110kv继电保护课程设计(1)
- 格式:doc
- 大小:687.00 KB
- 文档页数:50
继电保护课程设计--110kV电网距离保护设计
一、课程介绍
本课程设计是针对110kV电网中的距离保护进行设计的,旨在使学生了解距离保护的基本原理、组成部分、应用场景以及调试方法等方面的知识,能够独立设计和调试110kV电网距离保护系统。
二、设计内容
1. 距离保护的基本原理及分类
了解距离保护的基本原理,包括电气距离原理、I-V特征法和角度特征法等,以及距离保护的分类。
2. 距离保护的组成部分
了解距离保护的组成部分,包括主保护、备用保护、监控装置和负载切换等,并掌握各个组成部分的功能和特点。
3. 距离保护的应用场景
了解距离保护在电网中的应用场景,包括线路距离保护、变压器距离保护和母线距离保护等,并掌握不同应用场景下距离保护的设计要求和调试方法。
4. 距离保护系统的设计
根据实际需求,独立设计110kV电网距离保护系统,包括选型、接线、参数设置和调试等,实现对电网故障的保护和自动切除。
5. 距离保护系统的调试
针对设计的距离保护系统进行调试,包括模拟故障、检查保护动作、检查自动切除等,保证距离保护系统的稳定可靠性。
三、设计要求
1. 设计过程需结合实际电网,在电网拓扑结构、线路参数、变压器参数和母线参数等方面进行适当调整和设计。
2. 设计过程中需加强安全意识,确保操作过程安全可靠。
3. 设计报告中需详细说明设计思路、参数设置、故障模拟和调试等过程,保证报告清晰明了。
继电保护110kv 课程设计一、课程目标知识目标:1. 理解110kV继电保护的基本原理,掌握其主要设备和保护功能的分类及工作原理。
2. 掌握继电保护配置原则,能够分析不同故障情况下继电保护的动作过程。
3. 了解电力系统对继电保护的基本要求,掌握相关标准和技术规范。
技能目标:1. 能够正确阅读并分析110kV电力系统的继电保护图纸,识别各种保护装置及其功能。
2. 通过案例分析,培养学生解决实际工程问题的能力,能对继电保护系统进行简单的设计和计算。
3. 能够运用继电保护知识,模拟故障分析,提出改进保护配置和参数设置的建议。
情感态度价值观目标:1. 培养学生对电力系统继电保护重要性的认识,激发其学习热情和责任感。
2. 增强学生的团队合作意识,培养在实践操作中相互协作、共同解决问题的能力。
3. 引导学生形成严谨的科学态度,认识到继电保护在保障电力系统安全中的重要作用。
课程性质分析:本课程属于电力系统及其自动化专业的核心课程,具有较强的理论性与实践性,旨在通过学习,使学生能够掌握110kV继电保护的基本知识和技能。
学生特点分析:学生应为具有一定电力系统知识基础的大三或大四本科生,具有一定的理论分析能力和实际操作能力。
教学要求分析:教学过程中应注重理论与实践相结合,通过案例分析和模拟操作,提高学生解决实际问题的能力。
同时,强调安全意识与规范操作,确保学生能够达到课程所设定的具体学习成果。
二、教学内容1. 继电保护基础理论- 继电保护概述:定义、作用、发展历程。
- 继电保护原理:电流保护、电压保护、差动保护、方向保护等。
- 保护装置的类型及功能:如继电器、保护屏、综合自动化装置等。
2. 110kV继电保护系统配置与工作原理- 继电保护系统配置:线路保护、变压器保护、母线保护等。
- 继电保护动作过程:故障类型、保护动作逻辑、时间特性等。
- 典型保护装置工作原理:如纵联差动保护、距离保护、过流保护等。
3. 继电保护案例分析与实践操作- 案例分析:分析实际电力系统故障案例,理解保护动作过程。
引言电力系统继电保护是电力系统安全运行的重要保证,尤其是近年来,继电保护产品类型众多,原理不断有所突破,特别是微机保护的采用,实现了继电保护行业的革命,随之而来的网络技术又为继电保护技术的发展提供了新的手段。
继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信号量,当突变量到达一定值时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。
对电力系统继电保护的基本性能要求是有选择性、速动性、灵敏性、可靠性。
本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。
其中短路电流的计算和距离保护的整定计算及校验是本设计的重点。
通过此次线路保护的设计可以巩固我们本学期所学的《电力系统继电保护》这一课程的理论知识,能提高我们提出问题、思考问题、解决问题的能力。
1.继电保护整定计算的基本任务和要求1.1继电保护整定计算概述继电保护装置属于二次系统,它是电力系统中的一个重要组成部分,它对电力系统安全稳定运行起着极为重要的作用,没有继电保护的电力系统是不能运行的。
继电保护要达到及时切除故障,保证电力系统安全稳定运行的目的,需要进行多方面的工作,包括设计、制造、安装、整定计算、调试、运行维护等,继电保护整定计算是其中极其重要的一项工作。
电力生产运行和电力工程设计工作都离不开整定计算,不同部门整定计算的目的是不同的。
电力运行部门整定计算的目的是对电力系统中已经配置安装好的各种继电保护按照具体电力系统参数和运行要求,通过计算分析给出所需要的各项整定值,使全系统中的各种继电保护有机协调地布置、正确地发挥作用。
电力工程设计部门整定计算的目的是按照所设计的电力系统进行分析计算、选择和论证继电保护装置的配置和选型的正确性,并最后确定其技术规范。
同时,根据短路计算结果选择一次设备的规范。
本科课程设计课程名称:电力系统继电保护原理设计题目:110kV输电线路继电保护设计院部: 电力学院专业:电气工程及其自动化班级: 1304 姓名:学号: 1310240107 成绩:指导教师:李莉李静日期:2016年6月20日—— 6月28 日课程设计成绩考核表设计说明书本次继电保护原理课程设计对110kV输电线路进行了全面的介绍,从110kV输电线路的故障原因及类型入手,重点分析了几大常见的故障类型(单相接地短路,两相短路,两相短路接地,三相短路),然后对110kV输电线路相关问题分析了具体的保护设置,110kV输电线路保护的主体是距离保护与零序电流保护,距离保护又分为相间距离保护与接地距离保护,分别反应相间短路故障于接地短路故障.最后对110kV输电线路的保护进行了实际案列分析。
针对110kV输电线路保护配置,重点对距离保护做了详细的案例分析。
目录1 110kV输电线路故障分析 (1)1.1故障引起原因 (1)1。
2故障状态及其危害 (3)1.3短路简介及类别 (4)2 110kV输电线路保护 (6)2。
1 110kV输电线路的保护方法 (6)2。
1.1距离保护的整定计算方法 (6)2。
1。
2阶段式零序电流保护 (8)2。
2 110kV输电线路的保护原理 (11)2。
2。
1距离保护的特点及基本原理 (11)2.2。
2 零序电流保护的特点及优缺点 (13)3 实际案例分析 (15)4 结论 (17)参考文献 (18)1 110kV输电线路故障分析1。
1故障引起原因由于架空线路分布很广,又长期处于露天之下运行,所以经常会受到周围环境和自然变化的影响,从而使线路在运行中会发生各种各样的故障。
以下介绍的八种最常见的因素:①雷害线路遭受雷击引起绝缘子串闪络故障,有时会引起绝缘子断串,可能在线夹到防振锤之间的导线上留下痕迹,而且闪络面积大或断线等事故.②大风风速超过或接近设计风速,加之线路木身的局部缺陷,如超过杆塔机械强度,使杆塔倾倒或损坏等,使导线产生振动、跳跃和碰线,从而引起故障;同塔双回线路若不同步风摆可能造成混线短路故障.③洪水暴雨雷雨季节、季节洪水冲刷杆塔基础,从而引起基础边坡塌方、塔基裂缝、沉降或是更严重的倒杆倒塔故障.④外力破坏线路遭到人为的破坏而引起故障。
2.电网各个元件参数计算及短路电流计算2.1基准值选择基准功率:S B=100MV·A,基准电压:V B=115V。
基准电流:I B=S B/1.732 V B=100×103/1.732×115=0.502K A;基准电抗:Z B=V B/1.732 I B=115×103/1.732×502=132.25Ω;电压标幺值:E=E(2)=1.052.2电网各元件等值电抗计算2.2.1输电线路等值电抗计算(1) 线路AB等值电抗计算正序以及负序电抗:X L1= X1L1=0.4×40=16ΩX L1*= X L1/ Z B=16/132.25=0.121零序电抗:X L10= X0L1= 3X1L1=3×0.4×40=48ΩX L10*= X L10/ Z B=48/132.25=0.363(2) 线路BC等值电抗计算正序以及负序电抗:X L2= X1L2=0.4×40=16ΩX L2*= X L2/ Z B=16/132.25=0.121零序电抗:X L20= X0L2= 3X1L2=3×0.4×40=48ΩX L20*= X L20/ Z B=48/132.25=0.363(3) 线路CA等值电抗计算正序以及负序电抗:X L3= X1L3=0.4×50=20ΩX L3*= X L3/ Z B=20/132.25=0.1512零序电抗:X L30= X0L3= 3X1L3=3×0.4×50=60ΩX L30*= X L30/ Z B=50/132.25=0.45372.2.2变压器等值电抗计算(1) 变压器T1、T2等值电抗计算X T1= X T2=U K%/100×U N2/ S N=1O.5/100×110×110/60≈21.175ΩX T1*= X T2*=X T1/ Z B=31.7625/132.25=0.1601(2) 变压器T3等值电抗计算X T3= U K%/100×U N2/ S N≈21.175ΩX T3*=X T3/ Z B=21.175/132.25=0.1601(3) 变压器T4、T5、T6等值电抗计算X T4= X T5=X T6= X T7= U K%/100×U N2/ S N≈63.525ΩX T6*= X T7* = X T4*= X T5*=63.525/132.25=0.48032.2.3发电机等值电抗计算(1)发电机G1、G2、G3电抗标幺值计算X G1* = X G2*= X G3*=X d S B/ S G= X d S B COSφ/ P G=0.129×100×0.85/50=0.21932.2.4 各线路运行方式下流过断路器的最大负荷电流(1) 保护1的最大运行方式:发电机G1、G2、G3全投入,继开线路AC;通过保护1的负荷电流最大;保护1的最小运行方式:发电机G3停,线路全部运行。
前言《电力系统继电保护》作为电气工程及其自动化专业的一门主要课程,主要包括课堂讲学、课程设计等几个主要部分。
在完成了理论的学习的基础上,为了进一步加深对理论知识的理解,本专业特安排了本次课程设计。
电能是现代社会中最重要、也是最方便的能源。
而发电厂正是把其他形式的能量转换成电能,电能经过变压器和不同电压等级的输电线路输送并被分配给用户,再通过各种用电设备转换成适合用户需要的其他形式的能量。
在输送电能的过程中,电力系统希望线路有比较好的可靠性,因此在电力系统受到外界干扰时,保护线路的各种继电装置应该有比较可靠的、及时的保护动作,从而切断故障点极大限度的降低电力系统供电范围。
电力系统继电保护就是为达到这个目的而设置的。
本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。
其中短路电流的计算和电气设备的选择是本设计的重点。
通过此次线路保护的设计可以巩固我们本学期所学的《电力系统继电保护》这一课程的理论知识,能提高我们提出问题、思考问题、解决问题的能力。
1 原始资料1.1 电网接线图(1)各变电站、发电厂的操作直流电源电压U=220V。
(2)发电厂最大发电容量50+2×25=100MW,最小发电容量为50MW,正常发电容量为50+25=75MW。
(3)线路X1=0.4Ω/km, X0=0.4Ω/km。
(4)变压器均为YN ,D11,110±2.5%/10.5KV, UK=10.5%(5)△t=0.5S,负荷侧后备保护tdz=1.5S,变压器和母线均配置有差动保护,Kzq=1.3(6)发电厂升压变中性点直接接地,其他变压器不接地。
1.2 任务(1) 电网运行方式分析。
(2) 各开关保护配置方案,计算配置各线路的保护及计算出各保护的二次动作值(设X1= X2)。
2.2.1 主变台数和容量计算根据“35~110KV 变电所设计规范”主要变压器的台数和容量,应根据地区供电条件、负荷性质、用电容量和运行方式等条件综合考虑确定。
在有一、二级负荷变电所中宜装设两台主变压器,当技术经济比较合理时,可装设两台以上主变压器。
装有两台及以上主变压器的变电所,当断开一台时,其余主变压器的容量不应小于60%的全部负荷,并应保证用户的一、二级负荷。
具有三种电压的变电所,如通过主变压器各侧线圈的功率均达到该变压器的15%以上,主要变压器宜采用三线圈变压器。
由于我国电力不足、缺电严重、电网电压波动较大。
变压器的有载调压是改善电压质量、减少电压波动的有效手段。
对电力系统,一般要求110KV 及以下变电所至少采用一级有载调压变压器,因此城网变电所采用有载调压变压器的较多。
(1)35KV 中压侧: 其出线回路数为4回,92.0=t K ,结合“2.1变电站的负荷分析”35kv 负荷情况分析表1-1知:=92.005.19.08.48.44.82.7⨯⨯+++=27.048MV A(2)10KV 低压侧:由于其出线回路数共11回,故可取Kt=0.85,结合10kv 负荷情况分析可知:=0.85⨯1.05⨯()78.06.378.06.38.08.48.08.472.06.375.06.375.08.478.08.478.08.475.0675.06++++++++++=0.85⨯1.05⨯(8+8+6.15+6.15+6.4+4.8+5+6+6+4.615+4.615) =58.664MV A则三绕组变压器的计算容量: 因此,选择两台50MV A 的变压器。
校验:(1)50=选S >MVA S 716.436.0=总⨯ 满足一台停运时另一台不小于全部容量的60%。
=31.8MV A(2)50=选S >MVA S S kv 3.42k v 1035=、、∏I ∏I +也满足一台停运时另一台满足全部一、二类负荷。
《电力系统继电保护原理》课程设计—110KV电网线路保护设计一、原始资料1、110KV电网接线示意图如下:2、电网参数说明(所有元件的电阻都忽略不计,并近似地取负序电抗X2=X1)(1) 线路:已知:L1=45KM,L2=50KM,L3=35KM,L4=60KM,线路阻抗按每公里0.4Ω计算,线路零序阻抗按3倍正序阻抗计算。
(2) 变压器:T1、T2、T7额定容量均为31.5MV A,T3、T4、T5、T6额定容量均为15MV A,所有变压器均为Y N,d ll接法,U K=10.5%;110/6.6KV,中性点接地方式按一般原则确定。
(3) 发电机(均为汽轮发电机):G1,G2,G3,G4额定容量均为12MW,G5额定容量为25MW,所有发电机额定电压均为6.3KV,功率因素均为0.8。
(4)其他:所有变压器和母线均配置差动保护,负荷侧后备保护t dz=1.5s,负荷自起动系数k zq=1.3二、设计内容1、建立电力系统设备参数表2、绘制电力系统各相序阻抗图3、确定保护整定计算所需的系统运行方式和变压器中性点接地方式4、进行电力系统中潮流及各点的短路计算.5、进行继电保护整定计算三、设计成果说明书一份(含短路电流计算、整定计算、校验及保护配置图)四、参考文献1、电力工程设计手册(上、下)2、电力系统继电保护设计原理,水利电力出版社,吕继绍摘要:1、引言电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。
因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段:继电保护的萌芽期、晶体管继电保护、集成运算放大器的集成电路保护和计算机继电保护。
继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化的发展。
随着计算机硬件的迅速发展,微机保护硬件也在不断发展。
电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护。
电力系统继电保护课程设计课设名称:110KV线路继电保护设计目录一、设计原始资料 (1)二、分析课题设计内容 (2)三、短路电流及残压计算 (6)四、保护的配合及整定计算 (13)五、继电保护设备选择 (17)六、相间短路保护 (21)七、结论 (24)八、主要参考文献 (25)1设计原始资料1.1具体题目系统示意图如图所示,发电机以发电机—变压器组方式接入系统,最大开机方式为4台机全开,最小开机方式为两侧各开1台机,变压器T5和T6可能2台也可能1台运行。
参数为:ΩX X .T .T 156151==,KmL A-B 60=,ΩX X X X .G .G .G .G 842413231====,KV /E 3115=ϕ,ΩX X X X .G .G .G .G 522211211====,KmL B-C 40=,Ω~X X .T .T 154010=,Ω~X X .T .T 54111=,ΩX X .T .T 206050==,线路阻抗Ω/Km .Z Z 4021==,Ω/Km .Z 210=,21.K Ιrel =、151.K Πrel =。
T6试对1、2、3、4进行零序保护的设计。
1.2 完成内容(1) 请画出所有元件全运行时三序等值网络图,并标注参数;(2) 所有元件全运行时,计算B 母线发生单相接地短路和两相接地短路时的零序电流分布;(3) 分别求出保护1、4零序II 段的最大、最小分支系数; (4) 分别求出保护1、4零序I 、II 段的定值,并校验灵敏度; (5) 保护1、4零序I 、II 段是否需要安装方向元件;(6) 保护1处装有单相重合闸,所有元件全运行时发生系统振荡,整定保护1不灵敏I 段定值;(7)其相间短路的保护也采用电流保护,试完成:(1)分别求出保护1、4 的段Ⅰ、Ⅱ定值,并校验灵敏度;(2)保护1、4 的Ⅰ、Ⅱ段是否安装方向元件;(3)分别画出相间短路的电流保护的功率方向判别元件与零序功率方向判别元件的交流接线;2分析课题设计内容2.1设计规程正常运行的而电力系统是三相对称的,其零序、负序电流和电压理论上为零;多数的短路故障是三相不对称的,其零序、负序电流和电压会很大;利用故障的不对称性可以找到正常和故障间的差别,并且这种差别是零与很大值的比较,差异更为明显。
110KV电网线路继电保护课程设计一、设计资料1.110KV系统电气主接线110KV系统电气主接线如下图所示2.系统各元件主要参数:(1)发电机参数机组容量(MVA)额定电压(KV)额定功率因数X%#1、#22×1510.50.8(2)输电线路参数AS2AB AC BS2LGJ-185/5LGJ-240/3LGJ-185/1LGJ-240/6ф=670ф=710ф=670ф=710(3)变压器参数序号1B、2B3B、4B5B、6B型号SFZ-12500/110SF-20000/110SFZ-31500/110接线组别Y0/△-11Y0/△-11Y0/△-11短路电压%%%变比110±8×%110±2×%110±8×%(4)CT、PT变比AB线AC线AS2线BS1线二、设计内容1. CA线路保护设计AS、AC、AB线路保护设计2.2BS线路保护设计3. BA、1三、设计任务系统运行方式和变压器中性点接地的选择故障点的选择及正、负、零序网络的制定短路电流计算4.线路保护方式的选择、配置与整定计算(选屏)*5.主变及线路微机保护的实现方案6.线路自动综合重合闸7.保护的综合评价*8、110KV系统线路保护配置图,主变保护交、直流回路图随着电力系统的飞速发展,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段:继电保护的萌芽期、晶体管继电保护、集成运算放大器的集成电路保护和计算机继电保护。
电力系统的运行中最常见也是最危险的故障是发生各种形式的各种短路。
发生短路时可能会产生以下后果:电力系统电压大幅度下降,广大用户负荷的正常工作遭到破坏。
故障处有很大的短路电流,产生的电弧会烧坏电气设备。
电气设备中流过强大的电流产生的发热和电动力,使设备的寿命减少,甚至遭到破坏。
破坏发电机的并列运行的稳定性,引起电力系统震荡甚至使整个系统失去稳定而解列瓦解。
《电力系统继电保护原理》课程设计—110KV电网线路保护设计一、原始资料1、110KV电网接线示意图如下:2、电网参数说明(所有元件的电阻都忽略不计,并近似地取负序电抗X2=X1)(1) 线路:已知:L1=45KM,L2=50KM,L3=35KM,L4=60KM,线路阻抗按每公里0.4Ω计算,线路零序阻抗按3倍正序阻抗计算。
(2) 变压器:T1、T2、T7额定容量均为31.5MV A,T3、T4、T5、T6额定容量均为15MVA,所有变压器均为Y N,d ll接法,U K=10.5%;110/6.6KV,中性点接地方式按一般原则确定。
(3) 发电机(均为汽轮发电机):G1,G2,G3,G4额定容量均为12MW,G5额定容量为25MW,所有发电机额定电压均为6.3KV,功率因素均为0.8。
(4)其他:所有变压器和母线均配置差动保护,负荷侧后备保护t dz=1.5s,负荷自起动系数k zq=1.3二、设计内容1、建立电力系统设备参数表2、绘制电力系统各相序阻抗图3、确定保护整定计算所需的系统运行方式和变压器中性点接地方式4、进行电力系统中潮流及各点的短路计算.5、进行继电保护整定计算三、设计成果说明书一份(含短路电流计算、整定计算、校验及保护配置图)四、参考文献1、电力工程设计手册(上、下)2、电力系统继电保护设计原理,水利电力出版社,吕继绍3、电力系统继电保护及安全自动整定计算4、有关教材引言电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段:继电保护的萌芽期、晶体管继电保护、集成运算放大器的集成电路保护和计算机继电保护。
继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。
电力系统中电气元件的正常工作遭到破坏,但没有发生故障,这种情况属于不正常运行状态;故障和不正常运行状态,都可能在电力系统中引起事故的发生。
110k V输电线路功率方向保护设计(1)辽宁工业大学微机继电保护课程设计(论文)题目:110kV输电线路功率方向保护设计(1)院(系):电气工程学院专业班级:电气111班学号:学生姓名:指导教师:(签字)起止时间: 20141.12.15-2014.12.26.课程设计(论文)任务及评语院(系):电气工程学院教研室:电气工程及其自动化续表注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要电能是现代社会中最重要、也是最方便的能源。
而发电厂正是把其他形式的能量转换成电能,电能经过变压器和不同电压等级的输电线路输送并被分配给用户,再通过各种用电设备转换成适合用户需要的其他形式的能量。
在输送电能的过程中,电力系统希望线路有比较好的可靠性,因此在电力系统受到外界干扰时,保护线路的各种继电装置应该有比较可靠的、及时的保护动作,从而切断故障点极大限度的降低电力系统供电范围。
电力系统继电保护就是为达到这个目的而设置的。
电流方向保护是在每个断路器的电流保护中增加一个功率方向测量元件。
使其对对电流保护段来说,因为反方向短路时功率方向测量元件不动作,其整定值就只需躲过正方向线路末端短路电流最大值,而不必躲过反方向短路的最大短路电流,因而提高了灵敏度。
关键词:继电保护;功率保护保护;方向保护;方向元件目录第1章绪论 01.1 输电线路电流保护概述 01.2 本文主要内容 0第2章输电线路方向电流保护整定计算 (1)2.1 方向电流Ι段整定计算 (1)2.1.1方向电流的整定 (1)2.1.2保护4、5的Ι段动作电流的整定 (2)2.1.3灵敏度校验 (3)2.1.4动作时间的整定 (4)2.2 保护5、7、9方向电流Ⅱ段整定计算 (4)2.3 方向电流Ⅲ段动作时间整定计算及方向元件的安装 (7)第3章硬件设计 (8)3.1 功率方向保护设计总体设计方案 (8)3.2 电压电流数据采集 (8)3.3 报警显示电路设计 (9)3.4 时钟电路设计 (10)3.5 人机对话接口电路设计 (10)3.6 CPU最小系统图 (12)第4章软件设计 (12)4.1主程序流程图设计 (12)4.2模拟量检测流程图设计 (14)第5章 MATLAB建模仿真分析 (15)4.1 MATLAB系统仿真图 (15)4.2 仿真波形 (15)第6章课程设计总结 (18)第7章参考文献 (19)第1章绪论1.1输电线路电流保护概述电力系统的输、配线路因各种原因可能会发生相间或相地短路故障,因此,必须有相应的保护装置来反映这些故障,并控制故障线路的断路器,使其跳闸以切除故障.对各种不同电压等级的线路应该装设不同的相间短路和接地短路的保护。
继电保护110kv课程设计一、课程目标知识目标:1. 理解110kV继电保护的基本原理和重要性;2. 掌握110kV继电保护装置的配置、工作原理及参数设置;3. 了解电力系统故障类型及其对继电保护的影响;4. 学会分析继电保护的动作行为及其对系统的影响。
技能目标:1. 能够正确使用继电保护测试设备进行基本操作和测试;2. 能够根据系统要求,设计合理的110kV继电保护方案;3. 能够运用所学知识,对实际电力系统故障案例进行分析和解决。
情感态度价值观目标:1. 培养学生严谨的科学态度,注重实践操作与理论知识的结合;2. 增强学生的安全意识,了解继电保护在保障电力系统安全运行中的重要作用;3. 激发学生的创新精神,培养他们在电力工程领域的专业素养和责任感。
课程性质:本课程属于电力系统及其自动化专业的核心课程,具有较强的理论性和实践性。
学生特点:学生已具备一定的电力系统基础知识,具有较强的学习能力和实践操作能力。
教学要求:结合课程性质、学生特点,注重理论教学与实践操作相结合,提高学生的实际应用能力。
通过本课程的学习,使学生能够达到上述课程目标,为今后的电力工程实践打下坚实基础。
二、教学内容1. 继电保护基本原理:介绍继电保护的概念、分类及其在电力系统中的重要作用,重点讲解差动保护、过流保护、距离保护等常用保护原理。
教材章节:第二章 继电保护的基本原理2. 110kV继电保护装置:讲解110kV继电保护装置的配置、工作原理及参数设置,分析各类保护装置的优缺点。
教材章节:第三章 110kV继电保护装置3. 故障类型及影响:介绍电力系统常见故障类型,分析故障对继电保护的影响,探讨如何通过继电保护提高系统稳定性。
教材章节:第四章 电力系统故障及其对继电保护的影响4. 继电保护动作行为分析:结合实际案例,讲解继电保护的动作行为,分析保护动作对电力系统的影响。
教材章节:第五章 继电保护动作行为分析5. 继电保护测试与设计:介绍继电保护测试设备的使用,教学学生如何进行基本操作和测试,并通过实例分析,培养学生的继电保护设计能力。
第一章综述第一节继电保护的发展简史继电保护技术是随着电力系统的发展而发展起来的。
继电保护原理经历一系列的发展,从开始的单一过电流保护到现在的差动保护、距离保护、高频保护、微机保护、行波保护以及现在研究的光纤保护.继电保护装置也经历了三代,即电磁型继电保护,晶体管型继电保护和微机型继电保护(简称微机保护)。
与过去的保护装置相比,微机保护具有巨大的计算、分析和逻辑判断能力,有存储记忆功能,可以实现任何性能完善且复杂的原理。
微机保护可连续不断地对本身地工作情况进行自检,其工作可靠性高。
此外,微机保护可用同一硬件实现不同地保护原理,这使保护装置的制造大为简化,也容易实行保护装置的标准化。
微机保护除了保护功能外,还可兼有故障滤波、故障测距、事件顺序记录、和调度计算机交换信息等辅助功能,这对简化保护的调试、事故分析和事故处理等都有重大的意义。
由于微机保护装置的巨大优越性和潜力,因而受到了运行人员的欢迎,进入90年代以来,在我国得到了大量应用,将成为继电保护装置的主要型式。
可以说微机保护代表着电力系统继电保护的未来,将成为未来电力系统保护、控制、运行调度及事故处理的统一计算机系统的组成部分。
第二节继电保护的作用继电保护装置,就是指能反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。
它的基本任务是:一、自动,迅速,有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其它无故障部分迅速恢复正常运行;二、反应电气元件地不正常运行状态,并根据运行维护地条件(例如有无经常值班人员),而动作于发出信号、减负荷或跳闸。
此时一般不要求动作,而是根据对电力系统及元件地危害程度规定一定地延时,以免不必要的动作和由于干扰而引起的误动作。
第三节继电保护的基本要求即在电力系统的电气元件发生故障或不正常运行时,保护动作必须具有选择性、速动性、灵敏性和可靠性。
一、选择性继电保护动作的选择性是指保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统无故障部分仍能继续安全运行。
前言电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。
因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段:继电保护的萌芽期、晶体管继电保护、集成运算放大器的集成电路保护和计算机继电保护。
继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化的发展。
随着计算机硬件的迅速发展,微机保护硬件也在不断发展。
电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护。
继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信号量,当突变量到达一定值时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。
对电力系统继电保护的基本性能要求是有选择性,速动性,灵敏性,可靠性。
这次课程设计以最常见的110KV电网线路保护设计为例进行分析设计,要求对整个电力系统及其自动化专业方面的课程有综合的了解。
特别是对继电保护、电力系统、电路、发电厂的电气部分有一定的研究。
重点进行了电路的化简,短路电流的求法,继电保护中电流保护、距离保护的具体计算。
目录前言 (1)摘要 (5)1 系统运行方式和变压器中性点接地的选择 (6)1.1选择原则 (6)1.1.1 发电机、变压器运行方式选择的原则 (6)1.1.2 变压器中性点接地选择原则 (6)1.1.3 线路运行方式选择原则 (6)1.2 本次设计的具体运行方式的选择 (6)2 故障点的选择和正、负、零序网络的制定 (7)3 零序短路电流的计算成果(具体过程参考附录二) (9)4 线路保护方式的选择、配置方案的确定 (9)4.1 保护的配置原则 (9)4.2 配置方案的确定 (10)5 继电保护距离保护的整定计算成果(具体过程参考附录三) (10)6 继电保护零序电流保护的整定计算成果(具体过程参考附录四) (10)7 保护的综合评价 (11)7.1 距离保护的综合评价 (11)7.2 对零序电流保护的评价 (11)结束语 (12)参考资料 (13)附录一电网各元件等值电抗计算 (14)附录二零序短路电流的计算 (16)附录四继电保护零序电流保护的整定计算和校验 (22)附录五 (27)摘要本设计以110KV线路继电保护为例,简述了零序电流保护和距离保护的具体整定方法和有关注意细节,对输电网络做了较详细的分析同时对于不同运行方式环网各个断路器的情况进行了述说,较为合理的选择了不同线路,不同场合下的断路器、电流互感器、电压互感器的型号。
《继电保护课程设计》指导书(1组)(10kV输电线路电流保护设计)第一部分:三段式电流保护整定计算工程设计一、三段式电流保护基本原理自行整理二、短路计算1、短路计算基本说明及具体步骤短路计算是保护整定计算和电气设备选择校验的重要依据,本次短路计算采用正序等效定则和运算曲线法,利用短路计算程序完成。
短路计算步骤如下:(1)短路计算程序运行前的准备工作①首先根据设计要求确定所需的短路点数量及具体位置根据需要共设5个短路点d1~d5,具体位置如下图所示:②针对所计算的地区电网在最大及最小运行方式下的支路及节点进行编号,形成最大及最小网络拓扑图(最小运行方式仅仅考虑电源的最小方式,不考虑电网中环网断开的情况)节点编号顺序:先短路节点,后其它节点,所有电源节点作为参考节点0;支路编号顺序:先电源支路(水电,火电,有限系统,无限系统),后其它支路。
(所有短路点皆为节点,除此以外若任一短路点短路时,某点将出现短路电流分支,则该点也为节点;任一短路点短路时都不会流过短路电流的支路可不编入网络拓扑图,例如负荷支路)。
网络拓扑图如下图所示(本地区网的最大与最小运行方式的拓扑图相同,最大最小方式的不同仅仅体现在水电厂电源及系统电源的参数不同):(2)短路计算程序运行步骤(按最大、最小运行方式分别进行)①运行“输入系统参数模块”*输入网络拓扑参数*输入系统基本参数*输入支路原始参数②运行“支路正、负序电抗计算模块”③运行“短路电流计算模块”从工程需要出发,分别对系统最大运行方式和最小运行方式下的三相短路、两相短路进行计算,计算出短路发生后0s和4s各支路的短路电流和母线残余电压(有名值为归算到短路点电压等级下的数据,短路电流数值为三相中最大短路电流值)。
整定计算中,所有主保护皆采用0s的短路计算结果;所有的后备保护皆采用4s的短路计算结果。
短路计算参数输入时,各等级电压值按平均电压输入(例如110kV等级输入115kV,10kV等级输入10.5kV,6kV等级输入6.3kV);发电电源的负序参数若未给出,输入时可按正序参数输入。
前言《电力系统继电保护》作为电气工程及其自动化专业的一门主要课程,主要包括课堂讲学、课程设计等几个主要部分。
在完成了理论的学习的基础上,为了进一步加深对理论知识的理解,本专业特安排了本次课程设计。
电能是现代社会中最重要、也是最方便的能源。
而发电厂正是把其他形式的能量转换成电能,电能经过变压器和不同电压等级的输电线路输送并被分配给用户,再通过各种用电设备转换成适合用户需要的其他形式的能量。
在输送电能的过程中,电力系统希望线路有比较好的可靠性,因此在电力系统受到外界干扰时,保护线路的各种继电装置应该有比较可靠的、及时的保护动作,从而切断故障点极大限度的降低电力系统供电围。
电力系统继电保护就是为达到这个目的而设置的。
本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。
其中短路电流的计算和电气设备的选择是本设计的重点。
通过此次线路保护的设计可以巩固我们本学期所学的《电力系统继电保护》这一课程的理论知识,能提高我们提出问题、思考问题、解决问题的能力。
1 原始资料1.1 电网接线图(1) 各变电站、发电厂的操作直流电源电压U=220V。
(2) 发电厂最大发电容量50+2×25=100MW,最小发电容量为50MW,正常发电容量为50+25=75MW。
(3) 线路X1=0.4Ω/km, X=0.4Ω/km。
(4) 变压器均为YN ,D11,110±2.5%/10.5KV, UK=10.5%(5) △t=0.5S,负荷侧后备保护tdz=1.5S,变压器和母线均配置有差动保护,Kzq=1.3(6) 发电厂升压变中性点直接接地,其他变压器不接地。
1.2 任务(1) 电网运行方式分析。
(2) 各开关保护配置方案,计算配置各线路的保护及计算出各保护的二次动作值(设X1= X2)。
(3) 检验各保护的灵敏度。
(4)设计一套电压二次回路断线闭锁装置,二次断线时闭锁,故障时开放。
(选做)(5)绘制7DL保护的展开图。
(选做)1.3 要求设计说明书一份(含短路电流计算,保护整定,校验,AUOCAD绘制保护配置原理图等)。
110KV线路继电保护课程设计[摘要]:为给110KV单电源环形电网进行继电保护设计,首先选择过电流保护,对电网进行短路电流计算,包括适中电流的正序、负序、零序电流的短路计算,整定电流保护的整定值。
在过电流保护不满足的情况下,相间故障选择距离保护,接地故障选择零序电流保护,同时对距离保护、零序电流保护进行整定计算,并用AUOCAD绘制出保护配置原理图。
[关键词]:继电保护、短路电流、整定计算[ summary]:In order to ring 110 KV single power grid to relay design, the first choice over-current protection, short-circuit current of the power network, including the positive sequence moderate current, negative sequence, zero-sequence of short-circuit current, the current protection of the entire tuning value. In the over-current protection are not satisfied with the circumstances, select a distance phase fault protection, choice of zero-sequence fault current protection At the same time, distance protection, and zero-sequence current protection to the entire set, and used to map out protection configuration AUOCAD schematic.[keywords]: Protection, short-circuit current, setting calculation1 运行方式的选择1.1 运行方式的选择原则1.1.1 发电机、变压器运行方式选择的原则(1)一个发电厂有两台机组时,一般应考虑全停方式,一台检修,另一台故障;当有三台以上机组时,则选择其中两台容量较大机组同时停用的方式。
对水电厂,还应根据水库运行方式选择。
(2)一个发电厂、变电站的母线上无论接几台变压器,一般应考虑其中容量最大的一台停用。
1.1.2 变压器中性点接地选择原则(1)发电厂、变电所低压侧有电源的变压器,中性点均要接地。
(2)自耦型和有绝缘要求的其它变压器,其中性点必须接地。
(3)T接于线路上的变压器,以不接地运行为宜。
(4)为防止操作过电压,在操作时应临时将变压器中性点接地,操作完毕后再断开,这种情况不按接地运行考虑。
1.1.3 线路运行方式选择原则(1)一个发电厂、变电站线线上接有多条线路,一般考虑选择一条线路检修,另一条线路又故障的方式。
(2)双回路一般不考虑同时停用。
1.1.4 流过保护的最大、电小短路电流计算方式的选择(1)相间保护对单侧电源的辐射形网络,流过保护的最大短路电流出现在最大运行方式;而最小短路电流,则出现在最小运行方式。
对于双电源的网络,一般(当取Z1=Z2时)与对侧电源的运行方式无关,可按单侧电源的方法选择。
对于环状网络中的线路,流过保护的电大短路电流应选取开环运行方式,开环点应选在所整定保护线路的相邻下一线线路上。
而对于电小短路电流,则应选闭环运行方式,同时再合理停用该保护背后的机组、变压器及线路。
(2)零序电流保护对于单侧电源的辐射形网络,流过保护的最大零序短路电流与最小零序电流,其选择方法可参照相间短路中所述,只需注意变压器接地点的变化。
对于双电源的网络及环状网,同样参照相间短路中所述,其重点也是考虑变压器接地点的变化。
1.1.5 选取流过保护的最大负荷电流的原则选取流过保护的最大负荷电流的原则如下:(1)备用电源自动投入引起的增加负荷。
(2)并联运行线路的减少,负荷的转移。
(3)环状网络的开环运行,负荷的转移。
(4)对于双侧电源的线路,当一侧电源突然切除发电机,引起另一侧增加负荷。
1.2 本次设计的具体运行方式的选择电力系统运行方式的变化,直接影响保护的性能。
因此,在对继电保护进行整定计弊之前,首先应该分析运行方式。
这里要着重说明继电保护的最大运行方式是指电网在某种连接情况下通过保护的电流值最大,继电保护的最小运行方式是指电网在某种连接情况下通过保护的电流值最小。
因此,系统的最大运行方式不一定就是保护的最大运行方式;系统的最小运行方式也不一定就是保护的最小运行方式。
现结合本次设计具体说明如下,系统的最大运行方式是所有设备全部投入运行;系统的最小运行方式为发电机G1和G2投入,发电机G3停运。
对保护1而言,其最大运行方式应该是在系统最大运行方式下线路L1回路断开,其他设备全投;保护1的最小运行方式应该是:在系统的最小运行方式下线路L1+L2与L3并联运行。
1.电网各个元件参数计算及负荷电流计算1.1电网各元件等值电抗计算1.1.1输电线路等值电抗计算(1) 线路L1等值电抗计算正序以及负序电抗:XL1= X1L1=0.4×50=20ΩX L1*= XL1/ ZB=20/132.25=0.1512零序电抗:XL10= XL1= 3X1L1=3×0.4×50=60ΩX L10*= XL10/ ZB=60/132.25=0.4537(2) 线路L2等值电抗计算正序以及负序电抗:XL2= X1L2=0.4×40=16ΩX L2*= XL2/ ZB=16/132.25=0.121零序电抗:XL20= XL2= 3X1L2=3×0.4×40=48ΩX L20*= XL20/ ZB=48/132.25=0.363(3) 线路L3等值电抗计算正序以及负序电抗:XL3= X1L3=0.4×90=36ΩX L3*= XL3/ ZB=36/132.25=0.2722零序电抗:XL30= XL3= 3X1L3=3×0.4×90=108ΩX L30*= XL30/ ZB=108/132.25=0.8166(4) 线路L4等值电抗计算正序以及负序电抗:XL4= X1L4=0.4×25=10ΩX L4*= XL4/ ZB=10/132.25=0.0756零序电抗:XL40= XL4= 3X1L4=3×0.4×25=30ΩX L40*= XL40/ ZB=30/132.25=0.22681.1.2变压器等值电抗计算(1) 变压器T1、T2等值电抗计算X T1= XT2=(UK%/100)×(VN2×103/ SN)≈40.333ΩX T1*= X T2*=X T1/ Z B =40.333/132.25=0.3050(2) 变压器T3等值电抗计算X T3=(U K %/100)×(V N 2×103/ S N )≈21.175ΩX T3*=X T3/ Z B =21.175/132.25=0.1601(3) 变压器T4、T5、T6、T7等值电抗计算X T4= X T5=X T6= X T7=(U K %/100)×(V N 2×103/ S N )≈63.5ΩX T6*= X T7* = X T4*= X T5*=0.4802(4) 变压器T8等值电抗计算X T1=(U K %/100)×(V N 2×103/ S N )≈84.7ΩX T8*= X T8/ Z B =84.7/132.25=0.64051.1.3发电机等值电抗计算(1)发电机G1、G2电抗标幺值计算X G1* = X G2*=X d1S B / S G1= X d1S B COS φ/ P G1=0.132×100×0.8/25=0.4224(2)发电机G3电抗标幺值计算X G3*=X d3S B / S G3= X d3S B COS φ/ P G3=0.129×100×0.8/50=0.20641.1.4最大负荷电流计算(1) B 、C 母线最大负荷电流计算最大负荷电流计算(拆算到110KV)I fhB ·max = I fhC ·max = P fhBmax V av 2 / 1.732 U COS φ=20×103/1.732×115×0.8≈0.1255KA ;(2) D 母线最大负荷电流计算最大负荷电流计算(拆算到110KV)I fhD ·max = P fhDmax V av 2 / 1.732 U COS φ=12×103/1.732×115×0.8≈0.0753KA1.1.5 各线路运行方式下流过断路器的最大负荷电流(1) 保护1的最大运行方式:发电机FI 、P2、F3全投入,继开线路L1;通 过保护1的最大负荷电流为A I fh 34179131131max =++=⋅;保护1的最小运行方式:发电机F3停,线路全部运行。