高中数学向量数量积的坐标运算
- 格式:pptx
- 大小:924.52 KB
- 文档页数:22
第2课时平面向量数量积的坐标运算学习目标 1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直.知识点一平面向量数量积的坐标表示ijxy轴的正半轴同向的单位向量.设,轴、是两个互相垂直且分别与iijjij分别是多少?·思考1 ··,,ijaxybxyabij,(,取思考2 ,,,试将为坐标平面内的一组基底,设)=(,用),=2112ab. 表示,并计算·abab坐标间有何关系?若⊥,,则思考3axybxy).==((,),,梳理若向量2112ab=·数量积____________________________向量垂直平面向量的模知识点二ayxa |(1 思考若=,),试将向量的模|用坐标表示.1→ABBxyxAy (,如何计算向量,,思考2 若(的模?,))2211梳理向量的模及两点间的距离→AB=||→AxyBxyAB 为端点的向量(以,(),,)211222yyxx+--1122向量的夹角知识点三a·b ba xy b y baa x=θ的夹角,则),都是非零向量,θ=(,是),cos =(,与设,2121|a||b|xxyy+2112. =2222yyxx+·+1221类型一平面向量数量积的坐标运算abb a·b=10. 已知(1,2)与,同向,=例1a的坐标;求(1)ca b·ca·b c. ),求(及)(1)(2(2)若=,-2此类题目是有关向量数量积的坐标运算,灵活应用基本公式是前提,设向量一反思与感悟般有两种方法:一是直接设坐标,二是利用共线或垂直的关系设向量,还可以验证一般情况cbbcaa )··≠,即向量运算结合律一般不成立.(下·(·)ababa________. )·1,2),则(2向量+=(1,-1),==(-1 跟踪训练向量的模、夹角问题类型二BAxOyO.-(16,12),在平面直角坐标系5,15)中,是原点(如图).已知点(例2→→ABOA ||,|(1)求|;OAB. 求∠(2)利用向量的数量积求两向量夹角的一般步骤:反思与感悟 (1)利用向量的坐标求出这两个向量的数量积.22yax|+|=求两向量的模.(2)利用θ的值.θ代入夹角公式求cos ,并根据θ的范围确定(3)baba的取值范λ的夹角α=(λ,1),若与为钝角,求2 跟踪训练已知(1=,-1),围.向量垂直的坐标形式类型三baabab的值为垂直,则实数λλ1,0)(3,2)((1)例3 已知=-,=-,若向量+与-2 _____. 3→→kABCABABCACk是直角三角形,求(2,3),,若△=(1,的值.(2)在△中,)=利用向量数量积的坐标表示解决垂直问题的实质是把垂直条件代数化,若在关反思与感悟于三角形的问题中,未明确哪个角是直角时,要分类讨论.→→→OCtOCBCABxOyA,--1),在平面直角坐标系若中,已知((1,4),)⊥(-2,3),,(2跟踪训练3t________.则实数=baba的夹角为,-2),则________1.已知与=(3,-1),.=(1????1331→→??ABCBABC=,________.2.已知向量==,则∠,????2222mnmnmn),则λ-2,2),若(+=)⊥(________. 3.已知向量=(λ+1,1),=(λ+abab a·b b=____________. =5|=14.已知平面向量,且,,若,则向量=(4,-3),|ab=(-1,2)=(4,3),.5.已知ab的夹角的余弦值;与(1)求abab),求实数λ(的值.-λ )⊥(2+(2)若1.平面向量数量积的定义及其坐标表示,提供了数量积运算的两种不同的途径.准确地把握这两种途径,根据不同的条件选择不同的途径,可以优化解题过程.同时,平面向量数量积的两种形式沟通了“数”与“形”转化的桥梁,成为解决距离、角度、垂直等有关问题的有力工具.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.a x,(若可以对比学习、注意区分两向量平行与垂直的坐标形式,3.二者不能混淆,记忆.=1 4 yb xy ab xyxy ab xxyy=-=0,⊥+?0.,则,,)=()∥?221112112224.事实上应用平面向量的数量积公式解答某些平面向量问题时,向量夹角问题却隐藏了许多陷阱与误区,常常会出现因模糊“两向量的夹角的概念”和忽视“两向量夹角”的范围,稍不注意就会带来失误与错误.5答案精析 问题导学 知识点一jjiiij 0. =1×1×cos 0=1·,思考1 ·==1×1×cos 0=1,·jyxaxiyjbi =,++=,思考2 ∵221122yyjyyjxxxyjxiyjxixyxyabxii . ()·(+=++)∴=··=(+)++2121122222121111ybabxxya 0. ?=·+思考3 =⊥0?2112yxxy +梳理2112yabxxy 0⊥+?=2211 知识点二yxiyjxa +,∈∵,=R ,思考122222222jiyyjxyxaxiyji ·jxixyi ·j . )++((=)∴2=(+2+ +)=22i ·jji 1,0=1,又∵,==222222yaxyxa =|++=∴,∴|,22yax .∴||+=→→→yyyOAxyxxABOBx -,,)-(,,思考2 ∵)==(-)-=(11221221→22yxABxy.-|+-=∴|1212题型探究ba λλ)(>0)=λ,=(λ,21 例解 (1)设a ·b λ=10则有,=λ+4a =(2,4)λ∴=2,∴.a ·bb ·c 10,=1×2-2×1=0,(2)∵=aab ·c 0)=0,∴=(ca ·b .=(20,-(10))1)=10(2,-11 跟踪训练→OA =(16,12)例2 解 (1)由,→AB ,=-12)(-21,3)-=(-516,15→22OA =|20|=1612+,得→22AB 152.|-|=+3= 6→→ABAO ·→→ABOABAO. =(2)cos ∠cos =, →→ABAO ||||→→→→ABABAOOA 300. =-=-[16×(-其中21,3)··21)+12×3]==-(16,12)·(-2300OAB .故cos ∠==2220×15OAB ∴∠=45°.ba ,1)∵,=(1,-1),=(λ 跟踪训练2 解2baab 1. =|=1+λλ,∴|-|=2|,·ba 为钝角,又∵的夹角,α ,1<0λ-?? ∴2?,2·1+λλ≠1- ,λ<1?? 即?2+1≠0.λλ+2??1. λ≠-<1∴λ且 1,1).∴λ的取值范围是(-∞,-1)∪(-1 (1)例3 - 7133±211. -(2)或或 2331 -跟踪训练3当堂训练π3 3.-1. 2.30° 434????,- 4. ??552552 (2)(1)5. 925 720XX —019学年度第一学期生物教研组工作计划指导思想以新一轮课程改革为抓手,更新教育理念,积极推进教学改革。
向量坐标的运算的所有公式在数学的世界里,向量坐标的运算公式就像是一把把神奇的钥匙,能帮助我们打开各种难题的大门。
先来说说向量加法的坐标运算公式。
假如有两个向量 A(x₁, y₁) 和B(x₂, y₂) ,那么它们相加后的向量坐标就是 (x₁ + x₂, y₁ + y₂) 。
这就好比你在操场上跑步,从起点出发,先向东跑了 x₁米,向北跑了y₁米,然后又接着向东跑了 x₂米,向北跑了 y₂米,那最终你的位置坐标就是 (x₁ + x₂, y₁ + y₂) 。
再看看向量减法的坐标运算公式。
还是这两个向量 A(x₁, y₁) 和B(x₂, y₂) ,相减后的向量坐标就是 (x₁ - x₂, y₁ - y₂) 。
我想起有一次我和朋友一起玩拼图游戏,我们把拼图分成了两部分,一部分的位置可以用一个向量坐标表示,另一部分用另一个向量坐标表示。
当我们要把这两部分拼接到一起时,就得算出它们的相对位置,这时候向量减法的坐标运算公式就派上用场啦。
还有数乘向量的坐标运算公式。
如果有一个实数λ 与向量 A(x, y) 相乘,那么得到的向量坐标就是(λx, λy) 。
这就好像是把一个物体按照一定的比例放大或缩小,坐标也跟着相应地变化。
向量数量积的坐标运算公式也很重要。
对于向量 A(x₁, y₁) 和B(x₂, y₂) ,它们的数量积等于 x₁x₂ + y₁y₂。
这让我想到了物理中的力做功的问题,力和位移都可以用向量来表示,通过这个公式就能算出力做的功。
在实际解题中,这些公式常常需要我们灵活运用。
比如说,有一道题给出了两个向量的坐标,让我们求它们的和与差。
这时候,我们只要把对应的坐标相加或相减就可以了。
又比如,要判断两个向量是否垂直,就可以通过它们数量积的坐标运算结果是否为 0 来判断。
总之,向量坐标的运算公式虽然看起来有点复杂,但只要我们多做练习,多联系实际生活中的例子去理解,就一定能掌握它们,让数学变得不再那么可怕。
就像我们在生活中面对各种困难,只要找到合适的方法和工具,就能轻松应对,走向成功!。
2.3.3 向量数量积的坐标运算与度量公式明目标、知重点 1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能依据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能依据向量的坐标求向量的夹角及判定两个向量垂直.1.平面对量数量积的坐标表示若a =(x 1,y 1),b =(x 2,y 2),则a·b=x 1x 2+y 1y 2. 即两个向量的数量积等于相应坐标乘积的和. 2.两个向量垂直的坐标表示设两个非零向量a =(x 1,y 1),b =(x 2,y 2), 则a ⊥b ⇔x 1x 2+y 1y 2=0. 3.平面对量的长度(1)向量长度公式:设a =(x 1,y 1),则|a |=x 21+y 21.(2)两点间距离公式:若A (x 1,y 1),B (x 2,y 2), 则|AB →|=(x 2-x 1)2+(y 2-y 1)2. 4.向量的夹角公式设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.[情境导学] 在平面直角坐标系中,平面对量可以用有序实数对来表示,两个平面对量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面对量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现?平面对量的数量积还会是一个有序实数对吗?同时,平面对量的模、夹角又该如何用坐标来表示?通过回顾两个向量的数量积的定义向向量的坐标表示,在此基础上推导、探究平面对量数量积的坐标表示. 探究点一 平面对量数量积的坐标表示思考1 已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),怎样用a 与b 的坐标表示a ·b? 答 ∵a =x 1i +y 1j ,b =x 2i +y 2j , ∴a ·b =(x 1i +y 1j )·(x 2i +y 2j ) =x 1x 2i 2+x 1y 2i ·j +x 2y 1j ·i +y 1y 2j 2.又∵i ·i =1,j ·j =1,i ·j =j ·i =0,∴a ·b =x 1x 2+y 1y 2.思考2 若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,这就是平面对量数量积的坐标表示.你能用文字描述这一结论吗?答 两个向量的数量积等于它们对应坐标的乘积的和. 例1 已知a 与b 同向,b =(1,2),a·b =10. (1)求a 的坐标;(2)若c =(2,-1),求a (b·c )及(a·b )c .解 (1)设a =λb =(λ,2λ) (λ>0),则有a·b =λ+4λ=10,∴λ=2,∴a =(2,4). (2)∵b·c =1×2-2×1=0,a·b =1×2+2×4=10, ∴a (b·c )=0a =0,(a·b )c =10(2,-1)=(20,-10).反思与感悟 两个向量的数量积是实数,这和前面三种运算性质不同.同时本例进一步验证了平面对量的数量积不满足结合律.跟踪训练1 若a =(2,3),b =(-1,-2),c =(2,1),则(a·b )·c =____________;a·(b·c )=____________. 答案 (-16,-8) (-8,-12) 解析 ∵a·b =2×(-1)+3×(-2)=-8, ∴(a·b )·c =-8×(2,1)=(-16,-8). ∵b·c =(-1)×2+(-2)×1=-4, ∴a·(b·c )=(2,3)×(-4)=(-8,-12).探究点二 平面对量长度的坐标形式及两点间的距离公式思考1 若a =(x ,y ),如何计算向量的长度|a |? 答 ∵a =x i +y j ,∴a 2=(x i +y j )2=(x i )2+2xy i ·j +(y j )2 =x 2i 2+2xy i ·j +y 2j 2. 又∵i 2=1,j 2=1,i ·j =0, ∴a 2=x 2+y 2,∴|a |2=x 2+y 2, ∴|a |=x 2+y 2.思考2 若A (x 1,y 2),B (x 2,y 2),如何计算向量AB →的长度? 答 如图,∵AB →=OB →-OA →=(x 2,y 2)-(x 1,y 1)=(x 2-x 1,y 2-y 1), ∴|AB →|=(x 2-x 1)2+(y 2-y 1)2.例2 已知在△ABC 中,A (2,-1)、B (3,2)、C (-3,-1),AD 为BC 边上的高,求|AD →|与点D 的坐标. 解 设点D 坐标为(x ,y ),则AD →=(x -2,y +1),BC →=(-6,-3), BD →=(x -3,y -2),∵D 在直线BC 上,即BD →与BC →共线, ∴存在实数λ,使BD →=λBC →, 即(x -3,y -2)=λ(-6,-3).∴⎩⎪⎨⎪⎧x -3=-6λ,y -2=-3λ.∴x -3=2(y -2),即x -2y +1=0.① 又∵AD ⊥BC ,∴AD →·BC →=0, 即(x -2,y +1)·(-6,-3)=0, ∴-6(x -2)-3(y +1)=0. 即2x +y -3=0.②由①②可得⎩⎪⎨⎪⎧x =1,y =1,即D 点坐标为(1,1),AD →=(-1,2). ∴|AD →|=(-1)2+22=5,即|AD →|=5,D (1,1).反思与感悟 在几何里利用垂直及长度来求解点的题型是一种常见题型,其处理方法:设出点的坐标,利用垂直及长度列出方程组进行求解.跟踪训练2 以原点和A (5,2)为两个顶点作等腰直角△OAB ,∠B =90°,求点B 和AB →的坐标. 解 设B (x ,y ),则|OB →|=x 2+y 2,∵B (x ,y ),A (5,2),∴|AB →|=(x -5)2+(y -2)2.又∵|AB →|=|OB →|,∴(x -5)2+(y -2)2=x 2+y 2.可得10x +4y =29,①又OB →=(x ,y ),AB →=(x -5,y -2),且OB →⊥AB →, ∴OB →·AB →=0,∴x (x -5)+y (y -2)=0, 即x 2-5x +y 2-2y =0,②由①②解得⎩⎨⎧x 1=32,y 1=72,或⎩⎨⎧x 2=72,y 2=-32.∴B ⎝⎛⎭⎫32,72或⎝⎛⎭⎫72,-32. ∴AB →=⎝⎛⎭⎫-72,32或AB →=⎝⎛⎭⎫-32,-72. 探究点三 平面对量夹角的坐标表示思考1 设向量a =(x 1,y 1),b =(x 2,y 2),若a ⊥b ,则x 1,y 1,x 2,y 2之间的关系如何?反之成立吗? 答 a ⊥b ⇔x 1x 2+y 1y 2=0.思考2 设a ,b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,那么cos θ如何用坐标表示? 答 cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 例3 已知a =(1,2),b =(1,λ),分别确定实数λ的取值范围,使得:(1)a 与b 的夹角为直角;(2)a 与b 的夹角为钝角;(3)a 与b 的夹角为锐角. 解 设a 与b 的夹角为θ, 则a·b =(1,2)·(1,λ)=1+2λ.(1)由于a 与b 的夹角为直角,所以cos θ=0, 所以a·b =0,所以1+2λ=0,所以λ=-12.(2)由于a 与b 的夹角为钝角,所以cos θ<0且cos θ≠-1, 所以a·b <0且a 与b 不反向. 由a·b <0得1+2λ<0,故λ<-12,由a 与b 共线得λ=2,故a 与b 不行能反向.所以λ的取值范围为⎝⎛⎭⎫-∞,-12. (3)由于a 与b 的夹角为锐角,所以cos θ>0,且cos θ≠1, 所以a·b >0且a ,b 不同向.由a·b >0,得λ>-12,由a 与b 同向得λ=2.所以λ的取值范围为⎝⎛⎭⎫-12,2∪(2,+∞). 反思与感悟 由于两个非零向量a ,b 的夹角θ满足0°≤θ≤180°,所以用cos θ=a·b|a||b |来推断,可将θ分五种状况:cos θ=1,θ=0°;cos θ=0,θ=90°;cos θ=-1,θ=180°;cos θ<0且cos θ≠-1,θ为钝角;cos θ>0且cos θ≠1,θ为锐角.跟踪训练3 已知a =(1,-1),b =(λ,1),若a 与b 的夹角α为钝角,求λ的取值范围. 解 ∵a =(1,-1),b =(λ,1), ∴|a |=2,|b |=1+λ2,a ·b =λ-1.∵a ,b 的夹角α为钝角.∴⎩⎪⎨⎪⎧λ-1<0,21+λ2≠1-λ,即⎩⎪⎨⎪⎧λ<1,λ2+2λ+1≠0.∴λ<1且λ≠-1.∴λ的取值范围是(-∞,-1)∪(-1,1).1.已知a =(3,-1),b =(1,-2),则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2 答案 B解析 ∵|a |=10,|b |=5,a ·b =5. ∴cos 〈a ,b 〉=a ·b |a ||b |=510×5=22. 又∵a ,b 的夹角范围为[0,π]. ∴a 与b 的夹角为π4.2.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A.1 B. 2 C.2 D.4 答案 C解析 ∵(2a -b )·b =2a ·b -|b |2 =2(-1+n 2)-(1+n 2)=n 2-3=0, ∴n 2=3.∴|a |=12+n 2=2.3.在△ABC 中,∠C =90°,AB →=(k,1),AC →=(2,3),则k 的值为________. 答案 5解析 ∵BC →=AC →-AB →=(2,3)-(k,1)=(2-k,2), AC →=(2,3),∴BC →·AC →=2(2-k )+6=0,∴k =5.4.已知平面对量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |=________. 答案 82解析 ∵a =(2,4),b =(-1,2),∴a ·b =2×(-1)+4×2=6, ∴c =a -6b , ∴c 2=a 2-12a ·b +36b 2 =20-12×6+36×5=128. ∴|c |=8 2.[呈重点、现规律]1.向量的坐标表示简化了向量数量积的运算.为利用向量法解决平面几何问题以及解析几何问题供应了完善的理论依据和有力的工具支持.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的力气.3.留意区分两向量平行与垂直的坐标形式,二者不能混淆,可以对比学习、记忆.若a =(x 1,y 1),b =(x 2,y 2).则a ∥b ⇔x 1y 2-x 2y 1=0,a⊥b ⇔x 1x 2+y 1y 2=0.一、基础过关1.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m 等于( )A.2 3B. 3C.0D.-3 答案 B解析 ∵a ·b =(1,3)·(3,m )=3+3m , 又a ·b =12+(3)2×32+m 2×cos π6,∴3+3m =12+(3)2×32+m 2×cos π6,∴m = 3.2.已知a =(-3,2),b =(-1,0),向量λa +b 与a -2b 垂直,则实数λ的值为( ) A.-17B.17C.-16D.16答案 A解析 由a =(-3,2),b =(-1,0), 知λa +b =(-3λ-1,2λ),a -2b =(-1,2). 又(λa +b )·(a -2b )=0, ∴3λ+1+4λ=0,∴λ=-17.3.平面对量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |等于( ) A. 3 B.23 C.4 D.12 答案 B解析 ∵a =(2,0),|b |=1, ∴|a |=2,a ·b =2×1×cos 60°=1. ∴|a +2b |=a 2+4·a ·b +4b 2=2 3.4.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )A.⎝⎛⎭⎫79,73B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79 D.⎝⎛⎭⎫-79,-73 答案 D解析 设c =(x ,y ),则c +a =(x +1,y +2), 又(c +a )∥b ,∴2(y +2)+3(x +1)=0.① 又c ⊥(a +b ),∴(x ,y )·(3,-1)=3x -y =0.② 由①②解得x =-79,y =-73.5.若向量a =(1,2),b =(1,-1),则2a +b 与a -b 的夹角等于( ) A.-π4 B.π6 C.π4 D.3π4答案 C解析 2a +b =2(1,2)+(1,-1)=(3,3), a -b =(1,2)-(1,-1)=(0,3), (2a +b )·(a -b )=9, |2a +b |=32,|a -b |=3.设所求两向量夹角为α,则cos α=932×3=22,∵α∈[0,π],∴α=π4.6.设a =(2,x ),b =(-4,5),若a 与b 的夹角θ为钝角,则x 的取值范围是________. 解 ∵θ为钝角,∴cos θ=a ·b|a ||b |<0, 即a ·b =-8+5x <0,∴x <85.∵a ∥b 时有-4x -10=0,即x =-52,当x =-52时,a =(2,-52)=-12b ,∴a 与b 反向,即θ=π.故a 与b 的夹角为钝角时,x <85且x ≠-52.7.已知a =(4,3),b =(-1,2).(1)求a 与b 的夹角的余弦;(2)若(a -λb )⊥(2a +b ),求实数λ的值. 解 (1)∵a ·b =4×(-1)+3×2=2, |a |=42+32=5,|b |=(-1)2+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=255=2525. (2)∵a -λb =(4+λ,3-2λ),2a +b =(7,8), 又(a -λb )⊥(2a +b ),∴(a -λb )·(2a +b )=7(4+λ)+8(3-2λ)=0, ∴λ=529.二、力气提升8.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于( ) A.-4 B.-3 C.-2 D.-1答案 B解析 由于m =(λ+1,1),n =(λ+2,2). 所以m +n =(2λ+3,3),m -n =(-1,-1). 由于(m +n )⊥(m -n ),所以(m +n )·(m -n )=0, 所以-(2λ+3)-3=0,解得λ=-3.9.已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的正射影的数量为( ) A.322B.3152C. -322D.-3152答案 A解析 ∵AB →=(2,1),CD →=(5,5), ∴AB →在CD →方向上的正射影的数量为 AB →·CD →|CD →|=2×5+1×552+52=1552=322.10.平面对量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.答案 2解析 由于向量a =(1,2),b =(4,2),所以c =m a +b =(m +4,2m +2),所以a ·c =m +4+2(2m +2)=5m +8,b ·c =4(m +4)+2(2m +2)=8m +20. 由于c 与a 的夹角等于c 与b 的夹角, 所以a ·c |a ||c |=b ·c |b ||c |,即a ·c |a |=b ·c |b |,所以5m +85=8m +2025,解得m =2.11.在△ABC 中,AB →=(2,3),AC →=(1,k ),若△ABC 是直角三角形,求k 的值. 解 ∵AB →=(2,3),AC →=(1,k ), ∴BC →=AC →-AB →=(-1,k -3).若∠A =90°,则AB →·AC →=2×1+3×k =0, ∴k =-23;若∠B =90°,则AB →·BC →=2×(-1)+3(k -3)=0, ∴k =113;若∠C =90°,则AC →·BC →=1×(-1)+k (k -3)=0, ∴k =3±132.故所求k 的值为-23或113或3±132.12.设a =(1,2),b =(-2,-3),又c =2a +b ,d =a +m b ,若c 与d 夹角为45°,求实数m 的值. 解 ∵a =(1,2),b =(-2,-3), ∴c =2a +b =2(1,2)+(-2,-3)=(0,1), d =a +m b =(1,2)+m (-2,-3)=(1-2m,2-3m ), ∴c ·d =0×(1-2m )+1×(2-3m )=2-3m . 又∵|c |=1,|d |=(1-2m )2+(2-3m )2,∴cos 45°=c ·d|c ||d |=2-3m(1-2m )2+(2-3m )2=22. 化简得5m 2-8m +3=0,解得m =1或m =35.三、探究与拓展13.已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标并求矩形ABCD 两对角线所成的锐角的余弦值. (1)证明 ∵A (2,1),B (3,2),D (-1,4), ∴AB →=(1,1),AD →=(-3,3), 又∵AB →·AD →=1×(-3)+1×3=0, ∴AB →⊥AD →,即AB ⊥AD .(2)解 AB →⊥AD →,四边形ABCD 为矩形,∴AB →=DC →. 设C 点坐标为(x ,y ),则AB →=(1,1),DC →=(x +1,y -4),∴⎩⎪⎨⎪⎧ x +1=1,y -4=1, 得⎩⎪⎨⎪⎧x =0,y =5.∴C 点坐标为(0,5). 由于AC →=(-2,4),BD →=(-4,2), 所以AC →·BD →=8+8=16>0, |AC →|=2 5,|BD →|=2 5. 设AC →与BD →夹角为θ,则 cos θ=AC →·BD →|AC →|·|BD →|=1620=45>0,∴矩形的两条对角线所成的锐角的余弦值为45.。
§2.3.3 向量数量积的坐标运算和度量公式学习目标:1、能推导并掌握向量数量积的坐标运算与度量公式;2、能灵活运用有关公式解决有关夹角、线段长度等问题. 学习过程: 一、复习回顾1、向量的数量积(内积)的定义: .2、向量长度的定义: .3、两个向量垂直的条件: .4、两点之间的距离公式: . 二、新学内容 阅读自学课本P 112—P 114并回答下面问题:问题1:已知()1212(,),,a a a b b b ==,请用坐标表示下列各式:a b ⋅= ,⇔⊥b a ,a =. 问题2:由向量的数量积公式你能否得到向量的夹角公式?cos ,a b =_______________________________.问题3:如果1122(,),(,)A x y B x y ,则向量AB =_______________________________.例题解析:例1: 1、已知(3,1),(1,2)a b =-=-,求,,,,a b a b a b.2、已知点A (1,2),B (2,3),C (-2,5),求证AB AC ⊥.3、已知点A (1,2),B (3,4),C (5,0),求∠BAC 的正弦值.例2:已知三点(2,1),(3,2),(1,4)A B D -,(1)求证AB AD ⊥.(2)若四边形ABCD 是矩形,试确定点C 的坐标,并求该矩形的两条对角线所成的锐角.课堂达标:1、已知3,5a b == 且12,a b =则向量a 在向量b 上的正射影的数量为( )12..3.4.55A B C D2、在ABC ∆中,若()()0,BA BC CA CB ABC --=∆则为( )A.直角三角形B.正三角形C.等腰三角形D.等腰直角三角形3、若a b == ()a b a +⊥,则a 与b 的夹角为( )2....6433A B C D ππππ4、若)2,(λ=,)5,3(-=,且与的夹角为钝角,则λ的取值范围是( ) A. ),310(+∞ B. ),310[+∞ C .)310,(-∞ D .]310,(-∞ 5、已知点A (1,1),B (5,3)有向线段绕点A 旋转2π到的位置,则点C 的坐标为____________.6、写出与下列向量垂直的单位向量:(1))4,3(--=a (2))5,12(-= _______________________7、设向量,,满足52=,)1,2(-=, 且与的方向相反,则的坐标为 .8、已知坐标原点是正方形的中心,顶点A (2,2),则其他三个顶点的坐标分别为 .9、(选作)已知ABC ∆中,点)2.1(-A ,)3,2(--B ,)1,1(C ,求边BC 边上的高.小结与反思:。
向量坐标运算的所有公式在数学的广阔天地里,向量就像是一群活跃的小精灵,而向量坐标运算的公式则是我们掌控这些小精灵的魔法咒语。
接下来,让咱们一起瞧瞧这些神奇的公式吧!咱们先从最简单的向量加法坐标运算公式说起。
假设咱有两个向量,$\vec{a}=(x_1,y_1)$,$\vec{b}=(x_2,y_2)$,那么它们相加之后得到的向量$\vec{c}=\vec{a}+\vec{b}$的坐标就是$(x_1 + x_2, y_1 + y_2)$。
这就好比你在操场上跑步,先向东跑了$x_1$米,向北跑了$y_1$米,然后又向东跑了$x_2$米,向北跑了$y_2$米,那你最终的位置就是向东跑了$x_1 + x_2$米,向北跑了$y_1 + y_2$米。
再来说说向量减法的坐标运算公式。
还是上面那两个向量$\vec{a}$和$\vec{b}$,它们相减得到的向量$\vec{d}=\vec{a}-\vec{b}$的坐标就是$(x_1 - x_2, y_1 - y_2)$。
打个比方,你从学校出发,先向东走了$x_1$米,向北走了$y_1$米,然后又往回走,向西走了$x_2$米,向南走了$y_2$米,那你现在的位置相对于学校的坐标变化就是向东走了$x_1 - x_2$米,向北走了$y_1 - y_2$米。
还有向量数乘的坐标运算公式。
如果有一个实数$k$和向量$\vec{a}=(x_1,y_1)$,那么数乘之后得到的向量$\vec{e}=k\vec{a}$的坐标就是$(kx_1, ky_1)$。
这就像你跑步的速度加快了$k$倍,原来向东跑$x_1$米,向北跑$y_1$米,现在速度变了,跑的距离也就相应地变成了$kx_1$米和$ky_1$米。
说到这儿,我想起之前给学生们讲这部分内容的时候,有个小家伙总是搞混加法和减法的公式。
我就跟他说:“你就想象自己是个小探险家,向东走、向北走是积累路程,向西走、向南走就是减去路程,这样是不是好理解多啦?”嘿,这招还真管用,那孩子后来就很少出错啦。
6.3.2 平面向量数量积的坐标表示(精练)【题组一 数量积的坐标运算】1.(2021·深圳市龙岗区)已知向量()1,3a =-,()5,4b =-,则⋅=a b ( ) A .15 B .16C .17D .18【答案】C【解析】因为向量()1,3a =-,()5,4b =-,所以()()153417a b ⋅=-⨯-+⨯=,故选:C 2.(2020·广东高一期末)若(1,2),(2,3)=-=a b 则(2b)b a -⋅=( ) A .-5 B .5C .-6D .6【答案】A【解析】因为(1,2),(2,3)=-=a b ,所以(2b)b a -⋅=(4,1)(2,3)42135-⋅=-⨯+⨯=-.故选:A.3.(2020·湖北高一期末)已知向量()4,5a =,()22,11a b -=-,则向量a 在向量b 方向上的投影为( )A .1B .2-C .2D .-1【答案】B【解析】由题意,()4,5a =,()22,11a b -=-,可得()26,6b -=-,则()3,3b =-,所以43353a b ⋅=⨯-⨯=-,()233b =+-=所以向量a 在向量b 方向上的投影为3232a b b⋅-==-.故选:B.4.(2020·湖北武汉市·高一期末)已知()1,2A -,()4,1B-,()3,2C ,则cos BAC ∠=( )A .10-B .10C .2-D .2【答案】D【解析】由已知得()3,1AB =,()2,4AC =,∴cos cos ,23AB AC BAC AB AC AB AC⋅∠====.故选:D. 5.(2020·安徽合肥市·高一期末)已知点()1,1A -,()1,2B ,()2,1C --,()3,4D ,则向量CD →在BA→方向上的投影是( ) A.- B.2-C.D.2【答案】A【解析】由题可知,(1,1)A -,(1,2)B ,(2,1)C --,(3,4)D ,所以(2,1)BA →=--,(5,5)CD →=, 则向量CD →在BA →方向上的投影是||BA CD BA →→→⋅==-故选:A.6.(2020·四川内江市)已知向量(1,2)a =,(,4)b x =,(2,)c y =,若//a b ,a c ⊥,则()b a c ⋅-=( ) A .14 B .-14C .10D .6【答案】C【解析】向量(1,2)a =,(,4)b x =,(2,)c y =,//a b ,可得142x ⨯=,解得2x =,(2,4)b =,a c ⊥,可得1220y ⨯+=,解得1y =-,(1,3)a c -=-,则()21210b a c -=-+=.故选:C .7.(2020·山东聊城市·高一期末)向量(1,3)a =,(3,1)b =,则向量a b +与a b -的夹角为( ) A .12πB .6πC .3π D .2π 【答案】D【解析】设θ为a b +与a b -的夹角,(1,3)a =,(3,1)b =,则1+31+a b +=(,,131a b -=(-,)||=6a b ++||6a b -=-又()()0cos 04a b a b a b a bθ+⋅-===+-,0,2πθπθ≤≤∴=. 故选:D .8.(2020·尤溪县第五中学高一期末)已知向量(1,2)a =,(,4)a b m +=,若a b ⊥ ,则m =( ) A .3- B .2-C .2D .3【答案】A【解析】()()(,4)1,2(1,2)b a b a m m =+-=-=-,因为a b ⊥,所以()112230a b m m ⋅=-⨯+⨯=+=,解得:3m =-,故选:A9.(2020·全国高一课时练习)设(3,4)a =,a b ⊥且b 在x 轴上的投影为2,则b =( ) A .8(2,)3B .3(2,)2-C .8(2,)3-D .3(2,)2-【答案】B【解析】由题意,向量b 在x 轴上的投影为2,可设(2,)b y =, 因为a b ⊥,可得2340a b y ⋅=⨯+=,解得32y =-,所以3(2,)2b =-.故选:B. 10.(2021·江苏高一)已知平面向量(1,)a m =,()0,2b =,若(3)b a mb ⊥-,则实数m =( ) A .1- B .0C .1D .2【答案】B【解析】因为(3)b a mb ⊥-,所以(3)0b a mb ⋅-=,即23a b mb ⋅=,又(1,)a m =,()0,2b =,故324m m ⨯=,解得0m =.故选:B.11.(2020·全国高一)已知向量()()126,,3,2e e λ==-,若12,e e 为钝角,则λ的范围是( ) A .(,9)-∞ B .(9,)+∞C .(,4)(4,9)-∞⋃D .(,4)(4,9)-∞-⋃-【答案】D【解析】12,e e 为钝角,∴12·0e e <且12,e e 不共线,∴18201230λλ-+<⎧⎨+≠⎩,解得9λ<且4λ≠-, λ∴的范围是(-∞,4)(4-⋃-,9).故选:D.12.(多选)(2021·江苏高一)已知向量(),3a m =,()2,4b =-,若()a b a +⊥,则( ) A .1m =或3m =- B .1m =-或3m = C .2a b +=或10a b += D .2a b +=或26a b +=【答案】AC【解析】因为向量(),3a m =,()2,4b =-,所以()2,1b m a +=+-,若()a b a +⊥,则()()2130m m +⨯+-⨯=,即2230m m +-=,解得1m =或3m =-, 故A 正确,B 错;当3m =-时,(b m a +=+=当1m =时,(a b m +=+=故C 正确,D 错.故选:AC.13.(多选)(2020·全国高一)设向量()2,0a =,()1,1b =,则( ) A .a b = B .()//a b b - C .()a b b -⊥ D .a 与b 的夹角为π4【答案】CD【解析】因为()2,0a =,()1,1b =, 所以2,2a b ==,所以a b ≠,故A 错误; 因为()2,0a =,()1,1b =,所以()()=1,1a b --,又()1,1b =, 则1111⨯≠-⨯,所以()a b -与b 不平行,故B 错误; 又()110a b b -⋅=-=,故C 正确;又2cos ,222a b a b a b⋅<>===⋅, 又a 与b 的夹角范围是[]0,π, 所以a 与b 的夹角为π4,故D 正确. 故选:CD.14.(2020·全国高一)已知向量()1,2a =-,()4,3b =,22c =.若a 与()b c -垂直,则向量a 与c 的夹角的余弦值是______.【答案】10-【解析】由已知14(2)32a b ⋅=⨯+-⨯=-,5a =,∵a 与()b c -垂直,∴()0a b c a b a c ⋅-=⋅-⋅=,∴2a c a b ⋅=⋅=-,∴2cos 105a c a c a c⋅-<⋅>===-⨯.15.(2020·绵阳市·四川省绵阳江油中学)已知向量()1,2a =,与向量(),1b x = (1)当x 为何值时,a b ⊥;(2)当3x =为何值时,求向量a 与向量b 的夹角; (3)求2b a -的最小值以及取得最小值时向量b 的坐标. 【答案】(1)2x =-;(2)4π;(3)最小值3,(2,1)=b . 【解析】(1)20a b x ⋅=+=,2x =-,所以2x =-时,a b ⊥;(2)由题意(3,1)b =,3cos ,25a b a b a b⋅+<>===⨯,4a b π<>=;(3)由已知2(2,3)b a x -=--, 所以2(2)b a x -=-2x =时,2b a -取得最小值3,此时(2,1)=b .【题组二 巧建坐标解数量积】1.(2020·安徽省亳州市第十八中学高一期中)如图,在矩形ABCD 中,4AB =,3AD =,点P 为CD 的中点,点Q 在BC 上,且2BQ =.(1)求AP AQ ⋅;(2)若AC AP AQ λμ=+(λ,μ∈R ),求λμ的值.【答案】(1)14;(2)23λμ=. 【解析】如图,分别以边AB ,AD 所在的直线为x 轴,y 轴, 点A 为坐标原点,建立平面直角坐标系,则()0,0A ,()2,3P ,()4,0B ,()4,3C ,()4,2Q .(1)∵()2,3AP =,()4,2AQ =,∴243214AP AQ ⋅=⨯+⨯=. (2)∵()4,3AC =,()2,3AP =,()4,2AQ =,由AC AP AQ λμ=+,得()()4,324,32λμλμ=++,∴244,323,λμλμ+=⎧⎨+=⎩解得1,23,4λμ⎧=⎪⎪⎨⎪=⎪⎩∴23λμ=.2.(2020·江西高一期末)如图,在ABC 中,已知2AB =,4AC =,60BAC ∠=︒,D 为线段BC 中点,E 为线段AD 中点.(1)求AD BC ⋅的值;(2)求EB ,EC 夹角的余弦值.【答案】(1)6;(2. 【解析】(1)依题意可知ABC为直角三角形,BC =则(0,0)B ,(0,2)A,C , 因为D 为BC的中点,故D ,∴()3,2AD =-,()2BC =,∴36AD BC ⋅=⨯=.(2)由E 为线段AD 中点可知2E ⎛⎫ ⎪⎪⎝⎭,∴12EB ⎛⎫=-- ⎪ ⎪⎝⎭,312EC ⎛⎫=- ⎪ ⎪⎝⎭,∴cos ,||||EB ECEB EC EB EC ⋅<>=11-⨯+⨯==3.(2020·河北邢台市·高一期中)如图,扇形OAB的圆心角为90︒,2OA =,点M 为线段OA 的中点,点N 为弧AB 上任意一点.(1)若30BON ∠=︒,试用向量OA ,OB 表示向量ON ; (2)求MB ON ⋅的取值范围. 【答案】(1)1322ON OA OB =+;(2)[]2,4-. 【解析】(1)如图,以O 为坐标原点,建立直角坐标系xOy , 则()0,0O ,()0,2A ,()2,0B ,)N,所以()0,2OA =,()2,0OB =,()3,1ON =.设ON xOA yOB=+,则212x y =⎧⎪⎨=⎪⎩12x y ⎧=⎪⎪⎨⎪=⎪⎩所以1322ON OA OB =+. (2)设()0θ90BON θ∠=︒≤≤︒,则()2cos ,2sin N θθ,()0,1M , 则()2,1MB =-,()2cos ,2sin ON θθ=, 所以()4cos 2sin MB ON θθθϕ⋅=-=+, 其中cos 5ϕ=,sin 5ϕ=(ϕ为锐角). 因为090θ︒≤≤︒,所以90ϕθϕϕ≤+=+︒, 则()maxcos cos 5θϕϕ+==,()()mincos cos 90sin 5θϕϕϕ+=︒+=-=-,所以MBON ⋅的取值范围为[]2,4-.【题组三 数量积与三角函数综合运用】1.(2020·河南安阳市·林州一中高一月考)已知向量(4sin ,1cos ),(1,2)a b αα=-=-,若2a b ⋅=-,则22sin cos 2sin cos αααα=-( ) A .1 B .1-C .27-D .12-【答案】A【解析】由2a b ⋅=-,得4sin 2(1cos )2αα--=-,整理得1tan 2α=-,所以2221sin cos tan 2112sin cos 2tan 112αααααα-===---,故选:A . 2.(2020·辽宁高一期末)已知向量()1,cos2a x =,(sin 2b x =,将函数()f x a b =⋅的图象沿x 轴向左平移ϕ()0ϕ>个单位后,得到的图象关于原点对称,则ϕ的最小值为( )A .12πB .6πC .512π D .3π 【答案】D【解析】()sin 222sin 23f x a b x x x π=⋅⎛⎫==+⎪⎝⎭, 将函数()f x 的图象向左平移ϕ个单位,得到()2sin 22sin 2233y x x ππϕϕ⎡⎤⎛⎫=++=++ ⎪⎢⎥⎣⎦⎝⎭, 该函数的图象关于原点对称,∴该函数是奇函数,23k πϕπ∴+=,k Z ∈,62k ππϕ∴=-+,k Z ∈,又0ϕ>,min 3πϕ∴=.故选:D .3.(2020·陕西宝鸡市·高一期末)已知α是锐角,3(,sin )2a α=,1(,2cos )3b α=-,且a b ⊥,则α为( ) A .15° B .45°C .75°D .15°或75°【答案】D【解析】a b ⊥,3(,sin )2a α=,1(,2cos )3b α=-,112sin cos 0sin 222a b ααα∴⋅=-=⇒=,又()0,90α∈,则20,180α,230α∴=或150,解得α=15°或75°.故选:D4.(2020·辽宁大连市·)已知向量1,tan 3a α⎛⎫= ⎪⎝⎭,()1,cos b α=,若a b ⊥,则3cos 2πα⎛⎫+= ⎪⎝⎭( )A .13- B .13C .D 【答案】A【解析】若a b ⊥,则1tan cos 03a b αα⋅=+⋅=,即1sin 3α=-, 所以31cos sin 23παα⎛⎫+==- ⎪⎝⎭.故选:A 5.(2020·陕西宝鸡市·高一期末)已知向量(sin 70,cos 70)a =,(cos80,sin 80)b =,则a b +的值为( )A .1 BC .2D .4【答案】B 【解析】(sin 70,cos 70)a =,(cos80,sin 80)b =(sin 701a ∴==,(cos801b ==,1sin 70cos80cos70sin80sin1502a b , ()22223a b a b a a b b ∴+=+=+⋅+=.故选:B.6.(2020·泰兴市第二高级中学高一期末)已知(cos ,sin )a αα=,(cos ,sin )b ββ=,其中0αβπ<<<. (1)求向量a b +与a b -所成的夹角; (2)若k a b +与a k b -的模相等,求2αβ-的值(k 为非零的常数).【答案】(1)90;(2)4π-. 【解析】(1)由已知得:1a b ==,则:()()22·0a b a b a b +-=-=,因此:()()a b a b +⊥-,因此,向量a b +与a b -所成的夹角为90;(2)由(cos ,sin )a αα=,(cos ,sin )b ββ=,可得()cos cos ,sin sin k a b k k αβαβ+=++,()cos cos ,sin sin a k b k k αβαβ-=--,(cos ka b k +=,(cos a kb α-=∴=整理可得:()()222cos 112cos k k k k βαβα+-+=--+,即:()4cos 0k βα-=,0k ≠ , ()cos 0βα∴-=,即()cos 0αβ-=,00αβππαβ<<<∴-<-<,因此:2παβ-=-,即:24αβπ-=-.7.(2020·株洲市南方中学高一期末)已知向量()2sin ,1a α=,()1,cos b α=. (1)若角α的终边过点()3,4,求a b ⋅的值; (2)//a b ,且角α为锐角,求角α的大小; 【答案】(1)115;(2)4π.【解析】(1)角α的终边过点()3,4,点(3,4)到原点距离为5r ==,∴4sin 5α,3cos 5α=, ∴43112sin cos 2555a b αα⋅=+=⨯+=; (2)∵//a b ,∴2sin cos 10αα-=,sin21α=,又α为锐角,∴22πα=,∴4πα=.8.(2020·林芝市第二高级中学高一期末)在平面直角坐标系xoy中,已知向量2(,22m =-,(sin ,cos )n x x =,(0,)2x π∈.(1)若m n ⊥,求tan x 的值; (2)若m 与n 的夹角为3π,求x 的值. 【答案】(1)tan 1x =(2)512π. 【解析】(1)∵m n ⊥,∴0mn ⋅=0x x -=,∴tan 1x =. (2)∵m 与n 的夹角为3π,∴2cos 122cos ,112x x m n m n m n -⋅<>===⨯||||,故1sin()42x π-=, 又(0,)2x π∈,∴(,)444πππ-∈-x ,46x ππ∴-=,即512x π=.故x 的值为512π. 9.(2020·广西桂林市·高一期末)已知向量(sin ,1)m x =-,向量13cos ,2n x ⎛⎫= ⎪⎭,函数()()f x m n m =+⋅.(1)求()f x 的最小正周期T 及其图象的对称轴的方程; (2)若方程()0f x t -=在,42ππ⎡⎤⎢⎥⎣⎦上有解,求实数t 的取值范围.【答案】(1)π,23k x ππ=+,k z ∈;(2)3,22⎡⎤⎢⎥⎣⎦. 【解析】(1)∵(sin ,1)m x =-,13cos ,2n x ⎛⎫= ⎪⎭,∴1sin ,2m n x x ⎛⎫+=+- ⎪⎝⎭,可得1()()sin (sin )2f x m n m x x x =+⋅=+21sin cos 2x x x =+∵21sin (1cos 2)2x x =-,1sin cos sin 22x x x =∴11()(1cos 2)2sin 212226f x x x x π⎛⎫=-++=-+ ⎪⎝⎭ 因此,()f x 的最小正周期22T ππ==. ∵262x k πππ-=+,k z ∈,∴对称轴方程为23k x ππ=+,k z ∈. (2)∵,42x ππ⎡⎤∈⎢⎥⎣⎦,可得52,636x πππ⎡⎤-∈⎢⎥⎣⎦,∴1sin 2,162x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,得()sin 216f x x π⎛⎫=-+ ⎪⎝⎭的值域为3,22⎡⎤⎢⎥⎣⎦. ∵方程()0f x t -=在,42x ππ⎡⎤∈⎢⎥⎣⎦上有解, ∴()f x t =在,42x ππ⎡⎤∈⎢⎥⎣⎦上有解,即得实数t 的取值范围为3,22⎡⎤⎢⎥⎣⎦. 10.(2020·甘肃白银市·高一期末)设向量()3cos ,2sin a θθ=-. (1)当43θπ=时,求a 的值: (2)若()3,1b =-,且//a b,求22cos 124θπθ-⎛⎫+ ⎪⎝⎭的值.【答案】(1;(2)23.【解析】(1)43θπ=,所以4433cos ,2sin ,332a ππ⎛⎫⎛=-= ⎪ ⎝⎭⎝,所以2322a ⎛⎫==⎪; (2)//a b ,则3cos 32sin 0θθ-+⨯=,所以1tan 2θ=,故22cos 1cos 122sin cos tan 134θθπθθθθ-===++⎛⎫+ ⎪⎝⎭.11.(2020·湖北荆门外语学校高一期中)已知向量()2sin ,cos a m x x =,()sin cos ,4sin b x x m x =+-,,02x π⎛⎫∈- ⎪⎝⎭.(1)若//a b ,tan 2x =-,求实数m 的值;(2)记()f x a b =⋅,若()1f x ≤恒成立,求实数m 的取值范围.【答案】(1)±(2)(,1]-∞. 【解析】(1)∵//a b ,∴ 228sin cos (sin cos )m x x x x -=+,整理得:228tan tan 1m x x =-- ∵tan 2x =-,2321m =,解得:m = (2)∵()f x a b =⋅,()2sin ,cos a m x x =,()sin cos ,4sin b x x m x =+-, ∴()2sin (sin cos )4sin cos f x m x x x x x =+-22sin 2sin cos m x m x x =- (1cos 2)sin 2m x m x =-- (sin 2cos2)m m x x =-+sin(2)4m x π=+∵(,0)2x π∈-,∴32444x πππ-<+<,∴1sin(2)42x π-≤+<,∴01)14x π<+≤若()sin(2)14f x m x π=+≤恒成立,则11)4m x π≤+恒成立,又∵111)4x π≥=+,∴1m ≤,故实数m的取值范围为(,1]-∞.12.(2020·山西朔州市·应县一中高一期中(理))已知()sin ,cos a x x ωω=,()sin ,2sin cos b x x x ωωω=-,()0,4ω∈,若()2f x a b =⋅其图像关于点,08M π⎛⎫⎪⎝⎭对称(1)求()f x 的解析式; (2)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间; (3)当a b ⊥时,求x 的值. 【答案】(1)()24f x x π⎛⎫=- ⎪⎝⎭;(2)()f x 在0,2π⎡⎤⎢⎥⎣⎦上的增区间是30,8π⎡⎤⎢⎥⎣⎦,减区间是3,82ππ⎡⎤⎢⎥⎣⎦;(3)28k x ππ=+,k Z ∈. 【解析】(1)()sin ,cos a x x ωω=,()sin ,2sin cos b x x x ωωω=- ∴()2222sin4sin cos 2cos f x a b x x x x ωωωω=⋅=+-2sin22cos2x x ωω=-24x πω⎛⎫=-⎪⎝⎭∵()f x 的图象关于点,08M π⎛⎫⎪⎝⎭对称 ∴284k ππωπ⋅-=,k Z ∈即41k ω=+,k Z ∈∵()0,4ω∈ ∴1ω=∴()24f x x π⎛⎫=-⎪⎝⎭.(2)()24f x x π⎛⎫=-⎪⎝⎭的单调递增区间为: ()()322224288k x k k Z k x k k Z πππππππππ-≤-≤+∈⇒-≤≤+∈; 单调递减区间为:()()33722224288k x k k Z k x k k Z πππππππππ+≤-≤+∈⇒+≤≤+∈; 所以()f x 在0,2π⎡⎤⎢⎥⎣⎦上的增区间是30,8π⎡⎤⎢⎥⎣⎦,减区间是3,82ππ⎡⎤⎢⎥⎣⎦; (3)∵a b ⊥∴()222sin 204f x a b x π⎛⎫=⋅=-= ⎪⎝⎭即24x k ππ-=,k Z ∈ 解得28k x ππ=+,k Z ∈13.(2020·广东高一期末)已知向量(1,2cos ),3sin ,0,23π⎛⎫⎛⎫⎛⎫==∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎭a x b x x . (1)若//a b ,求tan2x 的值;(2)若f (x )=a •b ,则函数f (x )的值域.【答案】(1(2)【解析】(1)因为//a b ,所以cos 0x x -=,所以1sin 22x =,因为03x π<<,所以2023x π<<,所以26x π=,所以tan 2tan63x π==.(2)()f x a b =⋅=2cos 2x x x x+⨯=+)4x π=+, 因为03x π<<,所以74412x πππ<+<,所以sin(),1]42x π+∈,所以()f x ∈.14.(2021·广东湛江)已知向量33cossin 22x x a ⎛⎫= ⎪⎝⎭,,cos sin()22x x b ⎛⎫=- ⎪⎝⎭,,且0.2x π⎡⎤∈⎢⎥⎣⎦,(1)求a b 及a b +的值;(2)若()·2f x a b a b λ=-+的最小值是32-,求实数λ的值. 【答案】(1)·cos 2a b x =,2cos a b x +=,(2)12λ= 【解析】(1)因为向量33cossin 22x x a ⎛⎫= ⎪⎝⎭,,cos sin()22x x b ⎛⎫=- ⎪⎝⎭,,所以33·cos cos sin sin cos 22222x x x xa b x =-=, 33cos cos ,sin sin 2222x x x x a b ⎛⎫+=+- ⎪⎝⎭,所以(cosa b +===因为02x π⎡⎤∈⎢⎥⎣⎦,,所以cos 0x >, 所以2cos a b x +=,(2)由(1)可得()2·2cos 24cos 2cos 4cos 1f x a b a b x x x x λλλ=-+=-=--, 令cos t x =,则[0,1]t ∈,令2()241g t t t λ=--,其图像的对称轴为直线44t λλ-=-=, 则问题转化为当λ为何值时,函数2()241g t t t λ=--在[0,1]t ∈上有最小值32-, ①当0λ≤时,则函数()g t 在[0,1]上递增,最小值为3(0)12g =-≠-,不合题意,舍去, ②01λ<<时,则函数()g t 在[0,]λ上递减,在[,1]λ上递增,则最小值为23()212g λλ=--=-,解得12λ=或12λ=-(舍去), ③当1λ≥时,则函数()g t 在[0,1]上递减,最小值为3(1)142g λ=-=-,解得58λ=,不合题意,舍去,综上,12λ=【题组四 数量积与几何综合运用】1.(2020·全国高一课时练习)一个平行四边形的三个顶点坐标分别是()5,7、()3,5-、()3,4,则第四个顶点的坐标不可能是( ) A .()1,8- B .()5,2-C .()11,6D .()5,2【答案】D【解析】设点()5,7A 、()3,5B -、()3,4C ,设第四个顶点为(),D x y ,分以下三种情况讨论: ①若四边形ABDC 为平行四边形,则AC BD =,即()()2,33,5x y --=+-,即3253x y +=-⎧⎨-=-⎩,解得52x y =-⎧⎨=⎩,此时,点D 的坐标为()5,2-;②若四边形ABCD 是平行四边形,则AD BC =,则()()5,76,1x y --=-, 即5671x y -=⎧⎨-=-⎩,解得116x y =⎧⎨=⎩,此时,点D 的坐标为()11,6;③若四边形ACBD 为平行四边形,则AD CB =,即()()5,76,1x y --=-,即5671x y -=-⎧⎨-=⎩,解得18x y =-⎧⎨=⎩,此时,点D 的坐标为()1,8-.综上所述,第四个顶点的坐标为()11,6或()5,2-或()1,8-,所以不可能是()5,2,故选:D. 2.(2020·辽宁)已知向量.(1)若ΔABC 为直角三角形,且∠B 为直角,求实数λ的值. (2)若点A 、B 、C 能构成三角形,求实数λ应满足的条件 . 【答案】(1)λ=2;(2)λ≠−2. 【解析】∵即:−7(6−λ)+7(3λ−2)=0,∴λ=2(2)∵若点A 、B 、C 能构成三角形,则A 、B 、C 不共线 ∴−7(3λ−2)≠7(6−λ) ∴实数λ应满足的条件 是λ≠−23.(2021·重庆市)已知向量(3,4),(6,3),(5,3)OA OB OC x y =-=-=---,(4,1)OD =. (1)若四边形ABCD 是平行四边形,求,x y 的值;(2)若ABC ∆为等腰直角三角形,且B ∠为直角,求,x y 的值. 【答案】(1)2,5x y =-=-;(2)0{3x y ==-或2{3x y =-=.【解析】(1)(1,5)AD =,(1,)BC x y =---,由AD BC =得x=-2,y=-5. (2)(3,1),AB =(1,)BC x y =---,若B ∠为直角,则AB BC ⊥, ∴3(1)0x y ---=,又AB BC =,∴22(1)10x y ++=,再由3(1)y x =--,解得0{3x y ==-或2{3x y =-=.4.(2020·浙江温州市·高一期末)已知平面上三点,,A B C ,()2,3BC k =-,()2,4AC =. (1)若BC AC =,求实数k 的值.(2)若ABC ∆是以BC 为斜边的直角三角形,求实数k 的值.【答案】(1)2k =(2)2k =-【解析】(1)由于BC AC =,则=解得2k =.(2)(),1AB AC BC k =-= 由题意得A 为直角,则•0AB AC =. 即240k +=,故2k =-.5.(2020·山西朔州市·应县一中高一期中(文))已知向量OA =()3,4-,OB =()6,3-,OC =()5,3m m ---,O 为坐标原点.(1)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值; (2)若点A 、B 、C 能构成三角形,求实数m 应满足的条件. 【答案】(1)74m =;(2)12m ≠ 【解析】(1)因为OA =()3,4-,OB =()6,3-,OC =()5,3m m ---, 所以(3,1)AB OB OA =-=,(2,1)AC OC OA m m =-=--, 若△ABC 为直角三角形,且∠A 为直角,则AB AC ⊥, ∴3(2﹣m )+(1﹣m )=0,解得74m =. (2)若点A ,B ,C 能构成三角形,则这三点不共线,即AB 与AC 不共线, 得3(1﹣m )≠2﹣m ,∴实数12m ≠时,满足条件. 6.(2020·广东云浮市·高一期末)(1)已知向量a ,b 满足5a =,()1,2b =,且//a b ,求a 的坐标. (2)已知()1,4A --、()5,2B 、()3,4C ,判断并证明以A ,B ,C 为顶点的三角形是否为直角三角形,若是,请指出哪个角是直角.【答案】(1)()1,2a =或()1,2a =--;(2)ABC 为直角三角形,B 为直角,证明见解析. 【解析】(1)设(),a x y =,则225x y +=,又//a b ,所以20x y -=,联立2252x y y x ⎧+=⎪⎨=⎪⎩,解得12x y =⎧⎨=⎩或12x y =-⎧⎨=-⎩. 于是()1,2a =或()1,2a =--.(2)ABC 是直角三角形,B 为直角.证明如下:∵()()()1,45,26,6BA =---=--,()()()3,45,22,2BC =-=-,∴()()62620BA BC ⋅=-⨯-+-⨯=,∴BA BC ⊥,即ABC 为直角三角形,B 为直角.7.(2020·湖北襄阳市·襄阳五中高一月考)已知向量(3,4)OA =-,(6,3)OB =-,(5,3)OC x y =-+,(4,1)OD =--.(Ⅰ)若四边形ABCD 是平行四边形,求x ,y 的值;(Ⅱ)若ABC ∆为等腰直角三角形,且B 为直角,求x ,y 的值.【答案】(Ⅰ)2,5--;(Ⅱ)03x y =⎧⎨=-⎩或23x y =-⎧⎨=⎩. 【解析】(Ⅰ)(3,4)OA =-,(6,3)OB =-,(5,3)OC x y =-+,∴(1,5)AD =--,(1,)BC x y =+,由AD BC =,2x =-,5y =-; (Ⅱ)(3,1)AB =--,(1,)BC x y =+,B ∠为直角,则AB BC ⊥,3(1)0x y ∴-+-=,又||||AB BC =,22(1)10x y ∴++=,再由3(1)y x =-+,解得:03x y =⎧⎨=-⎩或23x y =-⎧⎨=⎩.。
向量与坐标系向量的数量积与向量积的几何意义解释向量与坐标系在数学中,向量是一种有大小和方向的量,常用于描述物理力、速度、位移等概念。
而坐标系则是一种确定空间位置的方式,它通过指定几个轴和原点来描述一个点的位置。
向量的数量积向量的数量积,也叫点乘或内积,是向量运算中的一种操作。
它将两个向量的大小和夹角联系起来,具体的计算公式为:A·B = |A| |B| cos(θ)其中A、B为向量,|A|和|B|分别为向量A和B的模(长度),θ为A和B之间的夹角。
通过以上公式,我们可以看出向量的数量积的结果是一个实数,而不是向量。
这个结果告诉我们了向量A和B之间的相似程度,如果数量积为正,则表示A和B的方向相似;如果数量积为零,则表示A和B垂直;如果数量积为负,则表示A和B的方向相反。
向量的数量积在几何意义上也有重要的解释。
首先,我们可以通过数量积来计算两个向量之间的夹角。
具体地说,当我们知道两个向量的数量积以及各向量的模时,可以通过以下公式求得夹角θ:cos(θ) = (A·B) / (|A| |B|)这个公式非常有用,因为它允许我们通过已知的数量积和向量模来求解夹角。
其次,向量的数量积还可以用来计算一个向量在另一个向量方向上的投影。
具体地说,我们可以通过以下公式计算向量A在向量B方向上的投影:projB(A) = (A·B) / |B|这个公式表示了向量A在向量B方向上的投影长度,也就是向量A 沿着向量B的方向的分量。
向量的向量积与数量积不同,向量的向量积,也叫叉乘或外积,是向量运算中的另一种操作。
它将两个向量的方向和大小联系起来,具体的计算公式为:A×B = |A| |B| sin(θ) n其中A、B为向量,|A|和|B|分别为向量A和B的模(长度),θ为A和B之间的夹角,n为垂直于A和B所确定平面的单位向量。
通过以上公式,我们可以看出向量的向量积的结果是一个向量,而不是实数。
向量内积的坐标运算与距离公式向量的内积,也叫点积或数量积,是一个很重要的概念,常用于几何学、物理学和工程学等领域的问题求解中。
本文将详细介绍向量内积的坐标运算和距离公式。
一、向量的内积向量的内积定义如下:对于二维向量A=(x1,y1)和B=(x2,y2),它们的内积表示为A·B=x1*x2+y1*y2对于三维向量A=(x1,y1,z1)和B=(x2,y2,z2),它们的内积表示为A·B=x1*x2+y1*y2+z1*z2更一般地,对于n维向量A = (x1, x2, ..., xn)和B = (y1,y2, ..., yn),它们的内积表示为A·B = x1*y1 + x2*y2 + ... +xn*yn。
内积有以下重要的性质:1.交换律:A·B=B·A2.分配律:A·(B+C)=A·B+A·C3.结合律:(kA)·B=A·(kB)=k(A·B),其中k是一个常数二、向量内积的坐标运算当我们给出向量的坐标时,可以通过坐标运算来计算向量的内积。
设A=(x1,y1)和B=(x2,y2)是二维向量,它们的内积可以表示为A·B=x1*x2+y1*y2例如,当A=(2,3)和B=(4,1)时,它们的内积为A·B=2*4+3*1=11设A=(x1,y1,z1)和B=(x2,y2,z2)是三维向量,它们的内积可以表示为A·B=x1*x2+y1*y2+z1*z2例如,当A=(1,2,3)和B=(4,5,6)时,它们的内积为A·B=1*4+2*5+3*6=32三、向量的距离公式向量的距离公式是用来计算两个向量之间的距离的公式。
对于二维向量A=(x1,y1)和B=(x2,y2),它们之间的距离表示为d=√((x2-x1)^2+(y2-y1)^2)。
例如,当A=(2,3)和B=(4,1)时,它们之间的距离为d=√((4-2)^2+(1-3)^2)=√8=2√2对于三维向量A=(x1,y1,z1)和B=(x2,y2,z2),它们之间的距离表示为d=√((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)。
6.3.5 平面向量数量积的坐标表示【学习目标】一.两向量的数量积与两向量垂直的坐标表示已知两个非零向量,向量a=(x1,y1),b=(x2,y2)注意:公式a·b=|a||b|cos〈a,b〉与a·b=x1x2+y1y2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.二.与向量的模、夹角相关的三个重要公式1.向量的模:设a=(x,y),则|a|=.2.两点间的距离公式:若A(x1,y1),B(x2,y2),则|AB→|=.3.向量的夹角公式:设两非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ,则cos θ=a·b|a||b|=.注意:由三角函数值cos θ求角θ时,应注意角θ的取值范围是0≤θ≤π.【小试牛刀】思维辨析(对的打“√”,错的打“×”)(1)向量的模等于向量坐标的平方和.()(2)若a=(x1,y1),b=(x2,y2),则a⊥b⇔x1x2+y1y2=0.()(3)若两个非零向量的夹角θ满足cos θ<0,则两向量的夹角θ一定是钝角.()(4)若a·b>0,则a,b的夹角为锐角.()(5)若a·b=|a||b|,则a,b共线.()【经典例题】题型一 数量积的坐标运算点拨:一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再依据已知计算.例1 已知向量a =(1,3),b =(2,5),求a ·b ,(a +b )·(2a -b ).【跟踪训练】1已知向量a =(1,-1),b =(2,x ).若a ·b =1,则x =( ) A .-1 B .-12 C.12D .1题型二 平面向量的模点拨:求向量的模的两种方法:1.字母表示下的运算,利用|a |2=a 2,将向量的模的运算转化为向量与向量的数量积的问题. (2)坐标表示下的运算,若a =(x ,y ),则a·a =a 2=|a |2=x 2+y 2,于是有|a |= x 2+y2.例2 已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |等于( ) A .4 2 B .25 C .8D .82【跟踪训练】2 已知点A (0,1),B (1,-2),向量AC →=(4,-1),则|BC →|=________.题型三 平面向量的夹角和垂直问题 点拨:解决向量夹角问题的方法1.先利用平面向量的坐标求出这两个向量的数量积a ·b 以及|a |,|b |,再由cos θ=a ·b|a ||b |,求出cos θ,也可由cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22直接求出cos θ.由三角函数值cos θ求角θ时,应注意角θ的取值范围是0≤θ≤π.2.由于0≤θ≤π,所以利用cos θ=a ·b|a ||b |来判断角θ时,要注意cos θ<0有两种情况:一是θ是钝角,二是θ=π;cos θ>0也有两种情况:一是θ为锐角,二是θ=0.例3 已知a=(4,3),b=(-1,2).(1)求a与b夹角的余弦值;(2)若(a-λb)⊥(2a+b),求实数λ的值.【跟踪训练】3已知向量a=(-2,-1),b=(λ,1),且a与b的夹角为钝角,试求实数λ的取值范围.【当堂达标】1.向量a=(1,-1),b=(-1,2),则(2a+b)·a=(C)A.-1B.0C.1D.22.已知向量a=(2,1),a·b=10,|a+b|=52,则|b|=()A. 5 B.10 C.5 D.253.已知向量a=(1,3),b=(3,m).若向量a,b的夹角为π6,则实数m=()A.23 B.3C.0 D.-34.已知A(-2,1),B(6,-3),C(0,5),则△ABC的形状是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形5.已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m=________.6.已知向量a与b同向,b=(1,2),a·b=10,求:(1)向量a的坐标;(2)若c=(2,-1),求(a·c)b.【课堂小结】3个公式1.数量积:若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.2.模长:若a=(x,y),则a·a=a2=|a|2=x2+y2,于是有|a|=x2+y2.3.夹角:若a=(x1,y1),b=(x2,y2),a与b的夹角为θ,可由cos θ=x1x2+y1y2x21+y21x22+y22直接求出cos θ.由三角函数值cosθ求角θ时,应注意角θ的取值范围是0≤θ≤π.【参考答案】【自主学习】对应坐标的乘积之和 x 1x 2+y 1y 2 x 1x 2+y 1y 2=0 x 2+y 2 √(x 1−x 2)2+(y 1−y 2)2x 1x 2+y 1y 2x 21+y 21· x 22+y 22 【小试牛刀】(1) × (2) × (3) × (4) ×(5) √ 【经典例题】例1 解 a ·b =1×2+3×5=17.∵a +b =(3,8),2a =(2,6),∴2a -b =(2,6)-(2,5)=(0,1), ∴(a +b )·(2a -b )=3×0+8×1=8.【跟踪训练】1 D 解析:(1)a ·b =2-x =1,解得x =1.故选D.例 2 D 解析:易得a ·b =2×(-1)+4×2=6,所以c =(2,4)-6(-1,2)=(8,-8),所以|c |=√82+(−8)2=8 2.【跟踪训练】2 13 解析:设C (x ,y ),因为点A (0,1),向量AC→=(4,-1),所以AC →=(x ,y-1)=(4,-1),所以⎩⎨⎧x =4,y -1=-1,解得x =4,y =0,所以C (4,0),所以BC→=(3,2),|BC →|=9+4=13.例3解 (1)因为a ·b =4×(-1)+3×2=2,|a |=42+32=5,|b |=(-1)2+22=5,设a 与b 的夹角为θ,所以cos θ=a ·b |a ||b |=255=2525.(2)因为a -λb =(4+λ,3-2λ),2a +b =(7,8),又(a -λb )⊥(2a +b ),所以7(4+λ)+8(3-2λ)=0,所以λ=529.【跟踪训练】3 解 ∵a 与b 的夹角为钝角,∴a ·b <0,即(-2,-1)·(λ,1)=-2λ-1<0,∴λ>-12.又当a 与b 反向时,夹角为180°,即a ·b =-|a |·|b |,则2λ+1=5·λ2+1,解得λ=2.由于a 与b 的夹角为钝角,故应排除a 与b 反向共线的情况,即排除λ=2,则实数λ的取值范围为⎝ ⎛⎭⎪⎫-12,2∪(2,+∞). 【当堂达标】1.C 解析:a =(1,-1),b =(-1,2),∴(2a +b )·a =(1,0)·(1,-1)=1.2.C 解析:∵|a +b |=52,∴|a +b |2=a 2+2a ·b +b 2=5+2×10+b 2=(52)2,∴|b |=5,故选C .3.B 解析:因为a =(1,3),b =(3,m ).所以|a |=2,|b |=9+m 2,a ·b =3+3m , 又a ,b 的夹角为π6,所以a ·b |a |·|b |=cos π6,即3+3m 29+m 2=32,所以3+m =9+m 2,解得m = 3.4.A 解析:选A.由题设知AB→=(8,-4),AC →=(2,4),BC →=(-6,8),所以AB →·AC →=2×8+(-4)×4=0,即AB→⊥AC →.所以∠BAC =90°,故△ABC 是直角三角形.5. 7 解析:因为a +b =(m -1,3),a +b 与a 垂直,所以(m -1)×(-1)+3×2=0,解得m =7.6.解 (1)∵a 与b 同向,且b =(1,2),∴a =λb =(λ,2λ)(λ>0). 又∵a ·b =10,∴λ+4λ=10,∴λ=2,∴a =(2,4). (2)∵a ·c =2×2+(-1)×4=0,∴(a ·c )b =0·b =0.。