简单组合体的结构特征
- 格式:doc
- 大小:596.54 KB
- 文档页数:6
高一数学知识点总结_空间几何体的结构知识点高一数学空间几何体的结构知识点篇1空间几何体的结构知识点1、静态的观点有两个平行的平面,其他的面是曲面;动态的观点:矩形绕其一边旋转形成的面围成的旋转体,象这样的旋转体称为圆柱。
2、定义:以矩形的一边所在直线为旋转轴,其余各边旋转而形成的的曲面所围成的旋转体叫做圆柱,旋转轴叫圆柱的轴;垂直于旋转轴的边旋转而成的圆面叫做圆柱的底面;平行于圆柱轴的边旋转而成的面叫圆柱的侧面,圆柱的侧面又称圆柱的面。
无论转到什么位置,不垂直于轴的边都叫圆柱侧面的母线。
表示:圆柱用表示轴的字母表示。
规定:圆柱和棱柱统称为柱体。
3、静态观点:有一平面,其他的面是曲面;动态的观点:直角三角形绕其一直角旋转形成的面围成的旋转体,像这样的旋转体称为圆锥。
4、定义:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转而形成的面所围成的旋转体叫做圆锥。
旋转轴叫圆锥的轴;垂直于旋转轴的边旋转而成的圆面成为圆锥的底面;不垂直于旋转轴的边旋转而成的曲面叫圆锥的侧面,圆锥的侧面又称圆锥的面,无论旋转到什么位置,这条边都叫做圆锥侧面的母线。
表示:圆锥用表示轴的字母表示。
规定:圆锥和棱锥统称为锥体。
5、定义:以半直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆台。
还可以看成用平行于圆锥底面的平面截这个圆锥,截面于底面之间的部分。
旋转轴叫圆台的轴。
垂直于旋转轴的边旋转而形成的圆面称为圆台的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆台的侧面,无论转到什么位置,这条边都叫圆台侧面的母线。
表示:圆台用表示轴的字母表示。
规定:圆台和棱台统称为台体。
6、定义:以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的旋转体称为球体,简称为球。
半圆的圆心称为球心,连接球面上任意一点与球心的线段称为球的半径,连接球面上两点并且过球心的线段称为球的直径。
表示:用表示球心的字母表示。
⾼⼀数学知识点总结_空间⼏何体的结构知识点⾼⼀数学怎么学? 学⽣学习期间,在课堂的时间占了⼀⼤部分。
因此听课的效率如何,决定着学习的基本状况,今天⼩编在这给⼤家整理了⾼⼀数学知识点总结,接下来随着⼩编⼀起来看看吧!⾼⼀数学知识点总结(⼀)空间⼏何体的结构知识点1、静态的观点有两个平⾏的平⾯,其他的⾯是曲⾯;动态的观点:矩形绕其⼀边旋转形成的⾯围成的旋转体,象这样的旋转体称为圆柱。
2、定义:以矩形的⼀边所在直线为旋转轴,其余各边旋转⽽形成的的曲⾯所围成的旋转体叫做圆柱,旋转轴叫圆柱的轴;垂直于旋转轴的边旋转⽽成的圆⾯叫做圆柱的底⾯;平⾏于圆柱轴的边旋转⽽成的⾯叫圆柱的侧⾯,圆柱的侧⾯⼜称圆柱的⾯。
⽆论转到什么位置,不垂直于轴的边都叫圆柱侧⾯的母线。
表⽰:圆柱⽤表⽰轴的字母表⽰。
规定:圆柱和棱柱统称为柱体。
3、静态观点:有⼀平⾯,其他的⾯是曲⾯;动态的观点:直⾓三⾓形绕其⼀直⾓旋转形成的⾯围成的旋转体,像这样的旋转体称为圆锥。
4、定义:以直⾓三⾓形的⼀条直⾓边所在的直线为旋转轴,其余两边旋转⽽形成的⾯所围成的旋转体叫做圆锥。
旋转轴叫圆锥的轴;垂直于旋转轴的边旋转⽽成的圆⾯成为圆锥的底⾯;不垂直于旋转轴的边旋转⽽成的曲⾯叫圆锥的侧⾯,圆锥的侧⾯⼜称圆锥的⾯,⽆论旋转到什么位置,这条边都叫做圆锥侧⾯的母线。
表⽰:圆锥⽤表⽰轴的字母表⽰。
规定:圆锥和棱锥统称为锥体。
5、定义:以半直⾓梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转⽽形成的曲⾯所围成的⼏何体叫圆台。
还可以看成⽤平⾏于圆锥底⾯的平⾯截这个圆锥,截⾯于底⾯之间的部分。
旋转轴叫圆台的轴。
垂直于旋转轴的边旋转⽽形成的圆⾯称为圆台的底⾯;不垂直于旋转轴的边旋转⽽成的曲⾯叫做圆台的侧⾯,⽆论转到什么位置,这条边都叫圆台侧⾯的母线。
表⽰:圆台⽤表⽰轴的字母表⽰。
规定:圆台和棱台统称为台体。
6、定义:以半圆的直径所在的直线为旋转轴,将半圆旋转⼀周所形成的曲⾯称为球⾯,球⾯所围成的旋转体称为球体,简称为球。
简单组合体的结构特征首先,简单组合体具有明确定义的几何形状。
每个简单物体的几何形状可以是基本的几何体,如立方体、圆柱体、圆锥体等,也可以是自定义的形状。
每个简单物体都具有确定的尺寸、表面形状和边界,这些几何参数决定了它们在组合体中的位置和相互之间的关系。
其次,简单组合体具有确定的组合关系。
多个简单物体可以通过连接、堆叠、平移、旋转等方式组合在一起,形成复杂的结构。
组合关系可以是紧密连接的,如接缝无缝衔接的构件;也可以是间接连接的,如通过螺栓、焊接等方式连接的构件;还可以是外部约束的,如支撑、固定、挂吊等。
组合关系决定了简单物体之间的相对位置和运动关系。
第三,简单组合体具有确定的材质和物性。
每个简单物体都由一种或多种材质构成,其物性如弹性、硬度、重量、导热性等对组合体的性能和功能有重要影响。
在实际应用中,选择合适的材料和物性参数可以满足结构的强度、刚度、耐久性、防腐蚀等要求。
第四,简单组合体具有确定的载荷和边界条件。
在现实应用中,组合体通常需要承受各种静力和动力载荷,如重力、风荷载、振动等。
此外,组合体还可能受到约束条件的限制,如支撑、固定、边界约束等。
载荷和边界条件的确定对于结构的安全性和合理性至关重要。
第五,简单组合体具有明确的功能和用途。
通过合理设计和组合,简单物体可以构成功能复杂的结构体,如建筑物、机械装置、航天器等。
其功能可以是承重、支撑、隔离、连接、导向等。
为了实现特定的功能,还需要考虑材料选型、结构形式、制造工艺等方面的因素。
总之,简单组合体的结构特征可以通过几何形状、组合关系、材质和物性、载荷和边界条件以及功能和用途等方面来描述。
通过合理的设计和组合,可以实现各种结构的要求,从而满足不同领域的应用需求。
【新人教版】数学必修二第八单元第2课时圆柱、圆锥、圆台、球、简单组合体学习目标 1.了解圆柱、圆锥、圆台、球的定义.2.掌握圆柱、圆锥、圆台、球的结构特征.3.了解简单组合体的概念及结构特征.知识点一圆柱的结构特征圆柱图形及表示定义:以矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体叫做圆柱图中圆柱表示为圆柱O′O 相关概念:圆柱的轴:旋转轴圆柱的底面:垂直于轴的边旋转而成的圆面圆柱的侧面:平行于轴的边旋转而成的曲面圆柱侧面的母线:无论旋转到什么位置,平行于轴的边思考圆柱的轴截面有________个,它们________(填“全等”或“相似”),圆柱的母线有________条,它们与圆柱的高________.答案无穷多全等无穷多相等知识点二圆锥的结构特征圆锥图形及表示定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体图中圆锥表示为圆锥SO相关概念: 圆锥的轴:旋转轴圆锥的底面:垂直于轴的边旋转而成的圆面侧面:直角三角形的斜边旋转而成的曲面母线:无论旋转到什么位置 ,不垂直于轴的边思考 圆锥的轴截面有多少个?母线有多少条?圆锥顶点和底面圆周上任意一点的连线都是母线吗?答案 圆锥的轴截面有无穷多个,母线有无穷多条,圆锥顶点和底面圆周上任意一点的连线都是母线. 知识点三 圆台的结构特征圆台图形及表示定义:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台图中圆台表示为圆台O ′O相关概念: 圆台的轴:旋转轴圆台的底面:垂直于轴的边旋转一周所形成的圆面圆台的侧面:不垂直于轴的边旋转一周所形成的曲面母线:无论旋转到什么位置,不垂直于轴的边知识点四球的结构特征球图形及表示定义:半圆以它的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,球面所围成的旋转体叫做球体,简称球图中的球表示为球O 相关概念:球心:半圆的圆心半径:连接球心和球面上任意一点的线段直径:连接球面上两点并经过球心的线段知识点五简单组合体的结构特征1.概念:由简单几何体组合而成的,这些几何体叫做简单组合体.2.基本形式:一种是由简单几何体拼接而成,另一种是由简单几何体截去或挖去一部分而成.1.直角三角形绕一边所在直线旋转得到的旋转体是圆锥.(×)2.圆锥截去一个小圆锥后剩余部分是圆台.(√)3.夹在圆柱的两个平行截面间的几何体是一圆柱.(×)4.半圆绕其直径所在直线旋转一周形成球.(×)一、旋转体的结构特征例1下列说法正确的是________.(填序号)①以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;②圆柱、圆锥、圆台的底面都是圆;③以等腰三角形的底边上的高线所在的直线为旋转轴,其余各边旋转一周形成的曲面所围成的几何体是圆锥;④用一个平面去截球,得到的截面是一个圆面.答案③④解析①以直角梯形垂直于底边的一腰所在直线为轴旋转一周可得到圆台;②它们的底面为圆面;③④正确.反思感悟(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成.②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.跟踪训练1下列说法,正确的是()①圆柱的母线与它的轴可以不平行;②圆锥的顶点、底面圆的圆心与圆锥底面圆周上任意一点这三点的连线都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在直线是互相平行的.A.①②B.②③C.①③D.②④答案 D解析由圆柱、圆锥、圆台的定义及母线的性质可知②④正确,①③错误.二、简单组合体的结构特征例2(1)请描述如图所示的几何体是如何形成的.解①是由一个圆锥和一个圆台拼接而成的组合体;②是由一个长方体截去一个三棱锥后得到的几何体;③是由一个圆柱挖去一个三棱锥后得到的几何体.(2)如图所示,已知梯形ABCD中,AD∥BC,且AD<BC.当梯形ABCD 绕AD所在直线旋转一周时,其他各边旋转形成的面围成一个几何体,试描述该几何体的结构特征.解如下图所示,旋转所得的几何体可看成由一个圆柱挖去两个圆锥后剩余部分而成的组合体.反思感悟(1)解决简单组合体的结构特征相关问题,首先要熟练掌握各类几何体的特征,其次要有一定的空间想象能力.(2)判断旋转体形状的关键是轴的确定,看是由平面图形绕哪条直线旋转所得,同一个平面图形绕不同的轴旋转,所得的旋转体一般是不同的.跟踪训练2(1)如图所示的简单组合体的组成是()A.棱柱、棱台B.棱柱、棱锥C.棱锥、棱台D.棱柱、棱柱答案 B(2)将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括()A.一个圆台、两个圆锥B.两个圆柱、一个圆锥C.两个圆台、一个圆柱D.一个圆柱、两个圆锥答案 D解析图①是一个等腰梯形,CD为较长的底边,以CD边所在直线为旋转轴旋转一周所得几何体为一个组合体,如图②,包括一个圆柱、两个圆锥.三、旋转体的有关计算例3一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2,求:(1)圆台的高;(2)将圆台还原为圆锥后,圆锥的母线长.解 (1)圆台的轴截面是等腰梯形ABCD (如图所示). 由已知可得O 1A =2 cm ,OB =5 cm. 又由题意知腰长AB =12 cm , 所以高AM =122-(5-2)2 =315(cm).(2)如图所示,延长BA ,OO 1,CD ,交于点S , 设截得此圆台的圆锥的母线长为l , 则由△SAO 1∽△SBO ,可得l -12l =25, 解得l =20.即截得此圆台的圆锥的母线长为20 cm.反思感悟 用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的经过旋转轴的截面(轴截面)的性质,利用相似三角形中的相似比,构设相关几何变量的方程(组)而得解.跟踪训练3 如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台O ′O 的母线长.解 设圆台的母线长为l cm ,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm,4r cm.过轴SO 作截面,如图所示.则△SO ′A ′∽△SOA ,SA ′=3 cm. 所以SA ′SA =O ′A ′OA . 所以33+l=r 4r =14.解得l =9,即圆台的母线长为9 cm.1.下列说法中正确的是( ) A.将正方形旋转不可能形成圆柱B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线 答案 C解析 将正方形绕其一边所在直线旋转可以形成圆柱,所以A 错误;B 中没有说明这两个平行截面的位置关系,当这两个平行截面与底面平行时正确,其他情况下结论不一定正确,所以B 错误;通过圆台侧面上一点,只有一条母线,所以D 错误. 2.(多选)下列命题中正确的是( )A.过球心的截面所截得的圆面的半径等于球的半径B.母线长相等的不同圆锥的轴截面的面积相等C.圆台中所有平行于底面的截面都是圆面D.圆锥所有的轴截面都是全等的等腰三角形答案ACD3.下列几何体是台体的是()答案 D解析台体包括棱台和圆台两种,A的错误在于四条侧棱没有交于一点,B的错误在于截面与圆锥底面不平行.C是棱锥,结合棱台和圆台的定义可知D正确.4.用一个平面去截一个几何体,得到的截面是三角形,这个几何体可能是()A.圆柱B.圆台C.球体D.棱台答案 D解析圆柱、圆台和球体无论怎样截,截面可能是曲面,也可能是矩形(圆柱)或等腰梯形(圆台),不可能截出三角形.只有棱台可以截出三角形.5.两相邻边长分别为3 cm和4 cm的矩形,以一边所在的直线为轴旋转所成的圆柱的底面积为________ cm2.答案16π或9π解析当以3 cm长的一边所在直线为轴旋转时,得到的圆柱的底面半径为4 cm,底面积为16π cm2;当以4 cm长的一边所在直线为轴旋转时,得到的圆柱的底面半径为3 cm,底面积为9π cm2.1.知识清单:(1)圆柱、圆锥、圆台的结构特征.(2)球的结构特征.(3)简单组合体的结构特征.2.方法归纳:分类讨论.3.常见误区:同一平面图形以不同的轴旋转形成的旋转体一般是不同的.1.下列几何体中不是旋转体的是()答案 D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的答案 A3.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖去一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体答案 B解析圆面绕着直径所在的轴,旋转而形成球,矩形绕着轴旋转而形成圆柱. 故选B.4.若圆柱的母线长为10,则其高等于()A.5B.10C.20D.不确定答案 B解析圆柱的母线长与高相等,则其高等于10.5.如图所示的几何体是由哪个平面图形旋转得到的()答案 D解析图中所给的几何体是由上部的圆锥和下部的圆台组合而成的,故所求平面图形的上部是直角三角形,下部为直角梯形构成.6.观察下列四个几何体,其中可看作是由两个棱柱拼接而成的是________.(填序号)答案①④解析①可看作由一个四棱柱和一个三棱柱组合而成,④可看作由两个四棱柱组合而成.7.已知一个圆柱的轴截面是一个正方形,且其面积是Q,则此圆柱的底面半径为________.(用Q表示)答案Q 2解析设圆柱的底面半径为r,则母线长为2r.∴4r2=Q,解得r=Q 2,∴此圆柱的底面半径为Q 2.8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的高为________.答案 3解析由题意知一个圆锥的侧面展开图是面积为2π的半圆面,因为4π=πl2,所以母线长为l=2,又半圆的弧长为2π,圆锥的底面的周长为2πr=2π,所以底面圆半径为r=1,所以该圆锥的高为h=l2-r2=22-12= 3.9.一个圆锥的高为2 cm,母线与轴的夹角为30°,求圆锥的母线长及圆锥的轴截面的面积.解如图轴截面SAB,圆锥SO的底面直径为AB,SO为高,SA为母线,则∠ASO=30°.在Rt△SOA中,AO=SO·tan 30°=233(cm).SA=SOcos 30°=232=433(cm).所以S△ASB=12SO·2AO=433(cm2).所以圆锥的母线长为433cm,圆锥的轴截面的面积为433cm2. 10.如图所示,有一个底面半径为1,高为2的圆柱体,在A点处有一只蚂蚁,现在这只蚂蚁要围绕圆柱表面由A点爬到B点,问蚂蚁爬行的最短距离是多少?解把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,则AB′即为蚂蚁爬行的最短距离.∵AA′为底面圆的周长,∴AA′=2π×1=2π.又AB=A′B′=2,∴AB′=A′B′2+AA′2=4+(2π)2=21+π2,即蚂蚁爬行的最短距离为21+π2.11.上、下底面面积分别为36π和49π,母线长为5的圆台,其两底面之间的距离为()A.4B.3 2C.2 3D.2 6答案 D解析圆台的母线长l、高h和上、下两底面圆的半径r,R满足关系式l2=h2+(R-r)2,由题意知l=5,R=7,r=6,求得h=26,即两底面之间的距离为2 6.12.已知球的半径为10 cm,若它的一个截面圆的面积为36π cm2,则球心与截面圆圆心的距离是______cm.答案8解析如图,设截面圆的半径为r,球心与截面圆圆心之间的距离为d,球半径为R.由示意图易构造出一个直角三角形,解该直角三角形即可.由题意知,R=10 cm,由πr2=36π,得r=6,所以d=R2-r2=100-36=8(cm).13.边长为5的正方形EFGH是圆柱的轴截面,则从点E沿圆柱的侧面到相对顶点G的最短距离为________.答案52π2+4解析如图,矩形E1F1GH是圆柱沿着其母线EF剪开半个侧面展开而得到的,由题意可知GH =5,GF 1=5π2,GE 1=254π2+25=52π2+4.所以从点E 沿圆柱的侧面到相对顶点G 的最短距离是52π2+4. 14.如图所示的几何体是由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而成的.现用一个竖直的平面去截这个几何体,则所截得的图形可能是________.(填序号)答案 ①⑤解析 由于截面平行于圆锥的轴或过圆锥的轴,故只能是①⑤.15.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且距离为1,那么这个球的半径是( ) A.4 B.3 C.2 D.0.5 答案 B解析 如图所示,∵两个平行截面的面积分别为5π和8π,∴两个截面圆的半径分别为r 1=5, r 2=2 2.∵球心到两个截面的距离d 1=R 2-r 21,d 2=R 2-r 22,∴d 1-d 2=R 2-5-R 2-8=1,∴R 2=9,∴R =3.16.圆台的上、下底面半径分别为5 cm,10 cm,母线长AB=20 cm,从圆台母线AB的中点M拉一条绳子绕圆台侧面转到点A,求:(1)绳子的最短长度;(2)在绳子最短时,上底圆周上的点到绳子的最短距离.解(1)如图所示,将侧面展开,绳子的最短长度为侧面展开图中AM 的长度,设OB=l,则θ·l=2π×5,θ·(l+20)=2π×10,解得θ=π2,l=20 cm.∴OA=40 cm,OM=30 cm.∴AM=OA2+OM2=50 cm.即绳子最短长度为50 cm.(2)作OQ⊥AM于点Q,交弧BB′于点P,则PQ为所求的最短距离.∵OA·OM=AM·OQ,∴OQ=24 cm.故PQ=OQ-OP=24-20=4(cm),即上底圆周上的点到绳子的最短距离为4 cm.。
1.1.2简单组合体的结构特征【课时目标】1.正确认识由柱、锥、台、球组成的简单几何体的结构特征.2.能运用这些结构特征描述现实生活中简单物体的结构.1.定义:由____________________组合而成的几何体叫做简单组合体.2.组合形式一、选择题1.如图,由等腰梯形、矩形、半圆、圆、倒三角形对接形成的轴对称平面图形,若将它绕轴l旋转180°后形成一个组合体,下面说法不正确的是()A.该组合体可以分割成圆台、圆柱、圆锥和两个球体B.该组合体仍然关于轴l对称C.该组合体中的圆锥和球只有一个公共点D.该组合体中的球和半球只有一个公共点2.右图所示的几何体是由哪个平面图形通过旋转得到的()3.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是() A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥4.将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体是由() A.一个圆台、两个圆锥构成B.两个圆台、一个圆锥构成C.两个圆柱、一个圆锥构成D.一个圆柱、两个圆锥构成5.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥组合体D.不能确定6.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是()A.(1)(2) B.(1)(3)C.(1)(4) D.(1)(5)二、填空题7.下列叙述中错误的是________.(填序号)①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④用一个平面去截圆锥,得到一个圆锥和一个圆台.8.如图所示为一空间几何体的竖直截面图形,那么这个空间几何体自上而下可能是__________________.9.以任意方式截一个几何体,各个截面都是圆,则这个几何体一定是________.三、解答题10.如图是一个数学奥林匹克竞赛的奖杯,请指出它是由哪些简单几何体组合而成的.11.如图所示几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.能力提升12.一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面图形是()13.已知圆锥的底面半径为r,高为h,且正方体ABCD-A1B1C1D1内接于圆锥,求这个正方体的棱长.组合体的结构特征有两种组成:(1)是由简单几何体拼接而成;(2)是由简单几何体截去一部分构成.要仔细观察组合体的组成,柱、锥、台、球是最基本的几何体.1.1.2简单组合体的结构特征答案知识梳理1.简单几何体2.截去或挖去一部分作业设计1.A2.A3.D4.D5.A6.D[一个圆柱挖去一个圆锥后,剩下的几何体被一个竖直的平面所截后,圆柱的轮廓是矩形除去一条边,圆锥的轮廓是三角形除去一条边或抛物线的一部分.]7.①②③④ 8.圆台和圆柱(或棱台和棱柱) 9.球体10.解 将该几何体分解成简单几何体可知,它是由一个球、一个四棱柱和一个四棱台组合而成.11.解 先画出几何体的轴,然后再观察寻找平面图形.旋转前的平面图形如下:12.B 13.解 如图所示,过内接正方体的一组对棱作圆锥的轴截面,设圆锥内接正方体的棱长为x ,则在轴截面中,正方体的对角面A 1ACC 1的一组邻边的长分别为x 和2x .因为△V A 1C 1∽△VMN ,解得2x 2r =h -x h,所以2hx =2rh -2rx ,解得x =2rh2r +2h.即圆锥内接正方体的棱长为2rh2r +2h.。
1、1、2 简单组合体的结构特征一、【学习目标】1、掌握简单组合体的概念,学会观察、分析图形,提高空间想象能力和几何直观能力;2、能够描述现实生活中简单物体的结构,学会通过建立几何模型来研究空间图形,培养学生的数学建模思想;二、【自学内容和要求及自学过程】阅读材料,学习新知材料一:立体几何是研究现实世界中物体的形状、大小与位置关系的学科,只有把我们周围的物体形状正确迅速分解开,才能清醒地认识几何学,为后续学习打下坚实的基础.简单几何体(柱体、锥体、台体和球)是构成简单组合体的基本元素.本节教材主要是在学习了柱、锥、台、球的基础上,运用它们的结构特征来描述简单组合体的结构特征.材料二:观察下面几个图形,谈谈你对这些图形的认识,你能找出这些图形都是由哪些简单集合体组成的吗?常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合.其基本形式实质上有两种:一种是由简单几何体拼接而成的简单组合体;另一种是由简单几何体截去或挖去一部分而成的简单组合体.三、【练习与巩固】结合今天所学的知识,完成该下列练习练习一:教材第7页练习1、2题;思考:<1>已知如图1所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕BC所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.(图2)<2>如图3所示,已知梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD 绕AD所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.(图4)四、【作业】1、必做题:教材第9页习题1.1A组第3、4题;2、选做题:一直角梯形ABCD如图所示,分别以边AB、BC、CD、DA为旋转轴,画出所得几何体的大致形状.。
1.1.2 简单组合体的结构特征
(一)教学目标
1.知识与技能
(1)理解由柱、锥、台、球组成的简单组合体的结构特征.
(2)能运用简单组合体的结构特征描述现实生活中的实际模型.
2.过程与方法
让学生通过下观感觉空间物体,认识简单的组合体的结构特征,归纳简单组合体的基本构成形式.
3.情感态度与价值观
培养学生的空间想象能力,培养学习教学应用意识.
(二)重点、难点
重点与难点都是认识简单组体体的结构特征.
(三)教学方法
概念形成过程中,学生观察、思考、讨论、交流与教师引导相结合,然后通过对一些具体问题的讨论,加深对简单
组合体的结构特征的理解.。