初赛14届中环杯五年级试题
- 格式:doc
- 大小:110.50 KB
- 文档页数:3
第十四届野中环杯冶小学生思维能力训练活动五年级决赛得分院注意院每小题前的野阴冶由阅卷人员填写袁考生请勿填写遥一尧填空题院渊每小题 5 分袁共 50 分袁请将答案填写在题中横线处遥 冤1. 计算院11.99伊73+1.09伊297+ 1 伊渊32-12冤=遥22. 420伊814伊1616 除以 13 的余数为遥3. 五年级有甲尧乙两个班袁甲班学生人数是乙班学生人数的 5 袁如果从乙班调 3 人到甲班袁甲班学生人数就是乙班学生 7AE OF人数的 4 遥 甲班原有学生人遥54. 已知 990伊991伊992伊993= 966428A91B40袁则 AB=遥BCD第 5题5. 如 图 袁吟ABC 面 积 为 60袁E尧F分 别 为 AB尧AC 上 的 点袁 满足 AB=3AE袁AC=3A F遥 点 D 是线段 BC 上的动点袁设吟FBD 的面积为 S1袁吟EDC 的面积为 S2袁 则 S1窑S2 的最大值伊2为遥06. 如图袁 在每个方框中填入一个数字袁 使得乘法竖式成1立遥 则这个算式乘积的最大值与最小值之差为遥47. 有 15 位选手参加一个围棋锦标赛袁每两个人之间需要比赛一场遥赢一场得 2 分袁平一场各 1 得分袁输一场得0 分遥如第 6题果一位选手的得分不少于 20 分袁他就能获得一份奖品遥 那么袁最多有位选手能够获得奖品遥中环8. 在一场 1000 米的比赛中袁一个沙漏以相同的速率在漏沙子袁漏出来的沙子都掉入一个杯中渊这个沙漏是在比赛进行了一段时间后才开始漏的冤遥 小明以匀速进行跑动遥 当他跑到好难杯200 米的时候袁第 a 颗沙子正好掉入杯中曰当他跑到 300 米的时候袁第 bc 颗沙子正好掉入杯中曰当他跑到 400 米的时候袁第de 颗沙子正好掉入杯中曰当他跑到 500 米的时候袁第 fg 颗沙子 正好掉入杯中渊a尧b尧c尧d尧e尧f尧g 都是 0~9 的数字袁并且它们的值的真a可以相同冤遥我们发现院渊1冤 a 是 2 的倍数曰渊2冤 bc 是一个质数曰中环渊3冤 de 是 5 的倍数曰渊4冤 fg 是 3 的倍数遥那么袁四位数 debc=渊如果有多个解袁需要将所有解写在横线中冤遥好难杯9. 如图 a袁七个汉字写在图中的七个圆圈内袁要求从某一个圆圈开始袁沿着线段一笔画这个图形渊所有圆圈都要走到袁而且只能走到一次冤袁将这个一笔画路径上的字连成一个字串的真b第 9题渊例如图 b袁从野中冶开始一笔画袁得到的字串为野中环难杯真的好冶冤遥 AB那么袁能够组成的不同字串有个遥10. 如图袁两个正方形 A BEG尧GECD袁点 H 是 GE 中点D袁C DF =1 3遥联结DH尧CH尧A F尧BF袁正方形ABEG的面积为m平方厘米袁阴影G部分的面积为 n 平方厘米遥 已知 m尧n 都是正整数袁且 m 有 9 个约数袁HEJ则正方形 A BEG 的边长为厘米遥I二尧动手动脑题院渊每小题 10 分袁共 50 分袁除第 15 题外袁请给出详细 D FC解题步骤遥 冤第 10 题11. 甲尧 乙两人同时从 A尧B两地出发袁 相向而行袁 甲每小时行12.5 千米袁乙每小时行 10 千米遥甲行 30 分钟后袁到达恒生银行门口袁想起来自己的信用卡没有带袁所以他原速返回 A 地去拿卡遥 到达 A 地后袁甲忘记卡放在哪里了袁花了半小时才找到卡遥 找到卡后袁甲又用原速去往 B 地袁结果当乙到达 A 地时袁甲还需要 15 分钟才能到达 B地遥 那么 A 尧B 间的距离是多少千米钥12. 如果一个数的奇约数的个数有 2m渊m 为自然数冤个袁则我们称这样的数为野中环数冶遥 比如 3 的奇约数有 1尧3袁一共 2=21 个袁所以 3 是一个野中环数冶遥 再比如 21 的奇约数有 1尧3尧7尧21袁一共 4=22 个袁所以 21 也是一个野中环数冶遥 我们希望能找到 n 个连续的野中环数冶遥 求院 n 的最大值遥113. 下左图是一个奇怪的黑箱子袁这个黑箱子有一个输入口袁一个输出口遥 我们在输入口输入 一个数字袁那么在输出口就会产生一个数字结果袁其遵循的规则是院渊1冤 如果输入的数字是奇数 k袁则输出的就是 4k+1曰 渊2冤 如果输入的数字是偶数 k袁则输出的就是衣 k 2遥 比如院输入的是数字 8袁那么输出的就是 8衣2=4曰输入的是数字 3袁那么输出的就是 3伊4+1=13遥 现在袁将三个这样的黑箱子串联在一起渊如下右图冤袁这样第一个黑箱子的输出成为第二个黑箱 子 的输入袁依次类推遥 比如输入数字 16袁经过第一个黑箱子袁得到结果 8袁这个 8 就作为第二个黑箱子 的输入遥 经过第二个黑箱子袁得到结果 4袁这个 4 就作为第三个黑箱子的输入遥 经过第三个黑箱子 袁得到结果 2袁这个 2 结果就是最后的输出了遥 我们可以用 16寅8寅4寅2 来表示这样的过程遥输入输出输入输出现在袁美羊羊尧喜羊羊尧懒羊羊尧羊爸爸在这个串联的黑箱子输入端输入不同的正整数袁其中羊 爸爸输入的数字最大袁得到的 4 个最终输出结果竟然是相同的遥当这个输出结果最小时袁求院羊爸爸 的输入值是多少钥15. 渊1冤 你能将下面的长方形图纸分割成全等的 4 个图形吗渊如参考 图冤钥 请给出不同于参考图的另外三种分割方法遥4030参考图 403040 3040 30渊2冤 画一个封闭的环袁水平或竖直穿过相邻的单元格遥 环不能交叉或重 叠袁下图就是一些不允许出现的情况遥14. 如图袁我们将很多边长为 1 的小正方形放入等腰吟A BC 中袁BC 边上的高为 AH袁AH 和 BC 的长度都是正整数遥 要求所有小正方形都有两条边与 BC 平行渊如图所示冤遥 先放最下面一层袁从两 边往中间放渊最靠边的小正方形的一个顶点正好在三角形的边上冤袁直到中间的空隙放不下一个小 正 方形为止遥然后放倒数第二层袁同样从两边往中间放袁直到中间的空隙放不下一个小正方形为止遥依次 类推袁不断地往上面叠放小正方形袁直到无法再往上叠为止遥我们发现袁每层的中间都没有产生空隙袁 而且 BC 臆8遥 最后袁整个吟ABC 内一共放了 330 个小正方形遥 求院BC 长度的最大值遥AHABCH下图中有数字的单元格不能作为环的一部分袁单元格内的数字表示其 周 围八个相邻的单元格内被环占住的个数袁请在图中画出这个环遥45758474448311332。
中环杯、小机灵杯试题精选【1】1.四个球,编号为1,2,3,4,将他们分放到编号为1,2,3,4的四只箱子里,每箱一个,则至少有一箱恰使球号与箱号相同的放法有几种?2. 用数码1,2,3,4.....9各恰好两次,构成不同的质数,使它们的和尽可能小,则该和最小是几?【2】一班,二班,三班各有二人作为数学竞赛优胜者, 6人站一排照相, 要求同班同学不站在一起, 有( ) 种不同的站法?【3】一版邮票有20行20列,共400张邮票,称由3张同一行或同一列相连的邮票组成的纸块为"三联".小亮想剪出尽可能多的三联,他最多能得到几块三联?【4】第一次在1,2两数之间写上3;第二次在1,3之间和3,2之间分别写上4,5;以后每一次都在已写上的两个相邻数之间,再写上这两个相邻数之和。
这样的过程共重复8次,那么所以数的和是多少?【5】一次测验共有5道试题,测试后统计如下:有81%的同学做对第1题,有85%的同学做对第2题,有91%的同学做对第3题,有74%的同学做对第4题,有79%的同学做对第5题。
如果做对3道或3道以上试题的同学为考试合格。
请问:这次考试的合格率最多达百分之几?最少达百分之几?【6】把156支铅笔分成n堆(n>等于2),要求每堆一样多且为偶数支。
有()种分法。
【7】七个相同的羽毛球,放在四个不同的盒子里, 每个盒子里至少放一个, 不同的放法有( ) 种.【8】由甲城开往乙城的汽车每隔1小时一班逢整点出发,由乙城开往甲城的汽车每隔1小时一班但逢半点(30分)出发。
从一个城市到另一个城市需要6小时,假定汽车行驶在同一高速公路上,那么一辆开往乙城的汽车最多能遇到()辆开往甲城的汽车。
【9】一群公猴、母猴和小猴共38只,每天共摘桃子266个。
已知每只公猴每天摘桃10个,每只母猴每天摘桃8个,每只小猴每天摘桃5个,并且公猴比母猴少4只,那么,这群猴子中小猴有多少只?这道题目除了设X做以外还有别的方法吗?【10】甲、乙两列车分别从A,B两站同时相向开出,已知甲车的速度与乙车速度的比为3:2,C站在A,B两站之间。
姓名年级学校准考证号赛区考场联系电话-------------------装----------------------订----------------------线---------------------第14届世界奥林匹克数学竞赛(中国区)选拔赛全国总决赛------------------------------------------------------------------------------------------------------------------------五年级初赛试卷(本试卷满分120分,考试时间75分钟)一、初试牛刀(单选题Ⅰ,每题5分,共50分)1.在一架天平的两边分别放上以下重量的物体,唯一平衡的一组是()。
A.左边312×2598克,右边820576克B.左边137×4725克,右边647335克C.左边110×3457克,右边380270克D.左边261×1231克,右边300291克2.将下面四个矩形沿着虚线剪开后,所得的两个部分既能拼成平行四边形,又能拼成三角形和梯形的是()。
A. B. C. D.3.将图①所示四张扑克牌洗均匀后,如图②所示背面朝上放置在桌面上。
规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数则为胜,是奇数则为负。
则下面四个说法中正确的是()。
A.胜的可能性比较大B.负的可能性比较大C.胜负的可能性一样大D.不可能胜,一定会负4.俄国著名数学家罗蒙诺索夫向邻居借《数学原理》一书,邻居对他说:“你帮我劈10天柴,我就把书送给你,另给你20个卢布。
”结果他只劈了7天柴。
邻居把书送给他后,另外付了5个卢布。
《数学原理》这本书的价值是()卢布。
A.9B.20C.30D.805.我们在书写日期时习惯用六位数表示,例如850630表示的是1985年6月30日,用这种方法表示2009年某月某日的日期,其中六个数字都不相同的日期有()天。
2来源:已知两个人或若干个人的年龄,求他们年龄之间的某种数量关系,包括大小,倍数等. 或者,开始知道两个人的年龄之间的关系,最后通过和差倍问题求解两个人或者多个人的年龄。
解题方法:年龄问题的三大规律:1.两人的年龄差是不变的;2.两人年龄的倍数关系是变化的量;3.随着时间的推移,两人的年龄都是增加相等的量.年龄问题的类型:1.转化为和差问题的年龄问题;2.转化为和倍问题的年龄问题;3.转化为差倍问题的年龄问题.这类问题也可以用画图法来解决。
易错点:年龄问题里面不变的是年龄差,不是年龄的倍数,找准年龄差,再去考虑和倍,差倍的问题。
小明今年6岁,妈妈今年36岁,再过6年,小明读初中时,妈妈比小明大多少岁?1.1.今年姐姐13岁,弟弟今年10岁,当姐弟年龄之和达101岁时,姐姐是多少岁?2.2.姐姐、妹妹二人的年龄和是33岁,四年后姐姐比妹妹大5岁.那么今年姐姐______岁,妹妹______岁?(答案格式:数字中间请用一个空格隔开(从前到后))3.3.小明爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大6岁.今年爸爸______岁,妈妈______岁?(答案格式:数字中间请用一个空格隔开(从前到后))视频描述1.小明今年6岁,妈妈今年36岁,再过多少年之后,小明妈妈的年龄是小明年龄的2倍?1.明明比爸爸小28岁,爸爸今年的年龄是明明年龄的5倍,明明今年多少岁,爸爸今年多少岁?2.2.爸爸比小强大30岁,明年爸爸的年龄是小强的3倍,今年小强多少岁?3.3.父亲比儿子大27岁,4年后父亲的年龄是儿子的4倍,那么儿子今年多少岁?v视频描述5年前爸爸和儿子的年龄和是40岁,今年爸爸的年龄是儿子的4倍,今年爸爸和儿子各多少岁?1.1.父子俩今年的年龄和是48岁,父亲的年龄是儿子的5倍,父亲今年______岁,儿子今年______岁?(答案格式:数字中间请用一个空格隔开(从前到后))2.2.3年前,妈妈与女儿的年龄和是46岁,,今年妈妈的年龄是女儿的3倍,今年妈妈______岁,女儿______岁?(答案格式:数字中间请用一个空格隔开(从前到后))3.3.姐姐今年22岁,弟弟今年15岁,几年前姐姐的年龄是弟弟的两倍?小刚4年前的年龄与小明7年后的年龄之和是39岁,小刚5年后的年龄等于小明3年前的年龄,求小刚、小明今年的年龄是多少?1.1.哥哥5年前的年龄等于7年后弟弟的年龄,哥哥4年后的年龄与弟弟3年前的年龄和是35岁,求哥哥今年______岁,弟弟今年______岁。
五年级中环杯历届试题五年级中环杯历届试题导语:在所有好的,不好的情绪里,毫无预兆地想念你,是我不可告人的隐疾。
以下小编为大家介绍五年级中环杯历届试题文章,欢迎大家阅读参考!五年级中环杯历届试题一、单项选择题(在下列每题的四个选项中,只有一个选项是符合试题要求的。
请把答案填入答题框中相应的题号下。
每小题1分,共23分)1. 健康牛的体温为( )。
A. 38~39.5°CB. 37~39°CC. 39~41°CD. 37.5~39.5°C2. 动物充血性疾病时,可视黏膜呈现( )。
A. 黄染B. 潮红C. 苍白D. 发绀3. 心肌细胞脂肪变性是指( )。
A. 心肌间质脂肪浸润B. 心肌脂肪组织变性C. 心外膜脂肪细胞堆积D. 心肌细胞胞质中出现脂滴4. 化脓菌入血、生长繁殖、产生毒素、形成多发性脓肿,该病是( )。
A. 脓毒血症B. 毒血症C. 败血症D. 菌血症5. 细胞坏死过程中,核变小、染色质浓聚,被称之为( )。
A. 核溶解B. 核分裂C. 核固缩D. 核碎裂6. 在慢性炎症组织中,最多见的炎症细胞是( )。
A.中性粒细胞 B.嗜酸性粒细胞C.淋巴细胞 D.肥大细胞7. 商品蛋鸡中暑时的胸肌颜色( )。
A.暗红色 B.鲜红色 C.浅白色 D.基本正常8. 甲硝唑主要用于下列哪种情况( )。
A. 大肠杆菌病B. 抗滴虫和厌氧菌C. 需氧菌感染D. 真菌感染9. 下列动物专用抗菌药是( )。
A.环丙沙星 B.氧氟沙星 C.强力霉素 D.泰乐菌素10.被病毒污染的场地,进行消毒时,首选的消毒药是( )。
A.烧碱 B.双氧水 C.来苏儿 D.新洁尔灭11.解救弱酸性药物中毒时加用NaHCO3的目的是( )。
A. 加快药物排泄B. 加快药物代谢C. 中和药物作用D. 减少药物吸收12.国家强制免疫的动物疫病不含( )。
A.禽流感 B.蓝耳病 C.猪瘟 D.新城疫13.鸭传染性浆膜炎的病原为( )。
级决赛得分院注意院每小题前的野阴冶由阅卷人员填写袁考生请勿填写遥一尧填空题A院渊每题6 分袁共48 分冤31+6 1 +4 3数列袁比如S3 为3尧12尧21尧噎遥如果306 是S k 中的一项袁所有满足条件的k 之和为遥7. 如图所示的点阵图中袁有条直线能正好经过其中的两个点遥8.如图袁直角吟A B C 中袁AB=3袁AC=4袁点D尧E尧F尧G尧第7 题JI1. 计算院9伊11+31 伊 5 7 = 遥DH尧I 都在长方形K LMJ 上袁且A B ED尧A C HI尧BCGF 都是正 A H20151+ 1 + 1 EM5 7方形遥则KLMJ 的面积为遥 B C2.老师布置了一些数学回家作业遥由于小明基础不好袁所以小明收到的题目数量比小王收到的题目数量多20 道遥若两人收到的题目数量之比为4:3袁则小明回家需要完成道题目遥3.如图袁正八边形的边长为1袁将其进行切割袁切割后灰色部分面K 二尧填空题B院渊每题8 分袁共32 分冤9. 计算院渊104-94+84-74+噎+24-14冤+渊102+92+5伊82+5伊72+9伊62+9伊52+13伊42+13伊32冤= 遥F GL第8 题积与斜线部分面积之差渊大减小冤为遥4.在一组英文字母串中袁第一个字母串a1=A 袁第二个字母串a2=B袁之后每个字母串a n渊n逸3冤都是由a n-1 后面跟着a n-2 的反转构成的遥比如第3 题C A E FD B BE G FC AD G 10. 甲尧乙两人分别从 A 尧B 两地同时出发渊甲从 A 出发冤袁相向而行袁在两地之间不停地往返行走袁甲的速度是乙的 4 倍遥 已知 A 尧B 之间相距 S 千米袁其中 S 为正整数袁并且 S 有 8 个因数遥 第一次袁两人在 C 处碰头渊注意院这里的碰头可以指迎面相遇袁也可以指背后追到冤袁ACa 3=a 2a 1 =BA 渊我们用a i 表示 a i 的反转袁 就是从右往左读这个字母串得到的结果袁 比如A BB = BBA 尧A A BA =A B AA 冤袁a 4=a 3a 2 =BA B 袁a 5=a 4a 3 =BA B A B 袁a 6=a 5a 4 =BA B A B BA B 遥 那么袁这组字母串的前 1000 个中袁有 个是回文字母串渊所谓的回文字母串袁就是指从左往右读与 从右往左读相同袁比如 A BA 尧A A BAA 冤遥5. 如图 a 袁七个字母放置在圆中袁每次将包含中心圆的三个圆渊这三个圆的圆心构成等边三角形冤顺时针旋转 120毅袁这样称为一次操作遥 比如可以将 A 尧B 尧D 进行旋转袁从而 B 出现在原D 的位置渊用 B 邛D 表示这个旋转冤袁D 邛A 袁A 邛B 遥 也可以将 D 尧E 尧F 进行旋转渊D 邛E 袁E 邛F 袁F 邛D 冤袁但是不能将 A 尧D 尧G 或者 C 尧B 尧E 进行旋转遥经过若干次操作后袁 得到图 b 遥 那么袁最少需要操作 次遥 a b的长度是一个整数遥第二次袁两人在D 处碰头袁AD 的长度还是一个整数遥第二次碰头后袁乙感觉自己速度太慢袁所以在D 处附近的村子问老乡借摩托车遥等他借到摩托车回到D 处时袁甲已经到达E 处渊甲还没有到过A 地冤袁AE 的长度又是一个整数遥最后袁乙骑着摩托车去追甲袁摩托车的速度是甲速度的14 倍袁两人同时达到A 地遥那么袁A 尧B 两地相距千米遥11.对任意正整数m尧n袁定义r渊m袁n冤为m衣n 的余数渊比如r渊8袁3冤表示8衣3 的余数袁所以r渊8袁3冤=2冤遥那么满足方程r渊m袁1冤+r渊m袁2冤+r渊m袁3冤+噎+r渊m袁10冤=4 的最小正整数解为遥12. 6 个正整数a尧b尧c尧d尧e尧f 按字母顺序排成一排袁构成一个数列袁其中a=1遥如果某个正整数大于1袁那么比这个正整数小1 的数肯定出现在它的左边遥比如d>1 袁则a尧b尧c 中必有一个值为d-1 遥举例院1袁1袁2袁1袁3袁2 满足要求曰1袁2袁3袁1袁4袁1 满足要求曰1袁2袁2袁4袁3袁2 不满足要求遥6. 我们用S k 表示一个首项为k袁公差为k2 的等差第 5 题W 1 W 2 W 3 D 满足要求的不同排列有 个遥 五年级第 1 页 五年级第 2 页 三尧 动手动脑题院渊每题 10 分袁共 20 分冤 13. 用 1尧2尧3尧4尧5尧6尧7尧9 这 8 个数码组成 4 个两位质数渊每一个数码必须且只能用一次冤袁这 4 个质数有多少种不同的可能钥14. 如图袁吟A BC 中袁BD=DC 遥 在 AC 边上有一块奶酪袁其位置在最靠近点 C 的四等分点上遥 在 AD边上有三个透视镜 W 1尧W 2尧W 3袁这三个透视镜将 AD 四等分遥 有一只疑心病很重的老鼠在 AB 边上爬行渊从 A 爬往 B 冤袁A B=400 米遥 当老鼠尧某个透镜尧奶酪在一条直线上时袁老鼠能观察到奶酪遥 由于老鼠的疑心病很重袁它希望多次看到这块奶酪袁这样就可以保证在它还没有爬到前袁这块奶酪没有被别的老鼠吃掉遥所以它第 1 分钟往前爬 80 米袁第 2 分钟往回退 20 米袁第 3 分钟往前爬 80 米袁第 4 分钟往回退 20 米噎噎依次类推遥 当这只老鼠爬到点 B 后袁它直接沿着 BC 边冲过去吃奶酪遥 问院老鼠在 AB 段上一共可以看到多少次奶酪钥 A奶酪B C。
14年五年级中环杯知识点提纲一、计算类1、巧算:小数、分数的巧算*2、数列:等差数列及其应用:数列找规律填空3、定义新运算4、数字谜、数阵图、数独二、应用类1、行程问题*2、典型应用题(1)植树问题(2)和差倍问题*(3)盈亏问题*(4)周期问题(5)假设问题*(6)置换问题*(7)还原问题(8)平均数问题(9)牛顿问题*(10)不定方程的应用(11)分数与百分数应用题(12)比和比例的应用三、图形类*1、平面求面积、求周长、求角度、求边长、按照要求画图、等积变形、全等三角形、相似三角形、等比关系求解2、立体求表面积、求体积、画展开图3、图形的计数4、图形的分与合四、数论类数的整除*、奇偶性问题*、最大公约数和最小公倍数*、同余定理*、中国剩余定理五、图论类最佳路线、最短路线*等六、基本原理1、加法和乘法原理、排列组合*2、抽屉原理*3、容斥原理*4、逻辑推理5、染色问题6、极值问题*7、位值问题8、概率问题9、统筹规划问题*10、时钟问题15年中环杯五年级考纲一、代数类:1.整数巧算:★2.小数巧算3.分数巧算(裂项法不考,繁分数连分数不考,循环小数相关的内容不考,百分数不考,分数的估算不考,分数的比较大小会简单考察)★4.定义新运算5.比和比例6.等差数列与等比数列★7.代数最值(和一定的前提下,两数差越小,乘积越大;乘积一定的前提下,两数差越小,和越小;利用函数的观点考察最值(比如S=3+2X,其中S表示面积,x是设的一个未知数,用来表示边长,X≤8,则S的最大值就是x取8的时候))★二、应用类(浓度问题,工程问题,经济问题,时钟问题均不考,这些内容移到6年级的中环杯考):1.盈亏问题2.植树问题3.方阵问题4.平均数问题5.周期问题6.用列表法解应用题7.找规律填数8.填运算符号解题9.行程问题★10.和差倍问题11.年龄问题12.鸡兔同笼问题13.还原问题14.归一问题15.会利用一次方程或方程组解应用题★16.分数应用题★17.比例应用题★18.牛吃草问题★19.不定方程解应用题★三、几何类:1.长方形和正方形周长与面积2.巧求多边形的周长3.巧求多边形的面积4.三角形的初步认识5平行四边形、梯形的面积公式6.角度的计算(掌握三角形内角和为180°这个结论,等腰三角形等边对等角的性质)7.勾股定理(包括勾股定理逆定理)★8.面积法求高★9.等腰直角三角形的面积公式(斜边的平方)10.差不变原理11.列方程解平面几何12.构造法解平面几何13.共边定理★14.等积变换(包含"一半模型")★15.三角形的中位线,梯形的中位线★16.鸟头定理★17.蝴蝶定理★18.燕尾定理★19.平移、旋转、轴对称解平面几何问题★20.比例模型(金字塔模型和沙漏模型)解平面几何问题★21.圆与扇形★22.立体几何(表面积与体积)★23.几何最值(利用代数最值的技巧,处理一些简单的几何最值;将军饮马问题)★四、数论类:1.多位数的运算(形如的运算)2.数论最值(比如将1~9中选出四个数填入,使得乘积最大)3.带余除法★4.位值原理★4.熟练掌握被2,3,4,5,7,8,9,11,13,25,125整除的数的规律,并且具备自己推导别的数整出规律的能力(比如自己可以推导出除以37的数的规律)★5.数字迷(含弃九法)★6.数阵图(含数阵图的最值问题)★7.数表★8.位值原理★9.质数与合数★10.因数和倍数(因数的个数公式很重要)★11.质因数分解★12.最大公约数和最小公倍数★13.中国剩余定理★14.整除综合★15.同余★16.完全平方数★17.连续自然数问题★18.进位制五、组合类:1.一笔画2.几何计数3.容斥原理4.奇偶分析5.枚举★6.标数法解决最短路径问题7.抽屉原理8.加乘原理★9.排列和组合★10.对应原理计数★11.递推计数★12.逻辑推理★13.操作问题★14.统筹规划15.概率★16.组合最值(论证与构造,极端原理)★。
第十四届“中环杯”小学生思维能力训练活动 五年级选拔赛 一、填空题 1. 计算:11111111111122331010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+⨯-⨯+⨯-⨯⨯+⨯-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭_____________。
【分析】原式3411129111112310231021020=⨯⨯⨯⨯⨯⨯⨯=⨯=2. 最接近2013的质数是________。
【分析】20113.黑箱中有60块大小、形状都相同的木块,每15块涂上相同的颜色。
一次至少取出_______块才能保证其中至少有2块木块颜色相同。
【分析】共60154÷=种颜色,需要取出415+=块4.一共有52个学生参加游园活动,其中参观植物馆的有12人,参观动物馆的有26人,参观科技馆的有23人,既参观植物馆又参观动物馆的有5人,既参观植物馆又参观科技馆的有2人,既参观动物馆又参观科技馆的有4人,三个馆都参观的有1人,则有________人这三个馆都没有参观。
【分析】共有122623524151++---+=人参观了至少一个馆,所以有1个人三个馆都没参观。
5.如图,30,60,20B A D ∠=︒∠=︒∠=︒,则BCD ∠(图中有圆弧部分的那个角)的度数为________︒。
【分析】四边形内角和为360°,所以优角360302060250BCD ∠=︒-︒-︒-︒=︒6.一次考试中,小明需要计算3731a +⨯的值,结果他计算成了3731a ++。
幸运的是,他仍然得到了正确的结果。
则a =_________。
【分析】由题意313731373130a a a +⨯=++⇒=7.某次射箭比赛,满分是10份,初赛阶段淘汰所有参赛者的50%。
已知进入复赛的选手平均分比全体选手的平均分高2分,且进入复赛选手的平均分是8分。
则被淘汰选手的平均分是_________。
【分析】设共有2n 人,则进入复赛的选手为n 人、被淘汰的选手也为n 人。
2014中环杯五年级试题一、填空题(每小题5分,共50分)1.计算:2211.9973 1.092971/2(31)⨯+⨯+⨯-=_______.2.4208141616⨯⨯除以13的余数为_______.3.五年级有甲乙两班,甲班学生人数是乙班学生人数的5/7,如果从乙班调3人去甲班,,甲班学生人数就是乙班学生人数的4/5,甲班原有学生_________人.4.已知9909919929939664289140A B ⨯⨯⨯=AB =5.如图,ABC ∆面积为60,E 、F 分别为AB 和AC 上的点,满足3AB AE =,3AC AF =,点D 是线段BC 上的动点,设FBD ∆的面积为1S ,EDC ∆的面积为2S ,则12S S ⨯的最大值为________.6.OFE DCB A7.如图,在每个方框中填入一个数字,使得乘法竖式成立,则这个算式乘积的最大值和最小值的之差为________.×4128.有15位选手参加一个围棋锦标赛,每两个人之间需要比赛一场,赢一场得2分,平一场各得1分,输一场得0分,如果一位选手的得分不少于20分,他就能获得一份奖品,那么,最多有_______位选手获得奖品.9.在一场1000米的比赛中,一个沙漏以相同的速率在漏沙了,漏出来的沙子都掉入一个杯中(这个沙漏是在比赛进行了一段时间后才开始漏沙的),小明以匀速进行跑动,当他跑到200米的时候,第a颗沙子正好掉入杯中,当他跑到300米的时候,第be颗沙子正好掉入杯中,当他跑到400米的时候,第de颗沙子正好掉入杯中,当他跑到500米的时候,第fg颗沙子正好掉入杯中(a、b、c、d、e、f、g都是0-9的数字,并且它们的值可以相等),我们发现:(1)a是2的倍数,(2)be是一个质数;(3)de是5的倍数;(4)fg 是3的倍数,那么四位数debe=__________(如果有多个解,需要将多个解都写在横线上).10.如图a,7个汉字写在图中的7个圆圈中,要求从某一个圆圈开始,沿着线段一笔画这个图形(所有圆圈都要走到,而且只能走一次),将这个一笔画路径上的字连成字串(如图b,从“中”开始一笔画,得到的字串为“中环难杯真的好”).那么能够组成的不同字串有_______个.11.如图两个正方形ABEG,GECD的面积为m平方厘米,阴影部分的面积为n平方厘米,已知m、n都是正整数,则正方形ABEG的边长为_________厘米.GFE二、动手动脑题12.两人同时从AB两地出发,相向而行,甲每小时行12.5千米,乙每小时行10千米,甲行30分钟,到达恒生银行门口,想起来自己的信用卡没有带,所以他原速返回A地去拿卡,找到卡后,甲又用元素返往B地,结果当乙达到A地时,甲还需要15分钟到达B地,那么A、B间的距离是多少厘米?13.如果一个数的奇约数个数有2m个(m为自然数),则我们称这样的数为“中环数”,比如3的奇数有1,3,一共122=,所以3是一个“中环数”.再比如21的奇约数有1,3,7,21,422=,所哟21也是一个中环数.我们希望能找到n 个连续的中环数.14.下左图是一个奇怪的黑箱子,这个额黑箱子有一个输入口,一个输出口,我们在输入口输入一个数字,那么在输出口就会产生一个数字结果,其遵循的规则是:(1)如果输入的是奇数k 输出的是,41k +(2)如果输入的是偶数k ,输出的是,2k +比如输入的是数字8,那么输出的就是8210+=,输入的是数字3,那么输出的就是34113⨯+=.现在将3个这样的黑箱子串联起来,如下右图,这样第一个黑箱子的输出成为第二个黑箱子的输入,依次类推,比如输入的数字16,经过第一个黑箱子,得到的结果是8,这个8就作为第二个黑箱子的输入,经过第二个黑箱子,得到结果4,这个4就作为第三个黑箱子的输入,经过第三个黑箱子,得到结果2,这个2结果就是最后的输出了。
1. 计算:(1+1/2)x(1-1/2)x(1+1/3)x(1-1/3)x……x(1+1/10)x(1-1/10)=____
2. 最接近2013的质数是______
3. 黑箱中有60块大小、形状都相同的木块,每15块涂上相同的颜色,一次至少取出_____块才能保证期中至少有2块木块颜色相同。
4. 一共有52个学生参加游园活动,其中参观植物馆的有12人,参观动物馆的有26人,参观科技馆的有23人,既参观植物馆又参观动物馆的有5人,既参观植物馆又参观科技馆的有2人,既参观动物馆又参观科技馆的有4人,三个馆都参观的有1人,则有____人这三个馆都没有参观。
5. 如图,∠B=30°,∠D=20°,∠A=60°,则∠BCD(图中有圆弧部分的那
个角)的度数为______°。
6. 一次考试中,小明需要计算37+31xa的值,结果他计算成了37+31+a。
幸运的是,他仍然得到了正确的结果。
则a=______。
7. 某次射箭比赛,满分是10分,初赛阶段淘汰所有参赛者的50%。
已知进入复赛的选手平均分比全体选手的平均分高2分,且进入复赛选手的平均分是8分。
则被淘汰选手的平均分是______分。
8. 有若干本书和若干本练习本。
如果按每1本书配2本练习本分给一些学生,那么练习本分完时还剩2本书,如果按每3本书配5本练习本分给另一些学生,那么书分完时还剩1本练习本。
那么,书有____本,练习本有____本。
9. 在51个连续奇数1、3、5、……101中选取k个数,使得它们的和为2013,那么k的最大值是_____。
10. 小明和小强玩了一个数字游戏,小明选择了一个数字x(0-9之间),然后说:“我正在考虑一个三位数(百位允许为0),这个三位数的百位为x,十位为3,并且能被11整除,请你找出这个三位数的个位数。
”小强非常开心,因为他知道能被11整除的数的规律。
但是他思考后发现这样的三位数不存在。
则x=____。
11. 我们将具有如下特性的四位数称为“中环数”:(1)四个数字各不相同;(2)千位数字既不是这四个数字中最大的,也不是这四个数字中最小的;(3)个位数字不是这四个数字中最小的。
这样的“中环数”有____个。
12. 世纪公园里有一片很大的草地,每天总会长出很多杂草(假设每分钟长出的杂草数量固定)。
每天早上8点,一些工人会去除杂草(每个人的除杂草速度相同),一旦除完杂草(杂草的数量为0,好的草不会被除掉),工人们就收工了,之后长出的杂草留到明天再除。
第一天,一些工人去除草,除到9点收工;第二天,10个工人去除草,除到8点30分收工;第三天,8个工人去除草,除到____点____分收工(最后分钟的值四舍五入,填一个整数即可)。
13. 如图,一个棱长为12厘米的正方体被切了一刀,这刀是沿IJ切入,从LK 切出,使得AI=DL=4厘米,JF=KG=3厘米,截面IJKL为长方形。
正方体被切成了两个部分,这两个部分的表面积之和为_____平方厘米。
14. 如图是一个除法算式。
在空格中填入合适的数字能使这个算式成立。
那么
被除数是____。
15. A、B、C均为正整数。
已知A有7个约数,B有6个约数,C有3个约数,AxB 有24个约数,BxC有10个约数。
则A+B+C的最小值为_____。
16. 有这样的正整数n,使得8n-7、18n-35均为完全平方数。
则所有符合要求的正整数n=____。
17. 将2013x1,2013x2,2013x3,2013x4,2013x5,2013x6,2013x7,2013x8,2013x9,2013x10,2013x11填入下表,使得填入的数能被其所在列的位置号整除,那么有____种不同的填写方法。
位置号1234567891011
填入的数
18.如图,ABCD是变长为6的正方形,ADGH是一个梯形,点E、F分别是AD、GH的中点,HF=6,EF=4,EF⊥GH。
联结HE并延长交CD于点I,作IJ⊥HA,则
IJ=_____。
19. 如图所示,甲、乙两只蚂蚁在下列圆周上运动。
AC为大圆的直径,点B 在AC上,AB、BC分别为两个小圆的直径。
甲蚂蚁在大圆上顺时针爬行,乙蚂蚁在两个小圆上沿着箭头所指方向绕“8”字爬行(A→B→C→B→A)。
甲蚂蚁与乙蚂蚁在某一时刻同时从A点出发,然后不断爬行,速度为V甲:V乙=3:2。
经过T1分钟,两只蚂蚁相遇。
接下来,甲蚂蚁将自己的速度提高了1/3,乙蚂蚁的速度不变,继续在原来的轨道上爬行。
经过T2分钟,两只蚂蚁再一次相遇。
已知T1+ T2=1003-993+983-983+……+23-13,则甲蚂蚁按原来的速度绕大圈爬行一周需要____分钟(本题答案写为假分数)。
20. 将0~9填入下图圆圈中,每个数字只能使用一次,使得,每条线段上的数字和都是13。