减越大.X3频率最高,幅度衰减也最大.计算H 〔Ω〕,也看出此为低通滤波器.N=100;n=0:N-1;b=[0.0675,0.1349,0.0675];a=[1,-1.143,0.4128];h=impz<b,a,N>;H=fft<h,N>;subplot;stem<n-N/2,abs<fftshift<H>>>;title<'杨婕婕 H'>;2. 某因果LTI 离散系统的系统函数为(1) 计算系统的单位脉冲响应;(2) 当信号)()2cos()()4cos()()(n u n n u n n u n x ππ++=通过系统时,计算系统的零状态响应.<1>N=40;a=[1,-1.035,0.8246,-0.2605,0.04033,];b=[0.03571,0.1428,0.2143,0.1428,0.03571];y=impz<b,a,N>;stem<y>;xlabel<'n'>;title<'朱艺星 杨婕婕 h<n>'><2>N=100;n=0:N-1;x2=[ones<1,N>];a=[1,-1.035,0.8246,-0.2605,0.04033,];b=[0.03571,0.1428,0.2143,0.1428,0.03571];x=x2+cos<pi/4*n>.*x2+cos<pi/2*n>.*x2;y=filter<b,a,x>;stem<y>;xlabel<'n'>;title<'朱艺星杨婕婕'>;三、实验思考题1.系统函数的零极点对系统冲激响应有何影响?答:系统函数的零极点会影响系统的稳定性和因果性.因为为冲激响应,所以分析s域.极点对稳定系统的影响:假如极点只在s左半平面,不包括jw轴,如此该系统为渐进稳定、BIBO系统;假如极点不单只在左半平面,还有在jw轴上有单根,如此为临界稳定系统.假如极点在jw轴上有重根,或者存在域s域的右半平面,如此该系统不稳定.对因果性的影响:假如极点有在s域右半平面,如此该系统为非因果系统,假如极点只存在于s域的左半平面,如此为因果系统.要考虑零极点相消的情况,但实际很难做到零极相消,使系统不稳定.2.假如某因果系统不稳定,有哪些主要措施可使之稳定?答:应改变系统设计,使所有极点都出现在s域的左半平面,且防止零极相消..。
武汉工程大学电气信息学院
title('幅度')
xlabel('t')
axis([-0.5,20.5,0,1.1])
grid on
subplot(2,2,4) %将当前窗口分成2行2列个子窗口,并在第4个子窗口绘图plot(t,fg)
title('相位')
xlabel('t')
axis([-0.5,20.5,-3.5,3.5])
grid on
三、实验数据与结果分析
1、
2、
四、思考:
1、为什么图二中t=0处曲线是间断的,如何使其成为连续的曲线?
因为axis函数对纵坐标的的上边界限定过小,使图形在边界处不能完整的显示。
xlabel('t')
axis([-7,7,-1,2])
grid on
三、实验数据与结果分析
1.
2.
3.
四、思考:
1、代数运算符号*和.*的区别是?
*是矩阵相乘,是矩阵A行元素与B的列元素相乘的和
.*是数组相乘,表示数组A和数组B中的对应元素相乘
实 验 内 容
实验三 连续时间信号的卷积
一、实验内容
1、已知两连续时间信号如下图所示,绘制信号f 1(t)、f 2(t)及卷积结果f(t)的波形;设时间变化步长dt 分别取为0.5、0.1、0.01,当dt 取多少时,程序的计算结果就是连续时间卷积的较好近似?
2、、计算信号
()()()11==-a t u e t f at 和()()t tu t f sin 2=的卷积f(t),f 1(t)、f 2(t)的时间
范围取为0~10,步长值取为0.1。
绘制三个信号的波形。
二、实验方法与步骤
1、绘制信号f 1(t)、f 2(t)及卷积结果f(t)的波形,当dt 取0.01时程序的计算结果就是连续时间卷积的较好近似 程序代码如下:
clear all close all clc dt=0.01 t1=0:dt:2; t2=-1:dt:1;
三、实验数据与结果分析
1.
2.
三、实验数据与结果分析1.
2.
实 验 内 容
实验五 连续时间信号的频域分析
一、实验内容
1、如图5.4所示的奇谐周期方波信号,周期为T1=1,幅度为A=1,将该方波信号展开成三角形式Fourier 级数并分别采用频域矩形窗和Hanning 窗加权,绘制两种窗函数加权后的方波合成图像。
时间范围取为-2~2,步长值取为0.01。
2、将图5.5中的锯齿波展开为三角形式Fourier 级数,按(2)式求出Fourier 级数的系数,并在频域分别采用矩形窗、Hanning 窗和三角窗加权,观察其Gibbs 效应及其消除情况。
时间范围取为-2~2,步长值取为0.01。
3、选做:编程计算连续时间周期信号的三角形式傅里叶级数展开的系数
二、实验方法与步骤
1、将方波信号展开成三角形式Fourier 级数并分别采用频域矩形窗和Hanning 窗加权 方波展开的三角式傅立叶级数为:
()()t k k t x L
k 1,5,3,1sin 4ωπ
⋅∑
=∞
=
采用频域矩形窗加权,则展开式变为:
()()()[]t k k t x K
k 10
12sin 124
ωπ
+⋅+∑==
a0=2/T*int(f,t,0,T); %求函数f对t从0到T的定积分
a0=simplify(a0) %得出结果
syms k
fa=t*cos(k*w*t);
fb=t*sin(k*w*t);
ak=2/T*int(fa,t,0,T); %求函数fa对t从0到T的定积分bk=2/T*int(fb,t,0,T); %求函数fb对t从0到T的定积分ak=simplify(ak)
bk=simplify(bk)
三、实验数据与结果分析
1.
2.
3.
根据绘制的幅频特性曲线,系统具有低通滤波特性2.
根据绘制的幅频特性曲线,系统具有带通滤波特性。