移相全桥各模态分析
- 格式:docx
- 大小:303.47 KB
- 文档页数:4
移相全桥ZVZCSDC/DC变换器综述摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。
关键词:移相控制;零电压零电流开关;全桥变换器 1概述所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。
ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。
图1 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。
即当原边电流减小到零后,不允许其继续反方向增长。
原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件;图2 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。
图3 2 电路拓扑根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC拓扑结构,以供大家参考。
图4 1)NhoE.C. 电路如图1所示[1]。
该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。
这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高。
变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大。
iit0t1 t2t3 t4t5t6 t7t8 t9t8 t9t0(1) t0时刻在此时刻,开关T1与T4已经导通,电源E经开关T1、谐振电感L、负载变压器T和开关T4回地,向负载输出电流i1。
其中谐振电感L为外加电感与变压器漏感之和,电感T为从副边等效过来的电感,其数值要远大于谐振电感L。
从t0直到t1,电流i1缓升。
电路等效为:(2) t1时刻在t1时刻,开关T1断开,电流i1上升到最高点。
由于电感电流不能突变,电流i1仍然从左到右流动,幅值缓降。
由于开关T1断开,此电流向C1充电,同时从C3抽取电流,使A点电位下降,电路等效为:(3) t 11时刻在t 11时刻, A 点电位下降到0电位之下,二极管D 3导通嵌位,电流i 1进一步缓降,电路等效为:(4) t 2时刻在t 2时刻,开关T 3栅控信号开启,T 3被0电压导通。
t 1到t 2为超前臂死区时间。
如果死区时间比较短,t 2可能发生在t 11之前;反之如果死区时间比较长,也可能发生在t 11之后。
无论那种情况,只要此时开关两端电压足够低,都可以认为达到0电压开启的目标。
一般情况下,超前臂实现0电压开启相对比较容易。
当开关T 3栅控信号开启时,只要电流方向为向上,开关T 3被反偏,开关并没有真正导通,直到反偏过程结束。
t 2时刻之后,A 与B 两点电位均为0,A(5) t 3时刻t 3时刻,开关T 4栅控信号消除,T 4被关断。
由于左右两臂均失去主要通道,续流电流i 1将急速下降,这将导致变压器副边两个整流二极管同时导通(图中未表达),等效于变压器T 短路。
因此续流回路只剩下谐振电感L 与C 2和C 4。
此时续流电流i 1也会向C 4充电,同时从C 2抽取电流,使B 点电位上升。
电路等效为:(6) t 31时刻如果前一阶段续流电流i 1仍然足够强,可使B 点电位上升到超过电源电压E ,这时二极管D 2导通嵌位,电流i 1会进一步急降,电路等效为:BB(7) t 32时刻t 31时刻之后,续流电流i 1会急剧下降到0,使B 点电位保持在电源电压E 。
移相全桥ZVS及ZVZCS拓扑结构分析鲁雄飞河海大学电气工程学院,南京(210098)E-mail:luxiongfei@摘要:总结了基于零电压及零电压零电流全桥PWM技术的各种典型拓扑,比较分析了其拓扑结构及各自的特点。
在不同的应用场合,我们应该根据其特点选择合适的拓扑结构。
关键词:变换器;PWM;零电压开关;零电压零电流开关;中图分类号:TTP1.引言移相控制方式是控制型软开关技术在全开关PWM拓扑的两态开关模式(通态和断态)通过控制方法变为三态开关工作模式(通态断态和续流态),在续流态中实现开关管的软开关。
全桥移相ZVS-PWM DC/DC变换拓扑自出现以来,得到了广泛应用,其有如下优点:○1充分利用电路中的寄生参数(开关管的输出寄生电容和高频变压器的漏感,实现有源开关器件的零电压开关)○2功率拓扑结构简单○3功率半导体器体的低电压应力和电流应力○4频率固定○5移相控制电路简单全桥移相电路具有以上优点,但也依然存在如下缺点:○1占空比丢失○2变压器原边串联电感和副边整流二极管寄生电容振荡○3拓扑只能在轻载到满载的负载范围内,实现零电压软开关目前该拓扑的研究及成果主要集中在以下方面○1减小副边二极管上的电压振荡○2减少拓扑占空比丢失○3增大拓扑零电压软开关的负载适应范围[1]○4循环电流的减小和系统通态损耗的降低[2]2.典型的zvs电路拓扑2.1原边串联电感电路为了实现滞后桥臂的零电压,一般在原边串联电感(如图1所示)。
增大变压器漏感,以增加用来对开关输出电容放电能量。
该电路具有较大的循环能量,变换器的导通损耗较大,且增大了占空比的丢失。
图 1 变压器原边串联电感拓扑在实现滞后桥臂的同时,为了进一步扩大负载范围,可在原边上再串联上一饱和电感,该电路可减小占空比的损失和减小变压器副边的寄生振荡,但是饱和电感工作在正、负饱和值之间,而且频率很高,使得饱和电感的损耗较大,在低的输入电压情况下会引起较为严重的副边占空比丢失。
移相全桥ZVSPWMDC/DC变换器的仿真分析作者:龙泽彪施博文来源:《消费导刊·理论版》2008年第17期[摘要]本文首先在研究硬开关的缺陷上,提出软开关技术。
对移相控制ZVS PWM DC/DC 变换器的工作原理进行分析研究的基础上,使用PSpice9.2计算机仿真软件对变换器的主电路进行仿真和分析,验证该新型DC/DC变换器的拓扑结构设计的正确性和可行性。
[关键词]软开关 DC/DC ZVS 移相控制 PSpice9.2作者简介:龙泽彪(1985-),男,湖北仙桃人,贵州大学电气工程学院在读硕士研究生,研究方向:异步电机控制;施博文(1985-),男,贵州大学电气工程学院在读硕士研究生,研究方向:电力电子与电气传动。
一、引言随着新型电力电子器件以及适用于更高频率的电路拓扑和新型控制技术的不断出现,开关电源朝着小型化、高效化、低成本、低电磁干扰、高可靠性、模块化、智能化的方向发展。
硬开关DC/DC变换器在电流连续工作模式下会遇到严重的问题,这一般都与有源开关器件的体内寄生二极管有关,其关断过程中的反向恢复电流产生的电流尖峰对开关器件有极大的危害。
本文在对DC/DC变换器的基本工作原理进行分析、研究的基础上,对已经出现的软开关DC/DC变换器拓扑结构进行分析研究,提出的一种新型的DC/DC变换器的拓扑结构,并进行深入的研究。
二、移相控制ZVS PWM DC/DC全桥变换器的工作原理移相控制ZVS PWM DC/DC全桥变换器(Phase-Shifted zero-voltage-switching PWMDC/DC Full-Bridge Converter,PS ZVS PWM DC/DC FB Converter),是利用变压器的漏感或原边串联的电感和功率管的寄生电容或外接电容来实现开关管的零电压开关,其主电路拓扑结构及主要波形如图1所示。
其中,D1~D4分别是S1~S4的内部寄生二极管,C1~C4分别是S1~S4的寄生电容或外接电容,Lr是谐振电感,它包含了变压器的漏感。
5kw移相全桥ZVSDCDC变化器(开关电源)的研究要点学校代码:10213国际图书分类号:621.3 密级:公开工学硕士学位论文5kW 移相全桥ZVS DC/DC 变换器的研究硕士研究生:刘鑫导师:马洪飞教授申请学位:工学硕士学科:电气工程所在单位:电气工程及自动化学院答辩日期:2011 年6 月授予学位单位:哈尔滨工业大学r the Master Degree in EngineeringRESEARCH ON 5kW PHASE-SHIFT FULL BRIDGEZVS DC/DC CONVERTERCandidate:Liu XinSupervisor:Prof.Ma HongfeiAcademic Degree Applied for:Master of EngineeringSpeciality:Power Electronics and ElectricDriversAffiliation:School of Electrical Engineering andAutomationDate of Defence:June, 2011Degree-Conferring-Institution:Harbin Institute of Technology哈尔滨工业大学硕士学位论文- I -摘要DC/DC 变换器是电力电子领域重要组成部分,在能源紧张的今天,提高DC/DC变换器的效率及功率密度,具有重要的意义。
功率器件的发展和软开关技术的提出使变换器高效高功率密度成为可能。
移相全桥ZVS DC/DC 变换器是一种能够实现软开关和大功率能量变换的变换器。
本文围绕移相全桥ZVS DC/DC 变换器的特点,分析了其工作原理、占空比丢失、变压器副边整流二极管振荡、滞后臂软开关实现条件等关键问题,并设计和制作了一款5kW 的原理样机。
第一章介绍了DC/DC 变换器的背景及发展方向,其中包括器件、软开关技术和目前DC/DC 变换器研究的热点。
关于移相控制全桥ZVS电源系统的建模和仿真分析
计算机仿真是一种高效、高精度、高经济性和高可靠性研制开关电源的方法,应用计算机仿真技术可以减少设计周期和开发成本,并改进开关电源电路的可靠性。
Saber是当今世界上功能强大的电力电子仿真软件之一,它具有大量的电源专用器件和功率电子器件模型,并提供高精度的电路仿真模型单元库。
数字化是开关电源的发展趋势,它可以实现快速、灵活的控制设计,改善电路的瞬态响应性能,使之速度更快、精度更高,可靠性更强。
因此,本文基于Saber仿真软件对采用数字控制的大功率移相控制全桥ZVS电源系统(12 V /5 000 A)进行了建模、仿真,并对仿真结果进行了分析。
1 主电路的建模
移相控制全桥ZVS2PWM变换器电路实现简单、工作可靠,而且充分利用了器件的寄生参数,不需要加入辅助电路,比较适合大功率低压大电流的应用场合,其主电路结构如图1所示。
图1 移相控制全桥ZVS2PWM电源系统主电路
Saber软件提供了功率器件建模工具Model Ar2chitect,如图2所示为该工具提供的IGBT等效电路模型,根据实际器件的参数调整图2中的各个参数值即可完成建模。
本系统采用IGBT 的型号为CM400HA-24E,其额定参数为1 200 V /400 A.电容c1~c4为外接谐振电容,其中c1 = c3, c2 = c4。
高频变压器采用两个单元变压器串并联的组合方式,它可以使并联的输出。
移相全桥ZVS变换器整流桥寄生振荡的抑制移相全桥零电压开关PWM变换器(PS-FB- ZVS-PWM converter)利用变压器的漏感或原边串联电感和功率管的寄生电容或外接电容来实现零电压开关,同时又实现了PWM控制。
该变换器电路结构简洁,控制电路简单,是中大功率直直变换场合的理想电路拓扑之一[1]。
但是,传统的移相全桥变换器输出整流二极管不是工作在软开关状态,存在反向恢复过程。
在输出整流二极管反向恢复时,由于变压器的漏感(或附加的谐振电感)和整流二极管的结电容以及变压器的绕组电容之间发生高频谐振,整流桥产生寄生振荡,二极管上存在很高的尖峰电压[2~4]。
这将带来电路损耗,并影响整流桥的使用寿命。
因此,必须采用有效的缓冲电路来抑制寄生振荡,消除输出整流二极管上的尖峰电压。
1整流桥寄生振荡的产生与抑制对策整流桥寄生振荡产生于变压器的漏感或附加的谐振电感与变压器的绕组电容和整流管的结电容之间。
当副边电压为零时,在全桥整流器中四只二极管全部导通,输出滤波电感电流处于自然续流状态。
而当副边电压变化为高电压Vin/K(K是变压器变比)时,整流桥中有两只二极管要关断,另两只继续导通。
这时候,变压器的漏感或附加的谐振电感就开始和关断的整流二极管的电容谐振。
整流桥换流的等效电路如图1所示。
从中可以看出,副边漏感上电流ILlk是负载电流I Lf和即将关断的二极管反向恢复电流之和,其大小为:其中,Cd为整流二极管结电容。
即使采用快恢复二极管,二极管依然会承受至少两倍的尖峰电压[2]。
为了抑制寄生振荡,减小输出整流二极管上的尖峰电压,必须采用有效的缓冲电路。
文献当中提出了多种方式,主要有RC缓冲电路、RCD缓冲电路、主动箝位缓冲电路、第三个绕组加二极管箝位缓冲电路和原边加二极管箝位缓冲电路等[2~4]。
前几种方式,要么带来额外的损耗,不利于提高变换器的效率,要么需要增加开关管或者绕组,增加了电路复杂性和成本。
因此本文重点讨论原边加二极管箝位的缓冲电路形式。
移相全桥方案参数设计引言:移相全桥是一种常用的电力电子变换器拓扑结构,广泛应用于各种电力供应系统和工业控制领域。
在设计移相全桥方案时,关键是确定合适的参数,以实现所需的电气性能和效率。
本文将从输入电压、输出电压、频率、功率、开关器件和控制策略等方面进行详细的参数设计。
一、输入电压:输入电压是移相全桥的基本参数之一,决定了输出电压的范围和调节能力。
在设计过程中,需要考虑系统所需的最大输出电压和输入电压范围,以及电压调节的精度要求。
同时,还需考虑输入电压的波动和噪声等因素,并合理选择输入电容和滤波器等元件以保证系统的稳定性和可靠性。
二、输出电压:输出电压是移相全桥方案的重要参数之一,直接影响到系统的电气性能。
在设计过程中,需要确定所需的输出电压范围和调节能力,以及电压调节的精度要求。
同时,还需考虑电压波动和纹波等因素,并合理选择输出电容和滤波器等元件以保证输出电压的稳定性和纹波值。
三、频率:频率是移相全桥方案的重要参数之一,决定了系统的工作速度和输出电压的调节响应速度。
在设计过程中,需要根据具体应用要求确定系统的工作频率范围和调节速度要求。
同时,还需考虑开关器件的特性和互感器的选取等因素,并合理调节谐振电感和谐振电容等元件以实现所需的频率。
四、功率:功率是移相全桥方案的重要参数之一,决定了系统的输出能力和效率。
在设计过程中,需要根据具体应用要求确定系统的最大输出功率和效率要求。
同时,还需考虑开关器件的能力和散热等因素,并合理选择功率开关器件和散热器等元件以实现所需的功率。
五、开关器件:开关器件是移相全桥方案的核心元件之一,直接影响到系统的性能和可靠性。
在设计过程中,需要根据输入电压、输出电压、频率和功率等参数确定合适的开关器件。
常用的开关器件包括IGBT、MOSFET和功率二极管等,需要根据具体需求选择合适的器件型号和参数。
六、控制策略:控制策略是移相全桥方案的关键之一,决定了系统的输出电压和功率特性。
移相全桥的12种模式!1.单相半波模式:在这种模式下,只有一个开关管工作,其余的开关管都关闭。
这种模式可以实现基本的相位移动。
2.单相全波模式:这种模式下,两个对角线上的开关管工作,其余的开关管都关闭。
相对于半波模式,全波模式能够提供更大的相位变化范围。
3.串联模式:在此模式下,两对对角线上的开关管都工作,所以电压是串联的。
这种模式可以实现频率的倍增。
4.并联模式:在这种模式下,两对对角线上的开关管都工作,所以电压是并联的。
这种模式可以实现频率的降低。
5.三相半波模式:这种模式下,只有一个相位移动,因此只有一个开关管工作,其余的开关管都关闭。
这种模式常用于三相电路的控制。
6.三相全波模式:在这种模式下,两个对角线上的开关管工作,其余的开关管都关闭。
相对于半波模式,全波模式能够提供更大的相位变化范围,并且能够实现三相电路的控制。
7.三相并联模式:这种模式下,六个开关管都工作,相对于并联模式,可以提供更大的功率。
8.三相串联模式:这种模式下,六个开关管都工作,相对于串联模式,可以提供更大的功率。
9.长周期模式:这种模式下,开关频率较低,可实现较长周期的频率和相位变化。
10.短周期模式:这种模式下,开关频率较高,可实现较短周期的频率和相位变化。
11.反向移位模式:在这种模式下,相位的变化是相反的。
12.多级变频模式:在这种模式下,可以通过串联多个移相全桥电路来实现更大范围的频率变换。
以上是移相全桥的12种模式。
不同的模式可以实现不同的功能,例如相位移动、频率变换、三相电路控制等。
在实际应用中,可以根据需要选择合适的模式来满足系统的需求。
ZVZCS移相全桥软开关工作原理(1) 主电路拓扑本设计采用ZVZCS PWM移相全桥变换器,采用增加辅助电路的方法复位变压器原边电流,实现了超前桥臂的零电压开关(ZVS)和滞后桥臂的零电流开关(ZCS)。
电路拓扑如图3.6所示。
图3.6 全桥ZVZCS电路拓扑当1S、4S导通时,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端钳位电容Cc充电。
当关断1S时,电源对1C充电,2C通过变压器初级绕组放电。
由于1C的存在,1S为零电压关断,此时变压器漏感k L和输出滤波电感o L串联,共同提供能量,由于Cc的存在使得变压器副边电压下降速度比原边慢,导致电位差并产生感应电动势作用于k L,加速了2C的放电,为2S的零电压开通提供条件。
当Cc放电完全后,整流二极管全部导通续流,在续流期间原边电流已复位,此时关段4S,开通3S,由于漏感k L两边电流不能突变,所以4S为零电流关断,3S为零电流开通。
(2) 主电路工作过程分析[7]半个周期内将全桥变换器的工作状态分为8种模式。
①模式1S、4S导通,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端箝1位电容Cc充电。
输出滤波电感o L与漏感k L相比较大,视为恒流源,主电路简化图及等效电路图如图3.7所示。
图3.7 模式1主电路简化图及等效电路图由上图可以得到如下方程:p Cc os kdI V V V L n n dt=++ (3-3) p c o I nI nI += (3-4)Ccc cdV I C dt=- (3-5) 由(3-3)式得:2p Cckd I dV nL dt dt=- (3-6) 将(3-6)式代入(3-5)式得:22p c c kd I I nC L dt = (3-7)将(3-7)式代入(3-4)式得:222p p c ko d I I n C L nI dt+= (3-8)解微分方程:222p p oc kc kd I I I nC L dt n C L +=(3-9) 其初始条件为:(0)0Cc t V ==;(0)0c t I == (3-10)代入方程解得:()sin s o p o k V V nI t t nI L ωω-=+ (3-11) ()sin p s o c o k I V V nI t I t n nL ωω-=-=-(3-12)()()(1cos )Cc s o V t nV V t ω=-- (3-13)(其中ω=)② 模式2当cos 1t ω=-时,()Cc V t 达到最大值,此时sin 0t ω=,()0c I t =,()p o I t nI =;二极管c D 关断,输出侧电流流经1D 、o L 、o C 、L R 、4D 和次级绕组,简化电路如图3.8所示。
移相ZVS-PWM全桥变换器综述移相ZVS-PWM全桥变换器概述摘要:移相ZVS-PWM DC/DC全桥变换器巧妙利用变压器漏感和开关管的结电容来完成谐振过程,使开关管实现零电压开关(ZVS),从而减少了开关损耗。
重点简述了该类变换器的基本原理,介绍了几种常见的拓扑,并简要地分析了它们的优缺点,最后指出了其发展方向。
关键词:移相全桥变换器零电压开关(ZVS)Overview of Phase Shift ZVS-PWM Full Bridge ConverterAbstract:Phase shift PWM DC/DC full bridge converter completing resonance procedure through leakage inductance of the transformer and junction capacitor of switch. It can make the switch achieve ZVS, decreasing the switching loss and interference .This paper describes the basi c principle of the converter, introduce several common topology, some common topologies as well as their advantages and drawbacks are discussed and analyzed. Finally it points out the development direction of the Converter.Key words:phrase shift,full bridge converter,ZVS引言全桥变换器广泛应用于中大功率的直流变换场合,近些年来,其软开关技术吸引了国内外学者的广泛关注,出现了很多控制策略和电路拓扑,其中移相控制是目前研究较多的控制方式,而以移相全桥零电压开关变换器(FB-ZVS-PWM)应用更为广泛。
偷瞄大师笔记,终于弄懂移相全桥的分析与计算!电源联盟---高可靠电源行业第一自媒体在这里有电源技术干货、电源行业发展趋势分析、最新电源产品介绍、众多电源达人与您分享电源技术经验,关注我们,搜索微信公众号:Power-union,与中国电源行业共成长!偷瞄大师笔记,终于弄懂移相全桥的分析与计算!在早期的大功率电源(输出功率大于1KW)应用中,硬开关全桥(Full-Bridge)拓扑是应用最为广泛的一种,其特点是开关频率固定,开关管承受的电压与电流应力小,便于控制,特别是适合于低压大电流,以及输出电压与电流变化较大的场合。
但受制于开关器件的损耗,无法将开关频率提升以获得更高的功率密度。
例如:一个5KW的电源,采用硬开关全桥,即使效率做到92%,那么依然还有400W的损耗,那么每提升一个点的效率,就可以减少50W的损耗,特别在多台并机以及长时间运行的系统中,其经济效益相当可观。
随后,人们在硬开关全桥的基础上,开发出了一种软开关的全桥拓扑——移相全桥(Phase-Shifting Full-Bridge Converter,简称PS FB),利用功率器件的结电容与变压器的漏感作为谐振元件,使全桥电源的4个开关管依次在零电压下导通(Zero voltage Switching,简称ZVS),来实现恒频软开关,提升电源的整体效率与EMI性能,当然还可以提高电源的功率密度。
上图是移相全桥的拓扑图,各个元件的意义如下:Vin:输入的直流电源T1-T4:4个主开关管,一般是MOSFET或IGBTT1,T2称为超前臂开关管,T3,T4称为滞后臂开关管C1-C4:4个开关管的寄生电容或外加谐振电容D1-D4:4个开关管的寄生二极管或外加续流二极管VD1,VD2:电源次级高频整流二极管TR:移相全桥电源变压器Lp:变压器原边绕组电感量Ls1,Ls2:变压器副边电感量Lr:变压器原边漏感或原边漏感与外加电感的和Lf:移相全桥电源次级输出续流电感Cf: 移相全桥电源次级输出电容R L: 移相全桥电源次级负载因为是做理论分析,所以要将一些器件的特性理想化,具体如下:1、假设所有的开关管为理想元件,开通与关断不存在延迟,导通电阻无穷小;开关管的体二极管或者外部的二极管也为理想元件,其开通与关断不存在延迟,正向压降为0。
2005年12月重庆大学学报(自然科学版)D ec.2005第28卷第12期Jour nal of Chongqi n g U niversity(Nõt u rõl Sc ience Ed ition)V o.l28No.12文章编号:1000-582X(2005)12-0027-05移相全桥软开关变换器拓扑分析*陈柬,陆治国(重庆大学电气工程学院,重庆400030)摘要:移相全桥软开关变换器从基本的移相全桥(FB)零电压(Z VS)脉宽调制(P WM)变换器,发展到移相全桥零电压零电流(ZVZCS)P WM变换器,及移相全桥零电流(ZCS)P WM变换器,进而又产生一系列其它新型的移相全桥电路,构成了这一类很具有发展和应用前景的变换器.比较分析了上述3类主要的移相全桥软开关变换器的拓扑结构、工作特点和各自的优缺点.改进的FB-Z VS-P WM变换器扩大了滞后臂Z VS负载范围.FB-ZVZCS-P WM变换器解决了滞后臂软开关负载范围问题,滞后臂较适合用绝缘栅极双极型晶体管(I G B T).FB-ZCS-P WM变换器可以实现各个功率管的ZCS,更适合大功率场合.关键词:移相;零电压开关;零电流开关;零电压零电流开关;变换器中图分类号:TM910.1文献标识码:A移相P WM控制方式是近年来在全桥变换电路中广泛应用的一种软开关控制方式.这种控制方式实际上是谐振变换技术与常规P WM变换技术的结合.移相全桥软开关电路有效降低了电路的开关损耗和开关噪声,减少了器件开关过程中产生的电磁干扰,为变换器装置提高开关频率和效率降低尺寸及重量提供了良好的条件.同时,还保持了常规的全桥P WM电路中拓扑结构简洁,控制方式简单,开关频率恒定,元器件的电压和电流应力小等一系列优点.1移相FB-Z VS-P WM变换器1.1基本的移相FB-ZVS-P WM变换器移相全桥零电压P WM软开关的实际电路如图1所示[1-3].图1基本的移相FB-ZVS-P WM变换器图2是Q1~Q4的开关控制波形.与常规的全桥P WM相比,移相式FB-Z VS-P WM变换器具有明显的优势.利用变压器漏感和开关管的结电容谐振,在不增加额外元器件的情况下,通过移相控制方式,实现了功率开关管的零电压导通与关断,减小了开关损耗,降低了开关噪声,提高了效率,减小整机的体积与重量.其主要缺点为:滞后臂开关管在轻载下将失去零电压开关功能;原边有较大环流,增加了系统的通态损耗;存在占空比丢失现象[3-8].图2开关控制波形1.2串联饱和电感的改进拓扑在变压器初级串联饱和电感L r的方案中[9],利用L r的临界饱和电流特性及储能,来扩大Z VS的负载范围,提高轻载时的输出效率.与图1所示变换器相比,它具有明显的优势:有效扩大了零电压开关负载范围,*收稿日期:2005-08-10作者简介:陈柬(1981-),女,河南南阳人,重庆大学硕士,主要从事电力电子与电力传动方向的研究.保持了最小的环流能量,减小了导通损耗;减小占空比丢失;改善了输出电压调节特性;减小了副边整流二极管结电容的寄生振荡.1.3输出滤波电感参与谐振的改进拓扑这种电路在滞后臂开关管进行状态转换的短暂期间,使副边整流二极管不能同时导通,则输出滤波电感可被用来参与谐振.与基本的移相式FB-ZVS-P WM 变换器相比[9],它具有如下特点:输出滤波电感具有很大的数值,可以存储很大的磁场能量,从而大大扩展滞后臂开关管零电压开关负载范围;减小占空比丢失;输出电压可以通过变压器副边调节,原边保持恒定的占空比,从而可以加快系统的动态响应,简化了控制电路,无需考虑原副边的隔离;饱和电感使副边整流二极管结电容的寄生振荡可忽略不计,副边可以不考虑缓冲器的设计.1.4有源钳位型改进拓扑针对高压大功率场合整流管的寄生电容与变压器漏感相互作用会导致整流管输出电压产生过冲及振荡现象的问题,常用的抑制方法有整流管两端并联阻容吸收回路,采用无源钳位吸收电路,或使用低漏感变压器及谐振电感等,存在的问题是吸收电路损耗大、影响效率,或者能抑制电压过冲但无法完全消除振荡现象.文献[9]提出一种在整流管输出端并联有源钳位吸收电路的方法,不仅能有效抑制整流管电压过冲和振荡现象,而且钳位回路本身损耗很小,变换器具有较高效率.1.5增加辅助电路的改进拓扑这种电路的基本方法是,给滞后臂并联一个辅助谐振电路,利用辅助电路中的电感帮助漏感实现滞后臂开关管的ZVS.此种方法在三相电压型逆变器设计中是最常用的软开关手段之一.1.6其它改进拓扑将一个续流二极管增加到输出端,并且在原边增加由电阻、电容组成的吸收电路[10],如图3所示.在变换器的钳位续流期,大部分电流经过外加续流二极管,降低了输出滤波电感电流对原边的影响.但是,外加续流二极管并不影响移相臂的/线性0切换,这是因为在外加续流二极管导通之前,移相臂的线性切换已经完成.外加二极管的作用就是消除移相臂切换行为发生后的输出滤波电感对原边的反射,降低了钳位续流期间原边电流的短路效应,减少了环流期间的导通损耗,提高了能量的传输效率.在变压器原边增加由电阻、电容组成的压吸收电路使电流尖峰得到了明显的抑制.图3增加吸收电路和续流二级管的变换器另外,文献[11]介绍了利用能量恢复缓冲器的软开关变换器.2移相FB-Z VZCS-P WM变换器近年来I G BT得到了迅速的发展及广泛的应用,由于它具有较高的耐压值,较低的通态损耗,较大的功率密度和较低的成本,更适用于大功率场合[12-15]. FB-ZVZCS-P WM变换器就比较适合I GBT.2.1饱和电感型FB-ZVZCS-P WM变换器如图4所示,这种在变压器初级串联隔直电容及饱和电感作为反向阻断电压源,来复位初级电流的方案[13,16-17],拓扑结构简单,实现了有效的软开关特性,电路中的占空比丢失几乎可以忽略.但由于实际运行中饱和电感上有很大损耗,饱和电感磁芯的散热问题是一个很需要解决的问题.图4全桥ZV ZCS-P WM变换器2.2有源钳位型FB-ZVZCS-P WM变换器在整流管输出端并联有源钳位电路,作为反向阻断电压源来复位初级电流.钳位电路不仅对整流电压起钳位作用,同时也为滞后桥臂功率管创造了ZCS条件[18].不足之处是需使用额外的有源开关,降低了输出效率.2.3辅助电路型FB-ZVZCS-P WM变换器采用变压器辅助绕组和辅助电路来使初级电流复位,优点是辅助电路中没有耗能元件,整流管电压应力和初级环流均较小,不足之处是辅助绕组的参数设计比较复杂[19].2.4复合型FB-ZVZCS-P WM变换器文献[20]提出在变压器次级采用耦合输出电感及辅助电路使初级电流复位的方案,没有耗能元件或有源开关,环流可以保持在最小值,辅助电路中的整流28重庆大学学报(自然科学版)2005年管通过谐振可以实现/软换流0[20].比较分析上述几种变换器拓扑,文献[20]提出的方案较易于工程实现,有较大的实用价值.2.5 其它FB -Z VZCS-P WM 变换器图5是一个带能量恢复缓冲器的FB -ZVZCS-P WM 变换器.利用一个能量恢复缓冲器,来代替附加抽头式电感和饱和电抗器,以减小电流应力.变换器可以减少惯性间隙的环路电流.使用简化的能量缓冲器可以使环路电流和次级暂态过电压最小化.图5 其它FB-ZV ZCS-PWM 变换器能量恢复缓冲器和输出电感L f 一起减小了环路电流.缓冲二极管D s 4和输出电容C f 连在一起用于对从次级电压V T 2到输出电压V 0的缓冲电容电压V cs 2钳位[21].因此,简化的FB -Z VZCS-P WM 变换器可以减小次级的暂态过电压和环路电流.这个简化的缓冲器也把开关损耗恢复到负载.3 移相FB-ZCS-P WM 变换器图6是一种电流源型FB -ZCS -P WM 变换器[22],其外特性与升压电路(Boost)一样,L b 是升压电感,C r 是谐振电容.变换器采用移相控制,Q 3和Q 4的驱动信号分别超前于Q 1和Q 2.同一桥臂的上下两管之间有一个重叠的开关时间,用来创造零电流开关条件.它的特点是:1)输出整流管自动实现ZVS 和ZCS 换流;2)采用固定频率控制和移相P WM 控制技术;3)在实现ZCS 的同时,变换器能保证较宽的负载调节范围;4)如果将升压电感移到交流电压输入侧,则可以实现单级功率因数校正(PFC).但是对电路参数的要求很严格,如果保护措施不当,很容易产生过压而损坏开关管.图6 电流源型FB -ZCS-P WM 变换器图7介绍了一种电压源型的FB -ZCS -P WM 变换器,存在的问题是:所选用的辅助管额定功率必须与初级开关管相当,增加了成本.图7 电压源型FB -ZCS-P WM 变换器4 其它新型移相全桥电路4.1 半桥和全桥组合的电路拓扑主电路如图8所示,该电路是由一个半桥部分和一个全桥部分组合而成.开关管Q 1、Q 2以及变压器T 1构成半桥部分;开关管Q 1、Q 2、Q 3、Q 4和变压器T 2构成全桥部分.Q 1、Q 2是共用的开关管.2个变压器的副边电压经叠加、整流后输出给负载.整流输出端并有二极管D 9用于输出电流的续流;还有由C Z 、D Z 1、L Z 、D Z 2构成的钳位电路用于减小占空比的丢失.电路采用移相控制策略,可以实现输出电压控制.图8 主电路原理图这种电路克服了传统的移相全桥的缺点,大幅度的扩大了负载的适用范围,即使在轻载的工作环境下也能实现4个主开关管的软开关,实现了真正意义上的全程ZVS .同时副边钳位电路的存在,也减小了占空比的损失[23].4.2 带抽头电感的软开关FB-P WM 变换器在变换器拓扑里利用一个抽头电感滤波器,扩大了软开关负载范围.而没有使用附加的谐振电路和(或)辅助开关器件,就可以大大减小电路中的环流量[24].如图9所示,抽头电感滤波器用在变换器输出端,在很宽的负载变化范围下实现软开关.它的作用相当29第28卷第12期 陈 柬,等: 移相全桥软开关变换器拓扑分析于无源钳位元件整流电压当悬空时钳位在正极.因此,整流二极管(二者之一)就反向偏置,输出电感电流流过悬空端的悬空二极管D 7.于是通过变压器和初级电路的环路电流就得到了抑制.开关Q 3开通时工作在ZVS 和ZCS 状态,关断时工作在ZVS 状态;Q 4开通和关断时都工作在ZCS 状态.图9 带抽头电感的软开关PS-P WM 变换器4.3 隔离交错的移相ZVS-P WM 变换器为了实现高容量的功率密度,低的电磁干扰(E M I)和低成本,介绍一种新型隔离交错的移相ZVS-P WM 变换器.它由2个半桥组成,不用辅助电路即可实现ZVS[25].如图10所示,有并联型和串联型2种.变压器T 1和T 2具有相同的变比,并考虑励磁电感和漏感.通过变换器2个支路之间的电压移相而控制功率传输,每个支路工作半个周期.在这种方式下,就可以保证高频变压器的退磁.通过分析移相控制的一个周期的工作状态,以看出开关控制是交错式的.除此之外,所有的开关管都可以工作在ZVS.图10 移相ZVS-P WM 变换器5 结 论移相FB -ZVS-P WM 变换器适合于高频、大功率、开关器件采用MOSFET 的应用场合.但副边存在占空比丢失,具有大的导通损耗,归根结底是因为电路拓扑,开关管选型,电路参数匹配,控制方式等方面存在不足,这是以后深入研究的方向.移相FB -Z VZCS -P WM 变换器更适用于大功率场合,比较适合I GBT .移相FB-ZCS-P WM 变换器比前二者具有更好的应用前景,但目前尚处于研究阶段.其它新型电路都有其各自突出的特点,具有很大的实际用途.参考文献:[1] 杨旭,赵志伟,王兆安.全桥型零电压软开关电路谐振过程的研究[J].电力电子技术,1998,35(3):36-39.[2] 刘宁庄,伟力.移相控制全桥变换技术的理论分析与计算机仿真[J].现代电子技术,2002,(10):100-101.[3] AYDE M I R M T,BENDRE A.A Cr itical Eva l uati on of H i ghPo w er H ard and Soft S w itched Iso l ated DC -DC Converters[J].IEEE T rans P E ,2002,17(7):1138-1345.[4] FUENTES R C,H E Y H L .A F a m ily o f So ft -s w itch i ng DC -DC P o w er Conve rters to H i gh Pow er A ppli cations[J].I EEE T rans P E,1996,5(4):268-264.[5] S M I TH K M,S M EDLEY K M.A Co mparis on o fV o ltage -m odeSoft -s w i tch i ng [J ].IEEE T rans P E ,1997,12(2):376-264.[6] K I M E S ,J OE K Y,KYE M H,e t a.l An I m proved So ftSw itchi ng P WM FB DC /DC Converter for R educi ng Conduc -ti on L osses[J].I EEE T rans P E ,1996,5(7):651-656.[7] K I M E S ,J OE K Y,C HO I H Y,et a.l A n I m proved So ftSw itchi ng B-i d i recti ona lPS PWM FB DC /DC Converter[J].IEEE T rans P E ,1998,10(7):740-743.[8] BENDRE A,NORR IS S ,D I VAN D,et a.l N e w H i gh Pow erDC -DC Converter w it h L oss L i m ited Sw itch i ng and Lo ssless Seconda ry C la mp [J].IEEE T rans P E ,2003,18(4):1020-1027.[9] 王聪.软开关功率变换器及其应用[M ].北京:科学出版社,2000.[10] 赵靖辉,刘兆.常规FB -ZVS -P WM 变换器的改进[J].三门峡职业技术学报,2002,2(1):63-66.[11] AYYANAR R ,MOHAN N.N ovel So f-t s w i tch i ng DC -DC Con -verter w it h Fu llZVS -range and R educed F il ter R equire ment[J].IEEE T rans P E ,2001,16(2):184-192.[12] STE I GERW ALD R.A R ev ie w o f So ft -s w itch i ng T echn i quesi n H i gh Perfo r m ance DC P ower Supplies[J].IEEE T rans P E ,1995,4(9):1-7.[13] 阮新波.零电压零电流开关P WM DC /DC 全桥变换器的分析[J].电工技术学报,2000,15(2):73-77.30重庆大学学报(自然科学版) 2005年[14] 吕照瑞,张俊洪,赵镜红.全桥P WM ZV ZCS 变换器电路的分析设计[J].电力电子技术,2003,37(5):36-38.[15] 王聪.一种简单的ZV ZCS 全桥P WM 变换器的分析与设计[J].电工技术学报,2000,15(6):35-39.[16] C HO J G,SABATE J A,HUA G,et a.l Z ero -vo ltage andZ ero -current Sw itchi ng Fu l-l bridge P WM Conv erter for H i gh P o w er Appli cations[J].IEEE T rans P E ,1994,11(4):622-628.[17] 盛专成.一种新颖的PS-ZVZCS P WM 全桥变换器[J].电力电子技术,2001,35(5):22-24.[18] C HO J G,J EONG C Y .Zero -vo ltage and Zero -current S w itc -h i ng Fu l-l bridge P WM Conve rter U si ng Secondary A cti ve C la m p[J].I EEE T rans P E ,1998,13(4):601-607.[19] C HO J G,BAEK J W.N ovel Z ero -vo ltage and Zero -cur -rent -s w itchi ng Ful-l br i dg e P WM Converte r U si ng T rans -for m er A ux iliary W i nd i ng [J].IEEE T rans P E ,2000,15(2):250-257.[20] C HO I H S .N ove l Zero -vo ltage and Zero -curren t -s w itch i ng(ZVZCS)Fu l-l bridge P WM Converter U si ng Coupled O u-tput Inductor [J ].IEEE T rans P E ,2002,17(5):641-648.[21] K I M E S ,J OE K Y,P ark S G,e t a.l An I m proved ZVZCSP WM FB DC -DC Converte r U sing t he M odified Energy R e -cove ry Snubber [J].IEEE T rans P E,2000,11(2):119-124.[22] 许峰,徐殿国,王健强,等.软开关大功率全桥P WM 变换器拓扑结构的对比分析[J].电力电子技术,2002,36(6):51-53.[23] 蒋强,张代润.轻载或空载时软开关DC-DC 变换器的实现及仿真研究[J].四川大学学报,2003,35(1):93-96.[24] M O ISSEEV S ,HAM ADA S ,NAKAOKA M,e t a.l Ful-lb ri dge Soft -s w itch i ng P hase -shifted P WM DC -DC Pow er Conve rter U si ng T apped Inducto r F ilte r [J].E l ectron i csL ette rs ,2003,39(12):924-925.[25] P I NHE I RO J R,BAGG I O J E .Iso l a ted Interleaved Phase -shift PWM DC -DC ZVS Converte rs[J].IEEE T rans P E ,2000,10(5):2383-2388.Topology Anal ysis of Phase -s hifted Ful-l bridge Soft -s witchi ng ConverterC HEN J i a n,LU Zh i -g uo(Co llege of E lectrica lEng ineeri n g ,Chongqi n g University ,Chongq i n g 400030,Ch i n a)Abst ract :Phase -sh ifted f u l-l bri d ge (FB )sof-t s w itch i n g converters are develop i n g for m t h e basi c phase -shifted FB -ZVS -P WM converter to phase -shifted FB -Z VZCS-P WM converter and phase -shifted FB -ZCS -P WM converter ,to a seri e s o f the other ne w phase -shifted f u l-l bri d ge circuits ,wh ich m ake up o f the converters w ith deve lopm enta l and usefu l foreground .The topo logy structures ,operati o n characteristics ,as w ell as their m er its and de m erits are co m pared and analyzed .The i m pr oved phase -shifted FB -Z VS-P WM converter en lar ge the l o ad range o f Z VS i n lag -ar m .Phase -shifted FB -ZVZCS -P WM converter so lves the prob le m m entioned above ,and i n su lated gate bipo lar transistor (I GBT)is fit for the lag -ar m .Phase -sh ifted FB -ZCS -P WM converter cou l d ach ieve ZCS i n every po w er tube ,and is used i n h i g h -po w er occasion .W hat .s m ore ,the deve l o p m enta l trend of sof-t s w itch i n g converti n g technic w ithou t resonance net w o r k i s po i n ted ou.t K ey words :phase -shifted ;zero -vo lta ge -s w itc h i n g ;zero -curren-t s w itchi n g ;zero -voltage and zero -current s w itc h i n g ;converter(编辑 李胜春)31第28卷第12期 陈 柬,等: 移相全桥软开关变换器拓扑分析。
移相控制DC/DC 变换器开关状态分析
移相全桥变换器在一个工作周期间一共有12个开关模态,进行如下假设: (1)四个开关管和两个二极管都是理想器件; (2)电路中的电感、电容和变压器都是理想器件; (3)==,;
(4)f L ,n 是变压器原副边匝比。
下面我们详细分析一下变换器的工作模态,假设每个时间段的起始时刻均为t=0。
各开关状态的工作情况叙述如下:
(1)、开关模态0[0t ]:
在0t 时刻对应图2.6(a )。
1Q 和4Q 同时导通,功率传送阶段,输入功率经
变压器向负载传送,此时/p o i I n =。
副边二极管1D 流过全部负载电流o I ,
ab U E =。
(2)、开关模态1[01~t t ]:
在01~t t 时刻对应图2.6(b )。
在时刻关断1Q ,原边电流p i ,从1Q 中转移到C1和C3中的支路中,给C1充电,给C3放电。
因为有C1和C3,所以1Q 是零电压关断。
在这段时间里r L 和f L 是串联的,而且f L 很大,原边电流近似不变。
电容C1上的电压上升,电容C3上的下降。
(a ) (b )
(c ) (d )
1C 2C lead C 24log C C C ==2
r L n ≥0t
DC
Rl
D2
Rl
DC
Rl
DC
(e )
(f )
(g )
图2.6移相全桥变换器各模态图
p i 和C1、C3的电压表达式分别为:
01()()p p i t I t I ==
(2.1)
(2.2)
(2.3)
在时刻,C3的电压下降到零,3Q 的反并联二极管3VD 自然导通,开关模1已结束。
开关模态1结束的时间为:
01101
2lead in C V t t t I =-=
(2.4)
(3)、开关模态2[21t ~t ]:
在21t ~t 时刻,对应于图2.6(c )。
3VD 导通后使3Q 开通,3Q 为ZVS 开通。
虽然3Q 开通了,但没有电流通过3Q ,原边电流通过3VD 。
由图可见,为实现3Q 的ZVS 开通,1Q 与3Q 间死区时间()d lead t 应大于01t ,即
()01d lead t t >
(2.5)
Rl
DC
Rl
DC
Rl
DC
1
10()2C lead
I v t t C =
-1t
在21t ~t 期间,p i =K i f
L /,ab V =0,rect V =0,t=2t 时,p i =2I 。
(4)、开关模态3[23~t t ]:
在23~t t 时刻,对应于图 2.6(d )。
如图在时刻,关断4Q ,原边电流p i 流
过C2和C4中,一方面C2被放电,同时又给C4充电。
因为C2和C4的缓冲作
用,4Q 的端电压是从零开始缓慢上升,因此4Q 实现了零电压关断。
此刻ab V =-in V ,ab V 的由零变负,变压器副边电动势下正上负,D2导通,变压器副边绕组中开始有电流。
由于D1和D2同时导通,将变压器副边绕组短接,因此变压器的副边绕组电压为零,原边电压也为零,直接加到谐振电感上,因此在这一段时间里是和C2、C4在谐振工作。
原边电流p i 、电容C2、C4上的电压为:
22()sin ()c i c r r U t V I Z t t ω=-- (2.6) 42()sin ()c c r r U t I Z t t ω=-
(2.7) 2cos ()p c r i I t t ω=-
(2.8) 42()()sin ()ab c c r r U t U t I Z t t ω=-=--
(2.9)
其中1/2
1
()r r lag lag L C C ω=
⎡⎤+⎣⎦
, 1/2
r
r lag lag L Z C C ⎡⎤=⎢⎥+⎢⎥⎣⎦
在3t 时刻,C4的电压为in V ,2VD 自然导通,此开关模态结束。
该模态持续时间
1232
1
sin i r p V t w Z I -=
(2.10)
(5)、开关模式4[34~t t ]:
在34~t t 时刻,对应于图2.6(e )。
在3t 时刻,2VD 自然导通,将2Q 的电压籍
在零位,此时就开通2Q ,2Q 是零电压开通。
又2Q 和4Q 的死区时间为()23d lag t t >:
1()2
1
sin i d lag r p V t w Z I ->
(2.11)
虽然此时2Q 已开通,但是2Q 上没有电流流过;p i 由2VD 流通。
由于D1和D2两个整流管同时导通,所以变压器副边电压为零,原边电压也为零,这样电源电压i V 在f L 的两端,原边电流p i 线性下降。
即:
33()()i
p p r
V i t I t t L =-
- (2.12)
2t Lr Lr
到4t 时刻,原边电流为零, 2VD 和3VD 自然关断,2Q 和3Q 中有电流流过,开关模态4结束。
所用的时间为:
343()/r t i t L Ip V =∙ (2.13)
(6)、开关模式5[45~t t ]:
在45~t t 时刻,对应于图2.6(f )。
在4t 时刻,原边电流由正方变零,并且向
负方向增加,流过2Q 和3Q 。
但是原边电流还比较小不能满足负载要求,负载电流仍由D1和D2提供回路,因此变压器原边电压仍然为零,加在的电压是i V ,原边电流反向线性增加。
4()()i
r
V i t t t L =-
- (2.14)
到5t 时刻,原边电流达到折算到原边的负载电流5()/Lf I t n -值,开关模式5结束。
此时整流管D1关断,D1流过全部负载电流。
所用时间为:
545()/r f i
L L t n
t V ∙=
(2.15)
(7)、开关模态6[56~t t ]:
在56~t t 时刻,对应于图2.6(g )。
在这期间里,负载是由电源供电。
原边
电流为:
52
()i o
p r f
V nV i t t L n L -=-
-+ (2.16)
因为2r f L n L <<,所以上式可化为:
5/n ()i o
p f
V V i t t nL -=-
- (2.17)
在6t 时刻,3Q 关断,变换器开始另半个周期的工作,其工作情况类似于上述的半个周期。
Lr。