解:a=2,b=-(4m+1),c=2m2-1,
b2-4ac=〔-(4m+1)〕2-4×2(2m2-1)=8m+9.
(1)若方程有两个不相等的实数根,则b2-4ac >0,即8m+9>0 ∴m> 9 .
(2)若方程有两个相等的实数根,则b2-4ac=0即8m+9=0
∴m=
9 8
.
8
(3)若方程没有实数根,则b2-4ac<0即8m+9<0, ∴m< 9 .
(1)当b2-4ac>0 时,有两个不等的实数根:
x1 b
b2 2a
4ac
,
x2
b
b2 4ac ; 2a
(2)当b2-4ac=0时,有两个相等的实数根: x1
x2
b ; 2a
(3)当b2-4ac<0时,没有实数根.
一般的,式子 b2-4ac 叫做一元二次方程根的判别式,通 常用希腊字母“∆”来表示,即∆=b2-4ac.
x 6 60 . 23
x1
3 3
15
,
x2
3-
15 3
.
探究新知
知识点 2 一元二次方程的根的情况
用公式法解下列方程: (1) x2+x-1 = 0
(2)x2-2 3 x+3 = 0
(3) 2x2-2x+1 = 0 观察上面解一元二次方程的过程,一元二次方程的根 的情况与一元二次方程中二次项系数、一次项系数及常数 项有关吗?能否根据这个关系不解方程得出方程的解的情 况呢?
探究新知
【思考】不解方程,你能判断下列方程根的情况吗? ⑴ x2+2x-8 = 0 ⑵ x2 = 4x-4 ⑶ x2-3x = -3
答案:(1)有两个不相等的实数根; (2)有两个相等的实数根; (3)没有实数根.