12图形的剪拼和等分
- 格式:docx
- 大小:98.16 KB
- 文档页数:3
图形的剪拼和等分(答案)
一、等分和剪拼
1.如右图所示是由三个正方形组成的图形,请把它分成大小、形状都相同的四个图形?
分析:
2.把如右图这样由五个正方形组成的图形,分成四块大小、形状都形同的图形.
分析:
3.右图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应该怎样分?
分析:
4.把一个等边三角形分别分成 6 块、8 块和9 块形状、大小都一样的三角形.
分析:6块:8块9块:
5.下面的正方形是由 16 个小正方形拼成的.现在要将这个大正方形分成形状、大小一样的四
块,然后给每块涂上不同的颜色(不能破坏每个小正方形的形状).
分析:
6.这张方格纸是由一些大小完全一样的小正方形组成的.我想沿格子线剪成形状相同且大小
相等的两块分给我的两个儿子,你知道在怎么剪吗?
分析:
二、附加题
7.将下图的图形分成 2 块,拼成一个正方形(每个小正方形面积为 1).
分析:。
知识点拨本讲主要学习三大图形处理方法:1.理解掌握图形的分割;2.理解掌握图形的拼合;3.理解图形的剪拼.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.例题精讲模块一、图形的分割例1 】用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?巩固】画一条直线,将六边形分成大小相等、形状相同的两部分,这样的直线有条.4-2-3. 图形的分割与拼接AB例2 】用直线把左图分成面积相等的两部分,在右图中画虚线给出了分法,其中正确的有例3】在一块长方形的地里有一正方形的水池(如下图).试画一条直线把除开水池外的这块地平分成两块.例6 】下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.________ 个。
例4 】把任意一个三角形分成面积相等的 4 个小三角形,有许多种分法.请你画出 4 种不同的分法.巩固】把任意一个三角形分成面积相等的 2 个小三角形,有许多种分法.请你画出 3 种不同的分法.例5 】怎样把一个等边三角形分别分成8 块和9 块形状、大小都一样的三角形.把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗?例8】下图是一个3 4 的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.巩固】右图是一个4 4 的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.例9 】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的四部分.巩固】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的两部分.如果分三部分呢?巩固】图中是由三个正三角形组成的梯形.你能把它分割成4 个形状相同、面积相等的梯形吗?例10 】将图中的图形分割成面积相等的三块.例11 】下图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应怎样分?例12 】 如何把下图中的三个图形分割成两个相同的部分( 除了沿正方形的边进行分割外,还可沿正方形的对角线进行分割 ).例 13 】 已知左下图是由同样大小的 5 个正方形组成的.试将图形分割成 4 块形状、大小都一样的图形.巩固】 把右图剪成形状、大小相等的 8 个小图形,怎么剪?作出分出的小图形.例 14】 如图,它是由 15 个边长为 1 厘米的小正方形组成的. 个大小形状完全相同的图形,分割线用笔描粗.⑵ 分割后 5 个小图形的周长总和与原来大图形的周长相差第3题例 15 】 下图是由 18 个小正方形组成的图形,请你把它分成 6 个完全相同的图形.⑴ 请在原图中沿正方形的边线, 把它划分为 5 分割后每个小图形的周长是 厘米.⑶ 厘米.例16 】如图,将一个等边三角形分割成互相不重叠的23 个较小的等边三角形(这些较小的等边三角形的大小不一定都相同),请在图中画出分割的结果.例17 】如图,将一个正方形分割成互相不重叠的21 个小正方形,这些小正方形的大小不一定相同,请画图表示.例18 】一个正三角形形状的土地上有四棵大树(如下图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?例19 】将下图分割成大小、形状相同的三块,使每一小块中都含有一个○.例20 】请把下面这个长方形沿方格线剪成形状、大小都相同的 4 块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪?奥数读本例21 】请把下面的图形分成形状、大小都相同的 4 块,使每一块里面都有“春蕾杯赛”4 个字.春蕾蕾杯赛春春赛杯蕾杯赛蕾春赛杯第13题例22 】学习与思考对小学生的发展是很重要的,学习改变命运,思考成就未来,请你将下图分成形状和大小都相同的四个图形,并且使其中每个图形都含有“学习思考”这四个字.应怎样分?例23 】如下图所示,请将这个正方形分切成两块,使得两块的形状、大小都相同,并且每一块都含有学而思奥数五个字.数而而奥奥数思学学思例24 】如下图所示的正方形是由36 个小正方格组成的.如图那样放着4 颗黑子,4 颗白子,现在要把它切割成形状、大小都相同的四块,并使每一块中都有一颗黑子和一颗白子.试问如何切割?思学思考考学习习习思考思习学考学例25 】如图,要求把正方形分成四块,两个正方形共分为八块,使每块的大小和形状都相同,而且都带一个○.例26 】将下页图所示图形拆成形状相同、面积相等的三部分,使每个部分中含有一个,请将第一部分的六边形都标上模块二、图形的拼接例27 】用两块大小一样的等腰直角三角形能拼成几种常见的图形?巩固】用3 个等腰直角三角形拼图,要求边与边完全重合,能拼出几种图形?巩固】用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形?若能,画出示意图.例29 】用下面的3 个图形,拼成右边的大正方形.巩固】用“四连块”拼成一个正方形,按编号画入右边图中.例28 】面哪些图形自身用4 次就能拼成一个正方形?例30 】有6 个完全相同的,你能将它们拼成下面的形状吗?例31 】三种塑料板的型号如图:(A)(B)(C)已有A型板30 块,要购买B、 C 两种型号板若,拼成5 5正方形10个,B型板每块价格5 元,C 型板每块价格为4 元.请你考虑要各买多少块,使所花的总钱数尽可能少,那么购买 B 、C 两种板要花多少元?例32 】试用图a 中的8 个相等的直角三角形,拼成图b 中的空心正八边形和图c 中的空心正八角星.模块三、图形的剪拼例33 】试将一个正方形分成相同的四块,然后用这四块分别拼成三角形、平行四边形和梯形.例34 】把两个小正方形剪开以后拼成一个大正方形.例35 】将下图分成4 个形状、大小都相同的图形,然后拼成一个正方形.例36 】将下图分成两块,然后拼成一个正方形.例37 】将图1 分成4 个形状、大小都相同的图形,然后拼成一个正方形.图1 图2例38 】小龙的妈妈在街上卖边角布料的地摊上,买回了一块形状是等腰直角三角形的绸布,想用它来做长方形的窗帘,为了不把布剪的太碎,裁剪的块数就要尽可能的少,请问小龙的妈妈应该怎样剪拼呢?例39 】试将任意一个三角形分成三块,然后拼成一个长方形.巩固】试将任意一个矩形分成两块,然后拼成一个三角形.巩固】 试 将任意一个矩形分成三块,然后拼成一个三角形.例 40 】 把一个正方形分成 8 块,再把它们拼成一个正方形和一个长方形,使这个正方形和长方形的面积 相等.例 41 】 试将一个 4 9 的长方形分割成两个大小相等、形状相同的图形,然后拼成一个正方形.例 42】 有一块长 8 米、宽 3 米的长方形地毯, 现在要把它移到长 6 米、宽 4 米的新房间里. 请找出一种剪 裁方法,使剪后的各块拼合后正好能铺满房间的地面,为了使剪后的地毯尽量完整,就要使剪裁 的块数尽可能地少,应怎样剪拼?如何把一个长 20厘米、宽 12厘米的长方形切成两块,拼成一个长 16 厘米、宽 15 厘米的新长方形.例 43】4图d 图e例44 】长方形长24 厘米,宽15 厘米.把它剪成两块,使它们拼成一个长20 厘米,宽18 厘米的长方形.例45 】长方形的长和宽各是9 厘米和4 厘米,要把它剪成大小、形状都相同的两块,并使它们拼成一个正方形.巩固】一块长方形的木板,长为90 厘米,宽为40厘米,将它锯成2 块,然后拼成一个正方形,你能做到吗?例46 】如下图长方形的长、宽分别为120 厘米、90 厘米,正中央开有小长方形孔,长为80 厘米,宽为10 厘米,要拼成面积为100 平方厘米的正方形.问如何切分,能使划分的块数最少.例 47 】 把下图中两个图形中的某一个分成三块,最后都拼在一起,使它们成为一个正方形.例 49 】如下图所示,这是一张十字形纸片,它是由五个全等正方形组成,试沿一直线将它剪成两片,然 后再沿另一直线将其中一片剪成两片,使得最后得到的三片拼成两个并列的正方形. 例 50 】有 5 个长方形,它们的长和宽都是整数,且 5 个长和 5 个宽恰好是 1~10 这 10 个整数。
本讲主要学习三大图形处理方法:1.理解掌握图形的分割; 2.理解掌握图形的拼合; 3.理解图形的剪拼.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力. 把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合. 将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼. 我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.板块一 图形的分割【例 1】 用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?BAO【解析】 怎样把一个图形按照规定的要求分割成若干部分呢?这就是图形的分割问题.按照规定的要求合理分割图形,是很讲究技巧的,多做这种有趣的训练,可以培养学生的创造性思维,发展空间观念,丰富想象,提高观察能力.这道题要求把长方形平均分割成两块,过长方形中心的任意一条直线都可以把长方形平均分割成两块,根据这点给出如下分法(如右图): ⑴ 做长方形的两条对角线,设交点为O⑵ 过O 点任作一条直线AB ,直线AB 将长方形平均分割成两块.知识点拨例题精讲教学目标第四讲:图形的剪拼可见用线段平分长方形的分法是无穷多的.【巩固】画一条直线,将六边形分成大小相等、形状相同的两部分,这样的直线有 条. 【解析】 无数条.任何过六边形中心的直线均符合要求.【例 2】 把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法. 【解析】 根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积必定相等.而要得到这4个等底等高的小三角形,只需把原三角形的某条边四等分,再将各分点与这边相对的顶点连接起来就行了.根据上面的分析,可得如左下图所示的三种分法.又因为4 1 4 22=⨯=⨯,所以,如果我们把每一个小三角形的面积看做1,那么14⨯就可以视为把三角形的面积直接分成4等份,即分成4个面积为1的小三角形;而22⨯可以视为先把原三角形分成两等份,再把每一份分别分成两等份.根据前面的分析,在每次等分时,都要想办法找等底等高的三角形. 根据上面的分析,又可以得到如右下图的另两种分法.AB C C B AABC【例 3】 怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.→ 【解析】 ⑴分成8块的方法是:先取各边的中点并把它们连接起来,得到4个大小、形状相同的三角形,然后再把每一个三角形分成两部分,得到如左上图所示的图形.⑵分成9块的方法是:先把每边三等分,然后再把分点彼此连接起来,得到加上右上图所示的符合条件的图形.【例 4】 下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.321DC BA 1FE 221D C B A【解析】 直角梯形的上底为1,下底为2,要分成两个相同的四边形,需要一条边可以分成1和2,AD 边长正好为3,所以AD 边分成两段,找到AD 的三等分点E ,现在,CD AE =,DE AB =,BF EF =,所以还要找到BC 的中点F ,连接EF ,就把梯形ABCD 分成完全相同的两部分.如右上图.【例 5】 在一块长方形的地里有一正方形的水池(如下图).试画一条直线把除开水池外的这块地平分成两块.AO【解析】 用连对角线的办法找出这块长方形地的中心O 和正方形水池的中心A .过O 、A 画一条直线,这条直线正好能把除开水池外的这块地平分为两块(如右上图).【例 6】 把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗?2060402020【解析】 先把图形分成2040⨯相等的两块,每一块中再分成相等的两份,这样就不难分成四块了,如右上图.【例 7】 下图是一个34⨯的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【解析】 分成的两块每块有1226÷=(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,我们从对称线入手,介绍一种分割技巧——染色法,先选中一个小格,找它关于中心点或中心线的对称位置,标上相应的符号.当找它关于中心线的对称位置时是一种情况,关于中心点的对称位置是另一种情况,具体如下图所示.【例 8】 下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的四部分.【解析】 要求把阴影部分分成四个大小、形状都相同的四个图形,先不考虑形状,大小相同也就是面积相等,也就是把整个图形的面积分成四份,分割后的每一部分占一份.考虑先把阴影部分分成12个小正方形再分成四份,这样每份正好有3个小正方形.再看形状,三个小正方形只能排成“-”形或者“∟”形.答案如下图.【例 9】 下图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应怎样分?【解析】 如果不考虑分成的四个图形的形状,只考虑它们的面积,这就要求把原来五个正方形分成四个面积相等的图形,每个图形的面积应是1个多正方形.我们把每个正方形各分成四个面积相等的小正方形,分成的每块图形应有五个这样的小正方形.根据图形的对称性,我们很快就能得到如右上图的分法.也可以将中间的正方形分成四个小正方形,如右上图.【例 10】 已知左下图是由同样大小的5个正方形组成的.试将图形分割成4块形状、大小都一样的图形.【解析】 已知图形是由同样大小的5个正方形组成的,要分成4块同样大小的图形,则每块图形是54个正方形.由此想到,若把每个正方形都分成4等份,则分割成的每一块中应包含5份.再稍经试验,即得右上图的解(图内部的实线为分割线).【例 11】下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.【解析】 通过计算,18÷6=3,说明基本形状是由三个小正方形组成,三个正方形有两种形式:与,通过观察,上面的图形具有对称性,不可能分成6个,再由6结合染色法,如下图.666555444333222111【例 12】 一个正三角形形状的土地上有四棵大树(如下图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?【解析】 由于土地的形状为正三角形,由题意可知,把大三角形的面积分成四份,每一块占一份,且形状与原三角形相同,于是我们想到取大正三角形的各边中点,依次连接各边中点,即可将这块大正三角形的土地分成与它相等的四份,如右上图所示.【总结】本题若死守三角形面积等于底⨯高的一半,则无以下手,引导学生转换一下思考角度,取原三角形各边中点,将原三角形分成面积相等的四部分,问题即可解决.【例 13】 将下图分割成大小、形状相同的三块,使每一小块中都含有一个○.【解析】 图中一共有18个小方格,要求分割成大小、形状相同的三块,每一块有:1836÷=(块),而且分割成大小、形状相同的三块,可以看出图形的中心点是O ,而且上面的部分是对称的,但是只有5块,需要对称的再加上一块,再由图形的特点,可以判断应分为右下图的三部分.O【例 14】 请把下面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪?本读数奥【解析】 图中“奥数”与“读本”中的两个字都是挨着的,所以肯定要在它们中间分割,因此,首先在他们中间划出分割线,因为要将这个长方形分成大小、形状完全相同的4块,因为长方形是64⨯的,所以分割后的每一块都有6小块组成,可以考虑先把长方形分成相同的两部分,再把每一部分分成相同的两部分,如下图所示.本读数奥答案不唯一.板块二 图形的拼合【例 15】 用两块大小一样的等腰直角三角形能拼成几种常见的图形? 【解析】 建议用等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合,或者准备一些等腰直角三角形的纸片,由学生拼接后贴到黑板上,见下图:【例 16】下面哪些图形自身用4次就能拼成一个正方形?【解析】 用4块图(4)和图(5)那样的图形显然能够拼成一个大正方形.其实用图(1)、图(2)、图(3)也能拼成一个大正方形,拼法见下图.【例 17】用下面的3个图形,拼成右边的大正方形.【解析】 首先数一数所有的空格数,一共只有16个,只能组成44⨯的正方形,使用目标倒推法,在右边的大正方形中拼图,仍然使用染色法,相当于把已知图形往右边的大正方形中放,这样就很容易拼合了,如下图:【例 18】有6个完全相同的,你能将它们拼成下面的形状吗?【解析】 利用染色法以及图形的对称性,对称轴两侧都有三个小图形,按照下面的顺序标号即可完成.1111'1'1'→2222'2'2'1111'1'1'→3'3'3'3332222'2'2'1111'1'1'【例 19】(保良局亚洲区城市小学数学邀请赛)三种塑料板的型号如图:(A ) (B ) (C )已有A 型板30块,要购买B 、C 两种型号板若干,拼成55⨯正方形10个,B 型板每块价格5元,C 型板每块价格为4元.请你考虑要各买多少块,使所花的总钱数尽可能少,那么购买B 、C 两种板要花多少元?【解析】 要使花的钱尽可能的少,已有30个A 型板最好能用上,而价格较贵的B 型板尽可能少用,因为A型与B 型的面积都为3,所以在拼成的55⨯的正方形中,除了C 型外,余下的面积应能被3整除.有25449-⨯=或254121-⨯=能被3整除知,只能用4块C 型板或1块C 型板,考虑尽可能多地使用A 型板,有如下图1、图2 的拼法:BC CCC B AAA AAA BC A图1 图2图1的拼法要花445226⨯+⨯=(元),图2的拼法要花459+=(元),因为只有30块A 型板,所以在10快55⨯的正方形中,图2的拼法只能有4块,剩下6块用图1拼法,共需:94266192⨯+⨯=(元)【例 20】试用图a 中的8个相等的直角三角形,拼成图b 中的空心正八边形和图c 中的空心正八角星.【解析】 把一个直角三角形的斜边与另一个直角三角形的一条直角边重合,同时,斜边上的一个锐角顶点与直角顶点重合,像这样依次摆放下去,便可得空心正八边形.若把一个直角三角形的斜边与另一个直角三角形的直角边的一部分重合,但顶点均不重合,依次摆放下去,便可由这八个相等的直角三角形组成空心正八角星.练习1. 把任意一个三角形分成面积相等的2个小三角形,有许多种分法.请你画出3种不同的分法.AB CC B ACBA【解析】 根据等底等高的三角形面积相等这一结论,只要把原三角形分成2个等底等高的小三角形,它们的面积必定相等.而要得到这2个等底等高的小三角形,只需找出原三角形的某条边的中点与这边相对的顶点连接起来就行了.根据上面的分析,可得如图所示的三种分法.课后练习练习2. 右图是一个44⨯的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【解析】 因为要分割成完全相同的两块,即大小、形状完全相同.方格纸一共有4416⨯=(个)小格,所以分成的两块每块有1628÷=(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,应用染色法,从中心点的一侧入手染色,逐步推进.(建议教师同时呈现六幅空的44⨯格图,不同的变化在不同的图上同时呈现)如下图:3'2'5'1'6'7'3265418'874'3'328'1754686'5'1'4'2'7'8'312'2764585'6'3'7'1'4'4'322'1564787'6'3'5'1'8' 3'277'1453868'5'2'4'1'6' 6'781'1546323'4'7'5'8'2'练习3. 下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的两部分.如果分三部分呢?【解析】 从形状,面积两方面综合考虑,很容易就能得到答案.答案如右上图.练习4. 用3个等腰直角三角形拼图,要求边与边完全重合,能拼出几种图形? 【解析】 这种类型的题需要学生亲自操作,建议教师准备材料与学生互动.一共可以拼成如下图的几种形状:测试1、图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗?月测备选【解析】 这道题的要点在于通过计算解决问题,要求把原来三个正三角形分成四个大小、形状都相同的四个梯形,先不考虑形状,大小相同也就是面积相等,即把整个梯形的面积分成四份,分割后的每一个梯形占一份,可以考虑把每一个三角形的面积分成四份,再把三个正三角形中的每一个小三角形合成要求的梯形,这种类型的题目可以从中点入手,找到每个正三角形的中点并连接,如右上图.测试2、用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形?若能,画出示意图. 【解析】 能用四块同样大小的等腰直角三角板拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形.建议用等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合,或者准备一些等腰直角三角形的纸片,由学生拼接后贴到黑板上,具体拼法如图所示.测试3、用“四连块”拼成一个正方形,按编号画入右边图中.④③②①【解析】 首先数一数所有的空格数,一共只有16个,只能组成44 的正方形,目标倒推,在右边的大正方形中拼图,仍然使用染色法,相当于把已知图形往右边的大正方形中放,这样就很容易拼成了,注意标号的位置,具体如下图所示:①→①③→①③②→①③④②测试4、把右图剪成形状、大小相等的8个小图形,怎么剪?作出分出的小图形.【解析】 总格数为12,用总格数除以8,得到每个小图形应该是一个半小正方形,根据平均一个小图形的格数作图,如右图.。
小学数学《图形的分割与拼接》练习题(含答案)把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.(一)图形的分割【例1】(★★★)下图是一个3×4的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.分析:因为要分割成完全相同的两块,即大小、形状完全相同.方格纸一共有3×4=12(个)小格,所以分成的两块每块有12÷2=6(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,我们从对称线入手,介绍一种分割技巧——染色法,先选中一个小格,找它关于中心点或中心线的对称位置,标上相应的符号.当找它关于中心线的对称位置时是一种情况,关于中心点的对称位置是另一种情况,具体如右上图所示.[拓展] 下图是一个4×4的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.分析:因为要分割成完全相同的两块,即大小、形状完全相同.方格纸一共有4×4=16(个)小格,所以分成的两块每块有16÷2=8(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,应用染色法,从中心点的一侧入手染色,逐步推进.(建议教师同时呈现六幅空的4×4格图,不同的变化在不同的图上同时呈现)如下图:【例2】(★★★★)一个正三角形形状的土地上有四棵大树(如下图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?分析:由于土地的形状为正三角形,由题意可知,把大三角形的面积分成四份,每一块占一份,且形状与原三角形相同,于是我们想到取大正三角形的各边中点,依次连接各边中点,即可将这块大正三角形的土地分成与它相等的四份,如右上图所示.[总结]本题若死守三角形面积等于底×高的一半,则无以下手,引导学生转换一下思考角度,取原三角形各边中点,将原三角形分成面积相等的四部分,问题即可解决.[拓展] 请把下面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪?分析:图中“奥数”与“读本”中的两个字都是挨着的,所以肯定要在它们中间分割,因此,首先在他们中间划出分割线,因为要将这个长方形分成大小、形状完全相同的4块,因为长方形是6×4的,所以分割后的每一块都有6小块组成,可以考虑先把长方形分成相同的两部分,再把每一部分分成相同的两部分,如右上图所示.【例3】(★★★)图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗?分析:这道题的要点在于通过计算解决问题,要求把原来三个正三角分成四个大小、形状都相同的四个梯形,先不考虑形状,大小相同也就是面积相等,即把整个梯形的面积分成四份,分割后的每一个梯形占一份,可以考虑把每一个三角形的面积分成四份,再把三个正三角形中的每一个小三角形合成要求的梯形,这种类型的题目可以从中点入手,找到每个正三角形的中点并连接,如右上图.[拓展]如右图所示是由三个正方形组成的图形,请把它分成大小、形状都相同的四个图形?分析:要求把原来三个正方形分成四个大小、形状都相同的四个图形,先不考虑形状,大小相同也就是面积相等,也就是把整个图形的面积分成四份,分割后的每一部分占一份,可以考虑把每一个正方形的面积分成四份,再把三个正方形中的每一个小正方形合成要求的图形,如右上图.[巩固]如何把下图中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角线进行分割).分析:要把图形分成两个相同的部分,首先要保证分得的两部分面积相同,其次要保证分得的两部分形状相同,从面积入手进行分割会使问题更容易解决.第一个图形一共有6个小正方形,2个三角形,要分割成两块完全相同的部分,每一部分都要有3个正方形、1个三角形,这样很容易就可以解决这个问题了;同样,对第二个图形,一共有7个正方形,2个三角形,因为正方形的个数是奇数,所以,肯定有一个正方形被分成相同的两块,对于这个图形,我们很容易看出有一个正方形的位置很特殊,在最中间,所以考虑将它分成两部分,由对称的原则,从对角线分开;第三个图形更复杂一些,一共有6个正方形,6个三角形,分成的两块每一块都要有3个正方形、3个三角形,因为最上面的两个三角形组合成了一个大的三角形,所以右下方的两个三角形不能分开,再根据对称的原则,就容易解决这个问题了,具体分法见右上图.【例4】(★★★)下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.分析:直角梯形的上底为1,下底为2,要分成两个相同的四边形,需要一条边可以分成1和2,AD边长正好为3,所以AD边分成两段,找到AD的三等分点E,现在,CD=AE,DE=AB,EF=EF,所以还要找到BC的中点F,连接EF,就把梯形ABCD分成完全相同的两部分.如右上图.(二)图形的拼合【例5】(★★★)用两块大小一样的等腰直角三角形能拼成几种常见的图形?分析:建议用等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合,或者准备一些等腰直角三角形的纸片,由学生拼接后贴到黑板上,见下图:[拓展] 用3个等腰直角三角形拼图,要求边与边完全重合,能拼出几种图形?分析:这种类型的题需要学生亲自操作,建议教师准备材料与学生互动。
4-2-3.图形的分割与拼接知识点拨本讲主要学习三大图形处理方法:1.理解掌握图形的分割;2.理解掌握图形的拼合;3.理解图形的剪拼.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.模块一、图形的分割【例 1】用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?BA O【巩固】画一条直线,将六边形分成大小相等、形状相同的两部分,这样的直线有条.【例 2】用直线把左图分成面积相等的两部分,在右图中画虚线给出了分法,其中正确的有________个。
例题精讲llll【例 3】在一块长方形的地里有一正方形的水池(如下图).试画一条直线把除开水池外的这块地平分成两块.AO【例 4】把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.【巩固】把任意一个三角形分成面积相等的2个小三角形,有许多种分法.请你画出3种不同的分法.【例 5】怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.【例 6】下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.231DCBA【例 7】把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗?20402060【例 8】下图是一个34⨯的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【巩固】右图是一个44⨯的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【例 9】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的四部分.【巩固】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的两部分.如果分三部分呢?【巩固】图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗?【例 10】将图中的图形分割成面积相等的三块.【例 11】下图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应怎样分?【例 12】如何把下图中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角线进行分割).【例 13】已知左下图是由同样大小的5个正方形组成的.试将图形分割成4块形状、大小都一样的图形.【巩固】把右图剪成形状、大小相等的8个小图形,怎么剪?作出分出的小图形.【例 14】如图,它是由15个边长为1厘米的小正方形组成的.⑴ 请在原图中沿正方形的边线,把它划分为5个大小形状完全相同的图形,分割线用笔描粗.⑵ 分割后每个小图形的周长是厘米.⑶ 分割后5个小图形的周长总和与原来大图形的周长相差厘米.第3题【例 15】下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.【例 16】如图,将一个等边三角形分割成互相不重叠的23个较小的等边三角形(这些较小的等边三角形的大小不一定都相同),请在图中画出分割的结果.【例 17】如图,将一个正方形分割成互相不重叠的21个小正方形,这些小正方形的大小不一定相同,请画图表示.【例 18】一个正三角形形状的土地上有四棵大树(如下图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?【例 19】将下图分割成大小、形状相同的三块,使每一小块中都含有一个○.【例 20】请把下面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪?奥数读本【例 21】请把下面的图形分成形状、大小都相同的4块,使每一块里面都有“春蕾杯赛”4个字.春春蕾杯赛春春蕾蕾蕾杯杯杯赛赛赛第13题【例 22】 学习与思考对小学生的发展是很重要的,学习改变命运,思考成就未来,请你将下图分成形状和大小都相同的四个图形,并且使其中每个图形都含有“学习思考”这四个字.应怎样分?学习思考学习思考学习思考考思习学(5)(4)(3)(2)(1)【例 23】 如下图所示,请将这个正方形分切成两块,使得两块的形状、大小都相同,并且每一块都含有学而思奥数五个字.学而思奥数数奥思而学【例 24】如下图所示的正方形是由36个小正方格组成的.如图那样放着4颗黑子,4颗白子,现在要把它切割成形状、大小都相同的四块,并使每一块中都有一颗黑子和一颗白子.试问如何切割?【例 25】如图,要求把正方形分成四块,两个正方形共分为八块,使每块的大小和形状都相同,而且都带一个○.【例 26】将下页图所示图形拆成形状相同、面积相等的三部分,使每个部分中含有一个,请将第一部分的六边形都标上“1”,第二部分的六边形都标上“2”。
本讲主要学习三大图形处理方法: 1.理解掌握图形的分割; 2.理解掌握图形的拼合; 3.理解图形的剪拼.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合. 将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼. 我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.知识点拨4-2-3.图形的分割与拼接模块一、图形的分割【例 1】用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?BA O【巩固】画一条直线,将六边形分成大小相等、形状相同的两部分,这样的直线有条.【例 2】用直线把左图分成面积相等的两部分,在右图中画虚线给出了分法,其中正确的有________个。
ll ll【例 3】在一块长方形的地里有一正方形的水池(如下图).试画一条直线把除开水池外的这块地平分成两块.AO【例 4】把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.例题精讲【巩固】 把任意一个三角形分成面积相等的2个小三角形,有许多种分法.请你画出3种不同的分法.【例 5】 怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.【例 6】 下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.231DCBA【例 7】 把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗?20604020【例 8】下图是一个34 的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【巩固】右图是一个44 的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【例 9】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的四部分.【巩固】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的两部分.如果分三部分呢?【巩固】图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗?【例 10】将图中的图形分割成面积相等的三块.【例 11】下图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应怎样分?【例 12】如何把下图中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角线进行分割).【例 13】已知左下图是由同样大小的5个正方形组成的.试将图形分割成4块形状、大小都一样的图形.【巩固】把右图剪成形状、大小相等的8个小图形,怎么剪?作出分出的小图形.【例 14】如图,它是由15个边长为1厘米的小正方形组成的.⑴请在原图中沿正方形的边线,把它划分为5个大小形状完全相同的图形,分割线用笔描粗.⑵分割后每个小图形的周长是厘米.⑶分割后5个小图形的周长总和与原来大图形的周长相差厘米.第3题【例 15】下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.【例 16】如图,将一个等边三角形分割成互相不重叠的23个较小的等边三角形(这些较小的等边三角形的大小不一定都相同),请在图中画出分割的结果.【例 17】如图,将一个正方形分割成互相不重叠的21个小正方形,这些小正方形的大小不一定相同,请画图表示.【例 18】一个正三角形形状的土地上有四棵大树(如下图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?【例 19】 将下图分割成大小、形状相同的三块,使每一小块中都含有一个○.【例 20】 请把下面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪?奥数读本【例 21】 请把下面的图形分成形状、大小都相同的4块,使每一块里面都有“春蕾杯赛”4个字.春春蕾杯赛春春蕾蕾蕾杯杯杯赛赛赛第13题【例 22】 学习与思考对小学生的发展是很重要的,学习改变命运,思考成就未来,请你将下图分成形状和大小都相同的四个图形,并且使其中每个图形都含有“学习思考”这四个字.应怎样分?学习思考学习思考学习思考考思习学(5)(4)(3)(2)(1)【例 23】 如下图所示,请将这个正方形分切成两块,使得两块的形状、大小都相同,并且每一块都含有学而思奥数五个字.学而思奥数数奥思而学【例 24】 如下图所示的正方形是由36个小正方格组成的.如图那样放着4颗黑子,4颗白子,现在要把它切割成形状、大小都相同的四块,并使每一块中都有一颗黑子和一颗白子.试问如何切割?【例 25】 如图,要求把正方形分成四块,两个正方形共分为八块,使每块的大小和形状都相同,而且都带一个○.【例26】 将下页图所示图形拆成形状相同、面积相等的三部分,使每个部分中含有一个,请将第一部分的六边形都标上 “1”,第二部分的六边形都标上“2”。
“图形的分割与拼接”专项复习本讲主要学习三大图形处理方法:1.理解掌握图形的分割;2.理解掌握图形的拼合;3.理解图形的剪拼.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.【典型例题】板块一图形的分割【例 1】用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?BA O【解析】怎样把一个图形按照规定的要求分割成若干部分呢?这就是图形的分割问题.按照规定的要求合理分割图形,是很讲究技巧的,多做这种有趣的训练,可以培养学生的创造性思维,发展空间观念,丰富想象,提高观察能力.这道题要求把长方形平均分割成两块,过长方形中心的任意一条直线都可以把长方形平均分割成两块,根据这点给出如下分法(如右图):⑴做长方形的两条对角线,设交点为O⑵过O点任作一条直线AB,直线AB将长方形平均分割成两块.可见用线段平分长方形的分法是无穷多的.【巩固】画一条直线,将六边形分成大小相等、形状相同的两部分,这样的直线有条.【解析】无数条.任何过六边形中心的直线均符合要求.【例 2】 把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法. 【解析】根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积必定相等.而要得到这4个等底等高的小三角形,只需把原三角形的某条边四等分,再将各分点与这边相对的顶点连接起来就行了.根据上面的分析,可得如左下图所示的三种分法.又因为4 1 4 22=⨯=⨯,所以,如果我们把每一个小三角形的面积看做1,那么14⨯就可以视为把三角形的面积直接分成4等份,即分成4个面积为1的小三角形;而22⨯可以视为先把原三角形分成两等份,再把每一份分别分成两等份.根据前面的分析,在每次等分时,都要想办法找等底等高的三角形. 根据上面的分析,又可以得到如右下图的另两种分法.AB C C B AABC【巩固】把任意一个三角形分成面积相等的2个小三角形,有许多种分法.请你画出3种不同的分法.AB CC B ABA【解析】 根据等底等高的三角形面积相等这一结论,只要把原三角形分成2个等底等高的小三角形,它们的面积必定相等.而要得到这2个等底等高的小三角形,只需找出原三角形的某条边的中点与这边相对的顶点连接起来就行了.根据上面的分析,可得如图所示的三种分法.【例 3】怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.→【解析】 ⑴分成8块的方法是:先取各边的中点并把它们连接起来,得到4个大小、形状相同的三角形, 然后再把每一个三角形分成两部分,得到如左上图所示的图形.⑵分成9块的方法是:先把每边三等分,然后再把分点彼此连接起来,得到加上右上图所示的符合条件的图形.【例 4】 下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.321DCB A 1FE 221D C BA【解析】 直角梯形的上底为1,下底为2,要分成两个相同的四边形,需要一条边可以分成1和2,AD 边长正好为3,所以AD 边分成两段,找到AD 的三等分点E ,现在,CD AE =,DE AB =,BF EF =,所以还要找到BC 的中点F ,连接EF ,就把梯形ABCD 分成完全相同的两部分.如右上图.【例 5】在一块长方形的地里有一正方形的水池(如下图).试画一条直线把除开水池外的这块地平分成两块.AO【解析】用连对角线的办法找出这块长方形地的中心O 和正方形水池的中心A .过O 、A 画一条直线,这条直线正好能把除开水池外的这块地平分为两块(如右上图).【例 6】 把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗?2060402020【解析】 先把图形分成2040⨯相等的两块,每一块中再分成相等的两份,这样就不难分成四块了,如右上图.【例 7】 下图是一个34⨯的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【解析】 分成的两块每块有1226÷=(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,我们从对称线入手,介绍一种分割技巧——染色法,先选中一个小格,找它关于中心点或中心线的对称位置,标上相应的符号.当找它关于中心线的对称位置时是一种情况,关于中心点的对称位置是另一种情况,具体如下图所示.【巩固】右图是一个44⨯的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【解析】因为要分割成完全相同的两块,即大小、形状完全相同.方格纸一共有4416⨯=(个)小格,所以分成的两块每块有1628÷=(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,应用染色法,从中心点的一侧入手染色,逐步推进.(建议教师同时呈现六幅空的44⨯格图,不同的变化在不同的图上同时呈现)如下图:【例 8】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的四部分.【解析】要求把阴影部分分成四个大小、形状都相同的四个图形,先不考虑形状,大小相同也就是面积相等,也就是把整个图形的面积分成四份,分割后的每一部分占一份.考虑先把阴影部分分成12个小正方形再分成四份,这样每份正好有3个小正方形.再看形状,三个小正方形只能排成“-”形或者“∟”形.答案如下图.【巩固】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的两部分.如果分三部分呢?【解析】从形状,面积两方面综合考虑,很容易就能得到答案.答案如右上图.【巩固】图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗?【解析】这道题的要点在于通过计算解决问题,要求把原来三个正三角形分成四个大小、形状都相同的四个梯形,先不考虑形状,大小相同也就是面积相等,即把整个梯形的面积分成四份,分割后的每一个梯形占一份,可以考虑把每一个三角形的面积分成四份,再把三个正三角形中的每一个小三角形合成要求的梯形,这种类型的题目可以从中点入手,找到每个正三角形的中点并连接,如右上图.【例 9】下图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应怎样分?【解析】如果不考虑分成的四个图形的形状,只考虑它们的面积,这就要求把原来五个正方形分成四个面积相等的图形,每个图形的面积应是1个多正方形.我们把每个正方形各分成四个面积相等的小正方形,分成的每块图形应有五个这样的小正方形.根据图形的对称性,我们很快就能得到如右上图的分法.也可以将中间的正方形分成四个小正方形,如右上图.【例 10】已知左下图是由同样大小的5个正方形组成的.试将图形分割成4块形状、大小都一样的图形.【解析】已知图形是由同样大小的5个正方形组成的,要分成4块同样大小的图形,则每块图形是5 4个正方形.由此想到,若把每个正方形都分成4等份,则分割成的每一块中应包含5份.再稍经试验,即得右上图的解(图内部的实线为分割线).【巩固】把右图剪成形状、大小相等的8个小图形,怎么剪?作出分出的小图形.【解析】 总格数为12,用总格数除以8,得到每个小图形应该是一个半小正方形,根据平均一个小图形的格数作图,如右图.【例 11】 下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.【解析】 通过计算,18÷6=3,说明基本形状是由三个小正方形组成,三个正方形有两种形式:与,通过观察,上面的图形具有对称性,不可能分成6个,再由6结合染色法,如下图.666555444333222111【例 12】 一个正三角形形状的土地上有四棵大树(如下图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?【解析】 由于土地的形状为正三角形,由题意可知,把大三角形的面积分成四份,每一块占一份,且形状与原三角形相同,于是我们想到取大正三角形的各边中点,依次连接各边中点,即可将这块大正三角形的土地分成与它相等的四份,如右上图所示.【总结】本题若死守三角形面积等于底 高的一半,则无以下手,引导学生转换一下思考角度,取原三角形各边中点,将原三角形分成面积相等的四部分,问题即可解决.【例 13】 将下图分割成大小、形状相同的三块,使每一小块中都含有一个○.【解析】 图中一共有18个小方格,要求分割成大小、形状相同的三块,每一块有:1836÷=(块),而且分割成大小、形状相同的三块,可以看出图形的中心点是O ,而且上面的部分是对称的,但是只有5块,需要对称的再加上一块,再由图形的特点,可以判断应分为右下图的三部分.O【例 14】 请把下面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪?本读数奥 【解析】 图中“奥数”与“读本”中的两个字都是挨着的,所以肯定要在它们中间分割,因此,首先在他们中间划出分割线,因为要将这个长方形分成大小、形状完全相同的4块,因为长方形是64⨯的,所以分割后的每一块都有6小块组成,可以考虑先把长方形分成相同的两部分,再把每一部分分成相同的两部分,如下图所示.本读数奥答案不唯一.【例 15】 (2008年第八届“春蕾杯”小学数学邀请赛初赛)请把下面的图形分成形状、大小都相同的4块,使每一块里面都有“春蕾杯赛”4个字.春春蕾杯赛春春蕾蕾蕾杯杯杯赛赛赛第13题【解析】 如下图所示:图1答案不唯一.【例 16】 学习与思考对小学生的发展是很重要的,学习改变命运,思考成就未来,请你将下图分成形状和大小都相同的四个图形,并且使其中每个图形都含有“学习思考”这四个字.应怎样分?学习思考学习思考学习思考考思习学 (5)(4)(3)(2)(1)【解析】 看到这道题目,我们想到俄罗斯方块,由题意可知,所分出的每一块图形,必须由4个小正方形组成,它的形状不外乎如右上图所示的五种俄罗斯方块,这就控制了搜索的范围.根据原题中各个字的具体位置,上图中有些图形是必须排除的,例如,如果把图⑵与原题右下角22⨯的正方形重叠,其中“考”字出现了两次,不符合题意,因此,图⑵可以先排除掉. 现在,再固定某一角上的一个小正方形,按其中的字来考虑.如固定右上角写有“考”的小正方形来分析,只有下列4种可能出现的情况:考思习学考思学习学考思习学考思习学习思考考思习学考思习学考思习学【例 17】 如下图所示,请将这个正方形分切成两块,使得两块的形状、大小都相同,并且每一块都含有学而思奥数五个字.学而思奥数数奥思而学→图1 图2【解析】 图中有相同汉字挨在一起的情况,肯定要从它们之间切开(图1),因此,首先要在它们之间划出切分线.因为要将这个正方形切开成两块形状和大小都一样的图形,所以其中一块绕中心点旋转180︒必定与另一块重合.要是把切分线也绕中心点旋转180°就可得到一些新的切分线(图2).这就为我们解决问题提供了线索,本题的两种解法如上图所示.【巩固】如下图所示的正方形是由36个小正方格组成的.如图那样放着4颗黑子,4颗白子,现在要把它切割成形状、大小都相同的四块,并使每一块中都有一颗黑子和一颗白子.试问如何切割?【解析】首先在相同颜色的棋子之间划出切分线,以中心旋转90、180、270之后,得到一些新的切分线,同时考虑到每块包含有一颗黑子和一颗白子的要求,以及每一块面积应该是3649÷=,即含有9个小正方格,先找到符合要求的一块后,让它绕中心旋转90、180、270便得到其他三块,如右上图.【例 18】如图,甲、乙是两个大小一样的正方形.要求把每一个正方形分成四块,两个正方形共分为八块,使每块的大小和形状都相同,而且都带一个○.甲乙【解析】一个正方形分成大小和形状都相同的四块,一定是从中心点分开的,只要能找出其中符合题目要求的一块,然后再将这块绕着正方形的中心点分别旋转90、180、270就可以得到另外三块.又因为这个正方形面积为36平方单位,所以分成的每一块的面积都是9平方单位.即每一块都由9个小正方格组成.另外,由于两个正方形要切分成一样大小的四块,因此可将两个正方形重叠在一起考虑.①将两个正方形重叠在一起,如下图所示,为便于区别,将其中一组的“○”改写成“×”.按要求将这重叠的正方形切分成大小、形状都相同的四块,并且每块都有一个“○”和“×”.②图中有相同符号的“○”挨在一起的从中间把它们切开,在它们中间划上截线.并将这些截线绕中心点旋转90、180、270得到另外三段截线.如下图.利用它们设想出划分线.③设想分块从中心位置开始,逐步向外扩散,在里层方格中,先指定某一方格已分入到某小块中,并作上记号(斜线阴影),然后将它绕中心旋转180后得到另一方格分入到另一小块中,也作上记号(横线阴影),如图.对于中间一层方格和最外一层方格,设想分块时一定要紧扣条件:每一块中都要有一个“○”和一个“⨯”.每一块都有9个方格组成,不能断开.下图是分解了的分块过程示意图.④注意到斜线阴影部分已经有了一个“○”和一个“⨯”.那么左下角包含“○”的方格就不能再分到斜线阴影部分去了,而只能将右下角的方格分到斜线阴影部分.于是左上角的方格就应该分给横线阴影部分.空白部分是另外两块. 下就是最后分得的结果.【例 19】 正三角形ABC 的面积是1平方米,将三条边分别向两端各延长一倍,连结六个端点得到一个六边形(如右图),求六边形的面积.CBA【解析】采用分割法,过A 、B 、C 分别作平行线,得到右上图,其中所有小三角形的面积都相同,所以六边形面积等于13平方米.【巩固】正方形ABCD 的面积是1平方米,将四条边分别向两端各延长一倍,连结八个端点得到一个正方形(如图),求大正方形的面积.DCB A【解析】四条边分别向两端各延长一倍,很容易可以观察出,大正方形有9个小正方形组成,所以,大正方形的面积是:199⨯=(平方米).【巩固】正六边形ABCDEF的面积是1平方米,将六条边分别向两端各延长一倍,交于六个点,组成如下图的图形,求这个图形的面积.FE D CB AFE D CBA【解析】采用分割法,连接正六边形的对角线,会发现,所有的三角形面积都相同,一共有12个小三角形,原来正六边形的面积是1平方米,由6个小三角形组成,所以现在的大图形的面积是:122⨯=(平方米)【例 20】(第九届“中环杯”小学生思维能力训练活动初赛)如图,它是由15个边长为1厘米的小正方形组成的.⑴请在原图中沿正方形的边线,把它划分为5个大小形状完全相同的图形,分割线用笔描粗.⑵分割后每个小图形的周长是厘米.⑶分割后5个小图形的周长总和与原来大图形的周长相差厘米.第3题【分析】⑴因为总共有15个小正方形,所以分成5个大小形状相同的图形后每个图形应该有1553÷=(个)小正方形,如图.⑵每个小图形的周长为8厘米.⑶5个小图形的周长和:8540⨯=(厘米),原图形的周长:44218⨯+=(厘米),所以相差401822-=(厘米).图1【例 21】如何把下图中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角线进行分割).【解析】要把图形分成两个相同的部分,首先要保证分得的两部分面积相同,其次要保证分得的两部分形状相同,从面积入手进行分割会使问题更容易解决.第一个图形一共有6个小正方形,2个三角形,要分割成两块完全相同的部分,每一部分都要有3个正方形、1个三角形,这样很容易就可以解决这个问题了;同样,对第二个图形,一共有7个正方形,2个三角形,因为正方形的个数是奇数,所以,肯定有一个正方形被分成相同的两块,对于这个图形,我们很容易看出有一个正方形的位置很特殊,在最中间,所以考虑将它分成两部分,由对称的原则,从对角线分开;第三个图形更复杂一些,一共有6个正方形,6个三角形,分成的两块每一块都要有3个正方形、3个三角形,因为最上面的两个三角形组合成了一个大的三角形,所以右下方的两个三角形不能分开,再根据对称的原则,就容易解决这个问题了,具体分法见下图.【例 22】(2003年《小学生数学报》数学邀请赛)如图,将一个等边三角形分割成互相不重叠的23个较小的等边三角形(这些较小的等边三角形的大小不一定都相同),请在图中画出分割的结果.【解析】分割的方法不唯一,如图所示.【例 23】(2005年《小学生数学报》数学邀请赛)如图,将一个正方形分割成互相不重叠的21个小正方形,这些小正方形的大小不一定相同,请画图表示.【解析】分割的方法不唯一,如右图所示.板块二图形的拼合【例 24】用两块大小一样的等腰直角三角形能拼成几种常见的图形?【解析】建议用等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合,或者准备一些等腰直角三角形的纸片,由学生拼接后贴到黑板上,见下图:【巩固】用3个等腰直角三角形拼图,要求边与边完全重合,能拼出几种图形?【解析】这种类型的题需要学生亲自操作,建议教师准备材料与学生互动.一共可以拼成如下图的几种形状:【巩固】用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形?若能,画出示意图.【解析】能用四块同样大小的等腰直角三角板拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形.建议用等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合,或者准备一些等腰直角三角形的纸片,由学生拼接后贴到黑板上,具体拼法如图所示.【例 25】下面哪些图形自身用4次就能拼成一个正方形?【解析】用4块图(4)和图(5)那样的图形显然能够拼成一个大正方形.其实用图(1)、图(2)、图(3)也能拼成一个大正方形,拼法见下图.【例 26】用下面的3个图形,拼成右边的大正方形.【解析】首先数一数所有的空格数,一共只有16个,只能组成44的正方形,使用目标倒推法,在右边的大正方形中拼图,仍然使用染色法,相当于把已知图形往右边的大正方形中放,这样就很容易拼合了,如下图:【巩固】用“四连块”拼成一个正方形,按编号画入右边图中.④③②①【解析】 首先数一数所有的空格数,一共只有16个,只能组成44⨯的正方形,目标倒推,在右边的大正方形中拼图,仍然使用染色法,相当于把已知图形往右边的大正方形中放,这样就很容易拼成了,注意标号的位置,具体如下图所示:→→→【例 27】 有6个完全相同的,你能将它们拼成下面的形状吗?【解析】 利用染色法以及图形的对称性,对称轴两侧都有三个小图形,按照下面的顺序标号即可完成.→→【例 28】 (保良局亚洲区城市小学数学邀请赛)三种塑料板的型号如图:(A ) (B ) (C )已有A 型板30块,要购买B 、C 两种型号板若干,拼成55⨯正方形10个,B 型板每块价格5元,C 型板每块价格为4元.请你考虑要各买多少块,使所花的总钱数尽可能少,那么购买B 、C 两种板要花多少元?【解析】 要使花的钱尽可能的少,已有30个A 型板最好能用上,而价格较贵的B 型板尽可能少用,因为A 型与B 型的面积都为3,所以在拼成的55⨯的正方形中,除了C 型外,余下的面积应能被3整除.有25449-⨯=或254121-⨯=能被3整除知,只能用4块C 型板或1块C 型板,考虑尽可能多地使用A 型板,有如下图1、图2 的拼法:BC CCC B AAAAAA BCA图1 图2图1的拼法要花445226⨯+⨯=(元),图2的拼法要花459+=(元),因为只有30块A 型板,所以在10快55⨯的正方形中,图2的拼法只能有4块,剩下6块用图1拼法,共需:94266192⨯+⨯=(元)【例 29】 试用图a 中的8个相等的直角三角形,拼成图b 中的空心正八边形和图c 中的空心正八角星.【解析】 把一个直角三角形的斜边与另一个直角三角形的一条直角边重合,同时,斜边上的一个锐角顶点与直角顶点重合,像这样依次摆放下去,便可得空心正八边形.若把一个直角三角形的斜边与另一个直角三角形的直角边的一部分重合,但顶点均不重合,依次摆放下去,便可由这八个相等的直角三角形组成空心正八角星.板块三 图形的剪拼【例 30】 试将一个正方形分成相同的四块,然后用这四块分别拼成三角形、平行四边形和梯形.【解析】 要用分成的四块组成三角形,那么剪成得图形一定是三角形,这样平均分成四等分,当然这种分法有好几种.组成图形的时候我们可以换位思考,看如何将三角形、平行四边形、梯形分成大小相等的三角形.如图所示:【例 31】 把两个小正方形剪开以后拼成一个大正方形.【解析】 因为大正方形的面积等于两个小正方形的面积和,所以大正方形的边长不能等于两个小正方形的。
第三章第五讲:图形的分割与拼接题库知识例题精讲-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN本讲主要学习三大图形处理方法:1.理解掌握图形的分割;2.理解掌握图形的拼合;3.理解图形的剪拼.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.板块一图形的分割【例 1】用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法AO【例 2】把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.【例 3】怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.→【例 4】下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.321DCBA1FE 221DCBA【例 5】 在一块长方形的地里有一正方形的水池(如下图).试画一条直线把除开水池外的这块地平分成两块.AO【例 6】 把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗20604020【例 7】 下图是一个34 的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【例 8】 下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的四部分.【例 9】 下图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应怎样分【例 10】 已知左下图是由同样大小的5个正方形组成的.试将图形分割成4块形状、大小都一样的图形.【例 11】下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.【例 12】 一个正三角形形状的土地上有四棵大树(如下图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分【例 13】将下图分割成大小、形状相同的三块,使每一小块中都含有一个○.【例 14】请把下面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪本读数奥【例 15】 (2008年第八届“春蕾杯”小学数学邀请赛初赛)请把下面的图形分成形状、大小都相同的4块,使每一块里面都有“春蕾杯赛”4个字.春春蕾杯赛春春蕾蕾蕾杯杯杯赛赛赛第13题【例 16】学习与思考对小学生的发展是很重要的,学习改变命运,思考成就未来,请你将下图分成形状和大小都相同的四个图形,并且使其中每个图形都含有“学习思考”这四个字.应怎样分学习思考学习思考学习思考考思习学【例 17】 如下图所示,请将这个正方形分切成两块,使得两块的形状、大小都相同,并且每一块都含有学而思奥数五个字.学而思奥数数奥思而学 →【例 18】 如图,甲、乙是两个大小一样的正方形.要求把每一个正方形分成四块,两个正方形共分为八块,使每块的大小和形状都相同,而且都带一个○.甲 乙【例 19】 正三角形ABC 的面积是1平方米,将三条边分别向两端各延长一倍,连结六个端点得到一个六边形(如右图),求六边形的面积.CBA【巩固】正方形ABCD 的面积是1平方米,将四条边分别向两端各延长一倍,连结八个端点得到一个正方形(如图),求大正方形的面积.DCB A【例 20】(第九届“中环杯”小学生思维能力训练活动初赛)如图,它是由15个边长为1厘米的小正方形组成的.⑴请在原图中沿正方形的边线,把它划分为5个大小形状完全相同的图形,分割线用笔描粗.⑵分割后每个小图形的周长是厘米.⑶分割后5个小图形的周长总和与原来大图形的周长相差厘米.第3题【例 21】如何把下图中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角线进行分割).【例 22】(2003年《小学生数学报》数学邀请赛)如图,将一个等边三角形分割成互相不重叠的23个较小的等边三角形(这些较小的等边三角形的大小不一定都相同),请在图中画出分割的结果.【例 23】(2005年《小学生数学报》数学邀请赛)如图,将一个正方形分割成互相不重叠的21个小正方形,这些小正方形的大小不一定相同,请画图表示.板块二图形的拼合【例 24】用两块大小一样的等腰直角三角形能拼成几种常见的图形【例 25】下面哪些图形自身用4次就能拼成一个正方形【例 26】用下面的3个图形,拼成右边的大正方形.【例 27】有6个完全相同的,你能将它们拼成下面的形状吗【例 28】(保良局亚洲区城市小学数学邀请赛)三种塑料板的型号如图:(A) (B) (C)已有A型板30块,要购买B、C两种型号板若干,拼成55正方形10个,B型板每块价格5元,C型板每块价格为4元.请你考虑要各买多少块,使所花的总钱数尽可能少,那么购买B、C两种板要花多少元【例 29】试用图a中的8个相等的直角三角形,拼成图b中的空心正八边形和图c中的空心正八角星.板块三图形的剪拼【例 30】试将一个正方形分成相同的四块,然后用这四块分别拼成三角形、平行四边形和梯形.【例 31】把两个小正方形剪开以后拼成一个大正方形.【例 32】将下图分成4个形状、大小都相同的图形,然后拼成一个正方形.【例 33】试将一个49的长方形分割成两个大小相等、形状相同的图形,然后拼成一个正方形.【例 34】将下图分成两块,然后拼成一个正方形.【例 35】将图1分成4个形状、大小都相同的图形,然后拼成一个正方形.图1 图2 图3【例 36】小龙的妈妈在街上卖边角布料的地摊上,买回了一块形状是等腰直角三角形的绸布,想用它来做长方形的窗帘,为了不把布剪的太碎,裁剪的块数就要尽可能的少,请问小龙的妈妈应该怎样剪拼呢【例 37】试将任意一个三角形分成三块,然后拼成一个长方形.【例 38】把一个正方形分成8块,再把它们拼成一个正方形和一个长方形,使这个正方形和长方形的面积相等.【例 39】有一块长8米、宽3米的长方形地毯,现在要把它移到长6米、宽4米的新房间里.请找出一种剪裁方法,使剪后的各块拼合后正好能铺满房间的地面,为了使剪后的地毯尽量完整,就要使剪裁的块数尽可能地少,应怎样剪拼【例 40】如何把一个长20厘米、宽12厘米的长方形切成两块,拼成一个长16厘米、宽15厘米的新长方形.→【例 41】长方形长24厘米,宽15厘米.把它剪成两块,使它们拼成一个长20厘米,宽18厘米的长方形.44 44 34334332415【例 42】如下图长方形的长、宽分别为120厘米、90厘米,正中央开有小长方形孔,长为80厘米,宽为10厘米,要拼成面积为100平方厘米的正方形.问如何切分,能使划分的块数最少.【例 43】 把下图中两个图形中的某一个分成三块,最后都拼在一起,使它们成为一个正方形.【例 44】 如下图两个正方形的边长分别是a 和b ( a b ),将边长为a 的正方形切成四块大小、形状都相同的图形,与另一个正方形拼在一起组成一个正方形.a bba【例 45】 如下图所示,这是一张十字形纸片,它是由五个全等正方形组成,试沿一直线将它剪成两片,然后再沿另一直线将其中一片剪成两片,使得最后得到的三片拼成两个并列的正方形.乙 ’甲’乙甲。
图形的等分和拼接(一)基本概念把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.(二)基本方法1.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.2.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.3.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.4.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法用4个拼成一个正方形1. 1.用一条直线把一个正方形分割成完全相同的两部分,问一共有多少种分割办法A、1种B、2种C、无数种D、不能分割2. 2.16个面积是1的小正方形,拼成一个大的正方形,那么大正方形的边长是多少?把下面的图形分成大小和形状相同的6部分1. 1.一个六边形的面积为36,如果将它均分成6部分,每一部分的面积是多少?2. 2.把任意一个三角形分成面积相等的2个小三角形,有许多种分法。
请你画出3种不同的分法。
(填入默认答案“0”,查看详解)把下图分成完全相同的2部分1.图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗? (填入默认答案“0”,查看详解)2.把右图剪成形状、大小相等的8个小图形,怎么剪?作出分出的小图形(填入默认答案“0”,查看详解)下面的图形要分成5等分怎么分?1. 1.把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗,画出两种剪切的办法。
(填入默认答案“0”,查看详解)2. 2.下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的两部分.(填入默认答案“0”,查看详解)用1、2、3部分可不可以拼成一个正方形。
第十二讲求图形面积的几种常用方法在组合图形中,求阴影部分的面积的常用方法是:割补法、加减法、旋转法、构造法、等积的变换,抓不变量、等分、一半的应用、代换、比例等。
A、割补法:对于一些求不在一起的几块阴影面积的和,往往需要把它们通过剪割、拼补在一起,才便于计算,在剪割、拼补过程中,一定要注意割下来的图形和补上去的图形的形状、大小必须完全一样。
【例1】如图,每个小圆的半径是2厘米,求阴影部分的面积是多少平方厘米?【分析与解】如图,通过剪割、拼补,阴影部分的面积就变成了圆的面积减去正方形的面积,则阴影部分面积为:S=S圆-S正方形=π×42-4×4÷2×4=50.24-32=18.24(平阴影方厘米)【例2】右图中三个圆的半径都是4厘米,三个圆两两交于圆心。
求阴影部分的面积是多少平方厘米?【分析与解】如图,三个阴影部分的面积都相等,只需要求出其中一个面积即可,但非常困难。
这时我们可以考虑采用割补的方法,同时利用对称性,将其个半圆形,则阴影部分的面积=3。
14×4×4÷2=25。
12(平方厘米)B、加减法:注意观察,所求阴影部分的面积看是由哪几个图形相加,再减去哪个图形变可以得到。
我们把这种通过加、减就能求出它的面积的方法,我们的把它称为“加减法”。
【例3】如图,正方形的边长为4厘米,求阴影部分的面积是多少?【分析与解】如图,显然阴影部分的面积=扇形的面积-空白c的面积,而空白c的面积=正方形的面积-扇形的面积,即S阴影=S扇-(S正-S扇)= S扇-S正+S扇= S扇+S扇-S正即S扇+S扇比S正的面积多了b那部分的面积,即b= [(b+c)+(b+a)]-(a +b+c)阴影部分的面积,S阴=π×42÷4×2ab-4×4=25.12-16=9.12(平方厘米)。
【例4】如图,长方形的长为12厘米,宽为8厘米,求阴影部分的面积是多少?【分析与解】如图,S 阴影= S 大扇-S a = S 大扇-(S 长-S 小扇) = S 大扇+S小扇-S 长=π×122÷4+π×82÷4-12×8=163.28-96=67.28(平方厘米)C 、旋转法:在求一些面积时,有时需要把某个图形进行一定方向的旋转,使之拼在一起,变成另一个比较方便求的图形。
“图形的分割与拼接”专项复习本讲主要学习三大图形处理方法:1.理解掌握图形的分割;2.理解掌握图形的拼合;3.理解图形的剪拼.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.把图再【解析】无数条.任何过六边形中心的直线均符合要求.【例 2】把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.【解析】根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积必定相等.而要得到这4个等底等高的小三角形,只需把原三角形的某条边四等分,再将各分点与这边相对的顶点连接起来就行了.根据上面的分析,可得如左下图所示的三种分法.又因为4 14 22=⨯=⨯,所以,如果我们把每一个小三角形的面积看做1,那么14⨯就可以视为把三角形的面积直接分成4等份,即分成4个面积为1的小三角形;而22⨯可以视为先把原三角形分成两等份,再把每一份分别分成两等份.根据前面的分析,在每次等分时,都要想办法找等底等高的三角形.根据上面的分析,又可以得到如右下图的另两种分法.【巩固】把任意一个三角形分成面积相等的2个小三角形,有许多种分法.请你画出3种不同的分法.【解析】根据等底等高的三角形面积相等这一结论,只要把原三角形分成2个等底等高的小三角形,它们的面积必定相等.而要得到这2个等底等高的小三角形,只需找出原三角形的某条边的中点与这边相对的顶点连接起来就行了.根据上面的分析,可得如图所示的三种分法.【例 3】怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.,,【例7】下图是一个34⨯的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【解析】分成的两块每块有1226÷=(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,我们从对称线入手,介绍一种分割技巧——染色法,先选中一个小格,找它关于中心点或中心线的对称位置,标上相应的符号.当找它关于中心线的对称位置时是一种情况,关于中心点的对称位置是另一种情况,具体如下图所示.【巩固】右图是一个44⨯的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【解析】因为要分割成完全相同的两块,即大小、形状完全相同.方格纸一共有4416⨯=(个)小格,所以分成的两块每块有1628÷=(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,应用染色法,从中心点的一侧入手染色,逐步推进.(建议教师同时呈现六幅空的44⨯格图,不同的变化在不同的图上同时呈现)如下图:【例8】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的四部分.【解析】要求把阴影部分分成四个大小、形状都相同的四个图形,先不考虑形状,大小相同也就是面积相等,也就是把整个图形的面积分成四份,分割后的每一部分占一份.考虑先把阴影部分分成12个小正方形再分成四份,这样每份正好有3个小正方形.再看形状,三个小正方形只能排成“-”形或者“∟”形.答案如下图.5份.再【解析】总格数为12,用总格数除以8,得到每个小图形应该是一个半小正方形,根据平均一个小图形的格数作图,如右图.【例11】下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.【解析】通过计算,18÷6=3,说明基本形状是由三个小正方形组成,三个正方形有两种形式:与,通过观察,上面的图形具有对称性,不可能分成6个,再由6结合染色法,如下图.【例12】一个正三角形形状的土地上有四棵大树(如下图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?【解析】 由于土地的形状为正三角形,由题意可知,把大三角形的面积分成四份,每一块占一份,且形状与原三角形相同,于是我们想到取大正三角形的各边中点,依次连接各边中点,即可将这块大正三角形的土地分成与它相等的四份,如右上图所示.【总结】本题若死守三角形面积等于底⨯高的一半,则无以下手,引导学生转换一下思考角度,取原三角形各边中点,将原三角形分成面积相等的四部分,问题即可解决.【例 13】 将下图分割成大小、形状相同的三块,使每一小块中都含有一个○.【解析】 图中一共有18个小方格,要求分割成大小、形状相同的三块,每一块有:1836÷=(块),而且分割成大小、形状相同的三块,可以看出图形的中心点是O ,而且上面的部分是对称的,但是只有5块,需要对称的再加上一块,再由图形的特点,可以判断应分为右下图的三部分.【例 14】 请把下面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥64⨯的,4块,4个小2的正方4种可【例 17】 如下图所示,请将这个正方形分切成两块,使得两块的形状、大小都相同,并且每一块都含有学而思奥数五个字.学而思奥数数奥思而学→图1图2【解析】 图中有相同汉字挨在一起的情况,肯定要从它们之间切开(图1),因此,首先要在它们之间划出切分线.因为要将这个正方形切开成两块形状和大小都一样的图形,所以其中一块绕中心点旋转180︒必定与另一块重合.要是把切分线也绕中心点旋转180°就可得到一些新的切分线(图2).这就为我们解决问题提供了线索,本题的两种解法如上图所示.【巩固】如下图所示的正方形是由36个小正方格组成的.如图那样放着4颗黑子,4颗白子,现在要把它切割成形状、大小都相同的四块,并使每一块中都有一颗黑子和一颗白子.试问如何切割?【解析】首先在相同颜色的棋子之间划出切分线,以中心旋转90、180、270之后,得到一些新的切分线,同时考虑到每块包含有一颗黑子和一颗白子的要求,以及每一块面积应该是3649÷=,即含有9个小正方格,先找到符合要求的一块后,让它绕中心旋转90、180、270便得到其他三块,如右上图.【例 18】如图,甲、乙是两个大小一样的正方形.要求把每一个正方形分成四块,两个正方形共分为八块,使每块的大小和形状都相同,而且都带一个○.甲乙【解析】一个正方形分成大小和形状都相同的四块,一定是从中心点分开的,只要能找出其中符合题目要求的一块,然后再将这块绕着正方形的中心点分别旋转90、180、270就可以得到另外三块.又因为这个正方形面积90、③设想分块从中心位置开始,(斜对于中间一层方格和最外一层方格,设想分块时一定要紧扣条件:每一块中都要有一个“○”和一个“⨯”.每一所以,大正方形的面积是:199⨯=(平方米).【巩固】正六边形ABCDEF的面积是1平方米,将六条边分别向两端各延长一倍,交于六个点,组成如下图的图形,求这个图形的面积.【解析】采用分割法,连接正六边形的对角线,会发现,所有的三角形面积都相同,一共有12个小三角形,原来正六边形的面积是1平方米,由6个小三角形组成,所以现在的大图形的面积是:122⨯=(平方米)【例20】(第九届“中环杯”小学生思维能力训练活动初赛)如图,它是由15个边长为1厘米的小正方形组成的.⑴请在原图中沿正方形的边线,把它划分为5个大小形状完全相同的图形,分割线用笔描粗.⑵分割后每个小图形的周长是厘米.⑶分割后5个小图形的周长总和与原来大图形的周长相差厘米.【分析】⑴因为总共有15个小正方形,所以分成5个大小形状相同的图形后每个图形应该有÷=(个)小正方形,如图.1553⑵每个小图形的周长为8厘米.⑶5个小图形的周长和:8540-=(厘⨯=(厘米),原图形的周长:44218⨯+=(厘米),所以相差401822米).【例21】如何把下图中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角线进行分割).【解析】要把图形分成两个相同的部分,首先要保证分得的两部分面积相同,其次要保证分得的两部分形状相同,从面积入手进行分割会使问题更容易解决.第一个图形一共有6个小正方形,2个三角形,要分割成两块完全相同的部分,每一部分都要有3个正方形、1个三角形,这样很容3个个较小的21一个梯形、一个平行四边形五种图形?若能,画出示意图.【解析】能用四块同样大小的等腰直角三角板拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形.建议用等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合,或者准备一些等腰直角三角形的纸片,由学生拼接后贴到黑板上,具体拼法如图所示.【例 25】下面哪些图形自身用4次就能拼成一个正方形?【解析】用4块图(4)和图(5)那样的图形显然能够拼成一个大正方形.其实用图(1)、图(2)、图(3)也能拼成一个大正方形,拼法见下图.【例 26】用下面的3个图形,拼成右边的大正方形.【解析】首先数一数所有的空格数,一共只有16个,只能组成44⨯的正方形,使用目标倒推法,在右边的大正方形中拼图,仍然使用染色法,相当于把已知图形往右边的大正方形中放,这样就很容易拼合了,如下图:【巩固】用“四连块”拼成一个正方形,按编号画入右边图中.【解析】首先数一数所有的空格数,一共只有16个,只能组成44⨯的正方形,目标倒推,在右边的大正方形中拼图,仍然使用染色法,相当于把已知图形往右边的大正方形中放,这样就很容易拼成了,注意标号的位置,具体如下图所示:型板每块A型与⨯=或491、图2快55⨯的【解析】把一个直角三角形的斜边与另一个直角三角形的一条直角边重合,同时,斜边上的一个锐角顶点与直角顶点重合,像这样依次摆放下去,便可得空心正八边形.若把一个直角三角形的斜边与另一个直角三角形的直角边的一部分重合,但顶点均不重合,依次摆放下去,便可由这八个相等的直角三角形组成空心正八角星.板块三图形的剪拼【例 30】试将一个正方形分成相同的四块,然后用这四块分别拼成三角形、平行四边形和梯形.【解析】要用分成的四块组成三角形,那么剪成得图形一定是三角形,这样平均分成四等分,当然这种分法有好几种.组成图形的时候我们可以换位思考,看如何将三角形、平行四边形、梯形分成大小相等的三角形.如图所示:【例 31】把两个小正方形剪开以后拼成一个大正方形.【解析】因为大正方形的面积等于两个小正方形的面积和,所以大正方形的边长不能等于两个小正方形的边长和,而是等于小正方形的对角线的长,所以要沿着两个小正方形的对角线剪开再进行拼接,如右图.【例 32】将下图分成4个形状、大小都相同的图形,然后拼成一个正方形.【解析】总共有36块小正方形,所以最后拼成的大正方形边长有6个单位,具体切拼方法如下:【例 33】试将一个49⨯的长方形分割成两个大小相等、形状相同的图形,然后拼成一个正方形.【解析】已知长方形格数9436⨯=(个),所以正方形的边长应为6个格,因此可以把长方形上半部分成3个格、6个格,下半部分成6个格、3个格,分成相等的两块,合起来正好拼成一个边长为6个格的正方形,如右下图.【巩固】长方形的长和宽各是9厘米和4厘米,要把它剪成大小、形状都相同的两块,并使它们拼成一个正方形.4如果3;显【解析】要使裁剪的块数少,就要充分利用等腰直角三角形的特点,还要尽可能多的让长方形的边与三角形的边重合,假设拼好的长方形以BC为长,现在要把△ADE补到△CGE的位置上,这就要求这两个三角形完全一样,显然,只要取D、E分别为AB、AC的中点即可.所以首先连接AB的中点D和AC的中点E,将△ADE沿DE剪开,再按顺时针方向旋转180°即可.如下图所示.【例 37】试将任意一个三角形分成三块,然后拼成一个长方形.【解析】方法一:三角形与长方形的不同在于:角、边的个数不同,把三角形变为四边形,需要加一个角,加一条边,而且长方形四个角都是直角,自然能想到在三角形中做两条垂线,并且过三角形两条边的中点,这样才能拼出一个长方形,如左下图.方法二:因为由平行四边形转化为长方形很简单,所以只需要把三角形先分割、拼凑成平行四边形,作三角形的中位线,旋转180°即可转化为平行四边形,然后拼成长方形,如右下图.方法一:方法二:【巩固】试将任意一个矩形分成两块,然后拼成一个三角形.4请就要使剪裁的块数尽可能地少,应怎样剪拼?【解析】地毯的面积为8324⨯=平方米,两者虽然长、宽不相等,⨯=平方米,新房间的面积为6424但面积相等.通过对比不难发现:地毯的长比房间的长多2米,房间的宽比地毯的宽多1米,因此,我们可以把地毯看做由12个21⨯(平方米)的小长方形组成的大长方形,如左下图所示,要达到题目的要求,只要使原地毯的长缩短一小格.即减少2米,使原地毯的宽增加一小格,即增加1米,我们可以沿对角线的方向,把它剪成阶梯形的两块,并使它们的形状和大小完全相同,如中间图,然后把它们错位互相拼接在一起,即阴影部分先向上平行移动1米,再向右平行移动2米,即得右下图.【例 40】 如何把一个长20厘米、宽12厘米的长方形切成两块,拼成一个长16厘米、宽15厘米的新长方形. →图d 图e 【解析】 因为原长方形比新长方形的长多4厘米,新长方形比原长方形的宽多3厘米,因此我们把原长方形分成20个长4厘米,宽3厘米的小长方形.因为新长方形的长为16厘米,所以原长方形的长应减少一个小长方形,而新长方形的宽为15厘米,所以原长方形的宽应增加一个小长方形.可1618厘80厘米,再);⑴⑵⑶【解析】 拼成大正方形的面积应是a a b b ⨯+⨯,设边长c ,则有等式c c a a b b ⨯=⨯+⨯,又因为将边长为a 的正方形切成四个全等形,那么分割线一定经过正方形中心,假设切割线MN 为大正方形边长,如图⑴,一定有MN MN a a b b ⨯=⨯+⨯,而MH a =,则:NH b =,所以2AN CM BH a b ===-÷(),由此可以确定MN ,然后将MN 绕中心O 旋转90到EF 位置,即可把正方形切成符合要求的4块.如图⑵与图⑶.这种分法同时确保图⑶的中间部分就是边长为b 的小正方形.这是因为:⑴中心四边形的角即边长为a 的正方形的四个角,∠A ,∠B ,∠C ,∠D ,又因为各边长度相等.因此中心四边形是正方形.⑵中心正方形的边长[2]2a a b a b a a b b =--÷--÷=--=()()().精心整理因此,中间部分是边长为b 的正方形.【例 45】 如下图所示,这是一张十字形纸片,它是由五个全等正方形组成,试沿一直线将它剪成两片,然后再沿另一直线将其中一片剪成两片,使得最后得到的三片拼成两个并列的正方形.【解析】 实际拼成两个并列的正方形就是一个长方形,其长是宽的2倍,设十字形面积是5个平方单位,长方形的长为x 长度单位,宽为2x 长度单位,那么有25,102x x x ==,即22231x =+,由勾股定理可知:所求长方形的长可视为一直角三角形直角边分别是3和1的斜边.它恰是两个对角顶点的连线.剪拼方法如右图所示,甲拼在甲′位置,乙拼在乙′位置,就可得符合题意的图形.【总结】假若沿第二条线把另一片也剪成两片,那么共剪成的4片是4个全等多边形,这时两条直线都经过十字形的中心,并且互相垂直.剪开的这4个图形其中一个绕中心旋转90也和另一个重合.由此我们便得到一个重要结论:对于一个正方形来讲,如果从中心沿360490÷=角的两边切开,得到整个图形的14,这个14的图形若绕中心旋转3603120÷=角的两边切开,1n 边的角的两边剪开,得到整个图形的360和另一个1n。
第十二讲图形的整体与部分例1 把一条长方形纸带剪成长短相同的两条,摆在桌面上,仔细地看看。
再把剪开的两条纸带接起来,变回原来的长度,再仔细地看看。
把一个图形分成大小相同的两份,其中每 1 份都是原来的二分之一,写例 2 把一张正方形的纸片剪成大小相同的 4 块。
请你仔细看看下面画出的三种剪法。
把一个图形分成大小相同的 4 份,其中每 1 份都是原来的四分之一,写于原来小纸条的 3 倍。
原来的:新做的:例 4 下图中阴影部分是整个图形大小的几分之一图中每个圆都被分成了四个相同的部分。
例 6 下面图形中阴影部分占整个图形的几分之几(1)中的大等边三角形被分成了四个相同的小三角形,带阴影的小三(2)中的垂线将大三角形分成了相同的两部分,带阴影的小三角形占(3)中的大等边三角形先被分成了相同的四部分,阴影小三角形又是习题十二1.下图中哪个图形是整个长方形的二分之一例 5 下图中的阴影部分占整个图形的几分之几2.下图中阴影部分的长度是全长的几分之一3.下图中的三个长方形纸带,哪一个是带阴影图形长度的4第十三讲折叠描痕法倍如何将一个图形分成相同的几部分呢这里介绍一种简单易行的方法——折叠描痕法。
4.下图中阴影部分占整个图形的几分之几例1把正方形分成相同的四部分。
5.下图中阴影部分占整个图形的几分之几第一步:对角折第二步:再对角折6.下图中阴影部分占整个图形的几分之几第三步:展开,描痕。
例 2 把大等边三角形分成相同的四部分,使每部分的形状都与原图形一样。
7.下图中阴影部分占整个图形的几分之几习题十二解答第一步:左右对角折,然后展开,描痕成虚线,虚线与底边交点就是底边中点。
第二步:将上角折下,使角顶与底边中点重合。
3.( 2)是阴影部分长度的 4 倍。
第三步:折左角、折右角,如图示。
第四步:展开,描痕。
例 3 用折叠描痕法等分一个长方形纸条。
(1)对折 1 次,展开描痕,数一数,纸条被等分成几份(2)对折 2 次,展开描痕,数一数,纸条被等分成几份(3)对折 3 次,展开描痕,数一数,纸条被等分成几份(4)对折 4 次,展开描痕,数一数,纸条被等分成几份(5)对折 5 次,展开描痕,数一数,纸条被等分成几份解:习题十三用折叠描痕法等分图形:1.把一张正方形的纸分成四等份,你能想出三种折叠方法来吗2.把一张长方形的纸分成八等份,你能想出多少种不同的折叠方法来3.把一张圆形的纸分成二等份、四等份、八等份和十六等份。
图形的剪拼和等分
一、等分和剪拼
1.如右图所示是由三个正方形组成的图形,请把它分成大小、形状都相同的四个图形?
2.把如右图这样由五个正方形组成的图形,分成四块大小、形状都形同的图形.
3.右图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应该怎样分?
4.把一个等边三角形分别分成 6 块、8 块和9 块形状、大小都一样的三角形.
5.下面的正方形是由 16 个小正方形拼成的.现在要将这个大正方形分成形状、大小一样的四
块,然后给每块涂上不同的颜色(不能破坏每个小正方形的形状).
6.这张方格纸是由一些大小完全一样的小正方形组成的.我想沿格子线剪成形状相同且大小
相等的两块分给我的两个儿子,你知道在怎么剪吗?
二、附加题
7.将下图的图形分成 2 块,拼成一个正方形(每个小正方形面积为 1).。