2020-2021学年上期江苏省扬州市树人中学八年级数学期末考试试卷
- 格式:docx
- 大小:831.28 KB
- 文档页数:10
江苏省扬州市八年级上学期期末数学试卷 (解析版)一、选择题1.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒ 2.4的平方根是( )A .2B .2±C .2D .2±3.下列图形中的五边形ABCDE 都是正五边形,则这些图形中的轴对称图形有( )A .1个B .2个C .3个D .4个4.如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB=9,BC=6,则△DNB 的周长为( )A .12B .13C .14D .155.以下关于多边形内角和与外角和的表述,错误的是( ) A .四边形的内角和与外角和相等B .如果一个四边形的一组对角互补,那么另一组对角也互补C .六边形的内角和是外角和是2倍D .如果一个多边形的每个内角是120︒,那么它是十边形.6.某种产品的原料提价,因而厂家决定对产品提价,现有三种方案: 方案(一):第一次提价%p ,第二次提价%q ; 方案(二):第一次提价%q ,第二次提价%p ; 方案(三):第一、二次提价均为2%p q+; 其中p ,q 是不相等的正数.有以下说法:①方案(一)、方案(二)提价一样;②方案(一)的提价也有可能高于方案(二)的提价; ③三种方案中,以方案(三)的提价最多;④方案(三)的提价也有可能会低于方案(一)或方案(二)的提价. 其中正确的有( ) A .②③ B .①③C .①④D .②④7.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒ 8.点(2,-3)关于原点对称的点的坐标是( )A .(-2,3)B .(2,3)C .(-3,-2)D .(2,-3)9.如图,若BD 是等边△ABC 的一条中线,延长BC 至点E ,使CE=CD=x ,连接DE ,则DE的长为( )A .32x B .23x C .33x D 3x10.点P (1,﹣2)关于y 轴对称的点的坐标是( ) A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1)二、填空题11.函数1y=x 2-中,自变量x 的取值范围是 ▲ . 12.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.13.如图,在ABC ∆中,AD 平分BAC ∠,DE AB ⊥于点E ,ABC ∆的面积为15,3DE =,6AB =,则AC 的长________.14.已知点P (m ﹣2,2m ﹣1)在第二象限,则实数m 的取值范围是_____. 15.阅读理解:对于任意正整数a ,b ,∵()20a b-≥,∴20a ab b -+≥,∴2a b ab +≥,只有当a b =时,等号成立;结论:在2a b ab +≥(a 、b 均为正实数)中,只有当a b =时,+a b 有最小值2ab .若1m ,1m m +-有最小值为__________. 16.4的平方根是 . 17.若171a +=,则352020a a -+=__________. 18.如图,已知点M (-1,0),点N (5m ,3m +2)是直线AB :4y x =-+右侧一点,且满足∠OBM=∠ABN ,则点N 的坐标是_____.19.函数y =-3x +2的图像上存在一点P ,点P 到x 轴的距离等于3,则点P 的坐标为________.20.一次函数y 1=ax +3与y 2=kx ﹣1的图象如图所示,则不等式kx ﹣1<ax +3的解集是_____.三、解答题21.如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用两种方法分别在下图方格内添涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.22.已知A、B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示:(1)乙年的速度为______千米/时,a=_____,b=______.(2)求甲、乙两车相遇后y与x之间的函数关系式,并写出相应的自变量x的取值范围.23.观察下列等式:112()(2)()(2)22⨯---=-⨯-;4422233⨯-=⨯;111123232⨯-=⨯;……根据上面等式反映的规律,解答下列问题:(1)请根据上述等式的特征,在括号内填上同一个实数:2⨯()-5=()5⨯;(2)小明将上述等式的特征用字母表示为:2x y xy-=(x、y为任意实数).①小明和同学讨论后发现:x、y的取值范围不能是任意实数.请你直接写出x、y不能取哪些实数.②是否存在x、y两个实数都是整数的情况?若存在,请求出x、y的值;若不存在,请说明理由.24.如图,四边形ABCD中,AC=5,AB=4,CD=12,AD=13,∠B=90°.(1)求BC边的长;(2)求四边形ABCD的面积.25.如图,在△ABC中,AB=AC=2,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E.(1)当∠BDA=128°时,∠EDC=,∠AED=;(2)线段DC的长度为何值时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.四、压轴题26.如图,以直角三角形AOC的直角顶点O为原点,以OC,OA所在直线为轴和轴建立平--=.面直角坐标系,点A(0,a),C(b,0a6b80(1)a= ;b= ;直角三角形AOC的面积为.(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发以每秒2个单位长度的速度向点O匀速移动,Q点从O点出发以每秒1个单位长度的速度向点A匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠D CO,点G是第二象限中一点,并且y轴平分∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOD,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180).27.如图1.在△ABC中,∠ACB=90°,AC=BC=10,直线DE经过点C,过点A,B分别作AD⊥DE,BE⊥DE,垂足分别为点D和E,AD=8,BE=6.(1)①求证:△ADC≌△CEB;②求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N 以8个单位长度/秒的速度从点B出发沿着线BC—CA运动,到终点A.M,N两点同时出发,运动时间为t秒(t>0),当点N到达终点时,两点同时停止运动,过点M作PM⊥DE 于点P,过点N作QN⊥DE于点Q;①当点N在线段CA上时,用含有t的代数式表示线段CN的长度;②当t为何值时,点M与点N重合;③当△PCM与△QCN全等时,则t=.28.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP= cm,CQ= cm.(2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇?中,线段AM为BC边上的中线.动点D在直线AM上时,以29.如图,在等边ABCCD 为一边在CD 的下方作等边CDE ∆,连结BE . (1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.30.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】延长AO交BC于D,根据垂直平分线的性质可得到AO=BO=CO,再根据等边对等角的性质得到∠OAB=∠OBA,∠OAC=∠OCA,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA,从而不难求得∠BOC的度数.【详解】延长AO交BC于D.∵点O在AB的垂直平分线上.∴AO=BO.同理:AO=CO.∴∠OAB=∠OBA,∠OAC=∠OCA.∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.∴∠BOD=2∠OAB,∠COD=2∠OAC.∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.∵∠A=50°.∴∠BOC=100°.故选:B.【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.2.D解析:D【解析】【分析】根据平方根的定义直接作答.【详解】解:4的平方根是2故选:D【点睛】本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是本题的解题关键. 3.D解析:D【解析】分析:直接利用轴对称图形的性质画出对称轴得出答案.详解:如图所示:直线l即为各图形的对称轴.,故选:D .点睛:此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.4.A解析:A 【解析】 【分析】根据中点的定义可得BD=3,由折叠的性质可知DN=AN ,即DN+BN=AB=9,可得△DNB 的周长. 【详解】解:∵D 是BC 的中点,BC=6, ∴BD=3,由折叠的性质可知DN=AN ,∴△DNB 的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12. 故选A. 【点睛】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等5.D解析:D 【解析】 【分析】根据多边形的内角和和外角和定理,逐一判断排除即可得解. 【详解】A.四边形的内角和为360°,外角和也为360°,A 选项正确;B.根据四边形的内角和为360°可知,一组对角互补,则另一组对角也互补,B 选项正确;C.六边形的内角和为62180720()-⨯︒=︒,外角和为360°,C 选项正确;D.假设是n 边形,(2)180120n n-⨯︒=︒解得610n =≠,D 选项错误.故选:D. 【点睛】本题主要考查了多边形的内角和、外角和定理,熟练掌握计算公式是解决本题的关键.6.B解析:B【解析】 【分析】根据提价方案求出提价后三种方案的价格,得到方案(一)、方案(二)、方案(三)提价情况,进行对比即可得解. 【详解】∵方案(一):(1%)(1%)1%%%%p q p q p q ++=+++ 方案(二):(1%)(1%)1%%%%q p q p q p ++=+++ ∴方案(一)、方案(二)提价一样 ∴①对,②错; ∵方案(三):2(1%)(1%)1%%(%)222p q p q p q p q +++++=+++ ∴可知:21%%(%)(1%%%%)2p q p q p q p q ++++-+++2(%)%%2p q p q +=-2(%)2p q -= ∵p ,q 是不相等的正数 ∴2(%)02p q -> ∴方案(三)提价最多 ∴③对,④错 ∴①③对 故选:B. 【点睛】本题主要考查了销售问题中的增长率问题,熟练掌握增长率的相关知识及整式的乘法化简是解决本题的关键.7.B解析:B 【解析】 【分析】延长AO 交BC 于D ,根据垂直平分线的性质可得到AO=BO=CO ,再根据等边对等角的性质得到∠OAB=∠OBA ,∠OAC=∠OCA ,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA ,∠COD=∠OAC+∠OCA ,从而不难求得∠BOC 的度数. 【详解】延长AO 交BC 于D .∵点O在AB的垂直平分线上.∴AO=BO.同理:AO=CO.∴∠OAB=∠OBA,∠OAC=∠OCA.∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.∴∠BOD=2∠OAB,∠COD=2∠OAC.∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.∵∠A=50°.∴∠BOC=100°.故选:B.【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.8.A解析:A【解析】【分析】根据关于原点对称点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:在平面直角坐标系中,关于原点对称的两点横坐标和纵坐标均满足互为相反数,点(2,-3)关于原点对称的点的坐标是(-2,3).故选A.【点睛】本题考查了关于原点对称点的坐标,熟练掌握坐标特征是解题的关键.9.D解析:D【解析】【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【详解】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC ,∵BD 为中线,1302DBC ABC ︒∴∠=∠= ∵CD=CE , ∴∠E=∠CDE ,∵∠E+∠CDE=∠ACB ,∴∠E=30°=∠DBC ,∴BD=DE ,∵BD 是AC 中线,CD=x ,∴AD=DC=x ,∵△ABC 是等边三角形,∴BC=AC=2x ,BD ⊥AC ,在Rt △BDC 中,由勾股定理得:BD ==DE BD ∴==故选:D .【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD 和求出BD 的长.10.C解析:C【解析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P (1,﹣2)关于y 轴对称的点的坐标是(﹣1,﹣2),故选C .【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y 轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.二、填空题11..【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.解析:x 2≠.【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.12.x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵与直线:相交于点,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2解析:x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵1y x =+与直线2I :y mx n =+相交于点(,2)P a ,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2);由图可知,x≥1时,1x mx n +≥+.故答案为:x≥1.【点睛】本题考查了一次函数与一元一次不等式,待定系数法求一次函数解析式,联立两直线解析式求交点坐标的方法,求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应的函数值的大小.13.4【解析】【分析】过点D 作DF⊥AC 于F ,然后利用△ABC 的面积公式列式计算即可得解.【详解】过点D 作DF⊥AC 于F ,∵AD 是△ABC 的角平分线,DE⊥AB,∴DE=DF =3,∴S△解析:4【解析】【分析】过点D 作DF ⊥AC 于F ,然后利用△ABC 的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△ABC=12×6×3+12AC×3=15,解得AC=4.故答案为:4.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.14.<m<2.【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P(m﹣2,2m﹣1)在第二象限,∴,解不等式①得,m<2,解不等式解析:12<m<2.【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P(m﹣2,2m﹣1)在第二象限,∴20210mm-<⎧⎨->⎩①②,解不等式①得,m<2,解不等式②得,m>12,所以,不等式组的解集是12<m <2, 故答案为12<m <2. 【点睛】 本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).15.3【解析】【分析】根据(、均为正实数),对代数式进行化简求最小值.【详解】解:由题中结论可得即:当时,有最小值为3,故答案为:3.【点睛】准确理解阅读内容,灵活运用题中结论,解析:3【解析】【分析】根据a b +≥(a 、b进行化简求最小值. 【详解】1=1111m m m111m=111m1211=31m m即:当1m 时,m m 3,故答案为:3.【点睛】准确理解阅读内容,灵活运用题中结论,求出代数式的最小值.16.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2.考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.17.2024【解析】【分析】,代入a 值,根据乘法法则进行计算即可.【详解】===4+2020=2024故答案为:2024【点睛】考核知识点:二次根式运算.掌握运算法则,运用乘法公解析:2024【解析】【分析】352020a a -+=()252020a a -+,代入a 值,根据乘法法则进行计算即可.【详解】352020a a -+=()225202052020a a ⎡⎤⎢⎥-+=-+⎢⎥⎝⎭⎣⎦=52020⎤+⎥⎣⎦=11202022⨯+=4+2020=2024故答案为:2024【点睛】考核知识点:二次根式运算.掌握运算法则,运用乘法公式是关键.18.【解析】【分析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q(解析:5,3 3⎛⎫ ⎪⎝⎭【解析】【分析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q (5,1),易得直线BQ的解析式,所以将点N代入该解析式来求m的值即可.【详解】解:在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M(-1,0),∴OP=OM=1,∴BP=BM,∴∠OBP=∠OBM=∠ABN,∴∠PBQ=∠OBA=45°,∴PB=PQ,∴△OBP≌△RPQ(AAS),∴RQ=OP=1,PR=OB=4,∴OR=5,∴Q(5,1),∴直线BN的解析式为y=−35x+4,将N(5m,3m+2)代入y=−35x+4,得3m+2=﹣35×5m+4解得 m=13,∴N5,33⎛⎫ ⎪⎝⎭.故答案为:5,3 3⎛⎫ ⎪⎝⎭【点睛】本题考查了一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,全等三角形的判定与性质,坐标与图形性质,两点间的距离公式等知识点,难度较大.19.或【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,解析:1,33⎛⎫⎪⎝⎭或533⎛⎫⎪⎝⎭,【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,∴点P的纵坐标为3或﹣3,当y=3时,﹣3x+2=3,解得,x=﹣13;当y=﹣3时,﹣3x+2=﹣3,解得x=53;∴点P的坐标为(﹣13,3)或(53,﹣3).故答案为(﹣13,3)或(53,﹣3).【点睛】本题考查一次函数图象上点的坐标特征,利用数形结合思想解题是本题的关键,注意分类讨论.20.x<1.【解析】【分析】结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),∴解析:x<1.【解析】【分析】结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),∴当x<1时,y1>y2,∴不等式kx﹣1<ax+3的解集为x<1.故答案为:x<1.【点睛】本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.三、解答题21.见详解.【解析】试题分析:按轴对称的特征进行添涂即可.试题解析:如图所示:22.(1)75;3.6;4.5;(2) 当2 3.6x <≤时,135270y x =-;当3.6 4.5x <≤时,60y x =.【解析】【分析】(1)根据图像可知两车2小时候相遇,根据路程和为270千米即可求出乙车的速度,然后根据“路程、速度、时间”的关系确定a 、b 的值;(2)根据图像可知相遇后图像分为两段,将相遇后点的坐标和分段处以及到达B 地后的坐标分别表示出来,然后运用待定系数法解决即可;【详解】解:(1)乙车的速度为:(270-60×2)÷2=75(千米/时);a =270÷75=3.6,b=270÷60=4.5故答案为:75;3.6;4.5;(2)60×3.6=216(千米),如图,可得(2,0)M ,(3.6,216)N ,(4.5,270)Q.设当2 3.6x <≤时的解析式为11y k x b =+,1111203.6216k b k b +=⎧⎨+=⎩, 解得11135270k b =⎧⎨=-⎩ ∴当2 3.6x <≤时,135270y x =-,设当3.6 4.5x <≤时的解析式为22y k x b =+,则22223.62164.5270k b k b +=⎧⎨+=⎩,解得22600k b =⎧⎨=⎩, 当3.6 4.5x <≤时,60y x =.【点睛】本题考查了分段函数实际问题,解决本题的关键是能够读懂函数图像,从函数图像中找到相关的量,能够熟练运用待定系数法求函数解析式.23.(1) 53-;(2)①x 不能取-1,y 不能取2;②x=0,y=0;x=1,y=1;x=-3,y=3;x=-2,y=4; 【解析】【分析】(1)设所填数为x,则2x-5=5x ;(2)①假如2x y xy -=,则2,12x y y x x y ==+-,根据分式定义可得;②由①可知21x y x =+或2y x y =-,x≠-1,y≠2,代入尝试可得. 【详解】(1)设所填数为x,则2x-5=5x解得x=53- 所以所填数是53-(2)①假如2x y xy -= 则2,12x y y x x y==+- 所以x≠-1,y≠2即:x 不能取-1,y 不能取2;②存在, 由①可知21x y x =+或2y x y =-,x≠-1,y≠2 所以x,y 可取的整数是:x=0,y=0;x=1,y=1;x=-3,y=3;x=-2,y=4;【点睛】考核知识点:分式的值.理解分式定义是关键.24.(1)3;(2)36.【解析】【分析】(1)先根据勾股定理求出BC 的长度;(2)根据勾股定理的逆定理判断出△ACD 是直角三角形,四边形ABCD 的面积等于△ABC 和△ACD 的面积和,再利用三角形的面积公式求解即可.【详解】解:(1)∵∠ABC=90°,AC=5,AB=4∴3=,(2)在△ACD中,AC2+CD2= 52+122=169 AD2 =132=169,∴AC2+CD2= AD2,∴△ACD是直角三角形,∴∠ACD=90°;由图形可知:S四边形ABCD=S△ABC+S△ACD= 12AB•BC+12AC•CD,= 12×3×4+12×5×12,=36.【点睛】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD 的形状是解答此题的关键.25.(1)16°;52°;(2)当DC=2时,△ABD≌△DCE,理由见解析;(3)当∠BDA的度数为108°或72°时,△ADE的形状是等腰三角形.【解析】【分析】(1)根据三角形内角和定理和等腰三角形的性质,得到答案;(2)当DC=2时,利用∠DEC+∠EDC=144°,∠ADB+∠EDC=144°,得到∠ADB=∠DEC,根据AB=DC=2,证明△ABD≌△DCE;(3)分DA=DE、AE=AD、EA=ED三种情况,根据等腰三角形的性质、三角形内角和定理计算.【详解】(1)∵AB=AC,∴∠C=∠B=36°.∵∠ADE=36°,∠BDA=128°.∵∠EDC=180°﹣∠ADB﹣∠ADE=16°,∴∠AED=∠EDC+∠C=16°+36°=52°.故答案为:16°;52°;(2)当DC=2时,△ABD≌△DCE,理由:∵AB=2,DC=2,∴AB=DC.∵∠C=36°,∴∠DEC+∠EDC=144°.∵∠ADE=36°,∴∠ADB+∠EDC=144°,∴∠ADB=∠DEC,在△ABD 和△DCE 中,ADB DEC B CAB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△DCE (AAS);(3)当∠BDA 的度数为108°或72°时,△ADE 的形状是等腰三角形,①当DA =DE 时,∠DAE =∠DEA =72°,∴∠BDA =∠DAE +∠C =70°+40°=108°;②当AD =AE 时,∠AED =∠ADE =36°,∴∠DAE =108°,此时,点D 与点B 重合,不合题意;③当EA =ED 时,∠EAD =∠ADE =36°,∴∠BDA =∠EAD +∠C =36°+36°=72°;综上所述:当∠BDA 的度数为108°或72°时,△ADE 的形状是等腰三角形.【点睛】本题考查的是等腰三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.四、压轴题26.(1)6;8;24;(2)存在 2.4t =时,使得△ODP 与△ODQ 的面积相等;(3)∠GOD+∠ACE=∠OHC ,见解析【解析】【分析】(1)利用非负性即可求出a ,b 即可得出结论,即可求出△ABC 的面积;(2)先表示出OQ ,OP ,利用那个面积相等,建立方程求解即可得出结论;(3)先判断出∠OAC=∠AOD ,进而判断出OG ∥AC ,即可判断出∠FHC=∠ACE ,同理∠FHO=∠GOD ,即可得出结论.【详解】解:(1) 解:(1)∵b 80-=, ∴a-6=0,b-8=0,∴a=6,b=8,∴A (0,6),C (8,0);∴S △ABC=6×8÷2=24,故答案为(0,6),(8,0); 6;8;24(2) ∵114222ODQ D S OQ x t t ∆=⋅=⋅⋅= 11(82)312322ODP D S OP y t t ∆=⋅=⋅-⋅=- 由2123t t =-时, 2.4t =∴存在 2.4t =时,使得△ODP 与△ODQ 的面积相等(3) )∴2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°∴∠OAC+∠ACO=90°又∵∠DOC=∠DCO∴∠OAC=∠AOD∵y轴平分∠GOD∴∠GOA=∠AOD∴∠GOA=∠OAC∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD,∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.∴∠GOD+∠ACE=∠OHC.【点睛】此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.27.(1)①证明见解析;②DE=14;(2)①8t-10;②t=2;③t=10,2 11【解析】【分析】(1)①先证明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性质得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①当点N在线段CA上时,根据CN=CN−BC即可得出答案;②点M与点N重合时,CM=CN,即3t=8t−10,解得t=2即可;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,则CM=CN,得3t=10−8t,解得t=1011;当点N在线段CA上时,△PCM≌△QCN,则3t=8t−10,解得t=2;即可得出答案.【详解】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中ADC CEBDAC ECBAC CB∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=1011;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t=8t−10,解得:t=2;综上所述,当△PCM与△QCN全等时,则t等于1011s或2s,故答案为:1011s或2s.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.28.(1)BP=3cm ,CQ=3cm ;(2)全等,理由详见解析;(3)154;(4)经过803s 点P 与点Q 第一次相遇.【解析】【分析】(1)速度和时间相乘可得BP 、CQ 的长;(2)利用SAS 可证三角形全等;(3)三角形全等,则可得出BP=PC ,CQ=BD ,从而求出t 的值;(4)第一次相遇,即点Q 第一次追上点P ,即点Q 的运动的路程比点P 运动的路程多10+10=20cm 的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s ,点Q 的运动速度与点P 的运动速度相等∴BP=CQ=3×1=3cm ,∵AB=10cm ,点D 为AB 的中点,∴BD=5cm .又∵PC=BC ﹣BP ,BC=8cm ,∴PC=8﹣3=5cm ,∴PC=BD又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中, PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP(SAS)(3)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP≠CQ∴若△BPD ≌△CPQ ,且∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t=433BP =s , ∴154Q CQ V t ==cm/s ;(4)设经过x 秒后点P 与点Q 第一次相遇. 由题意,得154x=3x+2×10, 解得80x=3 ∴经过803s 点P 与点Q 第一次相遇. 【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.29.(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,CBE CAD ∴∠=∠,同理可得:30CAM ∠=︒150CBE CAD ∴∠=∠=︒30CBO ∴∠=︒,∵30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.综上,当动点D 在直线AM 上时,AOB ∠是定值,60AOB ∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.30.(1)证明见解析;(2)证明见解析;(3)结论:AD DG ND =-,证明见解析.【解析】【分析】(1)先根据直角三角形的性质得出60ABC ∠=︒,再根据角平分线的性质可得CD ED =,然后根据三角形的判定定理与性质可得BC BE =,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED 使得DF MD =,连接MF ,先根据直角三角形的性质、等边三角形的判定得出MDF ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,F MDB MF MD FMG DMB ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证HDN ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,H NDG NH ND HNB DNG ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证. 【详解】(1)3,090A ACB ∠=︒∠=︒9060ABC A ∴∠=︒-∠=︒BD 是ABC ∠的角平分线,DE AB ⊥CD ED ∴=在BCD ∆和BED ∆中,CD ED BD BD =⎧⎨=⎩()BCD BED HL ∴∆≅∆BC BE ∴=EBC ∴∆是等边三角形;(2)如图,延长ED 使得DF MD =,连接MF3,090AACB∠=︒∠=︒,BD是ABC∠的角平分线,DE AB⊥60,ADE BDE AD BD∴∠=∠=︒=60,18060 MDF ADE MDB ADE BDE∴∠=∠=︒∠=︒-∠-∠=︒MDF∴∆是等边三角形,60MF DM F DMF∴=∠=∠=︒60BMG∠=︒DMF DM B MGG DM G∴∠+∠=+∠∠,即FMG DMB∠=∠在FMG∆和DMB∆中,60F MDBMF MDFMG DMB∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()FMG DMB ASA∴∆≅∆GF BD∴=,即DF DG BD+=AD DF DG MD DG∴=+=+即AD DG MD=+;(3)结论:AD DG ND=-,证明过程如下:如图,延长BD使得DH ND=,连接NH由(2)可知,60,18060,ADE HDN ADE BDE AD BD∠=︒∠=︒-∠-∠=︒= HDN∴∆是等边三角形,60NH ND H HND∴=∠=∠=︒60BNG∠=︒HND BND BNDBNG∠+∠=+∠∴∠,即NHNB D G∠=∠在HNB∆和DNG∆中,60H NDGNH NDHNB DNG∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()HNB DNG ASA∴∆≅∆HB DG∴=,即DH BD DG+=ND AD DG∴+=即AD DG ND=-.。
江苏省扬州市第一学期八年级数学期末试卷(含解析)一、选择题1.在▱ABCD 中,已知∠A ﹣∠B=20°,则∠C=( ) A .80°B .90°C .100°D .110°2.如图,CD 是Rt△ABC 斜边AB 上的高,将△BCD 沿CD 折叠,点B 恰好落在AB 的中点E 处,则∠A 等于( )A .25°B .30°C .45°D .60°3.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( ) A . B .C .D .4.我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知ABC ∆中,32AB =5AC =,7BC =,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画( ) A .0条 B .1条 C .2条 D .3条5.如图,∠AOB=60°,点P 是∠AOB 内的定点且3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .362B .332C .6D .36.下列四组线段a 、b 、c ,能组成直角三角形的是( )A .4a =,5b =,6c =B .3a =,4b =,5c =C .2a =,3b =,4c =D .1a =,2b =,3c =7.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .4 8.在下列黑体大写英文字母中,不是轴对称图形的是( )A .B .C .D .9.下列各数中,无理数的是( ) A .0B .1.01001C .πD .410.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b的图象大致是( )A .B .C .D .二、填空题11.4的算术平方根是 .12.如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠C =70°,则∠B =_____°.13.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是_____.14.写出一个比4大且比5小的无理数:__________.15.如图,在Rt △ABC 中,∠C =90°,BC =6cm ,AC =8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′处,那么CD =_____.16.如图,在Rt ABC △中,90B ∠=︒,30A ∠=︒,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接CD ,若1BD =,则AC 的长是__________.17.如图,正比例函数y=kx 与反比例函数y=6x的图象有一个交点A(2,m),AB ⊥x 轴于点B ,平移直线y=kx 使其经过点B ,得到直线l ,则直线l 对应的函数表达式是_________ .18.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.19.在△ABC 中,已知AB =15,AC =11,则BC 边上的中线AD 的取值范围是____. 20.若函数(y x a a =-为常数)与函数2(y x b b =-+为常数)的图像的交点坐标是(2, 1),则关于x 、y 的二元一次方程组2x y a x y b-=⎧⎨+=⎩的解是________.三、解答题21.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x 小时,两车之间的距离为y 千米,图中折线表示y 与x 之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为 千米; (2)求快车和慢车的速度;(3)求线段DE 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.22.解方程:12242x x x -=--. 23.先化简再求值:21111a a a ⎛⎫-÷ ⎪+-⎝⎭,其中2a =. 24.如图,某斜拉桥的主梁AD 垂直于桥面MN 于点D ,主梁上两根拉索AB 、AC 长分别为13米、20米.(1)若拉索AB ⊥AC ,求固定点B 、C 之间的距离;(2)若固定点B 、C 之间的距离为21米,求主梁AD 的高度.25.如图所示,AC=AE ,∠1=∠2,AB=AD .求证:BC=DE .四、压轴题26.在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a)、B(b ,0)满足:222110a b a b --+-=.(1)直接写出A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-3,m),如图(1)所示.若S ΔABC =16,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图(2)所示,P 为线段AB 上一动点(不与A 、B 重合),连接OP ,PE 平分∠OPB ,交x 轴于点M ,且满足∠BCE=2∠ECD . 求证:∠BCD=3(∠CEP-∠OPE).27.如图,直线112y x b =-+分别与x 轴、y 轴交于A ,B 两点,与直线26y kx =-交于点()C 4,2.(1)b = ;k = ;点B 坐标为 ;(2)在线段AB 上有一动点E ,过点E 作y 轴的平行线交直线y 2于点F ,设点E 的横坐标为m ,当m 为何值时,以O 、B 、E 、F 为顶点的四边形是平行四边形;(3)若点P 为x 轴上一点,则在平面直角坐标系中是否存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形.若存在,直接写出所有符合条件的Q 点坐标;若不存在,请说明理由.28.如图所示,在平面直角坐标系xOy 中,已知点A 的坐标(3,2)-,过A 点作AB x ⊥轴,垂足为点B ,过点(2,0)C 作直线l x ⊥轴,点P 从点B 出发在x 轴上沿着轴的正方向运动.(1)当点P 运动到点O 处,过点P 作AP 的垂线交直线l 于点D ,证明AP DP =,并求此时点D 的坐标;(2)点Q 是直线l 上的动点,问是否存在点P ,使得以P C Q 、、为顶点的三角形和ABP ∆全等,若存在求点P 的坐标以及此时对应的点Q 的坐标,若不存在,请说明理由.29.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).30.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由四边形ABCD是平行四边形,可得∠A+∠B=180°,又由∠A-∠B=20°,即可求得∠A 的度数,继而求得答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A-∠B=20°,∴∠A=100°,∴∠C=∠A=100°.故选:C.【点睛】此题考查了平行四边形的性质.注意平行四边形的对角相等,邻角互补.2.B解析:B【解析】【分析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【详解】解:∵△ABC沿CD折叠B与E重合,∴BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选B.【点睛】本题考查折叠的性质,直角三角形的性质,等边三角形的判定和性质,解题的关键是熟练掌握折叠的性质:折叠前后的对应边相等,对应角相等.3.B解析:B【解析】【分析】根据四个选项图像可以判断y kx = 过原点且k <0,12y x k =- ,-k >0 即可判断. 【详解】解:A .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故错误; B .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故正确; C .y kx = 与12y x k =-图像增减相反,12y x k =-为递增一次函数且不过原点,故错误; D .y kx =过原点,而图中两条直线都不过原点,故错误. 故选 B 【点睛】此题主要考查了一次函数图像的性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小;常数项为0,函数过原点.4.B解析:B 【解析】 【分析】先根据各边的长度画出三角形ABC ,作AD ⊥BC ,根据勾股定理求出AD ,BD ,结合图形可分析出结果. 【详解】已知如图,所做三角形是钝角三角形,作AD ⊥BC , 根据勾股定理可得:AC 2-CD 2=AB 2-BD 2 所以设CD=x,则BD=7-x所以52-x 2=(2-(7-x )2 解得x=4 所以CD=4,BD=3,所以,在直角三角形ADC 中3==所以AD=BD=3所以三角形ABD 是帅气等腰三角形假如从点C 或B 作直线,不能作出含有边长为3的等腰三角形 故符合条件的直线只有直线AD 故选:B【点睛】本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键;并注意第二问的分类讨论的思想,不要丢解.5.D解析:D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,3∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,3∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=1233OH=3 2 ,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.6.B解析:B【解析】【分析】根据勾股定理的逆定理,依次对各选项进行分析即可得答案.【详解】解:A.因为42+52≠62,所以不能围成直角三角形,此选项错误;B.因为32+42=52,所以能围成直角三角形,此选项正确;C. 因为22+32≠42,所以不能围成直角三角形,此选项错误;2)≠32,所以不能围成直角三角形,此选项错误;D. 因为12+2故选:B.【点睛】本题考查了勾股定理的逆定理. 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.能依据这一定理判断三角形是否为直角三角形是解决此题的关键.7.C解析:C【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.8.C解析:C【解析】【分析】根据轴对称图形的概念对各个大写字母判断即可得解.【详解】A.“E”是轴对称图形,故本选项不合题意;B.“M”是轴对称图形,故本选项不合题意;C.“N”不是轴对称图形,故本选项符合题意;D.“H”是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.C解析:C【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】解:A.0是整数,属于有理数;B.1.01001是有限小数,属于有理数;C.π是无理数;,是整数,属于有理数.2故选:C.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有ππ的数.10.A解析:A【解析】试题分析:根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴是方.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选A.考点:一次函数的图象.二、填空题11.【解析】试题分析:∵,∴4算术平方根为2.故答案为2.考点:算术平方根.解析:【解析】试题分析:∵224=,∴4算术平方根为2.故答案为2.考点:算术平方根.12.【解析】【分析】根据等腰三角形的性质得到∠ADC=70,再根据三角形外角的性质和等腰三角形可求∠B的度数.【详解】∵AC=AD,∠C=70,∴∠ADC=∠C=70,∵AD=DB,∴∠解析:【解析】【分析】根据等腰三角形的性质得到∠ADC=70︒,再根据三角形外角的性质和等腰三角形可求∠B 的度数.【详解】∵AC=AD,∠C=70︒,∴∠ADC=∠C=70︒,∵AD=DB,∴∠B=∠BAD,∴∠B=12∠ADC=35︒.故答案为:35.【点睛】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.13.(3,1)【解析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛解析:(3,1)【解析】【分析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成. 14.答案不唯一,如:【解析】【分析】根据无理数的定义即可得出答案.【详解】∵42=16,52=25,∴到之间的无理数都符合条件,如:.故答案为答案不唯一,如:.【点睛】本题考查了无理数的解析:【解析】【分析】根据无理数的定义即可得出答案.【详解】∵42=16,52=25.故答案为.【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.3cm.【解析】利用勾股定理列式求出AB ,根据翻折变换的性质可得BC′=BC ,C′D=CD ,然后求出AC′,设CD =x ,表示出C′D、AD ,然后利用勾股定理列方程求解即可.【详解】解析:3cm .【解析】【分析】利用勾股定理列式求出AB ,根据翻折变换的性质可得BC ′=BC ,C ′D =CD ,然后求出AC ′,设CD =x ,表示出C ′D 、AD ,然后利用勾股定理列方程求解即可.【详解】解:∵∠C =90°,BC =6cm ,AC =8cm ,∴AB 10cm ,由翻折变换的性质得,BC ′=BC =6cm ,C ′D =CD ,∴AC ′=AB ﹣BC ′=10﹣6=4cm ,设CD =x ,则C ′D =x ,AD =8﹣x ,在Rt △AC ′D 中,由勾股定理得,AC ′2+C ′D 2=AD 2,即42+x 2=(8﹣x )2,解得x =3,即CD =3cm .故答案为:3cm .【点睛】本题考查了翻折变换的性质,勾股定理,此类题目熟记性质并利用勾股定理列出方程是解题的关键.16.【解析】解:,,∴.又∵垂直平分,∴,.∵,∴,∴,,.由勾股定理可得.故答案为.解析:【解析】解:90B ∠=︒,30A ∠=︒,∴60ACB ∠=︒.又∵DE 垂直平分AC ,∴CD AD =,30ACD A DCB ∠=∠=︒=∠.∵1BD =,∴2CD AD ==,∴3AB =,30A ∠=︒,12BC AC =.由勾股定理可得AC =故答案为 17.y=x-3【解析】【分析】由已知先求出点A 、点B 的坐标,继而求出y=kx 的解析式,再根据直线y =kx 平移后经过点B ,可设平移后的解析式为y=kx+b ,将B 点坐标代入求解即可得.【详解】当x=2解析:y=32x-3 【解析】【分析】由已知先求出点A 、点B 的坐标,继而求出y=kx 的解析式,再根据直线y=kx 平移后经过点B ,可设平移后的解析式为y=kx+b ,将B 点坐标代入求解即可得.【详解】当x=2时,y=6x =3,∴A(2,3),B (2,0), ∵y=kx 过点 A(2,3),∴3=2k ,∴k=32, ∴y=32x , ∵直线y=32x 平移后经过点B , ∴设平移后的解析式为y=32x+b , 则有0=3+b ,解得:b=-3,∴平移后的解析式为:y=32x-3, 故答案为:y=32x-3. 【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k 的值是解题的关键.18.【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析:1y x =+【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k 的值不变.19.2<AD<13【解析】【分析】延长AD至E,使得DE=AD,连接CE,然后根据“边角边”证明△ABD和△ECD全等,再根据全等三角形对应边相等可得AB=CE,然后利用三角形任意两边之和大于第三解析:2<AD<13【解析】【分析】延长AD至E,使得DE=AD,连接CE,然后根据“边角边”证明△ABD和△ECD全等,再根据全等三角形对应边相等可得AB=CE,然后利用三角形任意两边之和大于第三边,两边之和小于第三边求出AE的取值范围,从而得解.【详解】解:如图,延长AD至E,使得DE=AD,连接CE,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,∵AD=DE,∠ADB=∠EDC,BD=CD∴△ABD≌△ECD(SAS),∴AB=CE,∵AB=15,∴CE=15,∵AC=11,∴在△ACE中,15-11=4,15+11=26,∴4<AE<26,∴2<AD<13;故答案为:2<AD<13.【点睛】本题既考查了全等三角形的性质与判定,也考查了三角形的三边的关系,解题的关键是将中线AD延长得AD=DE,构造全等三角形,然后利用三角形的三边的关系解决问题.20.【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.【详解】解:因为函数y=x-a(a 为常数)与函数y=-2x+b(b 为常数)的图像的交点坐标是(2, 1),所以解析:21x y =⎧⎨=⎩【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.【详解】解:因为函数y=x-a(a 为常数)与函数y=-2x+b(b 为常数)的图像的交点坐标是(2, 1),所以方程组2x y a x y b -=⎧⎨+=⎩ 的解为21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查一次函数与二元一次方程(组):满足函数解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解. 三、解答题21.(1)560;(2)快车的速度是80km/h ,慢车的速度是60km/h .(3)y=-60x+540(8≤x≤9).【解析】【分析】(1)根据函数图象直接得出甲乙两地之间的距离;(2)根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;(3)利用(2)所求得出D ,E 点坐标,进而得出函数解析式.【详解】(1)由题意可得出:甲乙两地之间的距离为560千米;故答案为:560;(2)由题意可得出:慢车和快车经过4个小时后相遇,相遇后停留了1个小时,出发后两车之间的距离开始增大,快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,∴设慢车速度为3xkm/h ,快车速度为4xkm/h ,∴(3x+4x )×4=560,x=20,∴快车的速度是80km/h ,慢车的速度是60km/h .(3)由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km ,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240-3×60=60km , ∴D (8,60),∵慢车往返各需4小时,∴E (9,0),设DE 的解析式为:y=kx+b ,∴90860k b k b +⎧⎨+⎩==, 解得:60540k b -⎧⎨⎩==. ∴线段DE 所表示的y 与x 之间的函数关系式为:y=-60x+540(8≤x≤9).【点睛】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,根据题意得出D ,E 点坐标是解题关键.22.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:x -2=4(x -2)解得:x =2.检验:当x =2时,2(x -2)=0,∴x =2是增根.∴方程无解.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.1a -+,-1.【解析】【分析】先对括号里的减法运算进行通分,再把除法运算转化为乘法运算,约去分子分母中的公因式,化为最简形式,再把a 的值代入求解.【详解】 原式1(1)1(1)(1)a a a a a --=÷++-(1)(1)1a a a a a-+-=⋅+ 1a =-+.当a =2时,原式=-2+1=-1.【点睛】本题考查了分式的化简求值.掌握分式的混合运算法则是解答本题的关键.24.(1)BC2)12米.【解析】【分析】(1)用勾股定理可求出BC 的长;(2)设BD=x 米,则BD=(21-x )米,分别在Rt ABD ∆中和Rt ACD ∆中表示出2AD ,于是可列方程22221320(21)x x -=--,解方程求出x,然后可求AD 的长.【详解】解:(1)∵AB ⊥AC∴=(2)设BD=x 米,则BD=(21-x )米,在Rt ABD ∆中,2222213AD AB BD x =-=-在Rt ACD ∆中,2222220(21)AD AC CD x =-=--,∴22221320(21)x x -=--,∴x=5,∴12AD =(米).【点睛】本题考查了勾股定理的应用,根据勾股定理列出方程是解题关键.25.证明见解析.【解析】试题分析:由1=2∠∠,可得,CAB EAD ∠=∠,,AC AE AB AD ==则可证明ABC ADE ≅,因此可得.BC DE =试题解析:1=2∠∠,12,EAB EAB ∴∠+∠=∠+∠即CAB EAD ∠=∠,在ABC 和ADE 中,{AC AECAB EAD AB AD=∠=∠=(),ABC ADE SAS ∴≅.BC DE ∴=考点:三角形全等的判定.四、压轴题26.(1)A (0,3),B (4,0);(2)D (1,-265);(3)见解析【解析】【分析】(1)根据非负数的性质求解;(2)如图1中,设直线CD交y轴于E.首先求出点E的坐标,再求出直线CD的解析式以及点C坐标,利用平移的性质得到点D坐标;(3)如图2中,延长AB交CE的延长线于M.利用平行线的性质以及三角形的外角的性质求证;【详解】(1)∵222110a b a b--++-=,∴220,2110a b a b--=+-=,∴2202110a ba b--=⎧⎨+-=⎩,∴34ab=⎧⎨=⎩,∴A(0,3),B(4,0);(2)如图1中,设直线CD交y轴于E.∵CD//AB,∴S△ACB=S△ABE,∴12AE×BO=16,∴12×AE×4=16,∴AE=8,∴E(0,-5),设直线AB的解析式为y=kx+b,将点A(0,3),(4,0)代入解析式中得:343kb⎧=-⎪⎨⎪=⎩,∴直线AB的解析式为y=334x-+,∵AB//CD , ∴直线CD 的解析式为y=34x c -+, 又∵点E (0,-5)在直线CD 上,∴c=5,即直线CD 的解析式为y=354x --, 又∵点C (-3,m )在直线CD 上,∴m=115, ∴C (-3, 115), ∵点A (0,3)平移后的对应点为C (-3,115), ∴直线AB 向下平移了265个单位,向左平移了3个单位, 又∵B (4,0)的对应点为点D ,∴点D 的坐标为(1,-265); (3)如图2中,延长AB 交CE 的延长线于点M .∵AM ∥CD ,∴∠DCM=∠M ,∵∠BCE=2∠ECD ,∴∠BCD=3∠DCM=3∠M ,∵∠M=∠PEC-∠MPE ,∠MPE=∠OPE ,∴∠BCD=3(∠CEP-∠OPE ).【点睛】考查了非负数的性质、平行线的性质、三角形的外角的性质、一次函数的应用等知识,解题关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用平行线的性质解决问题.27.(1)4;2;(0,4);(2)125m =或285m =;(3)存在.Q 点坐标为()-,()4,()0,4-或()5,4. 【解析】【分析】(1)根据待定系数法,将点C (4,2)代入解析式可求解;(2)设点E (m ,142m +),F (m ,2m -6),得()154261022EF m m m =-+--=-,由平行四边形的性质可得BO =EF =4,列出方程即可求解;(3)分两种情况讨论,由菱形的性质按照点平移的坐标规律,先确定P 点坐标,再确定O 点坐标即可求解.【详解】解:(1)(1)∵直线y 2=kx -6交于点C (4,2),∴2=4k -6,∴k =2, ∵直线212y x b =-+过点C (4,2), ∴2=-2+b ,∴b =4, ∴直线解析式为:212y x b =-+,直线解析式为y 2=2x -6, ∵直线212y x b =-+分别与x 轴、y 轴交于A ,B 两点, ∴当x =0时,y =4,当y =0时,x =8,∴点B (0,4),点A (8,0),故答案为:4;2;(0,4)(2)∵点E 在线段AB 上,点E 的横坐标为m , ∴1,42E m m ⎛⎫-+ ⎪⎝⎭,(),26F m m -, ∴()154261022EF m m m =-+--=-. ∵四边形OBEF 是平行四边形,∴EF BO =, ∴51042m -=, 解得:125m =或285m =时, ∴当125m =或285m =时,四边形OBEF 是平行四边形.(3)存在.此时Q 点坐标为()-,()4,()0,4-或()5,4.理由如下:假设存在.以P ,Q ,A ,B 为顶点的菱形分两种情况:①以AB 为边,如图1所示.因为点()8,0A ,()0,4B ,所以45AB =.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以AP AB =或BP BA =.当AP AB =时,点()845,0P -或()845,0+;当BP BA =时,点()8,0P -. 当()845,0P -时,()8458,04Q --+,即()45,4-; 当()845,0P +时,()8458,04Q +-+,即()45,4; 当()8,0P -时,()880,004Q -+-+-,即()0,4-.②以AB 为对角线,对角线的交点为M ,如图2所示.可得5AP =,点P 坐标为()3,0.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以点Q 坐标为()5,4.综上可知:若点P 为x 轴上一点,则在平面直角坐标系中存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形,此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.【点睛】本题是一次函数综合题,利用待定系数法求解析式,平行四边形的性质,菱形的性质,利用分类讨论思想解决问题是本题的关键.28.(1)证明见解析;(2,3)D ;(2)存在,(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q -.【解析】【分析】(1)通过全等三角形的判定定理ASA 证得△ABP ≌△PCD ,由全等三角形的对应边相等证得AP =DP ,DC =PB =3,易得点D 的坐标;(2)设P (a ,0),Q (2,b ).需要分类讨论:①AB =PC ,BP =CQ ;②AB =CQ ,BP =PC .结合两点间的距离公式列出方程组,通过解方程组求得a 、b 的值,得解.【详解】(1)AP PD ⊥90APB DPC ∴∠+∠=AB x ⊥轴90A APB ∴∠+∠=A DPC ∴∠=∠在ABP ∆和PCD ∆中A DPC AB PCABP PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABP PCD ASA ∴∆≅∆AP DP ∴=,3DC PB ==(2,3)D ∴(2)设(,0)P a ,(2,)Q b①AB PC =,BP CQ =223a a b ⎧-=⎪⎨+=⎪⎩,解得03a b =⎧⎨=±⎩或47a b =⎧⎨=±⎩ (0,0)P ∴,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q - ②AB CQ =,BP PC =,322a a b +=-⎧⎨=⎩,解得122a b ⎧=⎪⎨⎪=±⎩ 1(,0)2P ∴-,(2,2)Q -或1(,0)2P -,(2,2)Q -综上:(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q - 【点睛】 考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解.29.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP 与△ODQ 的面积相等;(3)2∠GOA+∠ACE=∠OHC ,理由见解析.【解析】【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t ,OP=8-2t ,根据△ODP 与△ODQ 的面积相等列方程求解即可;(3)由∠AOC=90°,y 轴平分∠GOD 证得OG ∥AC ,过点H 作HF ∥OG 交x 轴于F ,得到∠FHC=∠ACE ,∠FHO=∠GOD ,从而∠GOD+∠ACE=∠FHO+∠FHC ,即可证得2∠GOA+∠ACE=∠OHC.【详解】(180b -=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A (0,6),C (8,0);故答案为:(0,6),(8,0);(2)由(1)知,A (0,6),C (8,0),∴OA=6,OB=8,由运动知,OQ=t ,PC=2t ,∴OP=8-2t ,∵D (4,3), ∴114222ODQ D S OQ x t t =⨯=⨯=△, 1182312322ODP D S OP y t t =⨯=-⨯=-△(), ∵△ODP 与△ODQ 的面积相等,∴2t=12-3t ,∴t=2.4,∴存在t=2.4时,使得△ODP 与△ODQ 的面积相等;(3)2∠GOA+∠ACE=∠OHC ,理由如下:∵x 轴⊥y 轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.30.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.【解析】【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE≌△BCD,∴∠CAE=∠CBD,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°, ∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x ,∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.。
2020-2021学年度第一学期期末测试苏科版八年级数学试题一、选择题(本大题共8小题,每小题3分,共24分)1. 现实世界中,对称现象无处不在,中国的黑体字中有些也具有对称性,下列黑体字是轴对称图形的是( )A. 诚B. 信C. 自D. 由2. 下列各点中,位于第四象限的点是( )A. (3,-4)B. (3,4)C. (-3,4)D. (-3,-4) 3. 四舍五入得到的近似数6.49万,精确到( )A. 万位B. 百分位C. 百位D. 千位 4. 下列各组数据中,不能作为直角三角形三边长的是( )A. 9,12,15B. 3, 4, 5C. 1,2,3D. 40,41,9 5. 关于一次函数112y x =--的图像,下列说法不正确的是( ) A. 经过第一、三、四象限B. y 随x 的增大而减小C. 与x 轴交于(-2,0)D. 与y 轴交于(0,-1) 6. 根据下列条件,只能画出唯一的△ABC 的是( )A. AB=3 BC=4B. AB=4 BC=3 ∠A=30°C. ∠A=60°∠B=45° AB=4 D. ∠C=60°AB=5 7. 如图,已知△ABC 中,PM 、QN 分别是AB ,AC 边上的垂直平分线,∠BAC=100°,AB>AC ,则∠PAQ 的度数是( )A. 10°B. 20°C. 30°D. 408. 如图,长方形纸片ABCD 中,AB =4,BC =6,点E 在AB 边上,将纸片沿CE 折叠,点B 落在点F 处,EF ,CF 分别交AD 于点G ,H ,且EG =GH ,则AE 的长为( )A. 23B. 1C. 32D. 2二、填空题(本大题共8小题,每小题3分,共24分)9. 自然数4的平方根是______10. 平面直角坐标系中,点(3,-2)关于x 轴对称的点的坐标是__________.11. 在-2,π,2,227,0中,是无理数有______个. 12. 已知点P (a ,b )在一次函数y=2x+1的图像上,则2a-b+1=______13. 在平面直角坐标系中,已知一次函数y =-2x +1的图像经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1<x 2,则y 1______y 2.(填“>”“<”“=")14. 如图,在等边ABC 中,D 、E 分别是边AB 、AC 上的点,且AD CE =,则ADC BEA ∠∠+=______.15. 如图,在Rt △ABC 中,已知∠C=90°,∠CAB 与∠CBA 的平分线交于点G ,分别与CB 、CA 边交于点D 、E ,GF ⊥AB ,垂足为点F ,若AC=6,CD=2,则GF=______16. 如图,在平面鱼角坐标系xOy 中,A (﹣3,0),点B 为y 轴正半轴上一点,将线段AB 绕点B 旋转90°至BC 处,过点C 作CD 垂直x 轴于点D ,若四边形ABCD 的面积为36,则线AC 的解析式为_____. 三、解答题(本大题共10题,共72分) 17. ()09202023-- 18. 求出下列x 值: (1)4x 2﹣81=0;(2)8(x+1)3=27.19. 已知3a+b 的立方根是2,b 是8的整数部分,求a+b 的算术平方根.20. 已知:如图,在ABC 中,AB AC =,BE 、CD 是中线.求证:BE CD =.21. 已知1-y 与2+x 成正比例,且1=-x 时,3=y .()1求y 与x 之间的函数关系式;()2若点()21,3+m 是该函数图象上的一点,求m 的值.22. 如图为一个广告牌支架的示意图,其中AB=13m ,AD=12m ,BD=5m ,AC=15m ,求图中△ABC 面积.23. 根据记录,从地面向上11km 以内,每升高1km ,气温降低6℃;又知在距离地面11km 以上高空,气温几乎不变.若地面气温为m (℃),设距地面的高度为x (km )处的气温为y (℃)(1)写出距地面的高度在11km 以内的y 与x 之间的函数表达式;(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为-26℃时,飞机距离地面的高度为7km,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距离地面12km 的高空,飞机外的气温是多少度呢?请求出假如当时飞机距离地面12km 时,飞机外的气温.24. 如图,在四边形ABCD 中,∠ABC =∠ADC =45°,将△BCD 绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到△ACE .(1)求证:AE⊥BD;(2)若AD=2,CD=3,试求四边形ABCD的对角线BD的长.25. 甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图,线段OA、折线BCD分别表示两车离甲地的距离(y单位:千米)与时间(x单位:小时)之间的函数关系.()1线段OA与折线BCD中,______表示货车离甲地的距离y与时间x之间的函数关系.()2求线段CD的函数关系式;()3货车出发多长时间两车相遇?26. 已知:如图,一次函数y=34x+3的图象分别与x轴、y轴相交于点A、B,且与经过点C(2,0)的一次函数y=kx+b的图象相交于点D,点D的横坐标为4,直线CD与y轴相交于点E.(1)直线CD的函数表达式为______;(直接写出结果)(2)在x轴上求一点P使△PAD为等腰三角形,直接写出所有满足条件的点P的坐标.(3)若点Q为线段DE上的一个动点,连接BQ.点Q是否存在某个位置,将△BQD沿着直线BQ翻折,使得点D恰好落在直线AB下方的y轴上?若存在,求点Q的坐标;若不存在,请说明理由.答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1. 现实世界中,对称现象无处不在,中国的黑体字中有些也具有对称性,下列黑体字是轴对称图形的是()A. 诚B. 信C. 自D. 由【答案】D【解析】【分析】根据轴对称图形的概念求解即可.【详解】解:根据轴对称图形的概念可知“由”是轴对称图形,故选:D.【点睛】本题考查轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2. 下列各点中,位于第四象限的点是()A. (3,-4)B. (3,4)C. (-3,4)D. (-3,-4)【答案】A【解析】【分析】根据平面直角坐标系中点的坐标特征解答即可,第四象限内点的横坐标大于0,纵坐标小于0.【详解】∵第四象限内点的横坐标大于0,纵坐标小于0,∴(3,-4) 位于第四象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.3. 四舍五入得到的近似数6.49万,精确到()A.万位B. 百分位C. 百位D. 千位【答案】C 【解析】【分析】找出最后一位上的数字所在的数位即可得出答案.【详解】近似数6.49万中最后一位数字9落在了百位上,所以近似数6.49万精确到百位,故选C.【点睛】本题考查了精确度问题,熟知近似数最后一位数字所在的位置就是精确度是解题的关键.4. 下列各组数据中,不能作为直角三角形三边长的是()A. 9,12,15B. 3, 4, 5C. 1,2,3D. 40,41,9【答案】C【解析】【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.【详解】解:A、92+122=152,故是直角三角形,不符合题意;B、32+42=52,故是直角三角形,不符合题意;C、12+22≠32,故不是直角三角形,符合题意;D、92+402=412,故是直角三角形,不符合题意.故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5. 关于一次函数112y x=--的图像,下列说法不正确的是()A. 经过第一、三、四象限B. y随x的增大而减小C. 与x轴交于(-2,0)D. 与y轴交于(0,-1)【答案】A【解析】【分析】由一次函数的性质可判断.【详解】解:A、一次函数112y x=--的图象经过第二、三、四象限,故本选项不正确.B、一次函数112y x=--中的12k=-<0,则y随x的增大而减小,故本选项正确.C、一次函数112y x=--的图象与x轴交于(-2,0),故本选项正确.D、一次函数112y x=--的图象与y轴交于(0,-1),故本选项正确.故选:A.【点睛】本题考查了一次函数的性质,熟练运用一次函数的性质解决问题是本题的关键.6. 根据下列条件,只能画出唯一的△ABC 的是( )A. AB=3 BC=4B. AB=4 BC=3 ∠A=30°C. ∠A=60°∠B=45° AB=4 D. ∠C=60°AB=5 【答案】C【解析】由所给边、角条件只能画出唯一的△ABC ,说明当按所给条件画两次时,得到的两个三角形是全等的,即所给条件要符合三角形全等的判定方法;而在四个选项中,当两个三角形分别满足A 、B 、D 三个选项中所列边、角对应相等时,两三角形不一定全等;当两个三角形满足C 选项中所列边、角对应相等时,三角形是一定全等的.故选C.7. 如图,已知△ABC 中,PM 、QN 分别是AB ,AC 边上的垂直平分线,∠BAC=100°,AB>AC ,则∠PAQ 的度数是( )A. 10°B. 20°C. 30°D. 40【答案】B【解析】【分析】 根据三角形内角和定理求出B C ∠+∠,根据线段的垂直平分线的性质得到PA PB =,QA QC =,计算即可.【详解】解:100BAC ∠=︒,80B C ∴∠+∠=︒, PM ,QN 分别是AB ,AC 的垂直平分线,PA PB ∴=,QA QC =,PAB B ∴∠=∠,QAC C ∠=∠,()20PAQ BAC PAB QAC ∴∠=∠-∠+∠=︒,故选:B .【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.8. 如图,长方形纸片ABCD 中,AB =4,BC =6,点E 在AB 边上,将纸片沿CE 折叠,点B 落在点F 处,EF ,CF 分别交AD 于点G ,H ,且EG =GH ,则AE 的长为()A. 23B. 1C. 32D. 2【答案】B【解析】【分析】根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF ,根据全等三角形的性质得到FH=AE ,GF=AG ,得到AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x ,根据勾股定理即可得到结论.【详解】∵将△CBE 沿CE 翻折至△CFE ,∴∠F=∠B=∠A=90°,BE=EF ,在△AGE 与△FGH 中,A F AGE FGH EG GH ∠∠⎧⎪∠∠⎨⎪⎩=== ,∴△AGE ≌△FGH (AAS ),∴FH=AE ,GF=AG ,∴AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x∴DH=x+2,CH=6-x ,∵CD 2+DH 2=CH 2,∴42+(2+x )2=(6-x )2,∴x=1,∴AE=1,故选B .【点睛】考查了翻折变换,矩形的性质,全等三角形的判定和性质,熟练掌握折叠的性质是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分) 9. 自然数4的平方根是______【答案】±2【解析】【分析】直接利用平方根的定义分析得出答案.【详解】解:自然数4的平方根是±2. 故答案为:±2. 【点睛】此题主要考查了平方根,正确把握平方根的定义是解题关键. 10. 平面直角坐标系中,点(3,-2)关于x 轴对称的点的坐标是__________.【答案】(3,2)【解析】【分析】关于x 轴对称的点的坐标特征:横坐标不变,纵坐标互为相反数.【详解】解:点(3,-2)关于x 轴对称的点的坐标是(32).,故答案为:(32).,11. 在-2,π,227,0中,是无理数有______个. 【答案】2【解析】【分析】 无理数是指无限不循环小数,根据定义判断即可. 【详解】解:无理数有,共2个, 故答案为:2. 【点睛】本题考查了对无理数定义的理解和运用,注意:无理数包括:①含π的,②一些有规律的数,③开方开不尽的根式. 12. 已知点P (a ,b )在一次函数y=2x+1的图像上,则2a-b+1=______ 【答案】0 【解析】 【分析】把点P 代入一次函数y=2x+1中即可求解.【详解】点P (a ,b )在一次函数y=2x+1的图像上,∴b=2a+1即2a-b+1=0故答案为:0.【点睛】本题考查了一次函数图象上点的坐标,得出b=2a+1是解题关键.13. 在平面直角坐标系中,已知一次函数y =-2x +1的图像经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1<x 2,则y 1______y 2.(填“>”“<”“=")【答案】>【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小判断即可.【详解】解:∵一次函数y =-2x +1中,k =-2<0,∴y 随x 的增大而减小,∵x 1<x 2∴y 1>y 2故答案为:>.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y =kx +b ,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.14. 如图,在等边ABC 中,D 、E 分别是边AB 、AC 上的点,且AD CE =,则ADC BEA ∠∠+=______.【答案】180【解析】【分析】根据等边三角形的性质,得出各角相等各边相等,已知AD =CE ,利用SAS 判定△ADC ≌△CEB ,从而得出∠ACD =∠CBE ,所以∠BCD +∠CBE =∠BCD +∠ACD =∠ACB =60°,进而利用四边形内角和解答即可.【详解】解:ABC 是等边三角形A ACB 60∠∠∴==,AC BC =AD CE =ADC ∴≌()CEB SASACD CBE ∠∠∴=BCD CBE BCD ACD ACB 60∠∠∠∠∠∴+=+==.BOC 120∠∴=,DOE 120∠∴=,ADC BEA 36060120180∠∠∴+=--=,故答案为180.【点睛】此题考查了等边三角形的性质及全等三角形的判定方法,常用的判定方法有SSS ,SAS ,AAS ,HL 等.15. 如图,在Rt △ABC 中,已知∠C=90°,∠CAB 与∠CBA 的平分线交于点G ,分别与CB 、CA 边交于点D 、E ,GF ⊥AB ,垂足为点F ,若AC=6,CD=2,则GF=______【答案】32【解析】【分析】 过G 作GM ⊥AC 于M ,GN ⊥BC 于N ,连接CG ,根据角平分线的性质得到GM=GM=GF ,根据三角形的面积公式列方程即可得到结论.【详解】解:过G 作GM ⊥AC 于M ,GN ⊥BC 于N ,连接CG ,∵GF⊥AB,∠CAB与∠CBA的平分线交于点G,∴GM=GM=GF,在Rt△ABC中,∠C=90°,∴S△ACD=12AC•CD=12AC•GM+12CD•GN,∴6×2=6•GM+2×GN,∴GM=32,∴GF=32,故答案为3 2【点睛】本题考查了角平分线的性质,三角形的面积,正确的作出辅助线是解题的关键.16. 如图,在平面鱼角坐标系xOy中,A(﹣3,0),点B为y轴正半轴上一点,将线段AB绕点B旋转90°至BC处,过点C作CD垂直x轴于点D,若四边形ABCD的面积为36,则线AC的解析式为_____.【答案】y=13x+1或y=﹣3x﹣9.【解析】【分析】过C作CE⊥OB于E,则四边形CEOD是矩形,得到CE=OD,OE=CD,根据旋转的性质得到AB=BC,∠ABC=90°,根据全等三角形的性质得到BO=CE,BE=OA,求得OA=BE=3,设OD=a,得到CD=OE=|a﹣3|,根据面积公式列方程得到C(﹣6,9)或(6,3),设直线AB的解析式为y=kx+b,把A点和C点的坐标代入即可得到结论.【详解】解:过C作CE⊥OB于E,则四边形CEOD是矩形,∴CE=OD,OE=CD,∵将线段AB绕点B旋转90°至BC处,∴AB=BC,∠ABC=90°,∴∠ABO+∠CBO=∠CBO+∠BCE=90°,∴∠ABO=∠BCE,∵∠AOB=∠BEC=90°,∴△ABO≌△BCO(AAS),∴BO=CE,BE=OA,∵A(﹣3,0),∴OA=BE=3,设OD=a,∴CD=OE=|a﹣3|,∵四边形ABCD的面积为36,∴12 AO•OB+12(CD+OB)•OD=12×3×a+12(a﹣3+a)×a=36,∴a=±6,∴C(﹣6,9)或(6,3),设直线AB的解析式为y=kx+b,把A点和C点的坐标代入得,3063k bk b-+=⎧⎨+=⎩或3069,k bk b-+=⎧⎨-+=⎩解得:131kb⎧=⎪⎨⎪=⎩或39.kb=-⎧⎨=-⎩,∴直线AB的解析式为113y x=+或y=﹣3x﹣9.故答案为113y x=+或y=﹣3x﹣9.【点睛】本题考查了坐标与图形变化﹣旋转,待定系数法求函数的解析式,全等三角形的判定和性质,正确的作出图形是解题的关键.三、解答题(本大题共10题,共72分)17. ()020202--【答案】【解析】【分析】分别利用求算术平方根、零指数幂、去绝对值计算各部分,再进行加减运算即可.()020202--(312=+--312=+-2=【点睛】本题考查实数的运算,掌握运算法则是解题的关键.18. 求出下列x 的值:(1)4x 2﹣81=0;(2)8(x+1)3=27.【答案】(1)92x =±.(2)12x = 【解析】【分析】(1)先整理成x 2=a ,直接开平方法解方程即可;(2)先整理成x 3=a 的形式,再直接开立方解方程即可.【详解】解:(1)24x 810-=, ∴2814x =, 9x 2∴=±; (2)()38x 127+=, ∴327(1)8x +=,∴312x +=, ∴12x = 【点睛】本题考查算术平方根和立方根的相关知识解方程,属于基础题..关键是熟练掌握相关知识点,要灵活运用使计算简便.19. 已知3a+b 的立方根是2,b 是8的整数部分,求a+b 的算术平方根.【答案】2.【解析】【分析】首先根据立方根的概念可得3a +b 的值,接着估计8的大小,可得b 的值;进而可得a 、b 的值,进而可得a +b ;最后根据平方根的求法可得答案.【详解】解:根据题意,可得3a +b =8;又∵2<8<3,∴b =2,∴3a +2=8;解得:a =2∴a +b =2+2=4,∴a +b 的算术平方根为2.故答案为:2.【点睛】此题主要考查了立方根、算术平方根的定义及无理数的估算能力,掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.20. 已知:如图,在ABC 中,AB AC =,BE 、CD 是中线.求证:BE CD =.【答案】见解析【解析】【分析】由中线性质得12AE CE AC ==,12AD BD AB ==,再证AE AD =,由()SAS ,得DAC ≌EAB ,可证BE CD =.【详解】证明:∵BE 、CD 是中线, ∴12AE CE AC ==,12AD BD AB ==, ∵AB AC =,∴AE AD =,在DAC 和EAB 中,AD AE A A AC AB =⎧⎪∠=∠⎨⎪=⎩,∴DAC ≌()EAB SAS ,∴BE CD =.【点睛】本题考核知识点:全等三角形. 解题关键点:灵活运用全等三角形判定和性质证线段相等. 21. 已知1-y 与2+x 成正比例,且1=-x 时,3=y .()1求y 与x 之间的函数关系式;()2若点()21,3+m 是该函数图象上的一点,求m 的值.【答案】(1)2=k ;(2)1=-m【解析】【分析】(1)根据y-1与x+2成正比例,设y-1=k(x+2),把x 与y 的值代入求出k 的值,即可确定出关系式;(2)把点(2m+1,3)代入一次函数解析式,求出m 的值即可.【详解】()1根据题意:设()y 1k x 2-=+,把x 1=-,y 3=代入得:()31k 12-=-+,解得:k 2=.y ∴与x 函数关系式为()y 2x 212x 5=++=+;()2把点()2m 1,3+代入y 2x 5=+得:()322m 15=++解得m 1=-. 【点睛】本题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.22. 如图为一个广告牌支架的示意图,其中AB=13m ,AD=12m ,BD=5m ,AC=15m ,求图中△ABC 面积.【答案】84m 2【解析】【分析】由222AD BD AB +=可推导出△ABD 为直角三角形且90ADB ∠=;从而推导出△ADC 为直角三角形,再利用勾股定理计算得CD ,从而完成求解.【详解】∵AB=13m ,AD=12m ,BD=5m∴222AD BD AB +=∴△ABD 为直角三角形且90ADB ∠=∴18090ADC ADB ∠=-∠=∴△ADC 为直角三角形∴222AD CD AC += ∴222215129CD AC AD --= ∴()1122ABC S AD BC AD BD CD =⨯=⨯+△ ∵5914BD CD +=+= ∴()11==1214=8422ABC S AD BD CD ⨯+⨯⨯△m 2. 【点睛】本题考察了勾股定理和勾股定理的逆定理.求解的关键是熟练掌握勾股定理的性质,完成求解. 23. 根据记录,从地面向上11km 以内,每升高1km ,气温降低6℃;又知在距离地面11km 以上高空,气温几乎不变.若地面气温为m (℃),设距地面的高度为x (km )处的气温为y (℃)(1)写出距地面的高度在11km 以内的y 与x 之间的函数表达式;(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为-26℃时,飞机距离地面的高度为7km,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距离地面12km的高空,飞机外的气温是多少度呢?请求出假如当时飞机距离地面12km时,飞机外的气温.【答案】(1)y=m-6x;(2)当时飞机距地面12km时,飞机外的气温为-50℃【解析】【分析】(1)根据从地面向上11km以内,每升高1km,气温降低6℃即可写出函数表达式;(2)将x=7,y=-26代入(1)中的解析式可求得当时地面的气温;根据地面气温以及飞机的高度利用(1)中的解析式即可求得飞机距离地面12km时,飞机外的气温.【详解】(1) ∵从地面向上11km以内,每升高1km,气温降低6℃,地面气温为m(℃),距地面的高度为x(km)处的气温为y(℃),∴y与x之间的函数表达式为:y=m-6x(0≤x≤11);(2)将x=7,y=-26代入y=m-6x,得-26=m-42,∴m=16,∴当时地面气温为16℃;∵x=12>11,∴y=16-6×11=-50(℃),假如当时飞机距地面12km时,飞机外的气温为-50℃.【点睛】本题考查了一次函数的应用,弄清题意,正确分析各量间的关系是解题的关键.24. 如图,在四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)求证:AE⊥BD;(2)若AD=2,CD=3,试求四边形ABCD的对角线BD的长.【答案】(1)见解析;(222【解析】【分析】(1)由旋转的性质可得AC=BC,∠DBC=∠CAE,即可得∠ACB=90°,根据直角三角形的性质可得AE⊥BD,(2)由旋转的性质可得CD=CE=3,BD=AE,∠DCE=∠ACB=90°,由勾股定理可求BD的长.【详解】(1)如图,设AC与BD的交点为点M,BD与AE的交点为点N,∵旋转∴AC=BC,∠DBC=∠CAE又∵∠ABC=45°,∴∠ABC=∠BAC=45°,∴∠ACB=90°,∵∠DBC+∠BMC=90°∴∠AMN+∠CAE=90°∴∠AND=90°∴AE⊥BD,(2)如图,连接DE,∵旋转∴CD=CE=3,BD=AE,∠DCE=∠ACB=90°∴22+2,∠CDE=45°CD CE∵∠ADC=45°∴∠ADE=90°∴22+22AD DE∴BD=22.【点睛】此题考查旋转的性质,勾股定理,熟练运用旋转的性质解决问题是本题的关键.25. 甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图,线段OA 、折线BCD 分别表示两车离甲地的距离(y 单位:千米)与时间(x 单位:小时)之间的函数关系.()1线段OA 与折线BCD 中,______表示货车离甲地的距离y 与时间x 之间的函数关系.()2求线段CD 的函数关系式;()3货车出发多长时间两车相遇?【答案】(1)线段OA 表示货车货车离甲地的距离y 与时间x 之间的函数关系;(2)()1101952.5 4.5=-≤≤y x x ;(3)货车出发3.9小时两车相遇.【解析】【分析】(1)根据题意可以分别求得两个图象中相应函数对应的速度,从而可以解答本题;(2)设CD 段的函数解析式为y=kx+b ,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解;(3)根据题意可以求得OA 对应的函数解析式,从而可以解答本题.【详解】()1线段OA 表示货车货车离甲地的距离y 与时间x 之间的函数关系,理由:OA 300v 60(5==千米/时),BCD 300100010v 904.5 1.21111===-, 10609011<,轿车的平均速度大于货车的平均速度, ∴线段OA 表示货车离甲地的距离y 与时间x 之间的函数关系,故答案为OA ;()2设CD 段函数解析式为()()y kx b k 0 2.5x 4.5=+≠≤≤,()C 2.5,80,()D 4.5,300在其图象上,{ 2.5k b 804.5k b 300+=∴+=,解得{k 110b 195==-, CD ∴段函数解析式:()y 110x 1952.5x 4.5=-≤≤;()3设线段OA 对应的函数解析式为y kx =,3005k =,得k 60=,即线段OA 对应的函数解析式为y 60x =,y 60x y 110x 195=⎧=-⎨⎩,解得{x 3.9y 234==, 即货车出发3.9小时两车相遇.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.26. 已知:如图,一次函数y=34x+3的图象分别与x 轴、y 轴相交于点A 、B ,且与经过点C(2,0)的一次函数y=kx+b 的图象相交于点D ,点D 的横坐标为4,直线CD 与y 轴相交于点E .(1)直线CD 的函数表达式为______;(直接写出结果)(2)在x 轴上求一点P 使△PAD 为等腰三角形,直接写出所有满足条件的点P 的坐标.(3)若点Q 为线段DE 上的一个动点,连接BQ .点Q 是否存在某个位置,将△BQD 沿着直线BQ 翻折,使得点D 恰好落在直线AB 下方的y 轴上?若存在,求点Q 的坐标;若不存在,请说明理由.【答案】(1)y=3x-6;(2)点P 的坐标为(94,0)或(6,0)或(-14,0)或(12,0);(3)存在,点Q 的坐标为(187,117) 【解析】【分析】(1)求出D 的坐标,即可求解; (2)分PA=PD 、当PA=AD 、DP=AD 三种情况,分别求解即可;(3)利用BD=BD′,DQ=D′Q ,即可求解.【详解】解:(1)将点D 的横坐标为4代入一次函数y=34x+3表达式,解得:y=6,即点D 的坐标为(4,6), 将点C 、D 的坐标代入一次函数表达式y=kx+b 得:6402,k b k b =+⎧⎨=+⎩解得: 36,k b =⎧⎨=-⎩故答案为y=3x-6;(2)①当PA=PD 时,点B 是AD 的中点,故:过点B 且垂直于AD 的直线方程为:y=-43x+3, 令y=0,则x=94, 即点P 的坐标为(94,0); ②当PA=AD 时,=10,故点P 的坐标为(6,0)或(-14,0);③当DP=AD 时,同理可得:点P 的坐标为(12,0);故点P 的坐标为(94,0)或(6,0)或(-14,0)或(12,0); (3)设翻转后点D 落在y 轴上的点为D′,设点Q 的坐标为(x ,3x-6),则:BD=BD′,DQ=D′Q ,=5,故点D′的坐标为(0,-2),DQ 2=D′Q 2,即:x 2+(3x-6+2)2=(x-4)2+(3x-6-6)2,解得:x=187, 故点Q 的坐标为(187,117). 【点睛】本题考查的是一次函数的综合运用,涉及到图象翻折、勾股定理运用等知识点,其中(2)要分类讨论,避免遗漏.。
八年级(上)期末数学试卷一.选择题(共10小题)1.下列实数中,无理数是()A.0 B.﹣4 C.D.2.分式的值为0,则x的值为()A.0 B.2 C.﹣2 D.3.以下列各组线段为边作三角形,不能构成直角三角形的是()A.1,2,B.3,4,5 C.3,6,9 D.2,7,4.下列二次根式中属于最简二次根式的是()A.B.C.(a>0,b>0)D.5.关于x的分式方程+3=有增根,则增根为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣36.一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(﹣1,0),AC=2.将Rt △ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A.(﹣1,2)B.(﹣4,2)C.(3,2)D.(2,2)8.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E 处,则∠A等于()A.25°B.30°C.45°D.60°9.计算﹣(a>0,b>0)的结果是()A.B.C.D.10.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(,m),则不等式组mx﹣2<kx+1<mx的解集为()A.x B.C.x D.0二.填空题(共8小题)11.使代数式有意义的x的取值范围是.12.点P(3,﹣2)关于x轴对称的点的坐标是.13.若x+2y=2xy,则+的值为.14.已知点P(m﹣2,2m﹣1)在第二象限,则实数m的取值范围是.15.如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠B的度数为.16.如图,直线l1:y=﹣x+m与x轴交于点A,直线l2:y=2x+n与y轴交于点B,与直线l1交于点P(2,2),则△PAB的面积为.17.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′处,那么CD=.18.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,分别与腰AB,AC交于点D,E.给出下列结论:正确的结论有:(把你认为正确的结论的序号都填上).①AE=BE;②AD=DE;③∠EBC=∠A;④∠BED=∠C.三.解答题(共10小题)19.计算:(1)()2﹣+;(2)÷+(﹣).20.先化简,再求值:(1﹣)÷,其中a=2+.21.已知一次函数y=3x+m的图象经过点A(1,4).(1)求m的值;(2)若点B(﹣2,a)在这个函数的图象上,求点B的坐标.22.如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用四种方法分别在如图方格内再填涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.23.如图,在四边形ABCD中,AB=DC,延长线段CB到E,使BE=AD,连接AE、AC,且AE =AC,求证:(1)△ABE≌△CDA;(2)AD∥EC.24.若△ABC的三边分别为a,b,c,其中a,b满足+(b﹣8)2=0.(1)求边长c的取值范围,(2)若△ABC是直角三角形,求△ABC的面积.25.如图,∠AOB=90°,OA=12cm,OB=8cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,并且它们的运动时间也相等.(1)请用直尺和圆规作出C处的位置,不必叙述作图过程,保留作图痕迹;(2)求线段OC的长.26.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?27.如图,一次函数y=﹣x+7的图象与正比例函数y=x的图象交于点A,点P(t,0)是x正半轴上的一个动点.(1)点A的坐标为(,);(2)如图1,连接PA,若△AOP是等腰三角形,求点P的坐标:(3)如图2,过点P作x轴的垂线,分别交y=x和y=﹣x+7的图象于点B,C.是否存在正实数,使得BC=OA,若存在求出t的值;若不存在,请说明理由.28.A,B两地相距200千米,甲车从A地出发匀速行驶到B地,乙车从B地出发匀速行驶到A地.乙车行驶1小时后,甲车出发,两车相向而行.设行驶时间为x小时(0≤x≤5),甲、乙两车离A地的距离分别为y1,y2千米,y1,y2与x之间的函数关系图象如图1所示.根据图象解答下列问题:(1)求y1,y2与x的函数关系式;(2)乙车出发几小时后,两车相遇?相遇时,两车离A地多少千米?(3)设行驶过程中,甲、乙两车之间的距离为s千米,在图2的直角坐标系中,已经画出了s与x之间的部分函数图象.①图中点P的坐标为(1,m),则m=;②求s与x的函数关系式,并在图2中补全整个过程中s与x之间的函数图象.参考答案与试题解析一.选择题(共10小题)1.下列实数中,无理数是()A.0 B.﹣4 C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【解答】解:0,﹣4是整数,属于有理数;是分数,属于有理数;无理数是.故选:C.2.分式的值为0,则x的值为()A.0 B.2 C.﹣2 D.【分析】直接利用分式的值为零,则分子为零进而得出答案.【解答】解:∵分式的值为0,∴x﹣2=0,解得:x=2.故选:B.3.以下列各组线段为边作三角形,不能构成直角三角形的是()A.1,2,B.3,4,5 C.3,6,9 D.2,7,【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【解答】解:A、∵12+22=()2,故A选项能构成直角三角形;B、∵32+42=52,故B选项能构成直角三角形;C、∵32+62≠92,故C选项不能构成直角三角形;D、∵72+(2)2=()2,故D选项能构成直角三角形.故选:C.4.下列二次根式中属于最简二次根式的是()A.B.C.(a>0,b>0)D.【分析】根据最简二次根式的定义即可求出答案.【解答】解:(A)原式=2,故A不符合题意;(B)原式=6,故B不符合题意;(C)是分式,故C不符合题意;故选:D.5.关于x的分式方程+3=有增根,则增根为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣3【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣1)=0,得到x=1,然后代入化为整式方程的方程,检验是否符合题意.【解答】解:方程两边都乘(x﹣1),得7+3(x﹣1)=m,∵原方程有增根,∴最简公分母x﹣1=0,解得x=1,当x=1时,m=7,这是可能的,符合题意.故选:A.6.一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】首先确定k,k>0,必过第二、四象限,再确定b,看与y轴交点,即可得到答案.【解答】解:∵y=﹣2x+3中,k=﹣2<0,∴必过第二、四象限,∵b=3,∴交y轴于正半轴.∴过第一、二、四象限,不过第三象限,故选:C.7.图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(﹣1,0),AC=2.将Rt △ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A.(﹣1,2)B.(﹣4,2)C.(3,2)D.(2,2)【分析】根据旋转变换的性质得到旋转变换后点A的对应点坐标,根据平移的性质解答即可.【解答】解:∵点C的坐标为(﹣1,0),AC=2,∴点A的坐标为(﹣3,0),如图所示,将Rt△ABC先绕点C顺时针旋转90°,则点A′的坐标为(﹣1,2),再向右平移3个单位长度,则变换后点A′的对应点坐标为(2,2),故选:D.8.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E 处,则∠A等于()A.25°B.30°C.45°D.60°【分析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE=BE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【解答】解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选:B.9.计算﹣(a>0,b>0)的结果是()A.B.C.D.【分析】根据二次根式的性质,将所求式子化简为﹣=﹣即可求解.【解答】解:∵a>0,b>0,∴﹣=﹣=2﹣=,故选:A.10.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(,m),则不等式组mx﹣2<kx+1<mx的解集为()A.x B.C.x D.0【分析】由mx﹣2<(m﹣2)x+1,即可得到x<;由(m﹣2)x+1<mx,即可得到x>,进而得出不等式组mx﹣2<kx+1<mx的解集为.【解答】解:把(,m)代入y1=kx+1,可得m=k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<;当kx+1<mx时,(m﹣2)x+1<mx,解得x>,∴不等式组mx﹣2<kx+1<mx的解集为,故选:B.二.填空题(共8小题)11.使代数式有意义的x的取值范围是x≥3 .【分析】二次根式的被开方数是非负数.【解答】解:根据题意,得x﹣3≥0,解得,x≥3;故答案是:x≥3.12.点P(3,﹣2)关于x轴对称的点的坐标是(3,2).【分析】点P(m,n)关于x轴对称点的坐标P′(m,﹣n),然后将题目已知点的坐标代入即可求得解.【解答】解:根据轴对称的性质,得点P(3,﹣2)关于x轴对称的点的坐标为(3,2).13.若x+2y=2xy,则+的值为 2 .【分析】原式通分并利用同分母分式的加法法则变形,把已知等式代入计算即可求出值.【解答】解:∵x+2y=2xy,∴原式===2,故答案为:214.已知点P(m﹣2,2m﹣1)在第二象限,则实数m的取值范围是<m<2,.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【解答】解:∵点P(m﹣2,2m﹣1)在第二象限,∴,解不等式①得,m<2,解不等式②得,m>,所以,不等式组的解集是<m<2,故答案为<m<2.15.如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠B的度数为70°.【分析】根据全等三角形的性质得出AB=AD,∠BAC=∠DAE,求出∠BAD=∠EAC=40°,根据等腰三角形的性质得出∠B=∠ADB,即可求出答案.【解答】解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,∵∠EAC=40°,∴∠BAD=40°,∵AB=AD,∴∠B=∠ADB=(180°﹣∠BAD)=70°,故答案为:70°.16.如图,直线l1:y=﹣x+m与x轴交于点A,直线l2:y=2x+n与y轴交于点B,与直线l1交于点P(2,2),则△PAB的面积为10 .【分析】把点P(2,2)分别代入y=﹣x+m和y=2x+n,求得m=3,n=﹣2,解方程得到A(6,0),B(0,﹣2),根据三角形的面积公式即可得到结论.【解答】解:把点P(2,2)分别代入y=﹣x+m和y=2x+n,得,m=3,n=﹣2,∴直线l1:y=﹣x+3,直线l2:y=2x﹣2,对于y=﹣x+3,令y=0,得,x=6,对于y=2x﹣2,令x=0,得,y=﹣2,∴A(6,0),B(0,﹣2),∵直线l1:y=﹣x+3与y轴的交点为(0,3),∴△PAB的面积=×5×6﹣×5×2=10,故答案为:10.17.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD 折叠,使点C落在AB边的C′处,那么CD=3cm.【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【解答】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB===10cm,由翻折变换的性质得,BC′=BC=6cm,C′D=CD,∴AC′=AB﹣BC′=10﹣6=4cm,设CD=x,则C′D=x,AD=8﹣x,在Rt△AC′D中,由勾股定理得,AC′2+C′D2=AD2,即42+x2=(8﹣x)2,解得x=3,即CD=3cm.故答案为:3cm.18.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,分别与腰AB,AC交于点D,E.给出下列结论:正确的结论有:③(把你认为正确的结论的序号都填上).①AE=BE;②AD=DE;③∠EBC=∠A;④∠BED=∠C.【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BD=BE=BC,∴∠ACB=∠BEC,∠BDE=∠BED,∴∠BEC=∠ABC=∠ACB,∴∠EBC=∠A,无法得到①AE=BE;②AD=DE;④∠BED=∠C.故答案为:③.三.解答题(共10小题)19.计算:(1)()2﹣+;(2)÷+(﹣).【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用二次根式的乘除法则计算,合并即可得到结果.【解答】解:(1)原式=5﹣2+3=6;(2)原式=+4﹣=.20.先化简,再求值:(1﹣)÷,其中a=2+.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(1﹣)÷===,当a=2+时,原式==.21.已知一次函数y=3x+m的图象经过点A(1,4).(1)求m的值;(2)若点B(﹣2,a)在这个函数的图象上,求点B的坐标.【分析】(1)把点A(1,4)的坐标代入一次函数y=3x+m可求出m的值,(2)确定函数的关系式,再把B的坐标代入,求出a的值,进而确定点B的坐标.【解答】解:(1)把点A(1,4)的坐标代入一次函数y=3x+m得:3×1+m=4,解得:m=1,(2)由(1)得:一次函数的关系式为y=3x+1.把B(﹣2,a)代入得:a=3×(﹣2)+1=﹣5,∴B的坐标为(﹣2,﹣5)22.如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用四种方法分别在如图方格内再填涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.【分析】根据轴对称的性质画出图形即可.【解答】解:如图所示:.23.如图,在四边形ABCD中,AB=DC,延长线段CB到E,使BE=AD,连接AE、AC,且AE =AC,求证:(1)△ABE≌△CDA;(2)AD∥EC.【分析】(1)直接根据SSS就可以证明△ABE≌△CDA;(2)由△ABE≌△CDA可以得出∠E=∠CAD,就可以得出∠ACE=∠CAD,从而得出结论.【解答】解:(1)在△ABE和△CDA中,∵△ABE≌△CDA(SSS);(2)∵△ABE≌△CDA,∴∠E=∠CAD.∵AE=AC,∴∠E=∠ACE∴∠ACE=∠CAD,∴AD∥EC.24.若△ABC的三边分别为a,b,c,其中a,b满足+(b﹣8)2=0.(1)求边长c的取值范围,(2)若△ABC是直角三角形,求△ABC的面积.【分析】(1)先根据非负数的性质求出a、b的值,再由三角形的三边关系即可得出结论;(2)分b是直角边和斜边两种情况,利用勾股定理求出另一直角边,然后根据三角形的面积公式列式计算即可得解.【解答】解:(1)∵a,b满足+(b﹣8)2=0,∴a﹣6=0,b﹣8=0,∴a=6,b=8,∴8﹣6<c<8+6,即2<c<14.故边长c的取值范围为:2<c<14;(2)b=8是直角边时,6是直角边,△ABC的面积=×6×8=24;b=8是斜边时,另一直角边==2,△ABC的面积=×6×2=6.综上所述,△ABC的面积为24或6.25.如图,∠AOB=90°,OA=12cm,OB=8cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,并且它们的运动时间也相等.(1)请用直尺和圆规作出C处的位置,不必叙述作图过程,保留作图痕迹;(2)求线段OC的长.【分析】(1)作作AB的垂直平分线,交OA于点C,则点C即为所求;(2)设BC=xcm,根据题意用x表示出AC和OC,根据勾股定理列出方程,解方程即可.【解答】解:(1)如图所示,作AB的垂直平分线,交OA于点C,则点C即为所求;(2)由作图可得:BC=AC,设BC=xcm,则AC=xcm,OC=(12﹣x)cm,由勾股定理得,BC2=OB2+OC2,即x2=82+(12﹣x)2,解得x=.∴OC=12﹣=答:线段OC的长是cm.26.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:﹣=3,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60.答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10.答:至少安排甲队工作10天.27.如图,一次函数y=﹣x+7的图象与正比例函数y=x的图象交于点A,点P(t,0)是x正半轴上的一个动点.(1)点A的坐标为( 4 , 3 );(2)如图1,连接PA,若△AOP是等腰三角形,求点P的坐标:(3)如图2,过点P作x轴的垂线,分别交y=x和y=﹣x+7的图象于点B,C.是否存在正实数,使得BC=OA,若存在求出t的值;若不存在,请说明理由.【分析】(1)解方程组即可得到结论;(2)根据勾股定理得到OA==5,当OP=OA=5时,△AOP是等腰三角形,当AP=OA=5时,△AOP是等腰三角形,当OP=PA时,△AOP是等腰三角形,于是得到结论;(3)由P(t,0),得到B(t,t),C(t,﹣t+7),根据BC=OA,解方程即可得到结论.【解答】解:(1)解得,∴点A的坐标为(4,3),故答案为:(4,3);(2)∵A(4,3),∴OA==5,当OP=OA=5时,△AOP是等腰三角形,∴P(5,0),当AP=OA=5时,△AOP是等腰三角形,则OP=8,∴P(8,0);当OP=PA时,△AOP是等腰三角形,则点P在OA的垂直平分线上,如图1,设OA的垂直平分线交OA于H,∴OH=OA=,过A作AG⊥x轴于G,∴△OPH∽△OAG,∴=,∴=,∴OP=,∴P(,0),综上所述,P(5,0)或(8,0)或(,0);(3)∵P(t,0),∴B(t,t),C(t,﹣t+7),∵BC=OA,∴﹣t+7﹣t=×5或t+t﹣7=×5,解得:t=﹣或t=,∵t>0,∴t=.28.A,B两地相距200千米,甲车从A地出发匀速行驶到B地,乙车从B地出发匀速行驶到A地.乙车行驶1小时后,甲车出发,两车相向而行.设行驶时间为x小时(0≤x≤5),甲、乙两车离A地的距离分别为y1,y2千米,y1,y2与x之间的函数关系图象如图1所示.根据图象解答下列问题:(1)求y1,y2与x的函数关系式;(2)乙车出发几小时后,两车相遇?相遇时,两车离A地多少千米?(3)设行驶过程中,甲、乙两车之间的距离为s千米,在图2的直角坐标系中,已经画出了s与x之间的部分函数图象.①图中点P的坐标为(1,m),则m=160 ;②求s与x的函数关系式,并在图2中补全整个过程中s与x之间的函数图象.【分析】(1)用待定系数法可求解析式;(2)将两个函数表达式组成方程组可求解;(3)①由点P表达的意义可求m的值;②分相遇前和相遇后两种情况分别求解析式.【解答】解:(1)如图1,甲的图象过点(1,0),(5,200),∴设甲的函数表达式为:y1=kx+b,∴解得:∴甲的函数表达式为:y1=50x﹣50,如图1,乙的图象过点(5,0),(0,200),∴设乙的函数表达式为:y2=mx+200,∴0=5m+200∴m=﹣40,∴乙的函数表达式为:y2=﹣40x+200,(2)由题意可得:解得:答:乙车出发小时后,两年相遇,相遇时,两车离A地千米.(3)①由题意可得乙先出发1小时,且速度为40千米/小时,∴m=200﹣40×1=160,故答案为160;②当1≤x≤时,s=200﹣40×1﹣(40+50)(x﹣1)=250﹣90x;当<x≤5时,s=90x﹣250;图象如下:。
2020-2021学年江苏省八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(2分)京剧是中国的国粹,脸谱是传统戏曲演员脸上的绘画,用于舞台演出时的化妆造型艺术.下列脸谱中不是轴对称图形的是( )A .B .C .D .2.(2分)下列各数中,是无理数的是( ) A .0B .−√4C .227D .π3.(2分)下列条件中能构成直角三角形的是( ) A .2、3、4B .3、4、5C .4、5、6D .5、6、74.(2分)若一次函数y =kx +3的图象经过点P ,且函数值y 随着x 增大而减小,则点P 的坐标可能为( ) A .(2,4)B .(﹣5,2)C .(﹣1,﹣3)D .(5,﹣1)5.(2分)如图,在平面直角坐标系中,线段AB 的两个端点是A (1,3),B (2,1).将线段AB 沿某一方向平移后,若点A 的对应点A ′的坐标为(﹣2,0),则点B 的对应点B ′的坐标为( )A .(﹣3,2)B .(﹣1,﹣3) 2)D .(0,﹣2)6.(2分)如图,Rt △ABC ≌Rt △BAD ,BC 、AD 交于点E ,M 为斜边AB 的中点,若∠CMD =α,∠AEB =β.则α和β之间的数量关系为( )A .2β﹣α=180°B .β﹣α=60°C .α+β=180°D .β=2α二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应的位置上.)7.(2分)在平面直角坐标系中,点P (﹣2,3)关于y 轴对称的点的坐标 .8.(2分)如图,点 B 、D 、E 、C 在一条直线上,若△ABD ≌△ACE ,BC=12,BD =3,则DE 的长为 .9.(2分)如图是两个面积为1的小正方形,沿对角线剪开拼成一个大正方形,则大正方形的边长为 .10.(2分)小张骑车从图书馆回家,中途在文具店买笔耽误了1分钟,然后继续骑车回家.若小张骑车的速度始终不变,从出发开始计时,小张离家的距离s (单位:米)与时间t (单位:分钟)的对应关系如图所示,则文具店与小张家的距离为 .11.(2分)声音在空气中的传播速度v (m /s )与温度t (℃)的关系如表:若声音在空气中的传播速度v (m /s )是温度t (℃)的一次函数,当t =25℃时,声音的传播速度为 m /s .12.(2分)将函数y =3x +1的图象平移,使它经过点(﹣2,0),则平移后的函数表达式是 . 13.(2分)已知直线y =kx +b (k ≠0)过(1,0)和(0,﹣2),则关于x 的不等式kx +b <0的解集是 . 14.(2分)如图,在四边形ABCD 中,∠B =∠D =90°,分别以四边向外作正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为 .15.(2分)如图,线段AB 、BC 的垂直平分线l1、l 2相交于点O ,若∠AOC =90°,∠A =13°,则∠C = °.16.(2分)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点 E 、F 分别在AC 、BC 上,将△CEF 沿EF 翻折,使C 与AB 的中点M 重合,则CF 的长为 .三、解答题(本大题共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)求下列各式中x 的值:(1)(x +1)2=4; (2)8x 3=27.18.(4分)计算:√(−3)2+(√2)2−√183.19.(5分)如图,在Rt △ABC 中,∠ACB =90°,△CAP 和△CBQ 都是等边三角形,BQ 和CP交于点H ,求证:BQ ⊥CP .20.(6分)如图,用(﹣1,﹣1)表示A 点的位置,用(3,0)表示B 点的位置. (1)画出直角坐标系.(2)点E 的坐标为 . (3)△CDE 的面积为 .21.(7分)如图,在Rt △ABC 和Rt △DEF 中,∠C =∠F =90°,点 A 、E 、B 、D 在同一直线上,BC 、EF 交于点M ,AC =DF ,AB =DE . 求证:(1)∠CBA =∠FED ; (2)AM =DM .22.(7分)如图,在Rt △ABC 中,∠C =90°,AB =10,BC =6.(1)作图:作BC 边的垂直平分线分别交AB ,BC 于点E ,F .(用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)的条件下,求EF 的长.23.(6分)一次函数的图象经过点A (0,4)和B (2,0)两点. (1)求这个一次函数的表达式;(2)线段AB 与第一象限的角平分线交于点P ,则点P 的坐标为 .24.(8分)甲、乙两个探测气球分别从海拔5m 和15m 处同时出发,匀速上升60min .如图是甲、乙两个探测气球所在位置的海拔y (单位:m )与气球上升时间x (单位:min )的函数图象. (1)求这两个气球在上升过程中y 关于x 的函数解析式; (2)当这两个气球的海拔高度相差15m 时,求上升的时间.25.(7分)(1)如图1,在四边形ABCD 中,∠B =∠C =90°,点E 是边BC 上一点,AB =EC ,BE =CD ,连接AE 、DE ,求证△AED 是等腰直角三角形.(2)如图2,一次函数y =﹣2x +2的图象与y 轴交于点A ,与x 轴交于点B ,直线AC 交x 轴于点D ,且∠CAB =45°,则点D 的坐标为 .26.(12分)请你用学习“一次函数”中积累的经验和方法研究函数y =﹣2|x |+2的图象和性质,并解决问题.(1)①当x =0时,y =﹣2|x |+2=2; ②当x >0时,y =﹣2|x |+2= ; ③当x <0时,y =﹣2|x |+2=; 显然,②和③均为某个一次函数的一部分.(2)在平面直角坐标系中,作出函数y =﹣2|x |+2的图象.(3)一次函数y =kx +b (k 为常数,k ≠0)的图象过点(1,3),若{y =kx +b y =−2|x|+2无解,结合函数的图象,直接写出k 的取值范围.。
江苏省扬州市第一学期八年级数学期末试卷(含解析)一、选择题1.如图,在平面直角坐标系中,△ABC 位于第二象限,点A 的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于x 轴对称的△A 2B 2C 2,则点A 的对应点A 2的坐标是( )A .(-3,2)B .(2,-3)C .(1,-2)D .(-1,2)2.下列四个实数:223,0.1010017π,3,,其中无理数的个数是( ) A .1个 B .2个 C .3个 D .4个 3.下列长度的三条线段能组成直角三角形的是( )A .3,4,4B .3,4,5C .3,4,6D .3,4,84.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .5.如图,一次函数(0)y kx b k =+>的图象过点(0,2),则不等式20kx b +->的解集是( )A .0x >B .0x <C .2x <D .2x >6.在-227,-π,0,3.14, 0.1010010001,-313中,无理数的个数有 ( ) A .1个 B .2个 C .3个 D .4个7.如果0a b -<,且0ab <,那么点(),a b 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.如果等腰三角形两边长是5cm 和2cm ,那么它的周长是( )A .7cmB .9cmC .9cm 或12cmD .12cm9.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,0 10.在平面直角坐标系中,点M (﹣3,2)关于y 轴对称的点的坐标为( )A .(﹣3,﹣2)B .(﹣2,﹣3)C .(3,2)D .(3,﹣2)二、填空题11.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.12.如图,点A 的坐标为(-2,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标是__________.13.如图,在Rt △ABC 中,∠C =90°,BC =6cm ,AC =8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′处,那么CD =_____.14.已知22139273m ⨯⨯=,求m =__________.15.若分式293x x --的值为0,则x 的值为_______.16.已知某地的地面气温是20℃,如果每升高1000m 气温下降6℃,则气温t (℃)与高度h (m )的函数关系式为_____.17.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是 .18.在△ABC 中,已知AB =15,AC =11,则BC 边上的中线AD 的取值范围是____. 19.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是_________.20.若点P (3m ﹣1,2+m )关于原点的对称点P ′在第四象限的取值范围是_____.三、解答题21.解方程:12242x x x -=--. 22.(1)计算:()()21320192π-+-+- (2)解方程:2416x =23.在等边△ABC 的两边AB 、AC 所在直线上分别有两点M 、N ,D 为△ABC 外一点,且∠MDN=60°,∠BDC=120°,BD=DC .探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及△AMN 的周长x 与等边△ABC 的周长y 的关系.(1)如图1,当点M 、N 边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; 此时xy= ; (2)如图2,点M 、N 在边AB 、AC 上,且当DM≠DN 时,猜想( I )问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M 、N 分别在边AB 、CA 的延长线上时,探索BM 、NC 、MN 之间的数量关系如何?并给出证明.24.如图,一辆货车和一辆轿车先后从甲地开往乙地,线段OA 表示货车离开甲地的距离y (km )与时间x (h )之间的函数关系;折线BCD 表示轿车离开甲地的距离y (km )与时间x (h )之间的函数关系.请根据图象解答下列问题:(1)甲、乙两地相距km,轿车比货车晚出发h;(2)求线段CD所在直线的函数表达式;(3)货车出发多长时间两车相遇?此时两车距离甲地多远?25.涟水外卖市场竞争激烈,美团、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,具体方案如下:每月不超出750单,每单收入4元;超出750单的部分每单收入m 元.(1)若某“外卖小哥”某月送了500单,收入元;(2)若“外卖小哥”每月收入为y(元),每月送单量为x单,y与x之间的关系如图所示,求y与x之间的函数关系式;(3)若“外卖小哥”甲和乙在某个月内共送单1200单,且甲送单量低于乙送单量,共收入5000元,问:甲、乙送单量各是多少?四、压轴题26.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.27.如图1.在△ABC中,∠ACB=90°,AC=BC=10,直线DE经过点C,过点A,B分别作AD⊥DE,BE⊥DE,垂足分别为点D和E,AD=8,BE=6.(1)①求证:△ADC≌△CEB;②求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N 以8个单位长度/秒的速度从点B出发沿着线BC—CA运动,到终点A.M,N两点同时出发,运动时间为t秒(t>0),当点N到达终点时,两点同时停止运动,过点M作PM⊥DE 于点P,过点N作QN⊥DE于点Q;①当点N在线段CA上时,用含有t的代数式表示线段CN的长度;②当t为何值时,点M与点N重合;③当△PCM与△QCN全等时,则t=.28.阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.(模型应用)应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=200.求线段BD的长.应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m 取何值,点Q 总在某条确定的直线上,请直接写出这条直线的解析式 .29.如图,以ABC 的边AB 和AC ,向外作等腰直角三角形ABE △和ACF ,连接EF ,AD 是ABC 的高,延长DA 交EF 于点G ,过点F 作DG 的垂线交DG 于点H .(1)求证:FHA ADC ≌△△; (2)求证:点G 是EF 的中点.30.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF ①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】首先利用平移的性质得到△A 1B 1C 1,进而利用关于x 轴对称点的性质得到△A 2B 2C 2,即可得出答案. 【详解】如图所示:点A 的对应点A 2的坐标是:(2,﹣3).故选B .2.B解析:B 【解析】 【分析】根据无理数的定义解答即可. 【详解】227,0.101001是有理数; 33. 故选B. 【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3π等;②235③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.3.B解析:B 【解析】 【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可. 【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误; B 、∵2223+4=5,∴三条线段能组成直角三角形,正确;C、∵222≠,∴三条线段不能组成直角三角形,错误;3+46D、∵222≠,∴∴三条线段不能组成直角三角形,错误;3+48故选:B.【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.4.D解析:D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.5.A解析:A【解析】【分析】由图知:一次函数y=kx+b的图象与y轴的交点为(0,2),且y随x的增大而增大,由此得出当x>0时,y>2,进而可得解.【详解】根据图示知:一次函数y=kx+b的图象与y轴的交点为(0,2),且y随x的增大而增大;即当x>0时函数值y的范围是y>2;因而当不等式kx+b-2>0时,x的取值范围是x>0.故选:A.【点睛】本题主要考查的是一次函数与一元一次不等式,在解题时,认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.6.A解析:A【解析】【分析】根据无理数的定义进行求解.【详解】解:无理数有:−π,共1个.故选:A.【点睛】本题考查了无理数,解答本题的关键是掌握无理数常见的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.7.B解析:B 【解析】 【分析】根据0a b -<,且0ab <可确定出a 、b 的正负情况,再判断出点(),a b 的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答. 【详解】解:∵0a b -<,且0ab <, ∴a 0,0b <> ∴点(),a b 在第二象限 故选:B 【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.D解析:D 【解析】 【分析】因为题中没有说明已知两边哪个是底,哪个是腰,所以要分情况进行讨论. 【详解】解:当三边是2cm ,2cm ,5cm 时,不符合三角形的三边关系; 当三角形的三边是5cm ,5cm ,2cm 时,符合三角形的三边关系, 此时周长是5+5+2=12cm . 故选:D . 【点睛】考查了等腰三角形的性质,此类题注意分情况讨论,还要看是否符合三角形的三边关系.9.B解析:B 【解析】 【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论. 【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0. 故选: B. 【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.10.C解析:C 【解析】 【分析】直接利用关于y 轴对称则纵坐标相等横坐标互为相反数进而得出答案. 【详解】解:点M (﹣3,2)关于y 轴对称的点的坐标为:(3,2). 故选:C . 【点睛】本题考查的知识点是关于x 轴、y 轴对称的点的坐标,属于基础题目,易于掌握.二、填空题11.y=2x+1. 【解析】由“上加下减”的原则可知,将函数y=2x 的图象向上平移1个单位所得函数的解析式为y=2x+1, 故答案为y=2x+1.解析:y=2x+1. 【解析】由“上加下减”的原则可知,将函数y=2x 的图象向上平移1个单位所得函数的解析式为y=2x+1, 故答案为y=2x+1.12.【解析】 【分析】过A 作AC ⊥直线y=x 于C ,过C 作CD ⊥OA 于D ,当B 和C 重合时,线段AB 最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.--解析:(1,1)【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.【详解】解:过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,∵直线y=x,∴∠AOC=45°,∴∠OAC=45°=∠AOC,∴AC=OC,由勾股定理得:2AC2=OA2=4,∴2,由三角形的面积公式得:AC×OC=OA×CD,22=2CD,∴CD=1,∴OD=CD=1,∴B(-1,-1).故答案为:(-1,-1).【点睛】本题考查的是一次函数的性质,涉及到垂线段最短,等腰直角三角形的判定与性质,勾股定理等知识点的应用,关键是得出当B和C重合时,线段AB最短,题目比较典型,主要培养了学生的理解能力和计算能力.13.3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解析:3cm .【解析】【分析】利用勾股定理列式求出AB ,根据翻折变换的性质可得BC ′=BC ,C ′D =CD ,然后求出AC ′,设CD =x ,表示出C ′D 、AD ,然后利用勾股定理列方程求解即可.【详解】解:∵∠C =90°,BC =6cm ,AC =8cm ,∴AB 10cm ,由翻折变换的性质得,BC ′=BC =6cm ,C ′D =CD ,∴AC ′=AB ﹣BC ′=10﹣6=4cm ,设CD =x ,则C ′D =x ,AD =8﹣x ,在Rt △AC ′D 中,由勾股定理得,AC ′2+C ′D 2=AD 2,即42+x 2=(8﹣x )2,解得x =3,即CD =3cm .故答案为:3cm .【点睛】本题考查了翻折变换的性质,勾股定理,此类题目熟记性质并利用勾股定理列出方程是解题的关键.14.8【解析】【分析】根据幂的乘方可得,,再根据同底数幂的乘法法则解答即可.【详解】∵,即,∴,解得,故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练解析:8【解析】【分析】根据幂的乘方可得293m m ,3273=,再根据同底数幂的乘法法则解答即可.【详解】∵22139273m ⨯⨯=,即22321333m,∴22321m,解得8m=,故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.15.-3【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】解:根据题意得:,解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2解析:-3【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】解:根据题意得:29=030 xx⎧-⎨-≠⎩,解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.16.t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温解析:t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温t(℃)与高度h(m)的函数关系式为t=﹣0.006h+20,故答案为:t=﹣0.006h+20.【点睛】本题考查了函数关系式,正确找出气温与高度之间的关系是解题的关键.17..【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,,.解析:(21)【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB, BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).18.2<AD<13【解析】【分析】延长AD至E,使得DE=AD,连接CE,然后根据“边角边”证明△ABD和△ECD全等,再根据全等三角形对应边相等可得AB=CE,然后利用三角形任意两边之和大于第三解析:2<AD<13【解析】【分析】延长AD至E,使得DE=AD,连接CE,然后根据“边角边”证明△ABD和△ECD全等,再根据全等三角形对应边相等可得AB=CE,然后利用三角形任意两边之和大于第三边,两边之和小于第三边求出AE的取值范围,从而得解.【详解】解:如图,延长AD至E,使得DE=AD,连接CE,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,∵AD=DE,∠ADB=∠EDC,BD=CD∴△ABD≌△ECD(SAS),∴AB=CE,∵AB=15,∴CE=15,∵AC=11,∴在△ACE中,15-11=4,15+11=26,∴4<AE<26,∴2<AD<13;故答案为:2<AD<13.【点睛】本题既考查了全等三角形的性质与判定,也考查了三角形的三边的关系,解题的关键是将中线AD延长得AD=DE,构造全等三角形,然后利用三角形的三边的关系解决问题.19.a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为a>b.【点睛】本题考查一次函数图象上点的坐标特征解析:a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为a>b.【点睛】本题考查一次函数图象上点的坐标特征.20.﹣2<m<【解析】【分析】直接利用关于原点对称点的性质得出P′(﹣3m+1,﹣2﹣m),进而得出不等式组答案.【详解】∵点P(3m﹣1,2+m)关于原点的对称点P′(﹣3m+1,﹣2﹣m)解析:﹣2<m<1 3【解析】【分析】直接利用关于原点对称点的性质得出P′(﹣3m+1,﹣2﹣m),进而得出不等式组答案.【详解】∵点P(3m﹣1,2+m)关于原点的对称点P′(﹣3m+1,﹣2﹣m)在第四象限,∴31020m m -+>⎧⎨--<⎩, 解得:﹣2<m <13, 故答案为:﹣2<m <13. 【点睛】此题主要考查根据对称性和象限的性质求点坐标参数的取值范围,熟练掌握,即可解题.三、解答题21.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:x -2=4(x -2)解得:x =2.检验:当x =2时,2(x -2)=0,∴x =2是增根.∴方程无解.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(12;(2)122,2x x ==-.【解析】【分析】(1)先化简绝对值、利用零指数幂法则计算、化简二次根式,最后计算加减法即可得到结果;(2)先变形为24x =,然后利用直接开平方法解方程即可.【详解】解:(1)()012019π-+-+112++=2(2)2416x =∴24x =∴122,2x x ==-【点睛】此题考查了实数的运算及一元二次方程的解法,熟练掌握运算法则及一元二次方程的解法是解本题的关键.23.(1)BM+NC=MN;23xy;(2)成立:BM+NC=MN;(3)BM+MN=NC.证明见解析.【解析】【分析】(1)由DM=DN,∠MDN=60°,可证得△MDN是等边三角形,又由△ABC是等边三角形,CD=BD,易证得Rt△BDM≌Rt△CDN,然后由直角三角形的性质,即可求得BM、NC、MN之间的数量关系 BM+NC=MN,此时2 =3xy;(2)在CN的延长线上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,即可得DM=DM1,易证得∠CDN=∠MDN=60°,则可证得△MDN≌△M1DN,然后由全等三角形的性质,即可得结论仍然成立;(3)首先在CN上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,即可得DM=DM1,然后证得∠CDN=∠MDN=60°,易证得△MDN≌△M1DN,则可得NC-BM=MN.【详解】解:(1)如图1,BM、NC、MN之间的数量关系 BM+NC=MN.此时2 =3 xy.理由:∵DM=DN,∠MDN=60°,∴△MDN是等边三角形,∵△ABC是等边三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°,∵DM=DN,BD=CD,∴Rt△BDM≌Rt△CDN,∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN;∴AM=AN,∴△AMN是等边三角形,∵AB=AM+BM,∴AM:AB=2:3,∴2 =3xy;(2)猜想:结论仍然成立.证明:在NC的延长线上截取CM1=BM,连接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,∴△AMN的周长为:AM+MN+AN=AM+BM+CN+AN=AB+AC,∴2 =3xy;(3)证明:在CN上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,∴DM=DM1,可证∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N,∴NC-BM=MN.【点睛】此题考查了等边三角形,直角三角形,等腰三角形的性质以及全等三角形的判定与性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用与辅助线的作法.24.(1)300;1.2(2)y=110x﹣195(3)3.9;234千米【解析】【分析】(1)由图象可求解;(2)利用待定系数法求解析式;(3)求出OA解析式,联立方程组,可求解.【详解】解:(1)由图象可得:甲、乙两地相距300km,轿车比货车晚出发1.2小时;故答案为:300;1.2;(2)设线段CD所在直线的函数表达式为:y=kx+b,由题意可得:300=4.580 2.5k bk b+⎧⎨=+⎩解得:110195 kb=⎧⎨=-⎩∴线段CD所在直线的函数表达式为:y=110x﹣195;(3)设OA解析式为:y=mx,由题意可得:300=5m,∴m=60,∴OA解析式为:y=60x,∴60110195 y xy x=⎧⎨=-⎩∴3.9234 xy=⎧⎨=⎩答:货车出发3.9小时两车相遇,此时两车距离甲地234千米.【点睛】本题考查了一次函数的应用,理解图象,是本题的关键.25.(1)2000;(2)y=5x﹣750;(3)甲送250单,乙送950单【解析】【分析】(1)根据题意可以求得“外卖小哥”某月送了500单的收入情况;(2)分段函数,运用待定系数法解答即可;(3)根据题意,利用分类讨论的方法可以求得甲、乙送单量各是多少.【详解】解:(1)由题意可得,“外卖小哥”某月送了500单,收入为:4×500=2000元,故答案为:2000;(2)当0≤x<750时,y=4x当x≥750时,当x=4时,y=3000设y=kx+b,根据题意得3000750 55001250k bk b=+⎧⎨=+⎩,解得5750k b =⎧⎨=-⎩, ∴y =5x ﹣750;(3)设甲送a 单,则a <600<750,则乙送(1200﹣a )单,若1200﹣a <750,则4a +4(1200﹣a )=4800≠5000,不合题意,∴1200﹣a >750,∴4a +5(1200﹣a )﹣750=5000,∴a =250,1200﹣a =950,故甲送250单,乙送950单.【点睛】本题考查的知识点是一次函数的应用以及二元一次方程组,从函数图象中找出有用的信息是解此题的关键.四、压轴题26.(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t +272或S=32t ﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或9+或9﹣或6时,△APQ 为等腰三角形.【解析】分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()2222(71)032103,t -++-=++-当AQ =PA 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点,∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3),把点P 的坐标代入212y x b =+ 得,()1312b =⨯-+,解得72b =; (2)∵72b =; ∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0),∴当Q 在A . C 之间时,AQ =2+7−t =9−t , ∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9, ∴11327(9)32222S AQ yP t t ;=⋅=⨯-⨯=- 即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =- ②∵S <3, ∴273322t -<或327 3.22t -< 解得7<t <9或9<t <11. ③存在;设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去), 当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =- 当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-, 解得t =6.故当t 的值为3或9+9-6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.27.(1)①证明见解析;②DE =14;(2)①8t -10;②t =2;③t =10,211【解析】【分析】(1)①先证明∠DAC =∠ECB ,由AAS 即可得出△ADC ≌△CEB ;②由全等三角形的性质得出AD =CE =8,CD =BE =6,即可得出DE =CD +CE =14; (2)①当点N 在线段CA 上时,根据CN =CN−BC 即可得出答案;②点M与点N重合时,CM=CN,即3t=8t−10,解得t=2即可;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,则CM=CN,得3t=10−8t,解得t=1011;当点N在线段CA上时,△PCM≌△QCN,则3t=8t−10,解得t=2;即可得出答案.【详解】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中ADC CEBDAC ECBAC CB∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=1011;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t=8t−10,解得:t=2;综上所述,当△PCM与△QCN全等时,则t等于1011s或2s,故答案为:1011s或2s.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.28.模型建立:见解析;应用1:2:(1)Q(1,3),交点坐标为(52,0);(2)y=﹣x+4【解析】【分析】根据AAS证明△BEC≌△CDA,即可;应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP 相交于点H,易得:△OKQ≌△QHP,设H(4,y),列出方程,求出y的值,进而求出Q(1,3),再根据中点坐标公式,得P(4,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+4,进而即可得到结论.【详解】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=200,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∴DH=6+8=14,∵BH⊥DC,∴BD=22260BH DH+==265;应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易:△OKQ≌△QHP(AAS),设H(4,y),那么KQ=PH=y﹣m=y﹣2,OK=QH=4﹣KQ=6﹣y,又∵OK=y,∴6﹣y=y,y=3,∴Q(1,3),∵折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,∴点M是OP的中点,∵P(4,2),∴M(2,1),设直线Q M的函数表达式为:y=kx+b,把Q(1,3),M(2,1),代入上式得:213k bk b+=⎧⎨+=⎩,解得:25kb=-⎧⎨=⎩∴直线l的函数表达式为:y=﹣2x+5,∴该直线l与x轴的交点坐标为(52,0);(2)∵△OKQ≌△QHP,∴QK=PH,OK=HQ,设Q(x,y),∴KQ=x,OK=HQ=y,∴x+y=KQ+HQ=4,∴y=﹣x+4,∴无论m取何值,点Q总在某条确定的直线上,这条直线的解析式为:y=﹣x+4,故答案为:y=﹣x+4.【点睛】本题主要考查三角形全等的判定和性质定理,勾股定理,一次函数的图象和性质,掌握“一线三垂直”模型,待定系数法是解题的关键.29.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先利用同角的余角相等得到一对角相等,再由一对直角相等,且AF AC =,利用AAS 得到AFH CAD ∆≅∆;(2)由(1)利用全等三角形对应边相等得到FH AD =,再EK AD ⊥,交DG 延长线于点K ,同理可得到AD EK =,等量代换得到FK EH =,再由一对直角相等且对顶角相等,利用AAS 得到FHG EKG ≅△△,利用全等三角形对应边相等即可得证.【详解】证明:(1) ∵FH AG ⊥,90AEH EAH ∴∠+∠=︒,90FAC ∠=︒,90FAH CAD ∴∠+∠=︒,AFH CAD ∴∠=∠,在AFH ∆和CAD ∆中,90AHF ADC AFH CADAF AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()AFH CAD AAS ∴∆≅∆,(2)由(1)得AFH CAD ∆≅∆,FH AD ∴=,作FK AG ⊥,交AG 延长线于点K ,如图;同理得到AEK ABD ∆≅∆,EK AD ∴=,FH EK ∴=,在EKG ∆和FHG ∆中,90EKG FHG EGK FGHEK FH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()EKG FHG AAS ∴∆≅∆,EG FG ∴=.即点G 是EF 的中点.【点睛】此题考查了全等三角形的判定与性质,熟练掌握K 字形全等进行证明是解本题的关键.30.(1)①见解析;②DE =297;(2)DE 的值为 【解析】【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE =∠ACF =45°,∴∠DCF =90°,∵△AED ≌△AFD (SAS ),∴DE =DF =x ,∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,∴x 2=(7﹣x )2+32,∴x =297, ∴DE =297; (2)∵BD =3,BC =9,∴分两种情况如下:①当点E 在线段BC 上时,如图2中,连接BE .∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.。
江苏省扬州市邗江区2020-2021学年八年级上学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下面四个图案中,不是..轴对称图形的是( )A .AB .BC .CD .D2.在实数227,0,π,中,无理数的个数是( ) A .1 B .2 C .3 D .43.如图,BF=EC ,∠B=∠E,请问添加下面哪个条件不能判断△ABC≌△DEF( )A .AC=DFB .AB=EDC .DF∥ACD .∠A=∠D 4.如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是 A .15cm B .16cm C .17cm D .16cm 或17cm 5.下列各式中,计算正确的是( )A =4B 5CD 5 6.一次函数y =﹣2x+3的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 7.如图,在Rt △ABC 中,∠C =90°,AC =5cm ,BC =12cm ,∠CAB 的平分线交BC 于D ,过点D 作DE ⊥AB 于E ,则DE 的长为( )A .4B .3C .83D .1038.如图,A ,B 的坐标分别为(2,0),(0,1),将线段AB 平移至A 1B 1,连接BB 1,AA 1,则四边形ABB 1A 1的面积为( )A .2B .3C .4D .5二、填空题 9.点(34)P -,关于x 轴对称的点的坐标是___________.10.(2= .11.已知等腰三角形一个角是100︒,则它的底角等于________________.12.如图,直线y kx b =+与直线y mx n =+交于P 3(1,)2,则方程组0,0kx y b mx y n -+=⎧⎨-+=⎩的解是____.13.比较大小:2-(填“>”或“<”或“=”).14.如图,函数2y x =和4y ax =+的图象相交于点A (m ,3),则不等式24x ax >+的解集为___________.15.已知a 、b 、c 是△ABC 的三边长且c=5,a 、b (b ﹣3)2=0,则△ABC 的形状为_______三角形.16.如图,Rt △ABC 中,∠C =90°,AC =13.5,BC =9,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段CN 的长为___________.17.若1212()()m x x y y =--,且A 11(,)x y 、B 22(,)x y 是一次函数3y ax x b =-+图像上两个不同的点,当0m <时,a 的取值范围是______.三、解答题18. (1)求x 的值:2490x -= (2)计算:038(12)4---+ 19.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形ABC (顶点是网格线的交点的三角形)的顶点A ,C 的坐标分别为(4-,3),(1-,1).(1)请在如图所示的网格平面内,作出平面直角坐标系;(2)请作出ABC ∆关于y 轴对称的'''A B C ∆;(3)写出点'B 的坐标为___ __;(4)△ABC 的面积为__ _ .20.如图,已知四边形ABCD 是梯形,AD ∥BC ,∠A =90°,BC =BD ,CE ⊥BD ,垂足为E .(1)求证:△ABD ≌△ECB ;(2)若∠DBC =50°,求∠DCE 的度数.21.如图,一架长2.5m 的梯子AB 斜靠在墙AC 上,∠C=90°,此时,梯子的底端B 离墙底C 的距离BC 为0.7m .(1)求此时梯子的顶端A 距地面的高度AC ;(2)如果梯子的顶端A 下滑了0.9m ,那么梯子的顶端B 在水平方向上向右滑动了多远?22.在直角坐标系中画出一次函数24y x =-的图像,并完成下列问题:(1)此函数图像与坐标轴围成的三角形的面积是______;(2)观察图像,当04x ≤≤时,y 的取值范围是______;(3)将直线24y x =-平移后经过点(3,1)-,求平移后的直线的函数表达式.23.如图,已知一次函数43y x m =+的图像与x 轴交于点A (6,0)-,交y 轴于点B . (1)求m 的值与点B 的坐标;(2)若点C 在y 轴上,且使得△ABC 的面积为12,请求出点C 的坐标.(3)若点P 在x 轴上,且△ABP 为等腰三角形,请直接..写出点P 的坐标.24.如图,在△ABC 中,BD ⊥AC 于D ,CE ⊥AB 于E ,M ,N 分别是BC ,DE 的中点. (1)求证:MN ⊥DE ;(2)若BC=20,DE=12,求△MDE 的面积.25.对于平面直角坐标系中的任意两点111(,)P x y ,222(,)Px y ,我们把1212x x y y -+-叫做1P 、2P 两点间的“转角距离”,记作11(,)d P P .(1)令0(3,4)P -,O 为坐标原点,则0(,)d O P = ;(2)已知O 为坐标原点,动点(,)P x y 满足(,)2d O P =,请写出x 与y 之间满足的关系式,并在所给的直角坐标系中,画出所有符合条件的点P 所组成的图形;(3)设000(,)P x y 是一个定点,(,)Q x y 是直线y ax b =+上的动点,我们把0(,)d P Q 的最小值叫做0P 到直线y ax b =+的“转角距离”.若(,2)P a -到直线4y x =+的“转角距离”为10,求a 的值.26.甲、乙两人共同加工一批零件,从工作开始到加工完这批零件,两人恰好同时工作6小时,两人各自加工零件的个数y (个)与加工时间x (小时)之间的函数图像如图所示,根据信息回答下列问题:(1)请解释图中点C 的实际意义;(2)求出甲、乙在整个过程中的函数表达式(并注明自变量的范围);(3)如果甲、乙两人完成同样数量的零件时,甲比乙少用1小时,那么此时甲、乙两人各自完成多少个零件?27.背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图①,当△ABC三个内角均小于120°时,费马点P在△ABC内部,此时∠APB=∠BPC =∠CPA=120°,此时,PA+PB+PC的值最小.解决问题:(1)如图②,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB=;基本运用:(2)请你利用第(1)题的解答思想方法,解答下面问题:如图③,△ABC中,∠CAB=90°,AB=AC,E,F为BC上的点,且∠EAF=45°,判断BE,EF,FC之间的数量关系并证明;能力提升:(3)如图④,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为Rt△ABC的费马点,连接AP,BP,CP,求PA+PB+PC的值.参考答案1.B【解析】A 是轴对称图形,不符合题意;B 不是轴对称图形,符合题意;C 是轴对称图形,不符合题意;D 是轴对称图形,不符合题意,故选B.2.C【解析】在实数227,0,π,中,无理数有 π共3个, 故选C.3.A【解析】因为:BF=EC ,则EF=BC, 又因为∠B=∠E,若AB=ED ,则构成SAS 定理;若DF∥AC,则ACB DFE ∠=∠ ,构成AAS 定理若∠A=∠D,则构成ASA 定理,若AC=DF ,则构成SSA ,不能判断两三角形全等故选A.4.D【解析】试题分析:已知等腰三角形的两边长,但没指出哪个是腰哪个是底,故应该分两种情况进行分析.解:(1)当腰长是5cm 时,周长=5+5+6=16cm ;(2)当腰长是6cm 时,周长=6+6+5=17cm .故选D .考点:等腰三角形的性质.5.A【解析】A. ,正确;=5,故错误;,故错误;D. ,故错误;故选:A.6.C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C.7.D【解析】∵AD是∠CAB的平分线,∠C=90°,DE⊥AB,∴CD=DE,在Rt△ACD和Rt△AED中,AD AD CD DE=⎧⎨=⎩,∴Rt△ACD≌Rt△AED(HL),∴AE=AC=5cm,由勾股定理得,=13cm,∴BE=AB-AE=13-5=8cm,∵BD+CD=BC=12cm,∴BD=12-DE ,在Rt△BDE中,由勾股定理有:BD2=DE2+BE2,即:(12-DE)2=DE2+82,∴DE=103,故选D.8.B。
2020—2021学年扬州市八年级第一学期数学期末模拟卷A
一.选择题(共8小题,满分24分,每小题3分)
1.(3分)下列艺术字中,可以看作是轴对称图形的是()
A.B.C.D.
【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A、不是轴对称图形,故A错误;
B、不是轴对称图形,故B错误;
C、是轴对称图形,故C正确;
D、不是轴对称图形,故D错误;
故选:C.
【点评】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)下列说法中正确的是()
A.带根号的数是无理数
B.无理数不能在数轴上表示出来
C.无理数是无限小数
D.无限小数是无理数
【分析】举出反例如√4,循环小数1.333…,即可判断A、D;根据数轴上能表示任何一个实数即可判断B;根据无理数的定义即可判断C.
【解答】解:A、如√4=2,不是无理数,故本选项错误;
B、无理数都能在数轴上表示出来,故本选项错误;
C、无理数是无限不循环小数,即无理数都是无限小数,故本选项正确;
D、如1.33333333…,是无限循环小数,是有理数,故本选项错误;
故选:C.
【点评】本题考查了对无理数的意义的理解和运用,无理数包括:①开方开不尽的数,②含π的,③一些有规律的数.
3.(3分)以下列各组数为边长,不能构成直角三角形的是()
A.5,12,13B.1,2,√5C.1,√3,2D.4,5,6。
江苏省扬州市邗江区2020-2021学年八年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.以下列各组数据为边长作三角形,其中能组成直角三角形的是( ). A .3,5,3B .4,6,8C .7,24,25D .6,12,133.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( ) A .50°B .80°C .50°或80°D .40°或65°4.如图所示,在下列条件中,不能判断△ABD ≌△BAC 的条件是( )A .∠D =∠C ,∠BAD =∠ABCB .∠BAD =∠ABC ,∠ABD =∠BAC C .BD =AC ,∠BAD =∠ABCD .AD =BC ,BD =AC5.已知点M (1-2m ,m-1)在第二象限,则m 的取值范围是( ) A .1<2m B .>1m C .1<m<12D .1<m<12-6.如图,直线y=x+b 与直线y=kx+6交于点P (1,3),则关于x 的不等式x+b>kx+6的解集是( )A .1x <B .1x >C .3x >D .3x <7.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为( )A.6 B.8 C.10 D.128.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2018的面积是()A.504m2B.10092m2C.10112m2D.1009m2二、填空题9.9的平方根是_________.10.小亮的体重为43.85kg,若将体重精确到1kg,则小亮的体重约为_____kg.11.如图,O对应的有序数对为(1,3)有一个英文单词的字母顺序对应如图中的有序数对分别为(1,2),(5,1),(5,2),(5,2),(1,3),请你把这个英文单词写出来或者翻译成中文为________.12.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为.13.在平面直角坐标系中,已知一次函数y=x−1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1_____y2(填“>”,“<”或“=”)14.如图所示,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是________.15.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于_______.16.在平面直角坐标系中,直线l 1∥l 2,直线l 1对应的函数表达式为12y x =,直线l 2分别与x 轴、y 轴交于点A ,B ,OA=4,则OB=_____.17.如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,点D 在BC 边上,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则AD =_____cm .18.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行.直线:3l y x =-沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图1中的点A 的坐标为__________,图2中b 的值为__________.三、解答题19.(1(2)求满足条件的x值:(x﹣1)2=4.20.如图1是3×3的正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,(要求:绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图2中的两幅图就视为同一种图案),请在图3中的四幅图中完成你的设计.21.如果用c表示摄氏温度,f表示华氏温度,则c与f之间的关系为:5 (32) 9c f=-,试分别求:(1)当f=68和f=-4时,c的值;(2)当c=10时,f的值.22.已知:∠1=∠2,∠3=∠4.求证:AC=AD23.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:A D=BC.24.如图,直线8y kx =+分别与x 轴,y 轴相交于A ,B 两点,0为坐标原点,A 点的坐标为(4,0) (1)求k 的值;(2)过线段AB 上一点P(不与端点重合)作x 轴,y 轴的垂线,乖足分别为M ,N.当长方形PMON 的周长是10时,求点P 的坐标.25.如图为一个广告牌支架的示意图,其中AB=13m ,AD=12m ,BD=5m ,AC=15m ,求图中△ABC 的周长和面积.26.(1)如图(1)在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE =BD +CE ;(2)如图(2)将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请给出证明;若不成立,请说明理由.27.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?28.如图所示,已知点M(1,4),N(5,2),P(0,3),Q(3,0),过P,Q两点的直线的函数表达式为y=﹣x+3,动点P从现在的位置出发,沿y轴以每秒1个单位长度的速度向上移动,设移动时间为ts.(1)若直线PQ随点P向上平移,则:①当t=3时,求直线PQ的函数表达式.②当点M,N位于直线PQ的异侧时,确定t的取值范围.(2)当点P移动到某一位置时,△PMN的周长最小,试确定t的值.(3)若点P向上移动,点Q不动.若过点P,Q的直线经过点A(x0,y0),则x0,y0需满足什么条件?请直接写出结论.参考答案1.C 【分析】根据轴对称图形的意义:如果一个图形沿一条直线对折后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形;据此判断即可. 【详解】解:图A 、图B 、图D 分别沿一条直线折叠,直线两旁的部分能够完全重合,是轴对称图形; 而图C 不是轴对称图形; 故选:C . 【点睛】本题考查了轴对称图形的知识,解答本题的关键是掌握轴对称的特点. 2.C 【解析】试题分析:欲求证是否为直角三角形,这里给出三边的长,只要满足勾股定理的逆定理即可.A 、222335+≠;B 、222468+≠;C 、22272425+=;D 、22261213+≠.根据勾股定理7,24,25能组成直角三角形. 故选C .考点:勾股定理的逆定理. 3.C 【解析】试题分析:若50°是底角,则顶角的度数是180°-50°×2=80°,同时50°也可以作为顶角,故这个等腰三角形的顶角的度数是50°或80°,本题选C . 考点:等腰三角形 4.C 【解析】试题分析:本题已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,必须是这边和公共边的夹角对应相等,只有符合以上条件,才能根据三角形全等判定定理得出结论. 解:A 、符合AAS ,能判断△ABD ≌△BAC ; B 、符合ASA ,能判断△ABD ≌△BAC ;C、符合SSA,不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.所以根据全等三角形的判定方C、满足SSA不能判断两个三角形全等.故选C.考点:全等三角形的判定.5.B【解析】【分析】根据平面直角坐标系中第二象限点的符号特征(,)-+可列出关于m的不等式组,求解即可. 【详解】解:根据题意可得12010mm-<⎧⎨->⎩①②解不等式①得:12 m>解不等式②得:1m∴该不等式组的解集是1m.故选B【点睛】本题考查了平面直角坐标系中象限点的特征及不等式组的解法,根据象限点的特征列出不等式组是解题的关键.6.B【解析】【分析】观察函数图象得到x>1时,函数y=x+b的图象都在y=kx+6上方,所以关于x的不等式x+b>kx+6的解集为x>1.【详解】当x>1时,x+b>kx+6,即不等式x+b>kx+6的解集为x>1,故答案为x>1.故选B.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.7.C【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=8+12×4=8+2=10.故选:C.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.8.A【分析】由OA4n=2n知OA2017=20162+1=1009,据此得出A2A2018=1009-1=1008,据此利用三角形的面积公式计算可得.由题意知OA 4n =2n ,∴OA 2016=2016÷2=1008,即A 2016坐标为(1008,0), ∴A 2018坐标为(1009,1), 则A 2A 2018=1009-1=1008(m), ∴22018OA A S=12 A 2A 2018×A 1A 2=12×1008×1=504(m 2). 故选:A. 【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得. 9.±3 【解析】分析:根据平方根的定义解答即可. 详解:∵(±3)2=9, ∴9的平方根是±3. 故答案为±3. 点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 10.44 【分析】利用四舍五入得到近似数,得到答案. 【详解】解:43.85≈44(kg ) ∴小亮的体重约为44kg , 故答案为:44. 【点睛】本题考查的是近似数和有效数字,掌握近似数的概念、四舍五入的方法是解题的关键. 11.HELLO 【解析】。
一、选择题(本大题共10小题,每小题3分,共30分) 1.64的算术平方根为()A .±8B .8C .-8D .162.点−P (2,3)关于y 轴的对称点是 ( ) A.−(2,3) B.(2,3)C.−−(2,3)D.−(2,3)3.将23 700精确到千位并用科学记数法表示为( ) A .2.37×104 B .2.4×104 C .23.7×103D .24×1034.下列四个图形中,是轴对称图形的有()A .1个B .2个C .3个D .4个5.一次函数y =3x -4的图象不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限 6.下列各组数据,能作为直角三角形的三边长的是( )A .11,15,13B .1,4,5C .8,15,17D .4,5,67.若点M 在第四象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为 ( ) A .(1,-2) B .(2,1) C .(-2,1) D .(2,-1)8.9. 如图2,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB=230.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM +MN +NB 的长度和最短,则此时AM +NB =()A.13B. 10C. 7D. 89.如图,正方形网格中的每个小正方形边长都是1.已知A 、B 是两格点,若△ABC 为等腰三角形,且S △ABC =1.5,则满足条件的格点C 有( )A .1个B .2个C .3个D .4个10.如图,已知△ABC 中,∠ABC =50°,P 为△ABC 内一点,过点P 的直线MN 分别交AB 、BC 于点M 、N .若M 在P A 的中垂线上,N 在PC 的中垂线上,则∠APC 的度数为ABCPMNABab 苏科版八年级上册数学期末复习试卷二、填空题(本大题共8小题,每小题2分,共16分).12.若某个正数的两个平方根分别是2a -1与2a +5,则a = .13.已知点+−P a a (21,3)a . 14.等腰三角形的周长为16,其中一边为4,则另两边的长分别为 .15.如图,在Rt △ABC 中,∠B =90°,AC 边的垂直平分线ED 分别交AC 于点D ,交BC 于点E .已知AB=6,AC=10,则BE 为 .16.在平面直角坐标系中,将直线y =-2x +1向下平移4个单位长度后,所得直线的函数关系式为______. 17.一个高15米、周长8米的水塔,要建一条螺旋楼梯,绕水塔二圈半到顶,则螺旋楼梯的最短长度为 。
2021-2022学年江苏省扬州市扬州中学教育集团树人学校八年级上学期期末数学试题1.新冠疫情发生以来,各地根据教育部“停课不停教,停课不停学”的相关通知精神,积极开展线上教学.下列在线学习平台的图标中,是轴对称图形的是()A.B.C.D.2.下列实数0,,,π,其中,无理数共有()A.1个B.2个C.3个D.4个3.已知等腰三角形的两边长为4,5,则它的周长为()A. 13 B. 14 C. 15 D. 13 或 144.平面直角坐标系中,点(a2+1,2020)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.若关于x的方程﹣2x+b=0的解为x=2,则直线y=﹣2x+b一定经过点()A.(2,0)B.(0,3)C.(4,0)D.(2,5)6.如图,点B,C在线段AD上,AB=CD,AE∥BF,添加一个条件仍不能判定△AEC≌△BFD的是()D.∠E=∠F A.AE=BF B.CE=DF C.∠ACE=∠BDF7.满足下列条件时,不是直角三角形的是()A.,,B.C.D.,8.如图,点A,B,C在一次函数的图象上,它们的横坐标依次为,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积和是()A.1 B.3 C.D.9.的立方根是__________.10.已知一次函数的图像经过点,则________.11.如图,在x、y轴上分别截取OA、OB,使OA=OB,再分别以点A、B为圆心,以大于AB的长度为半径画弧,两弧交于点C.若C的坐标为(3a,a+10),则a=________.12.已知点,都在直线上,则______.(填“<”或“>”或“=”)13.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M表示的实数为_______14.若点关于原点的对称点在第四象限,则的取值范围是____________.15.如图,将一张长方形纸片如图所示折叠后,再展开.如果∠1=66°,那么∠2=________.16.如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是 _____.17.现有甲、乙两个长方体蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(小时)之间的函数图象如图所示,当甲、乙两池中水的深度相同时,则水的深度为______m.18.已知a,b,c分别是Rt△ABC的三条边长,c为斜边长,∠C=90°,我们把关于x的形如y=的一次函数称为“勾股一次函数”.若点P(﹣1,)在“勾股一次函数”的图象上,且Rt△ABC的面积是,则c的值是_____.19.(1)计算:﹣(﹣π)0+;(2)(2x﹣1)3﹣27=0.20.已知y﹣3与x+4成正比例,且当x=﹣1时,y=﹣3.求:(1)y与x之间的函数表达式;(2)当x=﹣5时,y的值.21.如图所示,在平面直角坐标系中,已知、、.(1)在平面直角坐标系中画出,则的面积是______;(2)若点D与点C关于y轴对称,则点D的坐标为______;(3)已知P为x轴上一点,若的面积为1,求点P的坐标.22.如图,有一张四边形纸片ABCD,AB⊥BC.经测得AB=9cm,BC=12cm,CD=8cm,AD=17cm.(1)求A、C两点之间的距离.(2)求这张纸片的面积.23.沛沛沿一段笔直的人行道行走,边走边欣赏风景,在由C走到D的过程中,通过隔离带的空隙P,刚好浏览完对面人行道宣传墙上的一条标语,具体信息如下:如图,// //,相邻两平行线间的距离相等,AC,BD相交于P,垂足为D.已知米.请根据上述信息求标语AB的长度______.24.如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC,(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=______°.25.如图,在平面直角坐标系xOy中,过点(﹣6,0)的直线l1与直线l2:y2=2x相交于点B(m,4).(1)求直线l1的表达式;(2)直线l1与y轴交于点M,求△BOM的面积.(3)若y2≥y1,直接写出x的取值范围.26.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图所示.(1)A,B两城相距千米;(2)当1≤t≤4时,求乙车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系式;(3)乙车出发后小时追上甲车.27.如图1,在矩形OACB中,点A,B分别在x轴、y轴正半轴上,点C在第一象限,OA=8,OB=6.(1)请直接写出点C的坐标;(2)如图②,点F在BC上,连接AF,把△ACF沿着AF折叠,点C刚好与线段AB上一点C′重合,求线段CF的长度;(3)如图3,动点P(x,y)在第一象限,且点P在直线y=2x﹣4上,点D在线段AC上,是否存在直角顶点为P的等腰直角三角形BDP,若存在,请求出直线PD的的解析式;若不存在,请说明理由.28.如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=﹣2x+12,求:①求点C的坐标;②求△OAC的面积.(2)在(1)的条件下,若P是x轴上的一个动点,直接写出当△POC是等腰三角形时P的坐标.(3)如图2,作∠AOC的平分线OF,若,垂足为E,OA=4,P是线段AC上的动点,过点P作OC,OA的垂线,垂足分别为M,N,试问PM+PN的值是否变化,若不变,求出PM+PN的值;若变化,请说明理由.。
江苏省扬州树人学校2021届数学八上期末检测试题一、选择题1.下列式子中不是分式的是( )A. B. C. D. 2.若把2a 1a 1+-变形为1a 1-,则下列方法正确的是( ) A.分子与分母同时乘a 1+ B.分子与分母同时除以a 1+C.分子与分母同时乘a 1-D.分子与分母同时除以a 1-3.一家工艺品厂按计件方式结算工资.暑假里,大学生小华去这家工艺品厂打工,第一天得到工资60元,第二天比第一天多做了10件,得到工资75元.如果设小华第一天做了x 件,依题意列方程正确的是( )A .607510x x =-B .607510x x =-C .607510x x =+D .607510x x=+ 4.已知a 2+a ﹣4=0,那么代数式:a 2(a+5)的值是( )A .4B .8C .12D .165.若x+y =12,xy =35,则x ﹣y 的值为( )A .2B .﹣2C .4D .±26.按一定规律排列的一列数:,,,,,,…,若、、依次表示这列数中的连续三个数,猜想、、满足的关系式是( )A. B. C. D.7.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,这两个对应三角形(如图)的对应点所具有的性质是( ).A .对应点所连线段都相等B .对应点所连线段被对称轴平分C .对应点连线与对称轴垂直D .对应点连线互相平行 8.在△ABC 中,AB=AC=5,BC=8,AD ⊥BC ,垂足为D ,BE 是边AC 上的中线,AD 与BE 相交于点G ,那么AG 的长为 ( ) A .1B .2C .3D .无法确定.9.如图,平行四边形ABCD 的对角线AC ,BD 交于点O ,AE 平分∠BAD 交BC 于点E ,且∠ADC =60°,AB =12BC ,连接OE ,下列结论:①∠CAD =30°;②S ABCD =AB•AC;③OB =AB :④OE =14BC .其中成立的有( )A.①②③B.①②④C.①③④D.②③④10.如图,AB=DB ,∠1=∠2,请问添加下面哪个条件不能判断△ABC ≌△DBE 的是( )A.BC=BEB.∠A=∠DC.∠ACB=∠DEBD.AC=DE11.下列四个图形中,通过旋转和平移能够全等图形的是( )A.③和④B.②和③C.②和④D.①②④12.如图,AB =CD ,AE ⊥BC ,DF ⊥BC ,垂足分别为E ,F ,CE =BF ,下列结论错误的是( )A .∠C =∠BB .DF ∥AEC .∠A+∠D =90° D .CF =BE 13.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )A .五边形B .六边形C .七边形D .八边形14.如右图,在ABC ∆中,90ACB ∠=︒,CD AD ⊥,垂足为点D ,有下列说法:①点A 与点B 的距离是线段AB 的长;②点A 到直线CD 的距离是线段AD 的长;③线段CD 是ABC ∆边AB 上的高;④线段CD 是BCD ∆边BD 上的高.上述说法中,正确的个数为( )A .1个B .2个C .3个D .4个 15.一个正多边形的内角和为900°,那么从一点引对角线的条数是( ) A .3B .4C .5D .6 二、填空题16.已知13a a +=,则221+=a a_____________________; 17.分解因式2212x y xy -+-=__________.【答案】()()11x y x y -+--18.如图,CA ⊥BC ,垂足为C ,AC =2cm ,BC =6cm ,射线BM ⊥BQ ,垂足为B ,动点P 从C 点出发以1cm/s 的速度沿射线CQ 运动,点N 为射线BM 上一动点,满足PN =AB ,随着P 点运动而运动,当点P 运动_____秒时,△BCA 与点P 、N 、B 为顶点的三角形全等.19.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____.20.已知等边三角形的高为6,在这个三角形所在的平面内有一个点,若点到的距离是1,点到的距离是2,则点到的最小距离与最大距离分别是_______. 三、解答题2101)( 3.14)π--22.计算:(1)1201(1)5(2004)2π-⎛⎫-+--- ⎪⎝⎭;(2)()()22482x y y y x x x ⎡⎤+-+-÷⎣⎦ 23.如图,等边三角形中,是线段上一点,是延长线上一点.连接,.点是线段的中点,,与延长线交于点.(1)若,求; (2)若,求证:.24.如图所示,在Rt ABC ∆中,AC BC <,90ACB ∠=,点D 在BC 上,CD CA =,点E 在AB 上,连接CE ,DE ,过点C 作CF CE ⊥交BA 的延长线于点F .若180CAB CDE ∠+∠=o ,DE 与AF 相等吗?请说明理由.25.已知12l l //,射线MN 分别和直线12,l l 交于点,A B ,射线ME 分别和直线12,l l 交于点,C D .点P 在MN 上(P 点与,,A B M 三点不重合).连接,PD PC .请你根据题意画出图形并用等式直接写出BDP ∠、ACP ∠、CPD ∠之间的数量关系.【参考答案】***一、选择题16.717.无18.0或4或8或12.19.1020.3和9三、解答题21.322.(1)3-;(2)24x -.23.(1)45°;(2)见解析【解析】【分析】(1)由等边三角形的性质可知∠ABC=∠ACB=60°,由平行线的性质可知∠NBC=60°,进一步求出∠ABN=120°,再由三角形内角和定理即可求出∠N 的度数;(2)先证△NBG ≌△AEG ,得到AG=NG ,AE=BN ,再证△ABN ≌△ACF ,即可推出AF=2AG .【详解】(1)∵△ABC 是等边三角形,∴∠ABC=∠ACB=60°,∵AC ∥BN ,∴∠NBC=∠ACB=60°,∴∠ABN=∠ABC+∠NBC=120°,∴在△ABN 中,∠N=180°-∠ABN-∠BAN=180°-120°-15°=45°;(2)∵AC ∥BN ,∴∠N=∠GAE ,∠NBG=∠AEG ,又∵点G 是线段BE 的中点,∴BG=EG ,∴△NBG ≌△AEG (AAS ),∴AG=NG ,AE=BN ,∵AE=CF ,∴BN=CF ,∵∠ACB=60°,∴∠ACF=180°-∠ACB=120°,∴∠ABN=∠ACF ,又∵AB=AC ,∴△ABN ≌△ACF (SAS ),∴AF=AN ,∵AG=NG=AN ,∴AF=2AG .【点睛】考查了等边三角形的性质,平行线的性质,三角形内角和定理,全等三角形的判定与性质等,解题的关键是能够熟练运用全等三角形的判定与性质.24.DE=AF,理由见解析【解析】【分析】先证明∠DCE =∠ACF 、∠CDE =∠CAF ,再根据AAS 证明△CDE ≌△CAF ,从而得到DE =AF.【详解】∵90ACB ∠=,CF CE ⊥,∴∠DCE+∠ECA=90o ,∠ACF+∠ECA=90o ,∴∠DCE=∠ACF,∵180CAB CDE ∠+∠=o ,∠CAE+∠CAF=180o ,∴∠CAF=∠CDE,在△CDE 和△CAF 中,CAF CDE DCE ACF CD CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDE ≌△CAF (AAS ),∴DE =AF.【点睛】考查了全等三角形的判定和性质,解题关键利用同角的补角相等和同角的余角相等证明∠DCE=∠ACF 、∠CAF=∠CDE.25.见解析。
江苏省扬州市扬州树人学校2020-2021学年第一学期期末试卷八年级数学
(满分:150分;考试时间:120分钟)
一.选择题(本题共8小题,每小题3分,共24分.) 1.下面有四个手机图案,其中是轴对称图形的是( )
2.小明体重为48.94kg ,这个数精确到十分位的近似值为( ) A.48 kg B.48.9 kg C.49 kg D.49.0 kg
3.在△ABC 中,下面条件不能构成直角三角形的是( )
A.9,12,15
B.14,48,50
C.∠A:∠B:∠C=3:4:5
D.1,2,3 4.如果点P (m ,1-2m )在第一象限,那么m 的取值范围是( ) A.210<
<m B.021<<-m C.0<m D.2
1>m 5.等腰三角形的底角等于50°,则该等腰三角形的顶角度数为( )
A.50°
B.80°
C.65°或50°
D.50°或80° 6.已知一次函数y =(2m -1)x +2.y 随x 的增大而减小,则m 的取值范围是( ) A.m 21<
m B.2
1
>m C.m ≥1 D.m <1 7.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车
返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h ) 的函数图象如图所示,则a 等于( )
A.4.7
B.5
C.5.4
D.5.8
8.如图,直线y =
4
3
x -3与x 轴、y 轴分别交于点A 、B ,点C 为直线AB 上的一个动点,点P (0,2)是y 轴上的一个点,则线段PC 的最小值为( ) A.5 B.52 C.4 D.3
二、填空题(本题共10小题,每小题3分,30分.) 9.______4
9
=。
10.如图,△ABC ≌△DEF ,BE=4,AE=1,则DE 的长是___________.
11.比较大小:7________3(填“>”或“=”或“<”) 12.在
9.0,454454445.0,3
2
2,0,2,43-⋅⋅⋅-π中,无理数有______________. 13.已知点P (a -1,a +3),当a =________时,点P 在第二四象限的角平分线上。
14.过点(-1,-3)且与直线y =1-2x 平行的直线是_____________.
15.如图,在平面直角坐标系中,函数y =mx +n 与y =kx +b 的图像交于点P (-2,1),则方程组
⎩
⎨
⎧=--=-0b kx y n
mx y 的解为_____________.
16.如图,△ABC 中,DE 垂直平分AB 交AB 于点D ,交BC 于点E ,∠B=30°,∠ACE=50°,则∠EAC=___________.
17.如图,长方形纸片ABCD 中,AB=6,BC=8,折叠纸片使AB 边与对角线AC 重合,点B 与点F 重合,折痕为AE ,则F 的长是___________.
18.在平面直角坐标系中,点P 的坐标为(a ,b ),点P 的“变换点”P ’的坐标定义如下:当a ≥b 时,P'点坐标为(a ,-b );当a <b 时,P ’点坐标为(a +6,b -1).线段l :y =-
2
1
x +3(-2≤x ≤8)上所有点按上述“变换点”组成一个新的图形,若直线y =kx -4与组成的新的图形有两个交点,则k 的取值范围是____________.
三、解答题(本题共96分)
19.(本题共8分)(1)计算:()0
3
389+-+π; (2)解方程:0942
=-x
20.(本题共8分)已知y +2与x +1成正比,且x =3时y =4. (1)求y 与x 之间的函数关系式;(2)当y =4时,求x 的值.
21.(本题共8分)如图,在10×10的正方形网格中,每个小正方形的边长为1.已知点A 、B 都在格点上(网格线的交点叫做格点),且它们的坐标分别是A (2,-4)、B (3,-1). (1)点B 关于x 轴的对称点的坐标是
___________;
(2)若点C 的坐标是(0,-2),将△ABC 先沿y 轴向上平移4个单位长度后,再沿y 轴翻折得到△111C B A ,画出111C B A ,并直接写出点1B 点的坐标;
(3)任意写出到(2)中的点1B 距离为10的一个格点的坐标__________.
22.(本越共8分)如图,AD 、BC 相交于点0,AD=BC ,∠C=∠D=90°。
(1)求证:△ABD ≌△BAC ;
(2)若∠ABC=35°,求∠CA0的度数。
23.(本题共8分)如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB ⊥AB于B,已知DA=15km,CB=1O km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?
24.(本题共10分)如图,函数y =-2x +3与y =2
1
-x +m 的图象交于P (n ,-2) (1)求出m ,n 的值; (2)直接写出不等式2
1
-
x +m >-2x +3的解集; (3)求出△ABP 的面积.
25.(本题共10分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,点E是AC的中点。
(1)求证:△BED是等腰三角形:
(2)当∠DAB=______°时,△BED是等边三角形
26.(本题共12分)甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图象如图所示,根据图象信息回答下列问题:
(1)甲的速度是_________千米/小时,
乙比甲晚出发________小时;
(2)分别求出甲、乙两人前进的路程s与甲出发后的时间t之间的函数关系式;
(3)求甲经过多长时间被乙追上,此时两人距离A地多远?
(1)求普通口罩和N95口罩的销售单价分别是多少?
(2)该药店计划再次购进1000个口罩,根据市场实际需求,普通口罩的数量不低于N95口罩数量的4倍.已知普通口罩的进价为1元/个,N95口罩的进价为6元/个.设购买普通口罩x个,获得的利润为W元;
①求W关于x的函数关系式,并求出自变量x的取值范围;
②该药店应如何进货才能使销售总利润最大?并求出最大利润。
28.(本题共12分)在平面直角坐标系中,一次函数y =2
1
x +2的图象交x 轴、y 轴分别于A 、 B 两点,交直线y =kx 于P (2,a ). (1)求点A 、B 的坐标;
(2)若Q 为x 轴上一动点,△APQ 为等腰三角形,直接写出Q 点坐标;
(3)点C 在直线AB 上,过C 作CE ⊥x 轴于E ,交直线OP 于D ,我们规定若C ,D ,E 中恰好有一点是其他两点所连线段的中点,则称C ,D ,E 三点为“和谐点”,求出C ,D ,E 三点为“和谐点”时C 点的坐标.。