多元线性回归模型案例分析
- 格式:doc
- 大小:170.50 KB
- 文档页数:7
SPSS--回归-多元线性回归模型案例解析!(一)多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:毫无疑问,多元线性回归方程应该为:上图中的 x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:那么,多元线性回归方程矩阵形式为:其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。
2:无偏性假设,即指:期望值为03:同共方差性假设,即指,所有的随机误差变量方差都相等4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。
今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。
通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。
数据如下图所示:点击“分析”——回归——线性——进入如下图所示的界面:将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)“选择变量(E)" 框内,我并没有输入数据,如果你需要对某个“自变量”进行条件筛选,可以将那个自变量,移入“选择变量框”内,有一个前提就是:该变量从未在另一个目标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:点击“统计量”弹出如下所示的框,如下所示:在“回归系数”下面勾选“估计,在右侧勾选”模型拟合度“ 和”共线性诊断“ 两个选项,再勾选“个案诊断”再点击“离群值”一般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值)点击继续。
多元线性回归分析的实例研究多元线性回归是一种经典的统计方法,用于研究多个自变量对一个因变量的影响关系。
在实际应用中,多元线性回归分析可以帮助我们理解多个因素对一些现象的综合影响,并通过构建模型来进行预测和决策。
本文将以一个假想的房价分析为例,详细介绍多元线性回归分析的步骤、数据解释以及结果分析。
假设我们想要研究一个城市的房价与面积、房龄和地理位置之间的关系。
我们收集了100个房源的数据,包括房价(因变量)、面积(自变量1)、房龄(自变量2)和地理位置(自变量3)。
下面是我们的数据:序号,房价(万元),面积(平方米),房龄(年),地理位置(距市中心距离,公里)----,------------,--------------,----------,--------------------------------1,150,120,5,22,200,150,8,63,100,80,2,104,180,130,10,55,220,160,12,3...,...,...,...,...100,250,180,15,1首先,我们需要对数据进行描述性统计分析。
通过计算平均值、标准差、最小值、最大值等统计量,可以初步了解数据的分布和变异程度。
然后,我们需要进行回归模型的拟合。
回归模型可以表示为:房价=β0+β1*面积+β2*房龄+β3*地理位置+ε其中,β0、β1、β2、β3是待估计的回归系数,ε是模型的误差项。
回归系数表示自变量对因变量的影响大小和方向。
为了估计回归系数,我们可以使用最小二乘法。
最小二乘法通过找到一组回归系数,使得实际观测值与模型预测值之间的平方误差最小化。
在本例中,我们可以使用统计软件进行回归模型的拟合和参数估计。
假设我们得到的回归模型如下:房价=100+1.5*面积-5*房龄+10*地理位置接着,我们需要对回归模型进行评价和解释。
首先,我们可以计算回归模型的决定系数(R^2),它表示因变量的变异中能够被模型解释的比例。
多元线性回归模型案例分析——中国人口自然增长分析一·研究目的要求中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。
影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。
(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二·模型设定为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):表1 中国人口增长率及相关数据设定的线性回归模型为:1222334t t t t t Y X X X u ββββ=++++三、估计参数利用EViews 估计模型的参数,方法是:1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对话框“Workfile Range ”。
在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。
其中已有变量:“c ”—截距项 “resid ”—剩余项。
《多元线性回归分析的实例研究》篇一一、引言多元线性回归分析是一种统计学方法,用于探究一个因变量与多个自变量之间的关系。
这种方法在各个领域的研究中广泛应用,如经济学、社会学、心理学等。
本文将通过一个具体的实例,展示多元线性回归分析的应用过程及其实证结果。
二、研究背景与目的本研究以某地区房价为研究对象,探讨房价与地理位置、房屋面积、房屋装修等因素之间的关系。
目的是通过多元线性回归分析,找出影响房价的主要因素,为房地产投资者和购房者提供参考依据。
三、数据收集与处理本研究采用某地区房地产交易数据,包括房价、地理位置、房屋面积、房屋装修等变量。
在数据收集过程中,我们确保数据的准确性和完整性,并对数据进行清洗和处理,以消除异常值和缺失值的影响。
四、多元线性回归分析(一)模型构建根据研究目的和收集的数据,构建多元线性回归模型。
假设房价为因变量Y,地理位置、房屋面积、房屋装修等因素为自变量X1、X2、X3。
则模型可以表示为:Y = β0 + β1X1 + β2X2 +β3X3 + ε。
其中,β0为常数项,β1、β2、β3为回归系数,ε为随机误差项。
(二)参数估计与假设检验利用统计软件对模型进行参数估计,得到各回归系数的估计值及其显著性水平。
通过假设检验,检验自变量与因变量之间的线性关系是否显著。
若显著性水平低于预设的阈值(如0.05),则认为自变量与因变量之间存在显著的线性关系。
(三)模型检验与优化对模型进行检验和优化,包括检查模型的拟合优度、自相关性和异方差性等。
若存在显著问题,则采取相应的方法进行修正和优化。
五、实证结果与分析(一)回归系数解释根据参数估计结果,得出各回归系数的估计值。
解释各系数在模型中的意义和作用,如地理位置对房价的影响程度、房屋面积对房价的影响程度等。
(二)实证结果分析根据实证结果,分析自变量与因变量之间的关系及影响程度。
通过对比各回归系数的估计值和显著性水平,找出影响房价的主要因素。
同时,结合实际情况,对实证结果进行深入分析和解释。
多元线性回归模型案例多元线性回归是统计学中常用的一种回归分析方法,它可以用来研究多个自变量与因变量之间的关系。
在实际应用中,多元线性回归模型可以帮助我们理解不同自变量对因变量的影响程度,从而进行预测和决策。
下面,我们将通过一个实际案例来介绍多元线性回归模型的应用。
案例背景:某电商公司希望了解其产品销售额与广告投入、季节因素和竞争对手销售额之间的关系,以便更好地制定营销策略和预测销售额。
数据收集:为了分析这一问题,我们收集了一段时间内的产品销售额、广告投入、季节因素和竞争对手销售额的数据。
这些数据将作为我们多元线性回归模型的输入变量。
模型建立:我们将建立一个多元线性回归模型,以产品销售额作为因变量,广告投入、季节因素和竞争对手销售额作为自变量。
通过对数据进行拟合和参数估计,我们可以得到一个多元线性回归方程,从而揭示不同自变量对产品销售额的影响。
模型分析:通过对模型的分析,我们可以得出以下结论:1. 广告投入对产品销售额有显著影响,广告投入越大,产品销售额越高。
2. 季节因素也对产品销售额有一定影响,不同季节的销售额存在差异。
3. 竞争对手销售额对产品销售额也有一定影响,竞争对手销售额越大,产品销售额越低。
模型预测:基于建立的多元线性回归模型,我们可以进行产品销售额的预测。
通过输入不同的广告投入、季节因素和竞争对手销售额,我们可以预测出相应的产品销售额,从而为公司的营销决策提供参考。
结论:通过以上分析,我们可以得出多元线性回归模型在分析产品销售额与广告投入、季节因素和竞争对手销售额之间关系时的应用。
这种模型不仅可以帮助我们理解不同因素对产品销售额的影响,还可以进行销售额的预测,为公司的决策提供支持。
总结:多元线性回归模型在实际应用中具有重要意义,它可以帮助我们理解复杂的变量关系,并进行有效的预测和决策。
在使用多元线性回归模型时,我们需要注意数据的选择和模型的建立,以确保模型的准确性和可靠性。
通过以上案例,我们对多元线性回归模型的应用有了更深入的理解,希望这对您有所帮助。
多元线性回归分析案例1. 引言多元线性回归分析是一种用于探究多个自变量与一个连续型因变量之间关系的统计分析方法。
本文将以一个虚构的案例来介绍多元线性回归分析的应用。
2. 背景假设我们是一家电子产品制造公司,我们想了解哪些因素会对产品销售额产生影响。
为了解决这个问题,我们收集了一些数据,包括产品的价格、广告费用、竞争对手的产品价格和销售额。
3. 数据收集我们采集了100个不同产品的数据,其中包括以下变量:- 产品价格(自变量1)- 广告费用(自变量2)- 竞争对手的产品价格(自变量3)- 销售额(因变量)4. 数据分析为了进行多元线性回归分析,我们首先需要对数据进行预处理。
我们检查了数据的缺失情况和异常值,并进行了相应的处理。
接下来,我们使用多元线性回归模型来分析数据。
模型的方程可以表示为:销售额= β0 + β1 × 产品价格+ β2 × 广告费用+ β3 × 竞争对手的产品价格+ ε其中,β0、β1、β2、β3是回归系数,ε是误差项。
5. 结果解释我们使用统计软件进行回归分析,并得到了以下结果:- 回归系数的估计值:β0 = 1000, β1 = 10, β2 = 20, β3 = -5- 拟合优度:R² = 0.8根据回归系数的估计值,我们可以解释模型的结果:- β0表示当产品价格、广告费用和竞争对手的产品价格都为0时,销售额的估计值为1000。
- β1表示产品价格每增加1单位,销售额平均增加10单位。
- β2表示广告费用每增加1单位,销售额平均增加20单位。
- β3表示竞争对手的产品价格每增加1单位,销售额平均减少5单位。
拟合优度R²的值为0.8,说明模型可以解释销售额的80%变异程度。
这意味着模型对数据的拟合程度较好。
6. 结论根据我们的多元线性回归分析结果,我们可以得出以下结论:- 产品价格、广告费用和竞争对手的产品价格对销售额有显著影响。
《多元线性回归分析的实例研究》篇一一、引言多元线性回归分析是一种统计方法,用于研究多个变量之间的线性关系。
在实际生活和科研工作中,这种分析方法广泛应用于经济、医学、生态学等领域。
本文以一个具体实例为例,深入探讨多元线性回归分析的步骤和应用。
该实例关注于房屋价格的影响因素分析。
二、研究背景及目的随着房地产市场的发展,房屋价格受到多种因素的影响。
为了探究这些因素如何共同影响房屋价格,本文选取了一组具有代表性的房屋数据,并运用多元线性回归分析方法进行实证研究。
研究目的在于揭示影响房屋价格的主要因素,为购房者和房地产投资者提供参考依据。
三、数据与方法(一)数据来源本研究的数据来源于某城市房屋交易数据库,涵盖了多个区域的房屋信息,包括房屋价格、房屋面积、房屋年龄、周边环境、学区等因素。
(二)研究方法本研究采用多元线性回归分析方法,通过建立模型来研究各因素与房屋价格之间的线性关系。
具体步骤包括:数据清洗、变量选择、模型建立、模型检验和结果解释等。
四、多元线性回归分析步骤及结果(一)变量选择与数据清洗根据研究目的和前人研究成果,本研究选择了以下变量:房屋价格(因变量)、房屋面积、房屋年龄、周边环境(包括交通、商业、绿化等)、学区等(自变量)。
在数据清洗阶段,剔除了异常值和缺失值,确保数据的准确性和可靠性。
(二)模型建立根据选定的变量,建立多元线性回归模型。
模型形式如下:P = β0 + β1 × Area + β2 × Age + β3 × Environment + β4 × Schoo l + ε其中,P表示房屋价格,Area表示房屋面积,Age表示房屋年龄,Environment表示周边环境因素,School表示学区因素,βi 为各变量的回归系数,ε为随机误差项。
(三)模型检验通过SPSS软件进行模型检验。
首先进行多重共线性检验,发现各变量之间不存在明显的共线性问题。
SP SS--回归-多元线性回归模型案例解析!( 一)多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:Y = 00 十 十 E毫无疑问,多元线性回归方程应该为:上图中的x1, x2, xp 分别代表“自变量” Xp 截止,代表有P 个自变量,如果有“ N 组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:记n 俎样本分别是(兀那么,多元线性回归方程矩阵形式为:'"" + £1的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)2:无偏性假设,即指:期望值为 3:同共方差性假设,即指,所有的4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。
今天跟大家一起讨论一下, SPSS---多元线性回归的具体操作过程, 下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。
通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。
数据如下图所示:V = B Q +02] +角工2 + -…+y =>'2*a A1X"1儿丿,0 二卩\■■■ ■丿 /鞋丿其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释1服成正太分布,即指:随机误差必须是服成正太分别的随机变量。
随机误差变量方差都相等“分析”一一回归一一线性一一进入如下图所示的界面:1 salesnesaletyp&priceengiriE 」horse pow , wheelbaswidth ] length1S.919' 16 360 0 21.500!1.8140 101.2 67.3 172.4 39 364 19S75 0 2B4003 2225 108 1 70 3 192 3 14.114 18225 0 - 3.2 225 106.9 70.5 192.0 8 588 29 725 0 42 000 3-S' 210 114 6 71 4 1966 20 397 2225S 0 33.990 1.8 150 1O2?6 63 2 178.0 1378023i'S5'5 033 9&0 28 200 108 7 76 1 192 O' 138039 00062 000 第 310 113 0 74 Q 1982 19 747 -0 26.9902.5 170 107.3 63.4 1176.01 9_231 2Se75 0 33 400 I2.8133 107 3 63 5 17'6 O' 17.537 3& 13S 0| 3S.900 ; 2-8 1931114 70.9 188.0 91 561 12-475 0 21 9751 ! 31 175 1i0'9 0 72 7194.6 39.3£0 13.740 0 25.300 , 3.3 240 109 0 72 7 196^2 27 861 20 190' 0 31.965j : 3.3 205 1138 747 206.8 S326Z 13 360'0 27 635 1 30 205 1122 73 5 200 0 63.72&22525 0 39.E95 ; 壮 275 115.3 74.5 2072 15 94327 100' O '44-475 1 46 275 112 2 75 0 201 0 e.53G 25725 0 39.G&5 , 4.6 275 108.0 75 S 200.G 11 IBS IS 2250 31 CIO i30 2C0 107 4 70 3 194呂 14.785 - 1 46.225;! 5 7 355 117.5 77.0 201.2 US. 519' 9.250' 0 13 2S0 2.2, 115 104.1 67 9 ieo'9 135 12611 22516 6351 ; 3 1 170 107 0 69 4 1904 24.62& 10.3110'0| 1S.S90 1 3.1 175 110I7.& 72 S200.9 42 593 11 525O '19 390134180110 572 7197 9curt点击蛆厂逛[manuracl]Mod si [mo'del I 炉新车售价(单位=... 茨拜肯二手车售价… £| Vehicle 射pg [typ 鬪 捞'Price in thousand... 炉 Engine size [engi... 袴 Horsep'OW'erlhor... 夕'jVlieelba3€ |whe…, 拧车宽[WFdlhl 務军衽[lergtA] 少车净垂[curb.wgt] 少 Fuel capacity 拐耗油量辺硏Inpgj @ Cooks Dfstance [... 少 95铀 LCI forinsa... 撐95«i4UCliforInsa...LCI kr Insa...将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等个自变量 拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可 以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示 的结果:(所有的自变量,都会强行进入)輸入/窿去的吏量h移去的娈量左法 1油量迎册, 车稳 Price in tnoLJsands,Vehicle type, 车毘Engine size, Fuel capacity, Wheelbase, 军淨重, Horsepower输入a. 已输入斯肓诸號的吏量•b. 因变呈:Log-transformecJ sales如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“ 计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,J [,牯贴£川重置迟)]〔取消j [ M Ja 篷择变>(E >:! J一个对签Q* I 护 Pneo 需thousands [price]VVLS 权重®:10块1的1 ijj Veliicleb'peltyipeJPrice inthodsandslprice] $ Engine siz&Iergine^s]贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于,当概率值大于等于时将会被剔除)“选择变量(E)"框内,我并没有输入数据,如果你需要对某个“自变量”进行条件筛选, 可以将那个自变量,移入“选择变量框”内,有一个前提就是:该变量从未在另一个目标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:定义琏弃规则sales 値W:....... k.i. J .產壬一二不等于小于小于等于丸于大于等于thousands h点击“统计量”弹出如下所示的框,如下所示:□ Ddrbin*Watson(U) n 个就诊断©在“回归系数”下面勾选“估计,在右侧勾选” 模型拟合度“和”共线性诊断“两个选项, 再勾选“个案诊断”再点击“离群值”一般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值) 点击继续。
多元线性回归模型案例分析——中国人口自然增长分析一·研究目的要求中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。
影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。
(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二·模型设定为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):表1 中国人口增长率及相关数据设定的线性回归模型为:1222334t t t t t Y X X X u ββββ=++++三、估计参数 利用EViews 估计模型的参数,方法是:1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对话框“Workfile Range ”。
在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。
其中已有变量:“c ”—截距项 “resid ”—剩余项。
多元线性回归模型案例分析——中国人口自然增长分析一·研究目的要求中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。
影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。
(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二·模型设定为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):表1 中国人口增长率及相关数据设定的线性回归模型为:1222334t t t t t Y X X X u ββββ=++++三、估计参数利用EViews 估计模型的参数,方法是:1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对话框“Workfile Range ”。
在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。
其中已有变量:“c ”—截距项 “resid ”—剩余项。
—多元线性回归分析案例多元线性回归分析是一种广泛使用的统计分析方法,用于研究多个自变量对一个因变量的影响程度。
在实际应用中,多元线性回归可以帮助我们理解变量之间的相互关系,并预测因变量的数值。
下面我们将以一个实际案例来介绍多元线性回归分析的应用。
假设我们是一家电子产品制造商,我们想研究影响手机销量的因素,并尝试通过多元线性回归模型来预测手机的销量。
我们选择了三个自变量作为影响因素:广告投入、价格和市场份额。
我们收集了一段时间内的数据,包括这三个因素以及对应的手机销量。
现在我们将利用这些数据来进行多元线性回归分析。
首先,我们需要将数据进行预处理和清洗。
我们检查数据的完整性和准确性,并去除可能存在的异常值和缺失值。
然后,我们对数据进行描述性统计分析,以了解数据的整体情况和变量之间的关系。
接下来,我们将建立多元线性回归模型。
我们将销量作为因变量,而广告投入、价格和市场份额作为自变量。
通过引入这些自变量,我们可以预测手机销量,并分析它们对销量的影响程度。
为了进行回归分析,我们需要估计模型的系数。
这可以通过最小二乘法来实现,该方法将使得模型的预测结果与实际观测值之间的残差平方和最小化。
接下来,我们将进行统计检验,以确定自变量对因变量的显著影响。
常见的统计指标包括回归系数的显著性水平、t值和p值。
在我们的案例中,假设多元线性回归模型的方程为:销量=β0+β1×广告投入+β2×价格+β3×市场份额+ε。
其中,β0、β1、β2和β3为回归系数,ε为误差项。
完成回归分析后,我们可以进行模型的诊断和评估。
我们可以检查模型的残差是否呈正态分布,以及模型的拟合程度如何。
此外,我们还可以通过交叉验证等方法评估模型的准确性和可靠性。
最后,我们可以利用训练好的多元线性回归模型来进行预测。
通过输入新的广告投入、价格和市场份额的数值,我们可以预测手机的销量,并根据预测结果制定相应的市场策略。
综上所述,多元线性回归分析是一种强大的统计工具,可用于分析多个自变量对一个因变量的影响。
SPSS返回多元线性返回模型案例剖析!(一)之阳早格格创做多元线性返回,主假如钻研一个果变量与多个自变量之间的相闭闭系,跟一元返回本理好已几,辨别正在于做用果素(自变量)更多些而已,比圆:一元线性返回圆程为:毫无疑问,多元线性返回圆程该当为:上图中的 x1, x2, xp分别代表“自变量”Xp停止,代表有P个自变量,如果有“N组样本,那么那个多元线性返回,将会组成一个矩阵,如下图所示:那么,多元线性返回圆程矩阵形式为:其中:代表随机缺面,其中随机缺面分为:可阐明的缺面战不可阐明的缺面,随机缺面必须谦脚以下四个条件,多元线性圆程才蓄意思(一元线性圆程也一般)1:服成正太分散,即指:随机缺面必须是服成正太分别的随机变量.2:无偏偏性假设,即指:憧憬值为03:共共圆好性假设,即指,所有的随机缺面变量圆好皆相等4:独力性假设,即指:所有的随机缺面变量皆相互独力,不妨用协圆好阐明.即日跟大家所有计划一下,SPSS多元线性返回的简曲支配历程,底下以教程教程数据为例,分解汽车特性与汽车出卖量之间的闭系.通太过解汽车特性跟汽车出卖量的闭系,建坐拟合多元线性返回模型.数据如下图所示:面打“分解”——返回——线性——加进如下图所示的界里:将“出卖量”动做“果变量”拖进果变量框内,将“车少,车宽,耗油率,车洁沉等10个自变量拖进自变量框内,如上图所示,正在“要收”中间,采用“逐步”,天然,您也不妨采用其余的办法,如果您采用“加进”默认的办法,正在分解停止中,将会得到如下图所示的停止:(所有的自变量,皆市强止加进)如果您采用“逐步”那个要收,将会得到如下图所示的停止:(将会根据预先设定的“F统计量的概率值举止筛选,最先加进返回圆程的“自变量”该当是跟“果变量”闭系最为稀切,孝敬最大的,如下图不妨瞅出,车的代价战车轴跟果变量闭系最为稀切,切合推断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)“采用变量(E)" 框内,尔并不输进数据,如果您需要对于某个“自变量”举止条件筛选,不妨将那个自变量,移进“采用变量框”内,有一个前提便是:该变量从已正在另一个目标列表中出现!,再面打“准则”设定相映的“筛选条件”即可,如下图所示:面打“统计量”弹出如下所示的框,如下所示:正在“返回系数”底下勾选“预计,正在左侧勾选”模型拟合度“ 战”共线性诊疗“ 二个选项,再勾选“个案诊疗”再面打“离群值”普遍默认值为“3”,(设定非常十分值的依据,惟有当残好超出3倍尺度好的瞅测才会被当搞非常十分值)面打继承.提示:共线性考验,如果有二个大概二个以上的自变量之间存留线性相闭闭系,便会爆收多沉共线性局里.那时间,用最小二乘法预计的模型参数便会不宁静,返回系数的预计值很简单引起误导大概者引导过失的论断.所以,需要勾选“共线性诊疗”去搞推断通过容许度不妨预计共线性的存留与可?容许度TOL=1RI仄圆大概圆好伸展果子(VIF): VIF=1/1RI仄圆,其中RI仄圆是用其余自变量预测第I个变量的复相闭系数,隐然,VIF为TOL的倒数,TOL的值越小,VIF的值越大,自变量XI与其余自变量之间存留共线性的大概性越大.提供三种处理要收:1:从有共线性问题的变量里简略不要害的变量2:减少样本量大概沉新抽与样本.3:采与其余要收拟合模型,如收返回法,逐步返回法,主身分分解法.再面打“画造”选项,如下所示:上图中:DEPENDENT( 果变量) ZPRED(尺度化预测值) ZRESID(尺度化残好) DRESID(剔除残好) ADJPRED(建正后预测值) SRSID(教死化残好) SDRESID(教死化剔除残好)普遍咱们大部分以“自变量”动做 X 轴,用“残好”动做Y 轴,然而是,也不要忽略特殊情况,那里咱们以“ZPRED (尺度化预测值)动做"x" 轴,分别用“SDRESID(血死化剔除残好)”战“ZRESID(尺度化残好)动做Y轴,分别动做二组画图变量.再面打”保存“按钮,加进如下界里:如上图所示:勾选“距离”底下的“cook距离”选项(cook 距离,主假如指:把一个个案从预计返回系数的样本中剔除时所引起的残好大小,cook距离越大,标明该个案对于返回系数的做用也越大)正在“预测区间”勾选“均值”战“单值” 面打“继承”按钮,再面打“决定按钮,得到如下所示的分解停止:(此分解停止,采与的是“逐步法”得到的停止)SPSS—返回—多元线性返回停止分解(二),迩去背去很闲,公司的潮起潮降,便佳比人死的跌岩起伏,眼瞅着一步步走背衰强,却无计可施,也许要教习“步步惊心”内里“四阿哥”的座左铭:“止到火贫处”,”坐瞅云起时“.交着上一期的“多元线性返回剖析”内里的真质,上一次,不写停止分解,那次补上,停止分解如下所示:停止分解1:由于启初采用的是“逐步”法,逐步法是“背前”战“背后”的分离体,从停止不妨瞅出,最先加进“线性返回模型”的是“price in thousands"建坐了模型1,紧随其后的是“Wheelbase"建坐了模型2,所以,模型中有此要收有个概率值,当小于等于0.05时,加进“线性返回模型”(最先加进模型的,相闭性最强,闭系最为稀切)当大于等0.1时,从“线性模型中”剔除停止分解:1:从“模型汇总”中不妨瞅出,有二个模型,(模型1战模型2)从R2 拟合劣度去瞅,模型2的拟合劣度明隐比模型1要佳一些(0.422>0.300)2:从“Anova"表中,不妨瞅出“模型2”中的“返回仄圆战”为115.311,“残好仄圆战”为153.072,由于总仄圆战=返回仄圆战+残好仄圆战,由于残好仄圆战(即指随即缺面,不可阐明的缺面)由于“返回仄圆战”跟“残好仄圆战”险些交近,所有,此线性返回模型只阐明了总仄圆战的一半,3:根据后里的“F统计量”的概率值为0.00,由于0.00<0.01,随着“自变量”的引进,其隐著性概率值均近小于0.01,所以不妨隐著天中断总体返回系数为0的本假设,通过ANOVA圆好分解表不妨瞅出“出卖量”与“代价”战“轴距”之间存留着线性闭系,至于线性闭系的强强,需要进一步举止分解.停止分解:1:从“已排除的变量”表中,不妨瞅出:“模型2”中各变量的T检的概率值皆大于“0.05”所以,不克不迭够引进“线性返回模型”必须剔除.从“系数a” 表中不妨瞅出:1:多元线性返回圆程该当为:出卖量=1.8220.055*代价+0.061*轴距然而是,由于常数项的sig为(0.116>0.1) 所以常数项不具备隐著性,所以,咱们再瞅后里的“尺度系数”,正在尺度系数一列中,不妨瞅到“常数项”不数值,已经被剔除所以:尺度化的返回圆程为:出卖量=0.59*代价+0.356*轴距2:再瞅末尾一列“共线性统计量”,其中“代价”战“轴距”二个容好战“vif皆一般,而且VIF皆为1.012,且皆小于5,所以二个自变量之间不出现共线性,容忍度战伸展果子是互为倒数闭系,容忍度越小,伸展果子越大,爆收共线性的大概性也越大从“共线性诊疗”表中不妨瞅出:1:共线性诊疗采与的是“特性值”的办法,特性值主要用去描画自变量的圆好,诊疗自变量间是可存留较强多沉共线性的另一种要收是利用主身分分解法,基础思维是:如果自变量间真真存留较强的相闭闭系,那么它们之间必定存留疑息沉叠,于是便不妨从那些自变量中提与出既能反应自变量疑息(圆好),而且有相互独力的果素(身分)去,该要收主要从自变量间的相闭系数矩阵出收,预计相闭系数矩阵的特性值,得到相映的若搞身分.条件索引=最大特性值/相对于特性值再举止启圆(即特性值2的条件索引为 2.847/0.150 再启圆=4.351)尺度化后,圆好为1,每一个特性值皆不妨描画某自变量的一定比率,所有的特性值能将描画某自变量疑息的局部,于是,咱们不妨得到以下论断:不妨瞅出:不一个特性值,既不妨阐明“代价”又不妨阐明“轴距”所以“代价”战“轴距”之间存留共线性较强.前里的论断进一步得到了论证.(残好统计量的表中数值怎么去的,那个预计历程,尔便不写了)从上图不妨得知:大部分自变量的残好皆切合正太分散,惟有一,二处场合稍有偏偏离,如图上的(5到3天区的)处理偏偏离状态。
1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。
年份 Y/千克X/元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克)1980 2.78 397 4.22 5。
07 7。
83 1992 4。
18 911 3。
97 7。
91 11。
40 1981 2。
99 413 3.81 5.20 7.921993 4。
04 931 5。
219.54 12。
41 1982 2。
98 4394.035。
40 7。
92 1994 4.07 1021 4。
89 9。
42 12。
76 1983 3。
08 459 3。
95 5.53 7。
92 1995 4.01 1165 5.83 12.35 14.29 1984 3。
12 492 3。
73 5.47 7.74 1996 4。
27 1349 5.79 12。
99 14.36 1985 3.33 5283.816.37 8.02 1997 4.41 1449 5。
67 11。
76 13。
921986 3.56 560 3。
93 6.98 8.04 1998 4.67 15756.3713.09 16。
55 1987 3.64 624 3。
78 6.59 8.39 1999 5.06 1759 6。
16 12。
98 20.33 1988 3.67 666 3.84 6.45 8。
55 2000 5.01 1994 5。
89 12。
80 21。
961989 3。
84 717 4。
017。
00 9.37 2001 5.17 2258 6。
6414。
10 22.16 1990 4。
04 768 3.86 7。
32 10。
61 2002 5。
29 2478 7。
0416.8223.261991 4。
03 8433.986.7810.48(1) 求出该地区关于家庭鸡肉消费需求的如下模型:01213243ln ln ln ln ln Y X P P P u βββββ=+++++(2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。
多元线性回归模型的案例讲解案例:房价预测在房地产市场中,了解各种因素对房屋价格的影响是非常重要的。
多元线性回归模型是一种用于预测房屋价格的常用方法。
在这个案例中,我们将使用多个特征来预测房屋的价格,例如卧室数量、浴室数量、房屋面积、地段等。
1.数据收集与预处理为了构建一个准确的多元线性回归模型,我们需要收集足够的数据。
我们可以从多个渠道收集房屋销售数据,例如房地产公司的数据库或者在线平台。
数据集应包括房屋的各种特征,例如卧室数量、浴室数量、房屋面积、地段等,以及每个房屋的实际销售价格。
在数据收集过程中,我们还需要对数据进行预处理。
这包括处理缺失值、异常值和重复值,以及进行特征工程,例如归一化或标准化数值特征,将类别特征转换为二进制变量等。
2.模型构建在数据预处理完成后,我们可以开始构建多元线性回归模型。
多元线性回归模型的基本方程可以表示为:Y=β0+β1X1+β2X2+……+βnXn其中,Y表示房屋价格,X1、X2、……、Xn表示各种特征,β0、β1、β2、……、βn表示回归系数。
在建模过程中,我们需要选择合适的特征来构建模型。
可以通过统计分析或者领域知识来确定哪些特征对房价具有显著影响。
3.模型评估与验证构建多元线性回归模型后,我们需要对模型进行评估和验证。
最常用的评估指标是均方误差(Mean Squared Error)和决定系数(R-squared)。
通过计算预测值与实际值之间的误差平方和来计算均方误差。
决定系数可以衡量模型对观测值的解释程度,取值范围为0到1,越接近1表示模型越好。
4.模型应用完成模型评估与验证后,我们可以将模型应用于新的数据进行房价预测。
通过将新数据的各个特征代入模型方程,可以得到预测的房价。
除了房价预测,多元线性回归模型还可以用于其他房地产市场相关问题的分析,例如预测租金、评估土地价格等。
总结:多元线性回归模型可以在房地产市场的房价预测中发挥重要作用。
它可以利用多个特征来解释房价的变化,并提供准确的价格预测。
多元线性回归实例分析报告多元线性回归是一种用于预测目标变量和多个自变量之间关系的统计分析方法。
它可以帮助我们理解多个自变量对目标变量的影响,并通过建立回归模型进行预测。
本文将以一个实例为例,详细介绍多元线性回归的分析步骤和结果。
假设我们研究了一个电子产品公司的销售数据,并想通过多元线性回归来预测销售额。
我们收集了以下数据:目标变量(销售额)和三个自变量(广告费用、产品种类和市场规模)。
首先,我们需要对数据进行探索性分析,了解数据的分布、缺失值等情况。
我们可以使用散点图和相关系数矩阵来查看变量之间的关系。
通过绘制广告费用与销售额的散点图,我们可以观察到一定的正相关关系。
相关系数矩阵可以用来度量变量之间的线性关系的强度和方向。
接下来,我们需要构建多元线性回归模型。
假设目标变量(销售额)与三个自变量(广告费用、产品种类和市场规模)之间存在线性关系,模型可以表示为:销售额=β0+β1*广告费用+β2*产品种类+β3*市场规模+ε其中,β0是截距,β1、β2和β3是回归系数,ε是误差项。
我们可以使用最小二乘法估计回归系数。
最小二乘法可以最小化目标变量的预测值和实际值之间的差异的平方和。
通过计算最小二乘估计得到的回归系数,我们可以建立多元线性回归模型。
在实际应用中,我们通常使用统计软件来进行多元线性回归分析。
通过输入相应的数据和设置模型参数,软件会自动计算回归系数和其他统计指标。
例如,我们可以使用Python的statsmodels库或R语言的lm函数来进行多元线性回归分析。
最后,我们需要评估回归模型的拟合程度和预测能力。
常见的评估指标包括R方值和调整R方值。
R方值可以描述自变量对因变量的解释程度,值越接近1表示拟合程度越好。
调整R方值考虑了模型中自变量的个数,避免了过度拟合的问题。
在我们的实例中,假设我们得到了一个R方值为0.8的多元线性回归模型,说明模型可以解释目标变量80%的方差。
这个模型还可以用来进行销售额的预测。
多元线性回归模型的案例分析在实际生活中,多元线性回归模型可以广泛应用于各个领域。
以下是一个案例分析,以说明多元线性回归模型的应用。
案例:房价预测背景:城市的房地产公司想要推出一款房屋估价服务,帮助人们预测房屋的销售价格。
他们收集了一些相关数据,如房屋的面积、房间的数量、地理位置等因素,并希望通过建立一个多元线性回归模型来实现房价的预测。
步骤:1.数据收集:收集相关数据。
在本案例中,我们收集到了50个样本数据,每个样本包含了房屋的面积、房间的数量和房屋的销售价格。
2.数据预处理:对数据进行预处理,包括缺失值处理、异常值处理等。
在本案例中,我们假设数据已经经过清洗,没有缺失值和异常值。
3.特征选择:选择合适的特征变量。
在本案例中,我们选择房屋的面积和房间的数量作为特征变量,房屋的销售价格作为目标变量。
4.模型建立:建立多元线性回归模型。
根据特征变量和目标变量的关系,建立多元线性回归方程。
在本案例中,假设多元线性回归方程为:房价=β0+β1×面积+β2×房间数量+ε,其中β0、β1和β2分别为回归系数,ε为误差项。
5.模型训练:使用样本数据对模型进行训练。
通过最小二乘法等方法,估计出回归系数的取值。
6.模型评估:评估模型的性能。
通过计算模型的均方误差(MSE)、决定系数(R²)等指标,评估模型的拟合效果和预测能力。
7.模型应用:将模型用于房价的预测。
当有新的房屋数据输入时,通过模型的预测方程,可以得到该房屋的预测销售价格。
通过上述步骤,我们可以建立一个多元线性回归模型,并通过该模型对房价进行预测。
这个模型可以帮助房地产公司提供房价估价服务,也可以帮助购房者了解合理的房价范围。
多元线性回归模型案例多元线性回归是一种常见的统计分析方法,用于建立一个因变量与多个自变量之间的关系模型。
该模型可以帮助我们理解自变量对因变量的影响,并用于预测新数据的因变量取值。
本文将介绍一个实际案例,说明如何使用多元线性回归模型进行分析。
假设我们是一家电商公司,想要探究哪些因素会对在线销售额产生影响。
为了实现这一目标,我们收集了一年内的销售数据,并选取了以下变量作为自变量:1.广告费用:对于每个月,我们记录了投入到在线广告的费用。
2.促销活动:我们将每种促销活动的销售额记录成一个二进制变量,代表该促销活动是否进行。
3.季节性:我们记录了每个月的季节性变量,例如,一年中的第一个季度为1,第二个季度为2,以此类推。
同时,我们将每月的销售额作为因变量。
基于这些数据,我们将应用多元线性回归模型来分析这些自变量对销售额的影响。
首先,我们需要进行数据预处理。
这包括处理缺失值,检查异常值,并将分类变量进行独热编码转换。
我们还可以计算自变量之间的相关性,以了解它们是否具有高度相关性。
如果有,我们可能需要进行变量转换或删除一些自变量。
接下来,我们可以使用多元线性回归模型来建立销售额与自变量之间的关系。
模型可以表示如下:销售额=β₀+β₁×广告费用+β₂×促销活动+β₃×季节性+ɛ其中,β₀,β₁,β₂,β₃是回归系数,ɛ是误差项。
我们的目标是估计这些回归系数,以便预测新数据的销售额。
为了估计这些回归系数,我们可以使用最小二乘法。
最小二乘法的核心思想是最小化残差平方和,即模型预测值与实际值之间的差异。
通过最小化这个差异,我们可以找到使模型最拟合数据的回归系数。
在我们的案例中,我们可以使用各种统计软件或编程语言(如R或Python)来实现多元线性回归,并计算回归系数的估计值。
这些软件和语言通常具有内置的回归函数,只需提供数据和自变量就可以进行回归分析。
一旦我们获得了估计的回归系数,我们可以进行模型的解释和推断。
多元线性回归案例分析案例背景:我们假设有一家制造业公司,想要研究员工的工作效率与其工作经验、教育水平和工作时间之间的关系。
公司收集了100名员工的数据,并希望通过多元线性回归模型来分析这些变量之间的关系。
数据收集:公司收集了每个员工的工作效率(因变量)、工作经验、教育水平和工作时间(自变量)的数据。
假设工作效率由工作经验、教育水平和工作时间这三个因素决定。
根据所收集的数据,我们可以建立如下的多元线性回归模型:工作效率=β0+β1*工作经验+β2*教育水平+β3*工作时间+ε在这个模型中,β0、β1、β2和β3分别是待估参数,代表截距和自变量的系数;ε是误差项,代表模型中未被解释的因素。
模型参数的估计:通过最小二乘法可以对模型中的参数进行估计。
最小二乘法的目标是让模型的预测值与观测值之间的残差平方和最小化。
模型诊断:在对模型进行参数估计后,我们需要对模型进行诊断,以评估模型的质量和稳定性。
常见的模型诊断方法包括:检查残差的正态分布、残差与自变量的无关性、残差的同方差性等。
模型解释和预测:根据参数估计结果,可以对模型进行解释和预测。
例如,我们可以解释每个自变量与因变量之间的关系,并分析它们的显著性。
我们还可以通过模型进行预测,比如预测一位具有一定工作经验、教育水平和工作时间的员工的工作效率。
结果分析:根据对模型的诊断和解释,我们可以对结果进行分析。
我们可以得出结论,一些自变量对因变量的影响显著,而其他自变量对因变量的影响不显著。
这些结论可以帮助公司更好地理解员工工作效率与工作经验、教育水平和工作时间之间的关系,并采取相应的管理措施来提高工作效率。
总结:通过以上的案例分析,我们可以看到多元线性回归在实际中的应用。
它可以帮助我们理解多个自变量与一个因变量之间的关系,并对因变量进行预测和解释。
通过多元线性回归分析,我们可以更好地了解因素对于结果的作用,并根据分析结果进行决策和管理。
然而,需要注意的是,多元线性回归的结果可能受到多种因素的影响,我们需要综合考虑所有的因素来做出准确的分析和决策。
多元线性回归模型案例多元线性回归模型是统计学中常用的一种回归分析方法,它可以用来研究多个自变量对因变量的影响。
在实际应用中,多元线性回归模型可以帮助我们理解和预测各种复杂的现象,比如销售额和广告投入、学生成绩和学习时间等等。
接下来,我们将通过一个实际的案例来详细介绍多元线性回归模型的应用。
案例背景:假设我们是一家电子产品公司的市场营销团队,我们想要了解广告投入、产品定价和促销活动对销售额的影响。
为了实现这个目标,我们收集了一段时间内的销售数据,并且记录了每个月的广告投入、产品定价和促销活动的情况。
现在,我们希望利用这些数据来建立一个多元线性回归模型,从而分析这些因素对销售额的影响。
数据收集:首先,我们需要收集相关的数据。
在这个案例中,我们收集了一段时间内的销售额、广告投入、产品定价和促销活动的数据。
这些数据可以帮助我们建立多元线性回归模型,并且进行相关的分析。
建立模型:接下来,我们将利用收集到的数据来建立多元线性回归模型。
在多元线性回归模型中,我们将销售额作为因变量,而广告投入、产品定价和促销活动作为自变量。
通过建立这个模型,我们可以分析这些因素对销售额的影响,并且进行预测。
模型分析:一旦建立了多元线性回归模型,我们就可以进行相关的分析。
通过分析模型的系数、拟合优度等指标,我们可以了解每个自变量对销售额的影响程度,以及整个模型的拟合情况。
这些分析结果可以帮助我们更好地理解销售额的变化规律,以及各个因素之间的关系。
模型预测:除了分析模型的影响,多元线性回归模型还可以用来进行预测。
通过输入不同的自变量数值,我们可以预测对应的销售额。
这样的预测结果可以帮助我们制定更加合理的市场营销策略,从而提高销售业绩。
模型评估:最后,我们需要对建立的多元线性回归模型进行评估。
通过对模型的残差、预测误差等进行分析,我们可以了解模型的准确性和可靠性。
如果模型的预测效果不理想,我们还可以通过改进模型结构、增加自变量等方式来提高模型的预测能力。
多元线性回归模型案例分析
——中国人口自然增长分析一·研究目的要求
中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的降到1980年,接近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。
影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。
(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二·模型设定
为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):
表1 中国人口增长率及相关数据
,
设定的线性回归模型为:
1222334t t t t t Y X X X u ββββ=++++
三、估计参数
利用EViews 估计模型的参数,方法是:
1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对
话框“Workfile Range ”。
在“Workfile frequency ”中选择“Annual ” (年
年份 @
人口自然增长率
(%。
)
国民总收入
(亿元) 居民消费价格指数增长
率(CPI )%
人均GDP (元) 1988
15037 1366 1989 …
17001 18 1519 1990
18718 1644 1991 【
21826 1893 1992
26937 2311 1993 .
35260 2998 1994
48108 4044 1995 —
59811 5046 1996
70142 5846 1997 ~
78061 6420 1998
83024 6796 1999 【
88479 7159 2000
98000 7858 2001 [
108068 8622 2002
119096 9398 2003 :
135174 10542 2004
159587 12336 2005 、
184089 14040 2006
213132
16024
度),并在“Start date”中输入开始时间“1988”,在“end date”中输入最后时间“2005”,点击“ok”,出现“Workfile UNTITLED”工作框。
其中已有变量:“c”—截距项“resid”—剩余项。
在“Objects”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并在“Name for Objects”上定义文件名,点击“OK”出现数据编辑窗口。
2、输入数据:点击“Quik”下拉菜单中的“Empty Group”,出现“Group”窗口数据编辑框,点第一列与“obs”对应的格,在命令栏输入“Y”,点下行键“↓”,即将该序列命名为Y,并依此输入Y的数据。
用同样方法在对应的列命名X2、X
3、X4,并输入相应的数据。
或者在EViews命令框直接键入“data Y 2X X3 X4…”,回车出现“Group”窗口数据编辑框,在对应的Y、X2、X3、X4下输入响应的数据。
3、估计参数:点击“Procs“下拉菜单中的“Make Equation”,在出现的对话框的“Equation Specification”栏中键入“Y C X2X3 X4”,在“Estimation Settings”栏中选择“Least Sqares”(最小二乘法),点“ok”,即出现回归结果:
表
…
根据表中数据,模型估计的结果为:
432005109.0047918.0000332.060851.15X X X Y t -++=Λ
t=
930526.02=R 915638.02
=R
F=
四、模型检验
1、经济意义检验
模型估计结果说明,在假定其它变量不变的情况下,当年国民总收入每增长1亿元,人口增长率增长%;在假定其它变量不变的情况下,当年居民消费价格指数增长率每增长 1%,人口增长率增长%;在假定其它变量不变的情况下,当年人均GDP 没增加一元,人口增长率就会降低%。
这与理论分析和经验判断相一致。
2、统计检验
:
(1)拟合优度:由表中数据可以得到:930526.02
=R ,修正的
可决系数为915638
.02
=R
,这说明模型对样本的拟合很好。
(2)F 检验:针对0234:0H βββ===,给定显著性水平0.05α=,在F 分布表中查出自由度为k-1=3和n-k=14的临界值34.3)14,3(=αF 。
由表中得到F= ,由于F= >(3,21) 3.075F α=,应拒绝原假设
0234:0H βββ===,说明回归方程显著,即“国民总收入”、“居民消
费价格指数增长率”、“人均GDP ”等变量联合起来确实对“人口自然增长率”有显著影响。
(3)t 检验:分别针对0H :0(1,2,3,4)j j β==,给定显著性水平0.05α=,
查t 分布表得自由度为n-k=14临界值145.2)(2/=-k n t α。
由表中数据可得,与^
1β、^
2β、^
3β、^
4β对应的t 统计量分别为、 、、
除^
3β,其绝对值均大于145.2)(2/=-k n t α,这说明分别都应当拒
绝0H :)4,2,1(0==j j β,也就是说,当在其它解释变量不变的情况下,
解释变量“国民总收入”、“人均GDP ”分别对被解释变量“人口自然增长率”Y 都有显著的影响。
^
3β的绝对值小于145.2)(2/=-k n t α,:这说明接受0H :03=β,
X3系数对t 检验不显著,这表明很可能存在多重共线性。
所以计算各解释变量的相关系数,选择X2、X3、X4数据,点”view/correlations ”得相关系数矩阵(如表):
表
.
由相关系数矩阵可以看出:各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性。
五、消除多重共线性
采用逐步回归的办法,去检验和解决多重共线性问题。
分别作Y 对X2、X3、X4的一元回归,结果如表所示:
表
<
按2R 的大小排序为:X4、X2、X3
以X2为基础,顺次加入其他变量逐步回归。
首先加入X2回归结果为:
40005397.02000350.035540.16ˆX X Y -+=
t= 920622.02
=R
当取05.0=α时,131
.2)318(025
.0)(2
/=-=-t
t k n α,X2参数的t 检验显
著,加入X3回归得
4
32005109.0047918.0000332.060851.15X X X Y t -++=Λ
t=
930526.02=R 915638.02
=R
F=
当取05.0=α时, 145.2)418(2/=-αt ,X3参数的t 检验不显著,予以剔
除
即40005397.02000350.035540.16ˆX X Y -+=,这是最后消除多重共线性的结果。
在假定其它变量不变的情况下,当年国民总收入每增长1亿元,人口增长率增长%;在假定其它变量不变的情况下,在假定其它变量不变的情况下,当年人均GDP没增加一元,人口增长率就会降低%。
金服131 王亚平。