2021年中考数学总复习——分式
- 格式:ppt
- 大小:3.92 MB
- 文档页数:30
2021年全国各省市数学中考真题分类汇编:分式方程解答1.(2021•泰安)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?2.(2021•湖州)解分式方程:=1.3.(2021•自贡)随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有A,B两种型号的无人机都被用来运送快件,A型机比B型机平均每小时多运送20件,A 型机运送700件所用时间与B型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?4.(2021•南京)解方程.5.(2021•山西)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线,游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太榆路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.6.(2021•岳阳)星期天,小明与妈妈到离家16km的洞庭湖博物馆参观.小明从家骑自行车先走,1h后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.7.(2021•广安)国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示.甲乙进价(元/千克)x x+4售价(元/千克)20 25 已知用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同.(1)求x的值;(2)若超市购进这两种水果共100千克,其中甲种水果的重量不低于乙种水果重量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?8.(2021•江西)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.(1)求这种商品的单价;(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是元/件,乙两次购买这种商品的平均单价是元/件.(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同加油更合算(填“金额”或“油量”).9.(2021•眉山)为进一步落实“德、智、体、美、劳”五育并举工作,某中学以体育为突破口,准备从体育用品商场一次性购买若干个足球和篮球,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.(1)足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15500元,学校最多可以购买多少个篮球?10.(2021•扬州)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗?11.(2021•云南)“30天无理由退货”是营造我省“诚信旅游”良好环境,进一步提升旅游形象的创新举措.机场、车站、出租车、景区、手机短信……,“30天无理由退货”的提示随处可见,它已成为一张云南旅行的“安心卡”,极大地提高了旅游服务的品质.刚刚过去的“五•一”假期,旅游线路、住宿、餐饮、生活服务、购物等旅游消费的供给更加多元,同步的是云南旅游市场强劲复苏.某旅行社今年5月1日租用A、B两种客房一天,供当天使用.下面是有关信息:请根据上述信息,分别求今年5月1日该旅行社租用的A、B两种客房每间客房的租金.12.(2021•呼和浩特)为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买A品牌足球共花费2880元,B品牌足球共花费2400元,且购买A品牌足球数量是B 品牌数量的1.5倍,每个足球的售价,A品牌比B品牌便宜12元.今年由于参加俱乐部人数增加,需要从该店再购买A、B两种足球共50个,已知该店对每个足球的售价,今年进行了调整,A品牌比去年提高了5%,B品牌比去年降低了10%,如果今年购买A、B两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B品牌足球?13.(2021•永州)永州市某村经济合作社在乡村振兴工作队的指导下,根据市场需求,计划在2022年将30亩土地全部用于种植A、B两种经济作物.预计B种经济作物亩产值比A种经济作物亩产值多2万元,为实现2022年A种经济作物年总产值20万元,B种经济作物年总产值30万元的目标,问:2022年A、B两种经济作物应各种植多少亩?14.(2021•包头)小刚家到学校的距离是1800米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了4.5分钟,且骑自行车的平均速度是跑步的平均速度的1.6倍.(1)求小刚跑步的平均速度;(2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校?请说明理由.15.(2021•长春)为助力乡村发展,某购物平台推出有机大米促销活动,其中每千克有机大米的售价仅比普通大米多2元,用420元购买的有机大米与用300元购买的普通大米的重量相同.求每千克有机大米的售价为多少元?16.(2021•无锡)为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4:3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.(1)求一、二等奖奖品的单价;(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?17.(2021•通辽)为做好新冠疫情的防控工作,某单位需购买甲、乙两种消毒液,经了解每桶甲种消毒液的零售价比乙种消毒液的零售价多6元,该单位以零售价分别用900元和720元采购了相同桶数的甲、乙两种消毒液.(1)求甲、乙两种消毒液的零售价分别是每桶多少元?(2)由于疫情防控进入常态化,该单位需再次购买两种消毒液共300桶,且甲种消毒液的桶数不少于乙种消毒液桶数的.由于购买量大,甲、乙两种消毒液分别获得了20元/桶、15元/桶的批发价.求甲种消毒液购买多少桶时,所需资金总额最少?最少总金额是多少元?参考答案1.【解答】解:(1)设当前参加生产的工人有x人,由题意可得:,解得:x=30,经检验:x=30是原分式方程的解,且符合题意,∴当前参加生产的工人有30人;(2)每人每小时完成的数量为:16÷8÷40=0.05(万剂),设还需要生产y天才能完成任务,由题意可得:4×15+(30+10)×10×0.05y=760,解得:y=35,35+4=39(天),∴该厂共需要39天才能完成任务.2.【解答】解:去分母得:2x﹣1=x+3,解得:x=4,当x=4时,x+3≠0,∴分式方程的解为x=4.3.【解答】解:设A型机平均每小时运送快递x件,则B型机平均每小时运送快递(x﹣20)件,根据题意得:,解得:x=70,经检验,x=70是原分式方程的根,且符合题意,∴70﹣20=50,答:A型机平均每小时运送快递70件,B型机平均每小时运送快递50件.4.【解答】解:方程两边同乘(x+1)(x﹣1),得2(x﹣1)+x2﹣1=x(x+1),解得x=3.经检验x=3是原方程的根,∴原方程的解x=3.5.【解答】解:设走路线一到达太原机场需要x分钟.根据题意,得.解得x=25.经检验,x=25是原方程的解且符合实际.答:走路线一到达太原机场需要25分钟.6.【解答】解:设小明骑自行车的平均速度为xkm/h,则妈妈开车的平均速度为4xkm/h,依题意得:﹣=1,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴4x=48.答:妈妈开车的平均速度为48km/h.7.【解答】解:(1)由题意可知:,解得:x=16;经检验,x=16是原分式方程的解,且符合实际意义;(2)设购进甲种水果m千克,则乙种水果(100﹣m)千克,利润为y元,由题意可知:y=(20﹣16)m+(25﹣16﹣4)(100﹣m)=﹣m+500,∵甲种水果的重量不低于乙种水果重量的3倍,∴m≥3(100﹣m),解得:m≥75,即75≤m<100,在y=﹣m+500中,﹣1<0,则y随m的增大而减小,∴当m=75时,y最大,且为﹣75+500=425元,∴购进甲种水果75千克,则乙种水果25千克,获得最大利润425元.8.【解答】(1)解:设这种商品的单价为x元/件.由题意得:,解得:x=60,经检验:x=60是原方程的根.答:这种商品的单价为60元/件.(2)解:第二次购买该商品时的单价为:60﹣20=40(元/件),第二次购买该商品时甲购买的件数为:2400÷40=60(件),第二次购买该商品时乙购买的总价为:(3000÷60)×40=2000(元),∴甲两次购买这种商品的平均单价是:2400×2÷()=48(元/件),乙两次购买这种商品的平均单价是:(3000+2000)÷(×2)=50(元/件).故答案为:48;50.(3)解:∵48<50,∴按相同金额加油更合算.故答案为:金额.9.【解答】解:(1)设足球的单价是x元,则篮球的单价是(2x﹣30)元,依题意得:=2×,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴2x﹣30=90.答:足球的单价是60元,篮球的单价是90元.(2)设学校可以购买m个篮球,则可以购买(200﹣m)个足球,依题意得:90m+60(200﹣m)≤15500,解得:m≤.又∵m为正整数,∴m可以取的最大值为116.答:学校最多可以购买116个篮球.10.【解答】解:设原先每天生产x万剂疫苗,由题意可得:,解得:x=40,经检验:x=40是原方程的解,∴原先每天生产40万剂疫苗.11.【解答】解:设每间B客房租金为x元,则每间A客房租金为(x+40)元,根据题意可得:,解得:x=160,经检验:x=160是原分式方程的解,且符合实际,160+40=200元,∴每间A客房租金为200元,每间B客房租金为160元.12.【解答】解:设去年A足球售价为x元/个,则B足球售价为(x+12)元/个.由题意得:,即,∴96(x+12)=120x,∴x=48.经检验,x=48是原分式方程的解且符合题意.∴A足球售价为48元/个,B足球售价为60元/个.设今年购进B足球的个数为a个,则有:.∴50.4×50﹣50.4a+54a≤2640.∴3.6a≤120,∴.∴最多可购进33个B足球.13.【解答】解:设2022年A种经济作物应种植x亩,则B种经济作物应种植(30﹣x)亩,根据题意,得+2=.解得x=20或x=﹣15(舍去).经检验x=20是原方程的解,且符合题意.所以30﹣x=10.答:2022年A种经济作物应种植20亩,则B种经济作物应种植10亩.14.【解答】解:(1)设小刚跑步的平均速度为x米/分,则小刚骑自行车的平均速度为1.6x米/分,根据题意,得,解得:x=150,经检验,x=150是所列方程的根,所以小刚跑步的平均速度为150米/分.(2)由(1)得小刚跑步的平均速度为150米/分,则小刚跑步所用时间为1800÷150=12(分),骑自行车所用时间为12﹣4.5=7.5(分),∵在家取作业本和取自行车共用了3分,∴小刚从开始跑步回家到赶回学校需要12+7.5+3=22.5(分).又∵22.5>20,所以小刚不能在上课前赶回学校.15.【解答】解:设每千克有机大米的售价为x元,则每千克普通大米的售价为(x﹣2)元,依题意得:=,解得:x=7,经检验,x=7是原方程的解,且符合题意.答:每千克有机大米的售价为7元.16.【解答】解:(1)设一等奖奖品单价为4x元,则二等奖奖品单价为3x元,依题意得:+=25,解得:x=15,经检验,x=15是原方程的解,且符合题意,∴4x=60,3x=45.答:一等奖奖品单价为60元,二等奖奖品单价为45元.(2)设购买一等奖奖品m件,二等奖奖品n件,依题意得:60m+45n=1275,∴n=.∵m,n均为正整数,且4≤m≤10,∴或或,∴共有3种购买方案,方案1:购买4件一等奖奖品,23件二等奖奖品;方案2:购买7件一等奖奖品,19件二等奖奖品;方案3:购买10件一等奖奖品,15件二等奖奖品.17.【解答】解:(1)设乙种消毒液的零售价为x元/桶,则甲种消毒液的零售价为(x+6)元/桶,依题意得:=,解得:x=24,经检验,x=24是原方程的解,且符合题意,∴x+6=30.答:甲种消毒液的零售价为30元/桶,乙种消毒液的零售价为24元/桶.(2)设购买甲种消毒液m桶,则购买乙种消毒液(300﹣m)桶,依题意得:m≥(300﹣m),解得:m≥75.设所需资金总额为w元,则w=20m+15(300﹣m)=5m+4500,∵5>0,∴w随m的增大而增大,∴当m=75时,w取得最小值,最小值=5×75+4500=4875.答:当甲种消毒液购买75桶时,所需资金总额最少,最少总金额是4875元.。
2021年九年级数学中考复习——方程专题:分式方程实际应用(二)1.在数学课上,老师出了这样一道题:甲、乙两地相距1200千米,乘高铁列车从甲地到乙地比乘特快列车少用8小时,已知高铁列车的平均行驶速度是特快列车的3倍,求特快列车从甲地到乙地的时间.2.今年6月25日是我国的传统节日端午节,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A,B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.求A,B两种粽子的单价各是多少?3.某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工作量比原计划增加25%,结果提前10天完成了任务,实际每天铺设多长管道?4.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前了30天完成了这一任务.(1)用含x的代数式填表(结果不需要化简)工作效率(万平方米/天)工作时间(天)总任务量(万平方米)原计划x60实际60(2)求(1)的表格中的x的值.5.某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.(1)求每个甲、乙两种商品的进价分别是多少元?(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?(3)在(2)的条件下,如果甲、乙两种商品的售价分别是12元/个和15元/个,且将购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润超过380元,那么该商场购进甲、乙两种商品有哪几种方案?6.为了防控新冠病毒肺炎,某校积极进行校园环境消毒,第一次购买甲、乙两种消毒液分别用了240元和540元,每瓶乙种消毒液的价格是每瓶甲种消毒液价格的倍,购买的乙种消毒液比甲种消毒液多20瓶.(1)求甲、乙两种消毒液每瓶多少元?(2)该校准备再次购买这两种消毒液,使再次购买的乙种消毒液瓶数是甲种消毒液瓶数的一半,且再次购买的费用不多于1050元,求甲种消毒液最多能再购买多少瓶?7.甲、乙两地相距60km,A骑自行车从甲地到乙地,出发2小时40分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A,B两人的速度.8.甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?9.大浮杨梅是我市特色水果,古称“吴越佳果”.某水果店第一次用540元购进一批大浮杨梅,由于销售状况良好,该店又用1710元购进一批大浮杨梅,所购数量是第一次购进数量的3倍,但进货价每千克多了1元.(1)第一次所购大浮杨梅的进货价是每千克多少元?(2)该店以每千克30元销售这些大浮杨梅,在销售中,第一次购进的大浮杨梅有10%的损耗,第二次购进的大浮杨梅有15%的损耗.问:该水果店售完这两批杨梅共可获利多少元?10.疫情期间,某商场购进甲,乙两种消毒液,甲种消毒液用了1000元,乙种消毒液用了1200元,已知乙种消毒液每件进价比甲种消毒液每件进价多5元,且购进的甲、乙两种消毒液件数相同.(1)求甲、乙两种消毒液每件的进价;(2)该商场将购进的甲、乙两种消毒液进行销售,甲种消毒液的销售单价为50元,乙种消毒液的销售价为60元.销售过程中发现甲种消毒液销量不好,商场决定:甲种消毒液在销售一定数量后按原销售单价的七折销售;乙种消毒液销售单价保持不变.要使两种消毒液全部售完后获利不少于1900元,问甲种消毒液按原销售单价至少销售多少件?参考答案1.解法1:解:设高铁列车从甲地到乙地的时间为yh,则特快列车从甲地到乙地的时间为(y+8)h,根据题意得,解这个方程得y=4.经检验,y=4是原分式方程的根,则y+8=12.答:特快列车从甲地到乙地的时间为12h.解法2:解:设特快列车的平均速度为x km/h,则高铁列车的平均速度为3x km/h,根据题意得,解这个方程得x=100.经检验,x=100是原分式方程的根,则.答:特快列车从甲地到乙地的时间为12h.2.解:设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据题意,得:+=1100,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴1.2x=3.答:A种粽子单价为3元/个,B种粽子单价为2.5元/个.3.解:设原计划每天铺设x米,依题意得:﹣=10,解得:x=60米,经检验x=60是原方程式的根,实际每天铺设1.25x=1.25×60=75(米).答:实际每天铺设75米长管道.4.解:(1)设原计划每天绿化x万平方米,则实际每天绿化(1+25%)x万平方米,原计划需要天完成任务,实际天完成任务.故答案为:(1+25%)x;;.(2)依题意,得:﹣=30,解得:x=,经检验,x=是原方程的解,且符合题意.答:(1)的表格中的x的值为.5.解:(1)设每件乙种商品的进价为x元,则每件甲种商品的进价为(x﹣2)元,根据题意,得=,解得:x=10,经检验,x=10是原方程的根,每件甲种商品的进价为:10﹣2=8.答:每件甲种商品的进价为8元,每件乙种商品件的进价为10元.(2)设购进乙种商品y个,则购进甲种商品(3y﹣5)个.由题意得:3y﹣5+y≤95.解得y≤25.答:商场最多购进乙商品25个;(3)由(2)知,(12﹣8)(3y﹣5)+(15﹣10)y>380,解得:y>23.∵y为整数,y≤25,∴y=24或25.∴共有2种方案.方案一:购进甲种商品67个,乙商品件24个;方案二:购进甲种商品70个,乙种商品25个.6.解:(1)设甲种消毒液每瓶x元,乙种消毒液每瓶x元,根据题意得,=﹣20,解得:x=6,经检验:x=6是原方程的解,×6=9,答:甲种消毒液每瓶6元,乙种消毒液每瓶9元;(2)设甲种消毒液再购买m瓶,根据题意得,6m+9×m≤1050,解答:m≤100,答:甲种消毒液最多能再购买100瓶.7.解:设A的速度为xkm/h,则B的速度为3xkm/h,依题意,得:﹣=2,解得:x=15,经检验,x=15是原方程的解,且符合题意,∴3x=45.答:A的速度为15km/h,B的速度为45km/h.8.解:(1)设乙工程队每天修路x米,则甲工程队每天修路2x米,依题意,得:﹣=5,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴2x=100.答:甲工程队每天修路100米,乙工程队每天修路50米.(2)设安排乙工程队施工m天,则安排甲工程队施工=(36﹣0.5m)天,依题意,得:0.5m+1.2(36﹣0.5m)≤40,解得:m≥32.答:至少安排乙工程队施工32天.9.解:(1)设第一次所购大浮杨梅的进货价是每千克x元,由题意得:×3=,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,答:第一次所购大浮杨梅的进货价是每千克18元;(2)540÷18=30,30×3=90,30×(30×90%+90×85%)﹣540﹣1710=855(元),答:该水果店售完这两批杨梅共可获利855元.10.解:(1)设甲种消毒液每件的进价为x元,则乙种消毒液每件的进价为(x+5)元,依题意,得:=,解得:x=25,经检验,x=25是原方程的解,且符合题意,∴x+5=30.答:甲种消毒液每件的进价为25元,乙种消毒液每件的进价为30元.(2)甲种消毒液购进的数量为1000÷25=40(件),则乙种消毒液购进的数量也为40件.设甲种消毒液按原销售单价销售了m件,依题意,得:(50﹣25)m+(50×0.7﹣25)(40﹣m)+(60﹣30)×40≥1900,解得:m≥20.答:甲种消毒液按原销售单价至少销售20件.。
2021年九年级数学中考复习——方程专题:分式方程实际应用(一)1.武汉某道路工程项目,若由甲、乙两工程队合作20天可完工;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲、乙工程队合作施工时对道路交通有影响,独施工时对交通无影响,且要求整个工期不能超过24天,问如何安排两队施工,对道路交通的影响会最小?2.2020年12月1日6时26分,北京延庆迎来首列高铁G8881停靠,标志着京张高铁延庆支线及市郊铁路S2线正式开通运营,综合交通服务中心(换乘中心)同步投入使用.作为京张高铁支线火车站,延庆综合交通服务中心是集高铁、市郊铁路、公交、出租车、自行车及停车场等多种形式于一体的综合枢纽.同时,作为北京2022年冬奥会重点交通服务配套设施,该中心将在冬奥会期间承担观众和部分注册人员的交通转换及服务功能,冬奥会后将服务于延庆区日常活动及通勤,并为游客提供出行便利.小李计划周末到延庆站参观.为了响应绿色出行号召,他从家到延庆站由驾车改为骑自行车.小李家距离延庆站20千米,在相同路线上,驾车的平均速度是骑自行车平均速度的4倍,骑自行车所用时间比驾车所用时间多45分钟,求小李驾车的平均速度是多少?3.外出时佩戴口罩可以有效防控流感病毒,某药店用4000元购进若干包医用外科口罩,很快售完,该店又用7500元钱购进第二批同种口罩,第二批购进的包数比第一批多50%,每包口罩的进价比第一批每包的进价多0.5元,请解答下列问题:(1)求购进的第一批医用口罩有多少包?(2)政府采取措施,在这两批医用口罩的销售中,售价保持不变,若售完这两批口罩的总利润不高于3500元,那么药店销售该口罩每包的最高售价是多少元?4.李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有48分钟,于是他立即步行(匀速)回家,在家拿道具用了2分钟,然后立即骑自行车(匀速)返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度是多少?(2)李明能否在联欢会开始前赶到学校?5.某商店计划今年的圣诞节购进A、B两种纪念品若干件.若花费480元购进的A种纪念品的数量是花费480元购进B种纪念品的数量的,已知每件A种纪念品比每件B种纪念品多4元.(1)求购买一件A种纪念品、一件B种纪念品各需多少元?(2)若商店一次性购买A、B纪念品共200件,要使总费用不超过3000元,最少要购买多少件B种纪念品?6.为应对新冠疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B 品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B品牌口罩多少个?7.某药店在防治新型冠状病毒期间,购进甲、乙两种医疗防护口罩,已知每件甲种口罩的价格比每件乙种口罩的价格贵8元,用300元购买甲种口罩的件数恰好与用250元购买乙种口罩的件数相同.(1)求甲、乙两种口罩每件的价格各是多少元?(2)计划购买这两种口罩共80件,且投入的经费不超过3600元,那么,最多可购买多少件甲种口罩?8.新冠肺炎疫情暴发后,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂工作,为了应对疫情,在每个工人每小时完成的工作量不变的前提下,已复工的工人加班生产,每天的工作时间由原来8个小时增加到10个小时.该公司原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求该公司原来生产防护服的工人有多少人?(2)复工10天后,未到的7名工人到岗且同时加入了生产,每天生产时间仍然为10小时.为了支援灾区,公司复工后决定生产15500套防护服,问至少还需要多少天才能完成任务?9.在某遥控船模比赛中,其赛道共长100米,“番畅号”和“挑战号”两赛船进入了决赛.在比赛前的一次练习中,两船从起点同时出发,“番畅号”到达终点时,“挑战号”离终点还有5米,已知“番畅号”的平均速度为5米/秒.(1)求“挑战号”的平均速度;(2)如果两船重新开始比赛,“番畅号”从起点后退5米,若两船同时出发,可否同时到达终点?若能,请求出两船到达终点的时间;若不能,请重新调整一艘船的平均速度使两船能够同时到达终点.10.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,长沙某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的1.5倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.(1)求甲、乙两厂房每天各生产多少箱口罩?(2)已知甲、乙两厂房生产这种口罩每天的生产费分别是1500元和1200元,现有15000箱口罩的生产任务,甲厂房单独生产一段时间后另有安排,剩余任务由乙厂房单独完成.如果总生产费不超过36300元,那么甲厂房至少生产了多少天?1.解:(1)设甲工程队单独完成此项工程需要x天,则甲工程队的工作效率为,乙工程队的工作效率为(﹣),依题意得:+10(﹣)=1,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴1÷(﹣)=30.答:甲工程队单独完成此项工程需要60天,乙工程队单独完成此项工程需要30天.(2)设甲、乙合作了m天.①若剩下的工程由甲工程队单独完成还需=(60﹣3m)天,依题意得:m+60﹣3m≤24,解得:m≥18;②若剩下的工程由乙工程队单独完成还需=(30﹣m)天,依题意得:m+30﹣m≤24,解得:m≥12.由①②可知m的最小值为12,∴应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.2.解:设小李骑自行车的平均速度为xkm/h,则小李驾车的平均速度为4x km/h,依题意得:﹣=,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴4x=80.答:小李驾车的平均速度为80km/h.3.解:(1)设购进的第一批医用口罩有x包,则购进的第二批医用口罩有(1+50%)x包,依题意得:﹣=0.5,解得:x=2000,经检验,x=2000是原方程的解,且符合题意.答:购进的第一批医用口罩有2000包.(2)设药店销售该口罩每包的售价是y元,依题意得:[2000+2000×(1+50%)]y﹣4000﹣7500≤3500,解得:y≤3.答:药店销售该口罩每包的最高售价是3元.4.解:(1)设李明步行的速度为x米/分,则骑自行车的速度为3x米/分.依题意,得:﹣=20,解得:x=70,经检验,x=70是原方程的解,且符合题意.答:李明步行的速度是70米/分.(2)++2=42(分钟),∵42<48,∴李明能在联欢会开始前赶到学校.5.解:(1)设购买一件B种纪念品需x元,则购买一件A种纪念品需(x+4)元,依题意,得:=×,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+4=16.答:购买一件A种纪念品需16元,购买一件B种纪念品需12元.(2)设购买m件B种纪念品,则购买(200﹣m)件A种纪念品,依题意,得:16(200﹣m)+12m≤3000,解得:m≥50.答:最少要购买50件B种纪念品.6.解:(1)设A品牌口罩每个进价为x元,则B品牌口罩每个进价为(x+0.7)元,依题意,得:=2×,解得:x=1.8,经检验,x=1.8是原方程的解,且符合题意,∴x+0.7=2.5,答:A品牌口罩每个进价为1.8元,B品牌口罩每个进价为2.5元.(2)设购进B品牌口罩m个,则购进A品牌口罩(6000﹣m)个,依题意,得:(2﹣1.8)(6000﹣m)+(3﹣2.5)m≥1800,解得:m≥2000.答:最少购进B品牌口罩2000个.7.解:(1)设每件乙种商品的价格为x元,则每件甲种商品的价格为(x+8)元,根据题意得:=,解得:x=40,经检验,x=40是原方程的解,∴x+8=48.答:每件乙种商品的价格为40元,每件甲种商品的价格为48元.(2)设购买y件甲种商品,则购买(80﹣y)件乙种商品,根据题意得:48y+40(80﹣y)≤3600,解得:y≤50.答:最多可购买50件甲种商品.8.解:(1)设原来生产防护服的工人有x人,由题意得:=,解得:x=20.经检验,x=20是原方程的解,答:原来生产防护服的工人有20人;(2)设还需要生产y天才能完成任务,=5(套),即每人每小时生产5套防护服.由题意得,10×650+20×5×10y≥15500,解得:y≥9,答:至少还需要生产9天才能完成任务.9.解:(1)设“挑战号”的平均速度为x米/秒,由题意得:=,解得:x=4.75,经检验,x=4.75是原方程的解,答:“挑战号”的平均速度为4.75米/秒;(2)不能同时到达,理由如下:∵“番畅号”到达终点所用的时间为=21(秒),“挑战号”到达终点所用的时间为=21(秒),∴“番畅号”从起点后退5米,若两船同时出发,不能同时到达终点;“番畅号”从起点后退5米,若两船同时出发,同时到达终点,调整一艘船的平均速度有两种方案:方案一:增加“挑战号”的平均速度,设调整后“挑战号”的平均速度增加y米/秒,由题意得:=,解得:y=,经检验,y=是原方程的解;方案二:降低“番畅号”的速度,设调整后“番畅号”的平均速度降低z米/秒,由题意得:=,解得:z=,经检验,z=是原方程的解;综上所述,把“挑战号”的平均速度增加米/秒,或把“番畅号”的平均速度降低米/秒,可以使两船能够同时到达终点.10.解:(1)设乙厂房每天生产x箱口罩,则甲厂房每天生产1.5x箱口罩,依题意,得:﹣=5,解得:x=400。
专题04 分式与分式方程一、单选题 1.(2021·河北)由1122c c +⎛⎫-⎪+⎝⎭值的正负可以比较12c A c +=+与12的大小,下列正确的是( )A .当2c =-时,12A =B .当0c 时,12A ≠C .当2c <-时,12A > D .当0c <时,12A <【答案】C 【分析】先计算1122c c +⎛⎫- ⎪+⎝⎭的值,再根c 的正负判断1122c c +⎛⎫- ⎪+⎝⎭的正负,再判断A 与12的大小即可.【详解】解:11=224+2c cc c +-+,当2c =-时,20c +=,A 无意义,故A 选项错误,不符合题意; 当0c 时,04+2c c=,12A =,故B 选项错误,不符合题意; 当2c <-时,04+2c c>,12A >,故C 选项正确,符合题意; 当20c -<<时,04+2c c <,12A <;当2c <-时,04+2c c>,12A >,故D 选项错误,不符合题意; 故选:C .【点睛】本题考查了分式的运算和比较大小,解题关键是熟练运用分式运算法则进行计算,根据结果进行准确判断.2.(2021贺州)若关于x 的分式方程43233m xx x +=+--有增根,则m 的值为( ) A. 2 B. 3C. 4D. 5【答案】D【分析】根据分式方程有增根可求出3x =,方程去分母后将3x =代入求解即可. 【详解】解:∵分式方程43233m xx x +=+--有增根, ∴3x =,去分母,得()4323m x x +=+-, 将3x =代入,得49m +=, 解得5m =. 故选:D .【点睛】本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3.(2021·四川眉山)化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .1a + B .1a a+ C .1a a- D .21a a+ 【答案】B【分析】小括号先通分合并,再将除法变乘法并因式分解即可约分化简. 【详解】解:原式()()()()221111111=11a a a a a aa a a a a a+-+--++⨯=⨯=--故答案是:B . 【点睛】本题考察分式的运算和化简、因式分解,属于基础题,难度不大.解题关键是掌握分式的运算法则.4.(2021·天津)计算33a ba b a b---的结果是( ) A .3 B .33a b +C .1D .6aa b- 【答案】A【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可. 【详解】原式33a b a b -=-,3()a b a b-=-3=.故选A . 【点睛】本题考查分式的减法.掌握分式的减法运算法则是解答本题你的关键.5.(2021·山东临沂)计算11()()a b b a -÷-的结果是( )A .ab-B .a bC .b a-D .b a【答案】A【分析】根据分式的混合运算顺序和运算法则计算可得.【详解】解:11a b b a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab ab b b a a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab a b ab -⨯-=a b-故选A . 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 6.(2021·江西)计算11a a a+-的结果为( ) A .1 B .1- C .2a a+D .2a a- 【答案】A【分析】直接利用同分母分式的减法法则计算即可. 【详解】解:11111a a aa a a a++--===.故选:A .【点睛】本题考查了同分母分式的减法,熟练掌握运算法则是解题的关键. 7.(2021·江苏扬州)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x + B .21x -C .11x + D .()21x +【答案】C【分析】分别找到各式为0时的x 值,即可判断.【详解】解:A 、当x =-1时,x +1=0,故不合题意;B 、当x =±1时,x 2-1=0,故不合题意; C 、分子是1,而1≠0,则11x +≠0,故符合题意;D 、当x =-1时,()210x +=,故不合题意;故选C . 【点睛】本题考查了分式的值为零的条件,代数式的值.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 8.(2021·湖北州)分式方程3111x x x +=--的解是( ) A .1x = B .2x =- C .34x =D .2x =【答案】D【分析】先去分母,然后再进行求解方程即可. 【详解】解:3111x x x +=-- 去分母:13x x +-=,∴2x =, 经检验:2x =是原方程的解;故选D .【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 9.(2021·湖南怀化)定义12a b a b⊗=+,则方程342x ⊗=⊗的解为( ) A .15x =B .25x =C .35x =D .45x =【答案】B【分析】根据新定义,变形方程求解即可 【详解】∵12a b a b ⊗=+,∴342x ⊗=⊗变形为1123242x ⨯+=⨯+,解得25x = ,经检验25x =是原方程的根,故选B 【点睛】本题考查了新定义问题,根据新定义把方程转化一般的分式方程,并求解是解题的关键10.(2021·山东临沂)某工厂生产A 、B 两种型号的扫地机器人.B 型机器人比A 型机器人每小时的清扫面积多50%;清扫2100m 所用的时间A 型机器人比B 型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设A 型扫地机器人每小时清扫2m x ,根据题意可列方程为( )A .10010020.53x x =+ B .10021000.53x x += C .10021003 1.5x x += D .10010021.53x x =+ 【答案】D【分析】根据清扫100m 2所用的时间A 型机器人比B 型机器人多用40分钟列出方程即可. 【详解】解:设A 型扫地机器人每小时清扫x m 2,由题意可得:10010021.53x x =+,故选D . 【点睛】本题考查了分式方程的实际应用,解题的关键是读懂题意,找到等量关系. 11.(2021·四川成都)分式方程21133x x x-+=--的解为( ) A .2x = B .2x =-C .1x =D .1x =-【答案】A【分析】直接通分运算后,再去分母,将分式方程化为整式方程求解. 【详解】解:21133x x x -+=--,21133x x x --=--,2113x x --=-,213x x --=-,解得:2x =, 检验:当2x =时,32310x -=-=-≠,2x ∴=是分式方程的解,故选:A .【点睛】本题考查了解分式方程,解题的关键是:去分母化为整式方程求解,最后需要对解进行检验.12.(2021·重庆)若关于x 的一元一次不等式组()322225x x a x ⎧-≥+⎨-<-⎩的解集为6x ≥,且关于y 的分式方程238211y a y y y+-+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5 B .8C .12D .15【答案】B【分析】先计算不等式组的解集,根据“同大取大”原则,得到562a+<解得7a <,再解分式方程得到5=2a y +,根据分式方程的解是正整数,得到5a >-,且5a +是2的倍数,据此解得所有符合条件的整数a 的值,最后求和. 【详解】解:()322225x x a x ⎧-≥+⎨-<-⎩①②解不等式①得,6x ≥,解不等式②得,5+2ax >不等式组的解集为:6x ≥562a+∴<7a ∴< 解分式方程238211y a y y y +-+=--得238211y a y y y +--=--2(38)2(1)y a y y ∴+--=-整理得5=2a y +,10,y -≠ 则51,2a +≠ 3,a ∴≠- 分式方程的解是正整数,502a +∴>5a ∴>-,且5a +是2的倍数,57a ∴-<<,且5a +是2的倍数, ∴整数a 的值为-1, 1, 3, 5, 11358∴-+++=故选:B .【点睛】本题考查解含参数的一元一次不等式、解分式方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.13.(2021·重庆)关于x 的分式方程331122ax x x x--+=--的解为正数,且使关于y 的一元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是( ) A .5- B .4-C .3-D .2-【答案】B【分析】先将分式方程化为整式方程,得到它的解为64x a =+,由它的解为正数,同时结合该分式方程有解即分母不为0,得到40a +>且43a +≠,再由该一元一次不等式组有解,又可以得到20a -<,综合以上结论即可求出a 的取值范围,即可得到其整数解,从而解决问题.【详解】解:331122ax x x x--+=--,两边同时乘以(2x -),3213ax x x -+-=-,()46a x +=, 由于该分式方程的解为正数,∴64x a =+,其中4043a a +>+≠,;∴4a >-,且1a ≠-;∵关于y 的元一次不等式组32122y y y a -⎧≤-⎪⎨⎪+>⎩①②有解,由①得:0y ≤;由②得:2y a >-;∴20a -<,∴2a <综上可得:42a -<<,且1a ≠-;∴满足条件的所有整数a 为:32,0,1--,;∴它们的和为4-;故选B . 【点睛】本题涉及到含字母参数的分式方程和含字母参数的一元一次不等式组等内容,考查了解分式方程和解一元一次不等式组等相关知识,要求学生能根据题干中的条件得到字母参数a 的限制不等式,求出a 的取值范围进而求解,本题对学生的分析能力有一定要求,属于较难的计算问题. 二、填空题1.(2021·四川资阳)若210x x +-=,则33x x-=_________.【答案】3【分析】先由210x x +-=可得21x x -=,再运用分式的减法计算33x x-,然后变形将21x x -=代入即可解答.【详解】解:∵210x x +-=∴21x x -=∴()2231333333x x x x x x x x---====.故填:3. 【点睛】本题主要考查了代数式的求值、分式的减法等知识点,灵活对等式进行变形成为解答本题的关键.2.(2021·四川南充)若3n m n m +=-,则2222m n n m+=_________ 【答案】174【分析】先根据3n m n m +=-得出m 与n 的关系式,代入2222m n n m+化简即可; 【详解】解:∵3n mn m+=-,∴()3n m n m +=-,∴2n m =, ∴22222222417+=44m n m m n m m m +=故答案为:174 【点睛】本题考查了分式的混合运算,得出2n m =是解决本题的关键. 3.(2021·四川达州)若分式方程22411x a x a x x --+-=-+的解为整数,则整数a =___________. 【答案】±1【分析】直接移项后通分合并同类项,化简、用a 来表示x ,再根据解为整数来确定a 的值. 【详解】解:22411x a x a x x --+-=-+,22411x a x ax x --+-=-+ (2)(1)(2)(1)4(1)(1)x a x a x x x x -+---=-+整理得:2x a=若分式方程22411x a x ax x --+-=-+的解为整数, a 为整数,当1a =±时,解得:2x =±,经检验:10,10x x -≠+≠成立;当2a =±时,解得:1x =±,经检验:分母为0没有意义,故舍去; 综上:1a =±,故答案是:±1.【点睛】本题考查了分式方程,解题的关键是:化简分式方程,最终用a 来表示x ,再根据解为整数来确定a 的值,易错点,容易忽略对根的检验.4.(2021·湖南常德)分式方程1121(1)x x x x x ++=--的解为__________. 【答案】3x =【分析】直接利用通分,移项、去分母、求出x 后,再检验即可.【详解】解:1121(1)x x x x x ++=--通分得:212(1)(1)x x x x x x -+=--,移项得:()301x x x -=-, 30x ∴-=,解得:3x =,经检验,3x =时,(1)60x x -=≠,∴3x =是分式方程的解,故答案是:3x =. 【点睛】本题考查了对分式分式方程的求解,解题的关键是:熟悉通分,移项、去分母等运算步骤,易错点,容易忽略对根进行检验.5.(2021·湖南衡阳)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树__________棵. 【答案】500【分析】设原计划每天植树x 棵,则实际每天植树()125%x +,根据工作时间=工作总量÷工作效率,结合实际比原计划提前3天完成,准确列出关于x 的分式方程进行求解即可. 【详解】解:设原计划每天植树x 棵,则实际每天植树()125%x +,6000600031.25x x-=,400x =,经检验,400x =是原方程的解, ∴实际每天植树400 1.25500⨯=棵,故答案是:500.【点睛】本题考查了分式方程的应用,解题的关键是:找准等量关系,准确列出分式方程. 6.(2021·四川凉山州)若关于x 的分式方程2311x mx x-=--的解为正数,则m 的取值范围是_________. 【答案】m >-3且m ≠-2【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可. 【详解】解:方程两边同时乘以x -1得,()231x x m --=-,解得3x m =+, ∵x 为正数,∴m +3>0,解得m >-3.∵x ≠1,∴m +3≠1,即m ≠-2. ∴m 的取值范围是m >-3且m ≠-2.故答案为:m >-3且m ≠-2.【点睛】本题考查的是分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键.三、解答题1.(2021·湖北随州市)先化简,再求值:2141122x x x -⎛⎫+÷⎪++⎝⎭,其中1x =. 【答案】22x -,-2 【分析】(1)先把括号里通分合并,括号外的式子进行因式分解,再约分,将x=1代入计算即可.【详解】解:原式()()()21221222x x x x x x ++=⋅=++-- 当1x =时,原式2212==-- 【点睛】本题考查了分式的化简求值,用到的知识是约分、分式的加减,熟练掌握法则是解题的关键.2.(2021·山东菏泽市)先化简,再求值:22221244m n n m m n m mn n --+÷--+,其中m ,n 满足32m n =-. 【答案】3nm n+;-6. 【分析】先变除法为乘法,后因式分解,化简计算,后变形32nm =-代入求值即可 【详解】∵22221244m n n m m n m mn n--+÷--+=2(2)12()()m n m n m n n m n m --+⨯--+=21m n n m --+=3n m n +, ∵32m n =-,∴32nm =-,∴原式=332nn n -+= -6. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的基本顺序,基本计算方法是解题的关键. 3.(2021·湖北宜昌市)先化简,再求值:2211111x x x ÷--+-,从1,2,3这三个数中选择一个你认为适合的x 代入求值. 【答案】11x -,1或12【分析】先根据分式混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可. 【详解】解:原式21(1)(1)(1)1x x x x =⋅+--+-11x =-.∵x 2﹣1≠0,∴当2x =时,原式1=.或当3x =时,原式12=.(选择一种情况即可) 【点睛】本题考查了分式的化简求值,要了解使分式有意义的条件,熟练掌握分式的运算法则是解题的关键.4.(2021·四川达州市)化简求值:231041244a a a a a --⎛⎫⎛⎫-÷ ⎪ ⎪--+⎝⎭⎝⎭,其中a 与2,3构成三角形的三边,且a 为整数.【答案】24a -+,-2【分析】先根据分式的混合运算法则进行化简,再根据三角形三边关系确定a 的取值范围,把不合题意的a 的值舍去,最后代入求值即可求解.【详解】解:原式()22231024a a a a a ---+=⋅--()()224224a a a a ---=⋅--24a =-+; ∵2,3,a 为三角形的三边,∴3232a -<<+,∴15a <<,∵a 为整数,∴2a =,3或4,由原分式得20a -≠,40a -≠,∴2a ≠且4a ≠,∴3a =, ∴原式=242342a -+=-⨯+=-.【点睛】本题考查了分式的化简求值,正确进行分式的化简是解题关键,在把a 的值代入求值是要注意所求的a 的值保证原分式有意义.5.(2021·湖南株洲市)先化简,再求值:2223142x x x x ⎛⎫⋅-- ⎪-+⎝⎭,其中2x =. 【答案】12x -+,2-【分析】先对分式进行化简,然后根据二次根式的运算进行求值即可. 【详解】解:原式=()()223231222222x x x x x x x x x -⋅-=-=-+++-++,把2x =代入得:原式=2=-. 【点睛】本题主要考查分式的化简求值及二次根式的运算,熟练掌握分式的化简求值及二次根式的运算是解题的关键.6.(2021·四川成都市)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中3=a . 【答案】13a +,3【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++13a =+,当3=a时,原式3===. 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.7.(2021·四川资阳市)先化简,再求值:222211111x x x x x x ⎛⎫++-÷ ⎪---⎝⎭,其中30x -=. 【答案】原式=13. 【分析】利用分式的混合运算法则进行化简,再将3x =代入原式,即可求解.【详解】解:原式=()()()22111111x x x x x x ⎡⎤+--⋅⎢⎥+--⎢⎥⎣⎦=211111x x x x x +-⎛⎫-⋅ ⎪--⎝⎭=211x x x x -⋅-=1x 303x x -=∴= 将3x =代入原式,原式=13.【点睛】本题主要考查分式的混合运算.需要掌握分式的混合运算法则、完全平方公式、平方差公式、同分母分式相加减等相关知识.进行分式的混合运算时,要细心. 8.(2021·四川凉山州)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4【分析】根据已知求出xy =-2,再将所求式子变形为()xyx y -,代入计算即可.【详解】解:∵2x y -=,∴1121y x x y xy xy---===,∴2xy =-, ∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.9.(2021·四川遂宁市)先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数.【答案】32m m --;12【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值. 【详解】解:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭= 2223m m m m ÷--=2232m m m m-⋅-=32m m --=, ∵m 是已知两边分别为2和3的三角形的第三边长,∴3-2<m <3+2,即1<m <5,∵m 为整数,∴m =2、3、4,又∵m ≠0、2、3∴m =4,∴原式=431422-=-. 【点睛】本题主要考查了分式的化简求值以及三角形三边的关系,解题的关键是掌握分式混合运算顺序和运算法则.10.(2021·江苏连云港市)解方程:214111x x x +-=--. 【答案】无解【分析】将分式去分母,然后再解方程即可.【详解】解:去分母得:22141x x 整理得22x =,解得1x =,经检验,1x =是分式方程的增根,故此方程无解.【点睛】本题考查的是解分式方程,要注意验根,熟悉相关运算法则是解题的关键.11.(2021·陕西)解方程:213111x x x --=+-. 【答案】12x =- 【分析】按照解分式方程的方法和步骤求解即可.【详解】解:去分母(两边都乘以()()11x x +-),得,22(1)31x x --=-. 去括号,得,222131x x x -+-=-,移项,得,222113x x x --=--+.合并同类项,得,21x -=.系数化为1,得,12x =-.检验:把12x=-代入()()110x x+-≠.∴12x=-是原方程的根.【点睛】本题考查了分式方程的解法,熟知分式方程的解法步骤是解题的关键,尤其注意解分式方程必须检验.12.(2021·山西)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太输路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的53倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.【答案】25分钟【分析】设走路线一到达太原机场需要x分钟,用含x的式子表示路线一、二的速度,再根据路线二平均速度是路线一的53倍列等式计算即可.【详解】解:设走路线一到达太原机场需要x分钟.根据题意,得5253037x x⨯=-.解得:25x=.经检验,25x=是原方程的解.答:走路线一到达太原机场需要25分钟.【点睛】本题主要考查分式方程的应用,根据题意找出等量关系是解决本题的关键,注意分式方程需要验根.13.(2021·四川自贡市)随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有A,B两种型号的无人机都被用来运送快件,A型机比B型机平均每小时多运送20件,A型机运送700件所用时间与B 型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?【答案】A型机平均每小时运送70件,B型机平均每小时运送50件【分析】设A型机平均每小时运送x件,根据A型机比B型机平均每小时多运送20件,得出B型机平均每小时运送(x-20)件,再根据A型机运送700件所用时间与B型机运送500件所用时间相等,列出方程解之即可.【详解】解:设A型机平均每小时运送x件,则B型机平均每小时运送(x-20)件,根据题意得:70050020x x=-解这个方程得:x=70.经检验x=70是方程的解,∴x-20=50.∴A型机平均每小时运送70件,B型机平均每小时运送50件.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。
2021年九年级数学中考复习——方程专题:分式方程实际应用(二)1.两个小组同时开始登一座450m高的山,第一组的速度是第二组的1.2倍,他们比第二组早15min到达顶峰.两个小组的速度各是多少?如果山高为hm,第一组的攀登速度是第二组的a倍,并比第二组早tmin达到顶峰,则两组的攀登速度各是多少?2.一台收割机的工作效率相当于一个农民工作效率的150倍,用这台机器收割10公顷小麦比100个农民人工收割这些小麦要少用1小时.这台收割机每小时收割多少公顷小麦?3.某服装店用960元购进一批服装,并以每件46元的价格全部售完,由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售,卖了部分后,为了加快资金周转,服装店将剩余的20件以售价的九折全部出售.问:(1)该服装店第一次购买了此种服装多少件?(2)两次出售服装共盈利多少元?4.宜鲜水果店某种纽荷尔1月份的销售总额为600元,2月份与1月份相比,销量不变,但每斤的售价比1月份减少4元,因此销售总额比1月份减少了40%.(1)求2月份这种纽荷尔每斤的售价;(2)2月价该店计划新进一批这种纽荷尔和沃柑共45斤,已知纽荷尔进货价格是每斤3元;沃柑进货价格是每斤7元,销售价格是每斤20元.要求沃柑进货数量不超过纽荷尔数量的两倍,应如何进货才能使这批水果获得最大利润,并求出最大利润.5.越野自行车是中学生喜爱的交通工具,市场巨大,竞争也激烈.某品牌经销商经营的A 型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)设今年A型车每辆销售价为x元,求x的值.(2)该品牌经销商计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,请问应如何安排两种型号车的进货数量,才能使这批售出后获利最多?A、B两种型号车今年的进货和销售价格表A型车B型车进货价1100元/辆1400元/辆销售价x元/辆2000元/辆6.某汽车销售公司销售某品牌A款汽车,随着汽车的普及,其价格也不断下降,今年12月份比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年12月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万且不少于100万元的资金购进这两款汽车共15辆,有几种进货方案?哪种方案更省钱?7.“一带一路”的战略构想为国内许多企业的发展带来了新的机遇,其中华为企业凭信自身实力在国际上得到快速发展,华为手机也越来越受到国际消费者的喜爱:重庆某手机专卖店经销华为P10和Mate30两款手机,两款手机售价如表:售价型号去年国庆假期售价(元/部)今年元旦假期售价(元/部)华为P3043003800华为Mate3050004500假设两款手机的进价始终保持不变.若今年元旦假期和去年国庆假期卖出的华为P30手机数量相同,且去年国庆假期利润为4.5万元,今年元旦假期利润为2.25万元.(1)求每部华为P30手机进价为多少元?(2)若每台Mate30的进价比P30的进价多400元,专卖店考虑到即将到来的今年1月24号大年初一“春节假期活动”,预计用不少于32万元且不多于32.1万元的资金购进这两款手机共90部,请问有哪几种进货方案?(3)“重外少年,爱心少年”.重外学生积极为偏远地区的孩子募集资金购买保暖冬装,得到该手机专卖店的大力支持,他们决定,每卖出一部P30捐出50元,每卖出一部Mate30捐出80元,在(2)向的前提下,当专卖店销售完这90部手机后,他们最多能为孩子们捐出多少资金?8.A、B两种新型智能仓储机器人都被用来搬运货箱,A型机器人比B型机器人每次多搬运3箱,A型机器人搬运300箱所用次数与B型机器人搬运240箱所用次数相同,两种机器人每次分别搬运多少货箱?9.随着《广州市深化生活垃圾分类处理三年行动计划(2019﹣2021)》的正式印发,广州市全面开启城乡生活垃圾分类全覆盖.为推进垃圾分类行动,某工厂购进甲、乙两种型号智能机器人用来进行垃圾分类,用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元,求甲、乙两种型号机器人每台各多少万元?10.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度,如图,某路口的斑马线路段A﹣B﹣C横穿双向行驶车道,其中AB=BC=15米,在绿灯亮时,小明共用11秒通过AC.其中通过BC段的速度是通过AB段速度的1.2倍,求小明通过AB段时的速度.参考答案1.解:设第二组的速度为xm/min,则第一组的速度是1.2xm/min,由题意得﹣=15,解得:x=5,经检验:x=5是原分式方程的解,且符合题意,则1.2x=6.答:第一组的攀登速度6m/min,第二组的攀登速度5m/min.设第二组的速度为ym/min,则第一组的速度是aym/min,由题意得﹣=t,解得:y=,经检验:y=是原分式方程的解,且符合题意,则ay=.答:第一组的攀登速度是m/min,第二组的攀登速度m/min.2.解:设一个农民每小时收割小麦x公顷,则一台收割机每小时收割150x公顷,由题意,得+1,解得:x=,经检验,x=是原方程的根.∴收割机每小时收割小麦:=5公顷,答:这台收割机每小时收割5公顷小麦.3.解:(1)设第一次购买了此种服装x件,那么第二次购进2x件,依题意得,解之得x=30,经检验x=30是方程的解,答:第一次购买了此种服装30件;(2)∵第一次购买了此种服装30件,盈利46×30﹣960=420元;∴第二次购买了此种服装60件,46×(60﹣20)+46×0.9×20﹣2220=448元;∴两次出售服装共盈利420+448=868元.4.解:(1)设2月份这种纽荷尔每斤的售价为x元,则1月份这种纽荷尔每斤的售价为(x+4)元,由题意得:=,解得:x=6,答:2月份这种纽荷尔每斤的售价为6元;(2)设纽荷尔进货数量为a斤,总利润为w元,则w=(6﹣3)a+(20﹣7)(45﹣a)=﹣10a+585,由题意得:45﹣a≤2a,解得:a≥15,∵w=﹣10a+585,﹣10<0,∴w随a的增大而减小,∴a=15时,w=﹣10×15+585=435(元),最大则45﹣a=30,即纽荷尔进货15斤,沃柑进货30斤,才能使这批水果获得最大利润,最大利润为435元.5.解:(1)由题意得:=,解得:x=1600,经检验,x=1600是方程的解,∴x=1600;(2)设经销商新进A型车a辆,则B型车为(60﹣a)辆,获利y元.由题意得:y=(1600﹣1100)a+(2000﹣1400)(60﹣a),即y=﹣100a+36000,∵B型车的进货数量不超过A型车数量的2倍,∴60﹣a≤2a,∴a≥20,由y与a的关系式可知,﹣100<0,y的值随a的值增大而减小.∴a=20时,y的值最大,∴60﹣a=60﹣20=40(辆),∴当经销商新进A型车20辆,B型车40辆时,这批车获利最多.6.解:(1)设今年12月份A款汽车每辆售价m万元,则去年同期A款汽车每辆售价(m+1)万元,由题意得:=,解得:m=9,答:今年12月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆,则购进B款汽车(15﹣x)辆,由题意得:100≤7.5x+6(15﹣x)≤105,解得:≤x≤10,∵x的正整数解为:7,8,9,10,∴共有4种进货方案:方案一,购进A款汽车7辆、B款汽车8辆,资金为:7.5×7+6×8=100.5(万元);方案二,购进A款汽车8辆、B款汽车7辆,资金为:7.5×8+6×7=102(万元);方案三,购进A款汽车9辆、B款汽车6辆,资金为:7.5×9+6×6=103.5(万元);方案四,购进A款汽车10辆、B款汽车5辆,资金为:7.5×10+6×5=105(万元);∴购进A款汽车7辆、B款汽车8辆的方案更省钱.7.解:(1)设每部华为P30手机进价为x元,依题意得:=,解得:x=3300,经检验,x=3300是原方程的解,且符合题意.答:每部华为P30手机进价为3300元.(2)每台Mate30手机的进价为3300+400=3700(元).设购进华为P30手机m部,则购进Mate30手机(90﹣m)部,依题意得:,解得:30≤m≤32,又∵m为正整数,∴m可以为30,31,32,∴共有3种进货方案,方案1:购进30部华为P30手机,60部Mate30手机;方案2:购进31部华为P30手机,59部Mate30手机;方案3:购进32部华为P30手机,58部Mate30手机.(3)设捐出的资金为w元,则w=50m+80(90﹣m)=﹣30m+7200,∵﹣30<0,∴w随m的增大而减小,∴当m=30时,w取得最大值,最大值=﹣30×30+7200=6300(元).答:当专卖店销售完这90部手机后,他们最多能为孩子们捐出6300元资金.8.解:设B型机器人每小时搬运x货箱,则A型机器人每小时搬运(x+3)货箱,根据题意得:=,解得:x=12,经检验,x=12是分式方程的解,∴x+3=15.答:B型机器人每小时搬运12货箱,A型机器人每小时搬运15货箱.9.解:设甲型机器人每台x万元,则乙型机器人每台(140﹣x)万元,根据题意得:=,解得:x=60,经检验,x=60是原方程的解,且符合题意,则140﹣x=80,答:甲型机器人每台60万元,乙型机器人每台80万元.10.解:设通过AB段的速度是xm/s,则通过BC段的速度是1.2xm/s,由题意得:,解得:x=2.5,经检验:x=2.5是原方程的解,且符合题意,答:通过AB时的速度是2.5m/s.。
2021年九年级数学中考复习知识点专题突破训练:分式方程的增根(附答案)1.分式方程有增根,则m的值为()A.0和2B.1C.1和﹣2D.22.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣23.方程的解为增根,则增根是()A.x=2B.x=0C.x=﹣1D.x=0或x=﹣1 4.若方程=1有增根,则它的增根是()A.0B.1C.﹣1D.1和﹣15.已知分式方程有增根,则增根是()A.x=1B.x=1或x=0C.x=0D.不确定6.若分式方程﹣=有增根,则m的值是.7.若关于x的分式方程+=2有增根,则m的值为.8.若分式方程﹣2=有增根,则m的值为.9.若关于x的分式方程有增根时,则m的值为.10.关于x的方程+=2有增根,则m=.11.解分式方程+=会产生增根,则m=.12.若关于x的分式方程=+1有增根,则m=.13.关于x的分式方程有增根,则m的值为.14.若解关于x的方程产生增根,则m的值为.15.当m=时,分式方程+3=有增根.16.(1)若解关于x的分式方程+=会产生增根,求m的值.(2)若方程=﹣1的解是正数,求a的取值范围.17.已知关于x的方程+=2有增根,求m的值.18.解方程:.19.计算:当m为何值时,关于x的方程+=会产生增根?20.关于x的方程:﹣=1.(1)当a=3时,求这个方程的解;(2)若这个方程有增根,求a的值.21.=有增根,求所有可能的t之和.22.m为何值时,关于x的方程+=会产生增根?23.关于x的方程﹣=有增根,求m的值.24.若关于x的方程+=有增根,求增根和m的值.25.若关于x的方程﹣=有增根,求增根和k的值.参考答案1.解:方程两边都乘(x﹣1)(x+1),得x(x+1)﹣(x﹣1)(x+1)=m,∵方程有增根,∴最简公分母(x﹣1)(x+1)=0,即增根是x=1或﹣1,把x=1代入整式方程,得m=2,把x=﹣1代入整式方程,得m=0,方程无解,∴m=2.故选:D.2.解:方程两边都乘(x+a)(x﹣2),得x+a+3(x﹣2)(x+a)=(a﹣x)(x﹣2),∵原方程有增根,∴最简公分母(a+x)(x﹣2)=0,∴增根是x=2或﹣a,当x=2时,方程化为:2+a=0,解得:a=﹣2;当x=﹣a时,方程化为﹣a+a=2a(﹣a﹣2),即a(a+2)=0,解得:a=0或﹣2.当a=﹣2时,原方程可化为+3=,化为整式方程得,1+3(x﹣2)=﹣x﹣2,即:x=,不存在增根,故不符合题意,当a=0时,原方程可化为,化为整式方程得,x+3x(x﹣2)=﹣x(x﹣2),解得x=或x=0,此时,有增根为x=0,∴a=0符合题意,故选:B.3.解:化为整式方程为:2x+2=xm,整理得:(m﹣2)x=2,则可得x≠0,∵原方程有增根,∴最简公分母x(x+1)=0,解得x=0或﹣1.∵x≠0,∴增根是﹣1.故选:C.4.解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.5.解:去分母得:6x=x+5,解得:x=1,经检验x=1是增根.故选:A.6.解:去分母得,m﹣2(x﹣2)=x+2,∵方程﹣=有增根,∴x=±2,当x=2时,m=4;当x=﹣2时,m=﹣8;故答案为4或﹣8.7.解:方程两边都乘(x﹣3),得2﹣x﹣m=2(x﹣3)∵原方程增根为x=3,∴把x=3代入整式方程,得2﹣3﹣m=0,解得m=﹣1.故答案为:﹣1.8.解:方程的两边都乘以(x﹣3),得x﹣2﹣2(x﹣3)=m,化简,得原方程的增根为x=3,把x=3代入m=﹣x+4,得m=1,故答案为:1.9.解:,方程两边都乘(x﹣3)得x﹣5=﹣m,方程化简得m=﹣x+5,∵原方程增根为x=3,∴把x=3代入整式方程得m=2.故答案为:2.10.解:去分母得:5x﹣3﹣mx=2x﹣8,由分式方程有增根,得到x﹣4=0,即x=4,把x=4代入整式方程得:20﹣3﹣4m=0,快捷得:m=,故答案为:11.解:去分母得:2x﹣2﹣5x﹣5=m,由分式方程有增根,得到(x+1)(x﹣1)=0,解得:x=﹣1或x=1,把x=﹣1代入整式方程得:﹣2﹣2+5﹣5=m,即m=﹣4;把x=1代入整式方程得:2﹣2﹣5﹣5=m,即m=﹣10,则m=﹣10或﹣4,故答案为:﹣10或﹣412.解:=+1,两边乘x+2得到,3=m+x+2,∴x=1﹣m,∵分式方程有增根,∴x=﹣2,即1﹣m=﹣2,∴m=3,故答案为3.13.解:去分母得:7x+5x﹣5=2m﹣1,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:12﹣5=2m﹣1,解得:m=4,故答案为:414.解:方程两边同乘x﹣1得:x+3=m+1,解得:x=m﹣2,方程产生增根,当x﹣1=0,即x=1时,方程产生增根,∴m﹣2=1,∴m=3.故答案为:3.15.解:方程两边都乘以(x﹣1),得7+3(x﹣1)=m,∵原方程有增根,∴最简公分母(x﹣1)=0,解得x=1,把x=1代入7+3(x﹣1)=m,中,得m=7.故答案为:7.16.解:(1)方程两边都乘(x+2)(x﹣2),得2(x+2)+mx=3(x﹣2)∵最简公分母为(x+2)(x﹣2),∴原方程增根为x=±2,∴把x=2代入整式方程,得m=﹣4.把x=﹣2代入整式方程,得m=6.综上,可知m=﹣4或6.(2)解:去分母,得2x+a=2﹣x解得:x=,∵解为正数,∴,∴2﹣a>0,∴a<2,且x≠2,∴a≠﹣4∴a<2且a≠﹣4.17.解:方程两边都乘x﹣2,得2﹣(x+m)=2(x﹣2)∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,m=0.18.解:方程两边同乘以(x+2)(x﹣2),得:x+2﹣(x+2)(x﹣2)=4,整理,得:x2﹣x﹣2=0,解此方程,得:x1=2,x2=﹣1,经检验:x=2是增根,舍去x=﹣1是原方程的根,则原方程的根为x=﹣1.19.解:方程得两边都乘以(x+1)(x﹣1),得2(x﹣1)﹣5(x+1)=m.化简,得m=﹣3x﹣7.分式方程的增根是x=1或x=﹣1.当x=1时,m=﹣3﹣7=﹣10,当x=﹣1时,m=3﹣7=﹣4,当m=﹣10或m=﹣4时,关于x的方程+=会产生增根.20.解:(1)当a=3时,原方程为﹣=1,方程两边同时乘以(x﹣1)得:3x+1+2=x﹣1,解这个整式方程得:x=﹣2,检验:将x=﹣2代入x﹣1=﹣2﹣1=﹣3≠0,∴x=﹣2是原方程的解;(2)方程两边同时乘以(x﹣1)得ax+1+2=x﹣1,即(a﹣1)x=﹣4,当a≠1时,若原方程有增根,则x﹣1=0,解得:x=1,将x=1代入整式方程得:a+1+2=0,解得:a=﹣3,综上,a的值为﹣3.21.解:=有增根,说明0或﹣1可能是方程的根,即(x+1)2+x2=x+t,代入x=0,有t=1;代入x=﹣1,有t=2.故所有可能的t之和为3.22.解:原方程化为+=,方程两边同时乘以(x+2)(x﹣2)得2(x+2)+mx=3(x﹣2),整理得(m﹣1)x+10=0,∵关于x的方程+=会产生增根,∴(x+2)(x﹣2)=0,∴x=﹣2 或x=2,∴当x=﹣2时,(m﹣1)×(﹣2)+10=0,解得m=6,当x=2时,(m﹣1)×2+10=0,解得m=﹣4,∴m=﹣4或m=6时,原方程会产生增根.23.解:两边乘(x+2)(x﹣2)得到,x(x+2)﹣x﹣m=2x(x﹣2)①∵方程有增根,∴x=2或﹣2,x=2时,8﹣2﹣m=0,m=6,x=﹣2时,2﹣m=16,m=﹣14,经检验,m=6或﹣14均符合题意,∴m的值为6或﹣14.24.解:去分母得:﹣3(x+1)=m,由分式方程有增根,得到x2﹣1=0,即x=1或x=﹣1,把x=1代入整式方程得:m=﹣6;把x=﹣1代入整式方程得:m=0(此时方程无解,舍去),则增根为x=1,m=﹣6.25.解:最简公分母为3x(x﹣1),去分母得:3x+3k﹣x+1=﹣2x,由分式方程有增根,得到x=0或x=1,把x=0代入整式方程得:k=﹣;把x=1代入整式方程得:k=﹣.。
分式方程及其应用【命题趋势】在中考中.解分式方程常以选择题、填空题和计算题考查;分式方程的实际应用再选择题考查列方程.解答题多与不等式、函数的实际应用结合考查。
【中考考查重点】一、能解可化一元一次方程的分式方程二、能根据具体问题的实际意义.检验方程的解是合理考点一:解分式方程1.(2021•广州)方程=的解为()A.x=﹣6B.x=﹣2C.x=2D.x=6 2.(2021•贵池区模拟)分式方程+2=的解是()A.1B.0C.﹣1D.无解3.(2021•饶平县校级模拟)在下列方程中.()是分式方程.A .=1B .C .D .4.(2020•郴州)解方程:=+1.考点二:分式方程的实际应用行程问题时间速度路程= 工程问题 工作完成时间工作效率工作总量= (当题干中没有给出具体工作总量时.默认工作总量为1)购买问题总量单价总价= 航行问题顺水速度=静水速度+水流速度 逆水速度=静水速度-水流速度【提分要点】双检验:1.检验是否为分式方程的解; 2.检验是否符号实际问题5.(2021•黔西南州)高铁为居民出行提供了便利.从铁路沿线相距360km 的甲地到乙地.乘坐高铁列车比乘坐普通列车少用3h .已知高铁列车的平均速度是普通列车平均速度的3倍.设普通列车的平均速度为xkm/h.依题意.下面所列方程正确的是()A.B.C.D.=36.(2021•黔东南州模拟)2020年在抗击“新型冠状病毒”期间.甲、乙两人准备帮助某抗疫指挥中心整理一批新到的物资.甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后.乙需再单独整理30分钟才能完工.设乙单独整理这批物资需要x分钟完工.则根据题意列得方程()A.B.C.D.7.(2021•市中区三模)开学在即.由于新冠疫情学校决定共用8000元分两次购进口罩6000个免费发放给学生.若两次购买口罩的费用相同.且第一次购买口罩的单价是第二次购买口罩单价的1.5倍.则第二次购买口罩的单价是元.8.(2020•沈河区一模)某服装商预测一种应季衬衫能畅销市场.就用4000元购进一批衬衫.面市后果然供不应求.该服装商又用9000元购进了第二批这种衬衫.所购数量是第一批购进数量的2倍.但单价贵了5元.则该服装商第一批进货的单价是元.1.(2021秋•遵化市期中)下列哪个是分式方程()A.﹣﹣3x=6B.﹣1=0C.﹣3x=5D.2x2+3x=﹣2 2.(2021秋•江油市期末)一艘轮船在两个码头之间航行.顺水航行81km所需的时间与逆水航行69km所需的时间相同.已知水流速度是速度2km/h.则轮船在静水中航行的速度是()A.25km/h B.24km/h C.23km/h D.22km/h3.(2021•张湾区模拟)某单位向一所希望小学赠送1080本课外书.现用A、B两种不同的包装箱进行包装.单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本.则根据题意列得方程为()A.B.C.D.4.(2021•安阳二模)中国标准动车组“复兴号”是世界上商业运营时速最高的动车组列车.达到世界先进水平.安全、舒适、快速是它的显著优点.从安阳东站到北京西站的距离是516千米.乘坐复兴号动车组列车将比乘坐特快列车节省2小时6分钟.已知复兴号动车组的平均速度比特快列车快100千米/小时.设复兴号动车组的平均速度为x千米/小时.根据题意可列方程()A.﹣=2.6B.﹣=2C.﹣=D.﹣=25.(2021秋•铁岭县期末)解下列分式方程:(1)+4=;(2)﹣1=.1.(2021•阿坝州)已知关于x的分式方程=3的解是x=3.则m的值为()A.3B.﹣3C.﹣1D.1 2.(2021•百色)方程=的解是()A.x=﹣2B.x=﹣1C.x=1D.x=33.(2021•巴中)关于x的分式方程﹣3=0有解.则实数m应满足的条件是()A.m=﹣2B.m≠﹣2C.m=2D.m≠2 4.(2021•兴安盟)若关于x的分式方程+=2无解.则a的值为()A.﹣1B.0C.3D.0或3 5.(2021•鄂尔多斯)2020年疫情防控期间.鄂尔多斯市某电信公司为了满足全体员工的需要.花1万元购买了一批口罩.随着2021年疫情的缓解.以及各种抗疫物资充足的供应.每包口罩下降10元.电信公司又花6000元购买了一批口罩.购买的数量比2020年购买的数量还多100包.设2020年每包口罩为x元.可列方程为()A.B.C.D.6.(2021•株洲)《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十.粝米三十…”(粟指带壳的谷子.粝米指糙米).其意为:“50单位的粟.可换得30单位的粝米…”.问题:有3斗的粟(1斗=10升).若按照此“粟米之法”.则可以换得的粝米为()A.1.8升B.16升C.18升D.50升7.(2020•阜新)在“建设美丽阜新”的行动中.需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工时对城市交通所造成的影响.实际施工时每天的工效比原计划增加25%.结果提前30天完成这一任务.设实际每天铺xm管道.根据题意.所列方程正确的是()A.﹣=30B.﹣=30C.﹣=30D.﹣=308.(2021•大庆)解方程:+=4.1.(2014•日照校级模拟)下列说法:①解分式方程一定会产生增根;②方程=0的根为2;③方程的最简公分母为2x(2x﹣4);④x+=1+是分式方程.其中正确的个数是()A.1个B.2个C.3个D.4个2.(2021•安徽模拟)若x=6是分式方程的根.则a的值为()A.6B.﹣6C.4D.﹣4 3.(2021•郯城县模拟)分式方程=0的解是()A.1B.﹣1C.±1D.无解4.(2021•西湖区校级三模)某生产厂家更新技术后.平均每天比更新技术前多生产3万件产品.现在生产50万件产品与更新技术前生产40万件产品所需时间相同.设更新技术前每天生产产品x万件.则可以列方程为()A.B.C.D.5.中国高铁目前是世界高铁的领跑者.无论里程和速度都是世界最高的.郑州、北京两地相距约700km.乘高铁列车从郑州到北京比乘特快列车少用3.6h.已知高铁列车的平均行驶速度是特快列车的2.8倍.设特快列车的平均行驶速度为xkm/h.则下面所列方程中正确()A.﹣=3.6B.﹣=3.6C.﹣=3.6D.=3.6﹣6.(2020•河北模拟)某学校食堂需采购部分餐桌.现有A、B两个商家.A商家每张餐桌的售价比B商家的优惠20元.若该校花费4400元采购款在B商家购买餐桌的张数等于花费4000元采购款在A商家购买餐桌的张数.则A商家每张餐桌的售价为()A.197元B.198元C.199元D.200元7.(2021•碑林区校级模拟)解方程:=1﹣.。
2021年九年级数学中考复习——方程专题:分式方程实际应用(五)1.在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?2.某超市购进A和B两种商品,已知每件A商品的进货价格比每件B商品的进货价格贵2元,用200元购买A商品的数量恰好与用150元购买B商品的数量相等.(1)求A商品的进货价格;(2)计划购进这两种商品共30件,且投入的成本不超过200元,那么最多购进多少件A 商品?3.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.4.某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用20%的材料.(1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排多少米材料制作甲种边框?(不计材料损耗)5.某商场经销A,B两款商品,若买20件A商品和10件B商品用了360元;买30件A 商品和5件B商品用了500元.(1)求A、B两款商品的单价;(2)若对A、B两款商品按相同折扣进行销售,某顾客发现用640元购买A商品的数量比用224元购买B商品的数量少20件,求对A、B两款商品进行了几折销售?(3)若对A商品进行5折销售,B商品进行8折销售,某顾客同时购买A、B两种商品若干件,正好用完49.6元,问该顾客同时购买A、B两款商品各几件?6.某企业拟投资共购买10条N95口罩生产线和平面口罩生产线.已知购买一条平面口罩生产线需要资金为100万元,购买一条N95口罩生产线所需资金是一条平面口罩生产线所需资金的2倍;一条平面口罩生产线每小时比一条N95口罩生产线多生产4200只口罩,且一条平面口罩生产线生产36000只口罩与一条N95口罩生产线生产15000只口罩所用时间相同.(1)如果计划用于购买N95口罩生产线的资金不超过用于购买平面口罩生产线的资金,那么该企业最多可购买几条N95口罩生产线?(2)该企业按照(1)中的最大值购买N95口罩生产线,所有10条生产线全部正常投产后按照每天工作8小时计算,问该企业每天可以生产N95口罩和平面口罩的总和为多少只?7.甲乙两人加工同一种服装,乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同.(1)求甲每天加工服装多少件?(2)甲乙两人新接了200件服装加工订单,受供货时间限制,二人都提高了工作效率,设甲提高后每天能加工m件,乙提高后每天加工的件数是甲的k倍(1.5≤k≤2),这样两人工作10天恰好能完成任务,求m的最大值.8.为做好复工复产,某工厂用A、B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg,且A型机器人搬运1200kg所用时间与B型机器人搬运1000kg 所用时间相等,求这两种机器人每小时分别搬运多少原料.9.今年疫情防控期间,某学校花2000元购买了一批消毒液以满足全体师生的需要.随着疫情的缓解以及各种抗疫物资供应更充足,消毒液每瓶下降了2元,学校又购买了一批消毒液,花1600元购买到的数量与第一次购买到的数量相等,求第一批购进的消毒液的单价.10.某公司经销甲种产品,受国际经济形势的影响,价格不断下降.预计今年的售价比去年同期每件降价1000元,如果售出相同数量的产品,去年销售额为10万元,今年销售额只有8万元.(1)今年这种产品每件售价多少元?(2)为了增加收入,公司决定再经销另一种类似产品乙,已知产品甲每件进价为3500元;产品乙每件进价为3000元,售价3600元,公司预计用不多于5万元且不少于4.9万元的资金购进这两种产品共15件,分别列出具体方案,并说明那种方案获利更高.参考答案1.解:设该村企去年黑木耳的年销量为x万斤,则今年黑木耳的年销量为3x万斤,依题意,得:﹣=20,解得:x=2,经检验,x=2是原方程的解,且符合题意.答:该村企去年黑木耳的年销量为2万斤.2.解:(1)设A商品的进货价格为x元,则每件B商品的进货价为(x﹣2)元,根据题意可得:=,解得:x=8,经检验得:x=8是原方程的根,答:A商品的进货价格为8元;(2)设购进a件A商品,则购进(30﹣a)件B商品,根据题意可得:8a+6(30﹣a)≤200,解得:a≤10,答:最多购进10件A商品.3.解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:=,解得:x=12,经检验,x=12是原方程的解,且符合题意,答:乙每小时做12个零件.4.解:(1)设制作每个乙种边框用x米材料,则制作甲种边框用(1+20%)x米材料,由题意,得﹣1=,解得:x=2,经检验x=2是原方程的解,∴(1+20%)x=2.4(米),答:制作每个甲种用2.4米材料;制作每个乙种用2米材料.(2)设应安排制作甲种边框需要a米,则安排制作乙种边框需要(640﹣a)米,由题意,得≥×2.解得a≤240,答:最多安排240米材料制作甲种边框.5.解:(1)设A商品的单价为x元,B商品的单价为y元,依题意,得:,解得:.答:A商品的单价是16元,B商品的单价是4元.(2)设对A、B两款商品进行了a折销售,依题意,得:﹣=20,解得:a=8.答:对A、B两款商品进行了8折销售.(3)设顾客购买A商品m件,B商品n件,依题意,得:16×0.5m+4×0.8n=49.6,∴m=.又∵m,n都为正整数,∴,,.∴共有三种购买方案,方案1:购买A商品1件,B商品13件;方案2:购买A商品3件,B商品8件;方案3:购买A商品5件,B商品3件.6.解:(1)设该企业购买x条N95口罩生产线,则购买购买(10﹣x)条平面口罩生产线,依题意,得:2×100x≤100(10﹣x),解得:x≤.又∵x为正整数,∴x的最大值为3.答:该企业最多可购买3条N95口罩生产线.(2)设一条N95口罩生产线每小时生产m只口罩,则一条平面口罩生产线每小时生产(m+4200)只口罩,依题意,得:=,解得:m=3000,经检验,m=3000是原方程的解,且符合题意,∴m+4200=7200,∴[3000×3+7200×(10﹣3)]×8=475200(只).答:该企业每天可以生产N95口罩和平面口罩的总和为475200只.7.解:(1)设甲每天加工服装x件,则乙每天加工服装(x+1)件,依题意,得:=,解得:x=5,经检验,x=5是原方程的解,且符合题意.答:甲每天加工服装5件.(2)依题意,得:10m+10km=200,∴m=.∵20>0,1+k>0,∴m随k值的增大而减小,∴当k=1.5时,m取得最大值,最大值==8.答:m的最大值为8.8.解:设B型机器人每小时搬运xkg原料,则A型机器人每小时搬运(x+20)kg原料,依题意,得:=,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴x+20=120.答:A型机器人每小时搬运120kg原料,B型机器人每小时搬运100kg原料.9.解:设第一批购进的消毒液的单价为x元,则第二批购进的消毒液的单价为(x﹣2)元,依题意,得:=,解得:x=10,经检验,x=10是原方程的解,且符合题意.答:第一批购进的消毒液的单价为10元.10.解:(1)设今年这种产品每件售价是x元,则去年同期这种产品每件售价是(x+1000)元.依题意可得:=,解得x=4000,经检验x=4000是原方程的解.答:今年这种产品每件售价是4000元.(2)设购进甲产品a件,则购进乙产品(15﹣a)件,依题意可得:,解得,8≤a≤10,∵a是整数,∴a=8,9,10,所以共有3种进货方案:方案①:购进甲产品8件,购进乙产品7件;方案②:购进甲产品9件,购进乙产品6件;方案③:购进甲产品10件,购进乙产品5件.方案①利润:(4000﹣3500)×8+(3600﹣3000)×7=8200(元);方案②利润:(4000﹣3500)×9+(3600﹣3000)×6=8100(元);方案①利润:(4000﹣3500)×10+(3600﹣3000)×5=8000(元);∵8200>8100>8000,∴方案①的利润更高.。
§1.3分式考点1分式的概念与基本性质1.(2021宁波,6,4分)要使分式1x+2有意义,x的取值应满足( B ) A.x≠0 B.x≠-2 C.x≥-2 D.x>-2解析∵分式1x+2有意义,∴x+2≠0,解得x≠-2.故选B.2.(2020金华,2,3分)分式x+5x−2的值是零,则x的值为( D ) A.2 B.5C.-2D.-5解析依题意,得x+5=0且x-2≠0,解得x=-5.故选D.方法总结对于分式AB,当B≠0时,分式有意义;当B=0时,分式无意义;当A=0且B≠0时,分式的值为0.3.(2022湖州,11,4分)当a=1时,分式a+1a的值是2.解析当a=1时,a+1a =1+11=2.考点2分式的运算1.(2022杭州,6,3分)照相机成像应用了一个重要原理,用公式1f =1u+1v(v≠f)表示,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.已知f,v,则u= ( C )A.fvf−v B.f−vfvC.fvv−fD.v−ffv解析∵1f =1u+1v(v≠f),∴1u =1f−1v,∴1u=v−ffv,∴u=fvv−f.故选C.2.(2020台州,12,5分)计算1x −13x的结果是23x.解析1x −13x=33x−13x=23x.3.(2022温州,13,5分)计算:x 2+xyxy+xy−x2xy=2.解析x 2+xyxy+xy−x2xy=x2+xy+xy−x2xy=2xyxy=2.故答案为2.4.(2022台州,15,5分)如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x的值是5.解析正确的化简过程为3−xx−4+1=3−xx−4+x−4x−4=3−x+x−4x−4=−1x−4.因为最后所求的值是正确的,所以-1x−4=-1,解得x=5.5.(2021丽水,16,4分)数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:已知实数a,b同时满足a2+2a=b+2,b2+2b=a+2,求代数式ba +ab的值.结合他们的对话,请解答下列问题: (1)当a=b时,a的值是-2或1;(2)当a≠b时,代数式ba +ab的值是7.解析(1)当a=b时,由a2+2a=b+2得a2+2a=a+2,即a2+a-2=0,解得a1=-2,a2=1.(2)a2+2a=b+2①,b2+2b=a+2②,由①-②得a2-b2+2(a-b)=b-a,即a2-b2+3(a-b)=0,∴(a-b)(a+b+3)=0.∵a≠b,∴a+b+3=0,即a+b=-3.由①+②得a2+b2+2(a+b)=(b+a)+4,把a+b=-3代入,得a2+b2-6=-3+4,∴a2+b2=7,∴(a+b)2-2ab=7,∴9-2ab=7,∴ab=1,∴ba +ab=b2+a2ab=71=7.6.(2021衢州,18,6分)先化简,再求值:x 2x−3+93−x,其中x=1.解析原式=x 2x−3−9x−3=(x+3)(x−3)x−3=x+3.当x=1时,原式=4.7.(2022舟山,19,6分)观察下面的等式:12=13+16,13=14+112,14=15+120,…….(1)按上面的规律归纳出一个一般的结论(用含n的等式表示,n为正整数);(2)请运用分式的有关知识,推理说明这个结论是正确的.解析(1)1n =1n+1+1n(n+1).(2)∵1n+1+1n(n+1)=nn(n+1)+1n(n+1)=n+1n(n+1)=1n,∴结论正确.方法总结异分母的分式相加减:先通分,变为同分母的分式,然后相加减,即ab±c d =ad±cbbd.基础练一、选择题(每小题3分,共12分)1.(2019湖州,)计算a−1a +1a,正确的结果是( A )A.1B.12C.a D.1a解析a−1a +1a=a−1+1a=aa=1.2.(2021贵州贵阳,)计算xx+1+1x+1的结果是( C )A.xx+1B.1x+1C.1D.-1解析xx+1+1x+1=x+1x+1=1.故选C.3.(2022温州洞头二模,)计算2aa+2−a−22+a的结果为( C )A.a+2B.a-2C.1D.a−2a+2解析2aa+2−a−22+a=2a−(a−2)a+2=a+2a+2=1,故选C.4.(2020温州瑞安模拟,)若分式x+1x−2的值为0,则x的值是( B )A.1B.-1C.2D.-1或2解析由x+1x−2=0,可得x+1=0且x-2≠0,故x=-1.故选B.二、填空题(每小题4分,共8分)5.(2022金华永康一模,)若分式1x−3有意义,则x的取值范围为x≠3. 解析分式有意义,要求分母不等于0,故x-3≠0,即x≠3.6.(2021吉林,)计算:2xx−1−xx−1=xx−1.解析2xx−1−xx−1=2x−xx−1=xx−1.三、解答题(共50分)7.(2022湖州吴兴一模,)化简:2a−ba+b +a+4ba+b.解析原式=2a−b+a+4ba+b =3a+3ba+b=3(a+b)a+b=3.8.(2022重庆A卷,)计算:(ab −1)÷a2−b22b.解析原式=a−bb ·2b(a+b)(a−b)=2a+b.9.(2022嘉兴嘉善一模,)化简并求值:1+9+3aa2−9,其中a=2.解析 原式=1+3(3+a)(a+3)(a−3)=1+3a−3=a−3+3a−3=aa−3.当a =2时,原式=22−3=-2. 10.(2022舟山普陀一模,)先化简,再求值:y 2y−2+42−y,其中y =-2.解析 原式=y 2−4y−2=y +2. 当y =-2时,原式=-2+2=0. 11.(2022福建,)先化简,再求值:(1+1a )÷a 2−1a,其中a =√2+1.解析 原式=a+1a ÷(a+1)(a−1)a=a+1a·a (a+1)(a−1)=1a−1.当a =√2+1时, 原式=√2+1−1=√22. 12.(2022杭州临安一模,)以下是方方化简(a −1+1a+1)÷a 2+2a a+1的解答过程.解:原式=(a 2-1+1)·a+1a 2+2a=a 2·a+1a(a+2)=a 2+aa+2.方方的解答过程是否有错误?如果有,请写出正确的解答过程. 解析 方方的解答过程有错误.正确的解答过程如下: 原式=(a 2−1a+1+1a+1)·a+1a(a+2) =a 2a+1·a+1a(a+2)=aa+2.提分练一、选择题(每小题3分,共6分) 1.(2020宁波余姚模拟,)在函数y =x √x+3中,自变量x 的取值范围是 ( D )A.x ≥-3B.x ≥-3且x ≠0C.x ≠0D.x >-3解析 由题意得x +3>0,则x >-3.故选D .2.(2021山东济宁,)计算a 2−4a÷a +1−5a−4a的结果是 ( A )A.a+2a−2 B.a−2a+2 C.(a−2)2(a+2)a D.a+2a解析 a 2−4a÷(a +1−5a−4a)=(a+2)(a−2)a ÷a(a+1)−5a+4a=(a+2)(a−2)a·a(a−2)2=a+2a−2.二、填空题(每小题4分,共20分) 3.(2022四川成都,)已知2a 2-7=2a ,则代数式(a −2a−1a)÷a−1a 2的值为 72 .解析 原式=a 2−2a+1a·a 2a−1=(a−1)2a·a 2a−1=a (a -1).由2a 2-7=2a 得2a 2-2a =7, ∴a 2-a =72,∴a (a -1)=72, 当a (a -1)=72时,原式=72.解题关键 先将2a 2-7=2a 化简,再将化简结果整体代入所求的代数式中即可. 4.(2021内蒙古包头,)化简:(2m m 2−4+12−m )÷1m+2= 1 .解析 原式=2m(m+2)(m−2)−1m−2·(m +2)=2m m−2−m+2m−2=2m−(m+2)m−2=2m−m−2m−2=m−2m−2=1.5.(2020台州仙居模拟,)小明化简代数式如下:x+1x−xx−1=(x +1)(x -1)-x 2=x 2-1-x 2=-1.他的化简对还是错? 错 (填“对”或“错”),正确的化简结果是 -1x 2−x . 解析x+1x−xx−1=(x+1)(x−1)−x 2x(x−1)=x 2−1−x 2x(x−1)=−1x 2−x =−1x 2−x .故小明的化简错误,正确的化简结果是-1x 2−x . 6.(2021金华义乌模拟,)化简:2a 2−8a+2-a = a -4 . 解析 原式=2(a 2−4)a+2−a =2(a+2)(a−2)a+2-a =2a -4-a =a -4.7.新设问(2021湖北黄冈,)人们把√5−12这个数叫做黄金分割数,著名数学家华罗庚的优选法中的0.618法就应用了黄金分割数.设a =√5−12,b =√5+12,得ab =1,记S 1=11+a+11+b,S 2=11+a 2+11+b 2,……,S 10=11+a 10+11+b 10,则S 1+S 2+…+S 10= 10 .解析 S 1=11+a +11+b =1+b+1+a(1+a)(1+b)=2+a+b1+a+b+ab =2+a+b2+a+b =1, S 2=11+a 2+11+b 2=1+b 2+1+a 2(1+a 2)(1+b 2)=2+a 2+b 21+a 2+b 2+a 2b 2=2+a 2+b 22+a 2+b 2=1, S 3=11+a 3+11+b 3=1+b 3+1+a 3(1+a 3)(1+b 3)=2+a 3+b 31+a 3+b 3+a 3b 3=2+a 3+b 32+a 3+b 3=1, ……,以此类推,S 10=11+a 10+11+b 10=1. 所以S 1+S 2+…+S 10=1+1+⋯+1⏟ 10个=10.三、解答题(共74分) 8.(2022嘉兴平湖一模,) 化简:(1−1x )÷x 2−1x.解析 原式=x−1x÷x 2−1x=x−1x·x(x+1)(x−1)=1x+1.9.(2022宁波镇海一模,)先化简,再求值:a 3−4ab 2a 3−4a 2b+4ab 2,其中a=-2,b=12.解析 原式=a(a 2−4b 2)a(a 2−4ab+4b 2)=a(a+2b)(a−2b)a(a−2b)2=a+2b a−2b .当a=-2,b=12时,原式=−2+2×12−2−2×12=−2+1−2−1=13.10.(2022江西,)以下是某同学化简x+1x 2−4-1x+2÷3x−2的部分运算过程:解:原式=[x+1(x+2)(x−2)−1x+2]×x−23①=[x+1(x+2)(x−2)−x−2(x+2)(x−2)]×x−23②=x+1−x−2(x+2)(x−2)×x−23③……(1)上面的运算过程中第 ③ 步出现了错误; (2)请你写出完整的解答过程. 解析 (1)③. (2)原式=x+1(x+2)(x−2)−1x+2×x−23=x+1(x+2)(x−2)−x−2(x+2)(x−2)×x−23=x+1−x+2(x+2)(x−2)×x−23=3(x+2)(x−2)×x−23=1x+2.11.(2022新疆,)先化简,再求值:(a 2−9a 2−2a+1÷a−3a−1−1a−1)·1a+2,其中a =2.解析 (a 2−9a 2−2a+1÷a−3a−1−1a−1)·1a+2 =[(a+3)(a−3)(a−1)2·a−1a−3−1a−1]·1a+2=(a+3a−1−1a−1)·1a+2 =a+2a−1·1a+2 =1a−1.当a =2时,原式=12−1=1.12.(2022衢州衢江一模,)先化简,再求值:2x 2−1÷1x+1−1x−1,从1,2,3这三个数中选择一个你认为适合的数作为x 的值代入求值. 解析 原式=2(x+1)(x−1)·(x +1)-1x−1=2x−1−1x−1=1x−1. 要使原式有意义,x 只能取2,3.当x =2时,原式=1;当x =3时,原式=12.(写出一种情况即可) 13.(2022湖州南浔一模,)先化简:a−1a 2−1÷2aa+1,再选择一个适当的数代入求值.解析 原式=a−1(a+1)(a−1)·a+12a =12a .当a =2时,原式=14.(答案不唯一,a 取不为0、±1的任何实数均可) 14.(2021嘉兴模拟,)贝贝家的浴缸上有两个水龙头,一个放热水,一个放冷水,放热水的水龙头的放水速度是a L/min ,放冷水的水龙头的放水速度是b L/min ,现要将浴缸注满水,有两种放水方式:方式一:先开热水龙头,使热水注满浴缸的一半,后一半容积的水开冷水龙头注放; 方式二:前一半时间开热水龙头注放,后一半时间开冷水龙头注放. 你认为以上两种方式中,哪种方式更节省时间?谈谈你的看法和理由. 解析 方式一:设浴缸容积为V L ,注满总时间为t min , 根据题意,得t =V2a +V2b .方式二:设浴缸容积为V L ,注满总时间为t' min , 根据题意,得12t′a +12t'b =V. 所以t'=2Va+b .故t -t'=V2a +V2b −2Va+b =V[(a+b)2−4ab]2ab(a+b)=V(a−b)22ab(a+b).①当a =b 时,t -t'=0,即t =t'; ②当a ≠b 时,V(a−b)22ab(a+b)>0,即t >t'.综上,当放热水速度与放冷水速度不相等时,方式二节省时间;当两水龙头放水速度相等时,两种方式注满水的时间相等.。
中考数学一轮复习专题解析—分式的运算复习目标1.了解分式的概念2.会利用分式的基本性质进行约分和通分。
3.会进行分式的加、减、乘、除、乘方运算4.能够根据具体问题数量关系列出简单的分式方程5.会解简单的可化为一元一次方程的分式方程;考点梳理一、分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.【归纳总结】分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B ≠0时,分式有意义;当分式有意义时,B ≠0.②当B =0时,分式无意义;当分式无意义时,B =0.③当B ≠0且A =0时,分式的值为零.例1、若把x ,y 的值同时缩小x 为原来的13倍,则下列分式的值保持不变的是()A .xy x y+B .22y x ++C .()22x y x +D .222x y x -【答案】C 【解析】A.1111333==11333x y xyxy x y x y x y⨯⨯+++,选项说法错误,不符合题意;B.61263=3616233y y x x y x +++=+++,选项说法错误,不符合题意;C.22222222111()()()33311()()33x y x y x y x x x ⎛⎫++ ⎪+⎝⎭==,选项说法正确,符合题意;D.22222213112261())(33()3xx xy x y x y x ⨯==---⨯,选项说法错误,不符合题意故选C二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算±=同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算(分式乘方)分式的乘方,把分子分母分别乘方.2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.例2、计算22111m mm m----的结果是()A.1m+B.1m-C.2m-D.2m--【答案】B【解析】解:()222121211 1111mm m m m mm m m m---+-===-----;故选B.【归纳总结】约分需明确的问题:(1)对于一个分式来说,约分就是要把分子与分母都除以同一个因式,使约分前后分式的值相等;(2)约分的关键是确定分式的分子和分母的公因式,其思考过程与分解因式中提取公因式时确定公因式的思考过程相似;在此,公因式是分子、分母系数的最大公约数和相同字母最低次幂的积.【特别提醒】通分注意事项(1)通分的关键是确定最简公分母;最简公分母应为各分母系数的最小公倍数与所有因式的最高次幂的积.(2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.(3)确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母因式的最高次幂的积.三、分式方程及其应用1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.【特别提醒】1.解分式方程注意事项(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.2.列分式方程解应用题的基本步骤(1)审——仔细审题,找出等量关系;(2)设——合理设未知数;(3)列——根据等量关系列出方程;(4)解——解出方程;(5)验——检验增根;(6)答——答题.例3、随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周6000件提高到8400件,平均每人每周比原来多投递80件,若快递公司的快递人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.6000x=840080x+B.6000x+80=8400xC.8400x=6000x﹣80D.6000x=840080x-【答案】A【解析】解:设原来平均每人每周投递快件x件,则更换交通工具后平均每人每周投递快件(x+80)件,依题意得:6000x=840080x+,故选:A.综合训练1.(2022·全国九年级课时练习)若代数式13x x -+有意义,则x 的取值范围是()A .3x ≠B .1x ≠C .3x ≥-D .3x ≠-【答案】D【分析】根据分式有意义的条件分析即可.【详解】 数式13x x -+有意义,30x ∴+≠,解得3x ≠-.故选D .2.(2022·老河口市教学研究室九年级月考)化简2b a ba a a ⎛⎫+-÷ ⎪⎝⎭的结果是()A .-a bB .a b +C .1a b-D .1a b+【答案】A【分析】直接将括号里面通分,进而分解因式,再利用分式的除法运算法则计算得出答案.【详解】解:2b a ba a a ⎛⎫+-÷⎪⎝⎭=22a b aa a b-⨯+=()()a b a b aaa b+-⨯+=-a b .故选:A .3.(2022·厦门市第九中学九年级二模)港珠澳大桥是我国桥梁建筑史上的又一伟大奇迹,东接香港,西接珠海、澳门,全程55千米.通车前需走水陆两路共约170千米,通车后,约减少时间3小时,平均速度是原来的2.5倍,如果设原来通车前的平均时速为x 千米/小时,则可列方程为()A .1705532.5x x-=B .5517032.5x x-=C .17055 2.53x x ⨯-=D .1705532.5x x-=【答案】D【分析】设原来通车前的平均时速为x 千米/小时,所以通车后,的平均时速为2.5x 千米/小时,根据它们行驶的时间差为3小时列出分式方程.【详解】解:设原来通车前的平均时速为x 千米/小时,所以通车后,的平均时速为2.5x 千米/小时,依题意得:1705532.5x x-=故选D .4.(2022·哈尔滨市第十七中学校)分式方程1x x +12x +-=1的解是()A .x =1B .x =﹣1C .x =3D .x =﹣3【答案】A【分析】观察可得最简公分母是x (x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解即可.【详解】解:112x x x ++-=1,去分母,方程两边同时乘以x (x ﹣2)得:(x +1)(x ﹣2)+x =x (x ﹣2),x 2﹣x ﹣2+x =x 2﹣2x ,x =1,经检验,x =1是原分式方程的解.故选:A .5.(2022·四川九年级期中)关于x 的方程244x ax x -=++有增根,则a 的值为()A .-4B .-6C .0D .3【答案】B【分析】将分式方程转化为整式方程,根据方程有增根求得4x =-,代入整式方程即可.【详解】解:244x ax x -=++两边同时乘4x +得:2x a -=①∵244x ax x -=++有增根∴4x =-代入方程①得:6a =-故答案为B .6.(2022·全国)已知实数a ,b 满足1a b ⋅=,那么221111a b +++的值为()A .14B .12C .1D .2【答案】C【分析】把所求分式通分,再把已知条件代入求解.【详解】解:∵•1a b =,∴()2221a b ab ==,∴22222222112111a b a b a b b a +++=+++++2222211a b b a ++=+++1=.故选:C .7.(2022·日照市田家炳实验中学九年级一模)已知关于x 的方程2222x mm x x+=--无解,则m 的值是___.【答案】12或1【分析】分方程有增根,增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母20x -=,得到2x =,然后代入化为整式方程的方程算出m 的值和方程没有增根两种情况进行讨论.【详解】解:①当方程有增根时方程两边都乘2x -,得22(2)x m m x -=-,∴最简公分母20x -=,解得2x =,当2x =时,1m =故m 的值是1,②当方程没有增根时方程两边都乘2x -,得22(2)x m m x -=-,解得221mx m =-,当分母为0时,此时方程也无解,∴此时210m -=,解得12m =,∴综上所述,当12m =或1时,方程无解.故答案为:12或1.8.(2022·山东滨州市·九年级其他模拟)已知关于x 的分式方程3522x mx x=+--的解为非负数,则m 的取值范围为______.【答案】10m ≥-且6≠-m 【分析】根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,可得答案.【详解】解:3522x m x x=+--去分母,得:35(2)x m x =-+-,移项、合并,得:210x m=+系数化为1得:102mx +=∵分式方程的解为非负数,∴1002m +≥且1022m +≠,解得:10m ≥-且6≠-m ,故答案为:10m ≥-且6≠-m .9.(2022·云南九年级期末)先化简,再求值:212(1)11x x x ++÷+-,其中2x =.【答案】x -1,1【分析】根据分式的混合运算法则化简原式然后代值计算即可.【详解】解:原式=2111()12x x x x ++-⨯++=2(1)(1)12x x x x x ++-⨯++=1x -,∵2x =,∴原式=211-=.10.(2022·河南三门峡市·)下面是小锐同学进行分式化简的过程,请认真阅读并完成相应任务.229216926x x x x x -+-+++()()()()23321233x x x x x +-+=-++…第一步()321323x x x x -+=-++…第二步()()()23212323x x x x -+=-++…第三步()()262123x x x --+=+…第四步()262123x x x --+=+…第五步526x =-+…第六步(1)填空:①以上化简步骤中,第______步是进行分式的通分,通分的依据是______;②第______步开始出现错误,这一步错误的原因是__________.(2)请从出现错误的步骤开始继续进行该分式的化简;(3)除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需注意的事项给其他同学提一条建议.【答案】(1)①三,分式的基本性质;②五,括号前面是“-”,去掉括号后,括号里面的第二项没有变号;(2)见解析;(3)最后结果应化为最简分式或整式【分析】(1)①分式的通分是把异分母的分式化为同分母的分式,通分的依据是分式的基本性质,据此即可进行判断;②根据分式的运算法则可知:第五步开始出现错误,然后根据去括号法则解答即可;(2)根据分式的混合运算法则解答;(3)可从分式化简的最后结果或通分时应注意的事项等进行说明.【详解】解:(1)①在以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质(或分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变);②第五步开始出现错误,这一步错误的原因是:括号前面是“-”,去掉括号后,括号里面的第二项没有变号;(2)原式()262172326x x x x ---==-++;(3)答案不唯一.如:最后结果应化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;分式化简不能与解分式方程混淆等.。
中考数学备考之黄金考点聚焦聚焦考点☆温习理解1、分式方程分母里含有未知数的方程叫做分式方程。
2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。
它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。
3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。
名师点睛☆典例分类考点典例一、判断方程为分式方程【例1】下列各式中,是分式方程的是()A.x+y=5 B.22253x y+-=C.165x=+D.1x【答案】C.【解析】试题分析:根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.试题解析:A、方程分母中不含未知数,故不是分式方程;B、方程分母中不含未知数,故不是分式方程;C、方程分母中含未知数x,故是分式方程.D、不是方程,是分式.考点:分式方程的定义.【点睛】本题考查了分式方程的定义.判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).【举一反三】 下列各式中为分式方程的是( )A .x+1xB .11123x x =+- C .253x += D .10x π+= 考点典例二、分式方程的解及增根【例2】(2015凉山州)分式方程233x x=-的解是 . 【答案】9x =.【解析】试题分析:方程的两边同乘(3)x x -,得:23(3)x x =-,解得9x =.检验:把9x =代入(3)540x x -=≠.∴原方程的解为:9x =.故答案为:9x =.考点:解分式方程.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.【举一反三】1. (2016广东广州第14题)方程12=2xx -3的解是 . 2.若分式方程211x m x x-=--有增根,则这个增根是 考点典例三、解分式方程【例3】(2016浙江台州第18题)解方程:2717=---xx x . 【答案】x =15.【解析】试题解析:去分母得:x +1=2x ﹣14,解得:x =15,经检验x =15是分式方程的解.考点:解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.【举一反三】1. (2016海南省第7题)解分式方程1x -1+1=0,正确的结果是( ) A .x=0 B .x=1 C .x=2 D .无解2. (2016内蒙古呼伦贝尔市、兴安盟第19题)解方程:233011x x x +-=--. 考点典例四、分式方程的应用【例3】(2016湖南岳阳第20题)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.【答案】3.【解析】试题分析:设学生步行的平均速度是每小时x 千米,服务人员骑自行车的平均速度是每小时2.5x 千米,根据学校与君山岛距离为24千米,服务人员所花时间比学生少用了3.6小时,可列方程求解.试题解析:设学生步行的平均速度是每小时x 千米.服务人员骑自行车的平均速度是每小时2.5x 千米,根据题意:6.35.22424=-xx , 解得:x=3,经检验,x=3是所列方程的解,且符合题意.答:学生步行的平均速度是每小时3千米.考点:分式方程的应用.【点睛】此题考查分式方程的应用,找出题目蕴含的数量关系,列出方程解决问题.1. (2016山东淄博第16题)某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x 个物件,根据题意列出的方程是 .2. (2016山东滨州第14题)甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做 个零件.课时作业☆能力提升一、选择题1. (2016湖北宜昌第8题)分式方程=1的解为( )A .x=﹣1B .x=C .x=1D .x=2 2. (2016湖北十堰第7题)用换元法解方程x x 122-﹣122-x x =3时,设xx 122-=y ,则原方程可化为( ) A .y=y 1﹣3=0 B .y ﹣y 4﹣3=0 C .y ﹣y1+3=0 D .y ﹣y 4+3=0 3. (2016山东潍坊第10题)若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠C .m >﹣D .m >﹣且m ≠﹣344. (2016新疆第9题)两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x 千米/小时,根据题意可列方程是( )A . 152.175007500=-x xB .412.175007500=-x xC .152.15.75.7=-x x D .412.15.75.7=-x x A .1m =- B .0m = C .3m = D .0m =或=3m6. (2016青海第18题)穿越青海境内的兰新高铁极大地改善了沿线人民的经济文化生活,该铁路沿线甲,乙两城市相距480km ,乘坐高铁列车比乘坐普通快车能提前4h 到达,已知高铁列车的平均行驶速度比普通列车快160km/h ,设普通列车的平均行驶速度为xkm/h ,依题意,下面所列方程正确的是( )A.4804804160x x -=+B.4804804160x x -=+C.4804804160x x -=- 7. (2016辽宁葫芦岛第8题)A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运40千克,A 型机器人搬运1200千克所用时间与B 型机器人搬运800千克所用时间相等.设B 型机器人每小时搬运化工原料x 千克,根据题意可列方程为( )A.120080040x x =+B.120080040x x =-C.120080040x x =-D.120080040x x =+二、填空题8. (2016江苏苏州第12题)当x= 时,分式x -22x +5的值为0.9. (2016贵州铜仁第13题)方程5302x x-=-的解为 . 10. (2016江苏盐城第15题)方程21x x -=的正根为 . 三、解答题11.(2016浙江台州第18题)解方程:2717=---xx x . 12. (2016福建南平第18题)解分式方程:341x x =+. 13. (2016湖南岳阳第20题)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.14. (2016山东威海第20题)某校进行期末体育达标测试,甲、乙两班的学生数相同,甲班有48人达标,乙班有45人达标,甲班的达标率比乙班高6%,求乙班的达标率.15.(2016新疆生产建设兵团第17题)某学校为绿化环境,计划种植600棵树,实际劳动中每小时植树的数量比原计划多20%,结果提前2小时完成任务,求原计划每小时种植多少棵树?。
2021模拟年中考数学复习专题练:《分式方程实际应用》1.在抗击“新冠肺炎”战役中,某公司接到转产生产1440万个医用防护口罩补充防疫一线需要的任务,临时改造了甲、乙两条流水生产线.试产时甲生产线每天的产能(每天的生产的数量)是乙生产线的2倍,各生产80万个,甲比乙少用了2天.(1)求甲、乙两条生产线每天的产能各是多少?(2)若甲、乙两条生产线每天的运行成本分别是1.2万元和0.5万元,要使完成这批任务总运行成本不超过40万元,则至少应安排乙生产线生产多少天?(3)正式开工满负荷生产3天后,通过技术革新,甲生产线的日产能提高了50%,乙生产线的日产能翻了一番.再满负荷生产13天能否完成任务?2.某口罩生产厂在春节期间接到紧急任务,要求几天内生产出70万只口罩,为了战胜疫情,口罩厂工人愿意奉献自己的休息时间来完成这项任务,厂长决定开足全厂口罩生产线进行生产,结果每天比原来多生产3万只,而且提前了3天完成了任务,问原来要求几天完成这项紧急任务?3.在我县创建“生态保护示范县”活动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍.如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天,求甲,乙两工程队每天各能完成多少面积的绿化?4.九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?5.某服装加工厂甲、乙两个车间共同加工一款休闲装,且每人每天加工的件数相同,甲车间比乙车间少10人,甲车间每天加工服装400件,乙车间每天加工服装600件.(1)求甲、乙两车间各有多少人;(2)甲车间更新了设备,平均每人每天加工的件数比原来多了10件,乙车间的加工效率不变,在两个车间总人数不变的情况下,加工厂计划从乙车间调出一部分人到甲车间,使每天两个车间加工的总数不少于1314件,求至少要从乙车间调出多少人到甲车间.6.某公司需要采购A、B两种笔记本,A种笔记本的单价高出B种笔记本的单价10元,并且花费300元购买A种笔记本和花费100元购买B种笔记本的数量相等.(1)求A种笔记本和B种笔记本的单价各是多少元;(2)该公司准备采购A、B两种笔记本共80本,若A种笔记本的数量不少于60本,并且采购A、B两种笔记本的总费用不高于1100元,那么该公司有种购买方案.7.哈市红十字预计在2019年儿童节前为郊区某小学发放学习用品,联系某工厂加工学习用品.机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的倍.(1)求手工每小时加工产品的数量;(2)经过调查该小学的小学生的总数不超过1332名,每名小学生分发两个学习用品,工厂领导打算在两天内(48小时)完成任务,打算以机器加工为主,同时人工也参与加工(人工与机器加工不能同时进行),为了保证按时完成加工任务,人工至多加工多少小时?8.甲、乙两个筑路队共同承担一段一级路的施工任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用15天.且甲队单独施工60天和乙队单独施工40天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了4天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?9.为维护市区的生态环境,政府决定对市区周边水域的水质进行改善,这项工程由甲、乙两个工程队承包,乙工程队单独施工140天后甲工程队加入,甲、乙两个工程队合作40天后,共完成总工程的,且甲工程队每天的施工量是乙工程队的3倍.(1)求甲工程队单独完成这项工程需要多少天?(2)若要求乙工程队施工工期不超过300天,则甲工程队至少要施工多少天?10.某工程队承接一铁路工程,在挖掘一条500米长的隧道时,为了尽快完成,实际施工时每天挖掘的长度是原计划的1.5倍,结果提前了25天完成了其中300米的隧道挖掘任务.(1)求实际每天挖掘多少米?(2)由于气候等原因,需要进一步缩短工期,要求完成整条隧道不超过70天,那么为了完成剩下的任务,在实际每天挖掘长度的基础上,至少每天还应多挖掘多少米?11.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶.比亚迪油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为96元;若完全用电做动力行驶,则费用为36元.已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?12.某商店用1000元人民币购进水果销售,过了一段时间又用2800元购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)求该商店第一次购进水果多少千克?(2)该商店两次购进的水果按照相同的标价销售一段时间后,将最后剩下的100千克按照标价的半价出售.售完全部水果后,利润不低于1700元,则最初每千克水果的标价至少是多少?13.某校为美化校园,计划对面积为1100m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为200m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?14.某体育用品商场预测某品牌运动服能够畅销,用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场第一次购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率=×100%.)15.某周日,珂铭和小雪从新天地小区门口同时出发,沿同一条路线去离该小区1800米的少年宫参加活动,为响应节能环保,绿色出行的号召,两人步行,已知珂铭的速度是小雪的速度的1.2倍,结果珂铭比小雪早6分钟到达.(1)求小雪的速度;(2)活动结東后返回,珂铭与小雪的速度均与原来相同,若小雪计划比珂铭至少提前6分钟回到小区,则小雪至少要比珂铭提前多长时间出发?16.一项工程,甲队单独完成比乙队单独完成少用8天,甲队单独做3天的工作乙队单独做需要5天.(1)甲、乙两队单独完成此项工程各需几天?(2)甲队每施工一天则需付给甲队工程款5.5万元,乙队每施工一天则需付给乙队工程款3万元.该工程先由甲、乙两队合作若干天后,再由乙队完成剩下的工程.若要求完成此项工程的工程款不超过65万元,则甲、乙两队最多合作多少天?17.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?18.国庆70华诞期间,各超市购物市民络绎不绝,呈现浓浓节日气氛.“百姓超市”用320元购进一批葡萄,上市后很快脱销,该超市又用680元购进第二批葡萄,所购数量是第一批购进数量的2倍,但进价每市斤多了0.2元.(1)该超市第一批购进这种葡萄多少市斤?(2)如果这两次购进的葡萄售价相同,且全部售完后总利润不低于20%,那么每市斤葡萄的售价应该至少定为多少元?19.在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n 天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?20.某学校计划选购A、B两种图书.已知A种图书每本价格是B 种图书每本价格的2.5倍,用1200元单独购买A种图书比用1500元单独购买B种图书要少25本.(1)A、B两种图书每本价格分别为多少元?(2)如果该学校计划购买B种图书的本数比购买A种图书本数的2倍多8本,且用于购买A、B两种图书的总经费不超过1164元,那么该学校最多可以购买多少本B种图书?参考答案1.解:(1)设乙条生产线每天的产能是x万个,则甲条生产线每天的产能是2x万个,依题意有﹣=2,解得x=20,经检验,x=20是原方程的解,2x=2×20=40,故甲条生产线每天的产能是40万个,乙条生产线每天的产能是20万个;(2)设安排乙生产线生产y天,依题意有0.5y+1.2×≤40,解得y≥32.故至少应安排乙生产线生产32天;(3)(40+20)×3+[40×(1+50%)+20×2]×13=180+1300=1480(万个),1440万个<1480万个,故再满负荷生产13天能完成任务.2.解:设原来每天生产x万只口罩,则实际每天生产(x+3)万只口罩,依题意,得:﹣=3,解得:x=7,经检验,x=7是原分式方程的解,且符合题意,∴==10.答:原来要求10天完成这项紧急任务.3.解:设乙工程队每天能完成xm2的绿化,则甲工程队每天能完成2xm2的绿化,依题意,得:﹣=6,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴2x=100.答:甲工程队每天能完成100m2的绿化,乙工程队每天能完成50m2的绿化.4.解:设慢车与快车的速是xkm/h,则快车的速度是1.2xkm/h,根据题意得﹣=,解得:x=50,检验:经检验x=50是原方程的根,答:慢车速度为50千米/小时,快车速度为60千米/小时.5.解:(1)设甲车间有x人,乙车间有(x+10)人,则:,解得:x=20,经检验:x=20是原分式方程的解.答:甲车间有20人,乙车间有30人.(2)设从乙车间调a人到甲车间;则:,解得:a≥11.4.因为a为正整数,所以a的最小值为12.答:从乙车间至少调12人到甲车间.6.解:(1)设A种笔记本的单价是x元,则B种笔记本的单价是(x ﹣10)元,根据题意得,=,解得:x=15,经检验:x=15是原方程的根,∴x﹣10=5,答:A种笔记本和B种笔记本的单价各是15元和5元;(2)设该公司准备采购A种笔记本a本,采购B种笔记本(80﹣a)本,根据题意得,15a+5(80﹣a)≤1100,解得:a≤70,∵A种笔记本的数量不少于60本,∴60≤a≤70,(a为正整数),∴该公司有11种购买方案.故答案为:11.7.解:(1)设手工每小时加工产品x件,则机器每小时加工产品(2x+9)件,根据题意,得:×=,解得x=27,经检验:x=27是原分式方程的解,答:手工每小时加工产品27件;(2)设人工要加工a小时,根据题意,得:27a+(2×27+9)(48﹣a)≥2×1332,解得a≤10,答:人工至多加工10小时.8.解:(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+15)天根据题意得经检验x=30是原方程的解,则x+15=45(天)答:甲队单独完成此项任务需45天,乙队单独完成此项任务需30天.(2)解:设甲队再单独施工y天,依题意,得,解得y≥4.答:甲队至少再单独施工4天.9.解:(1)设甲工程队单独完成这项工程需要x天,则甲每天的施工量为,乙每天的施工量为,由题意得140×+40(+)=∴+=∴x=200经检验x=200是原方程的解,且符合问题的实际意义.答:甲工程队单独完成这项工程需要200天.(2)由(1)可知,乙工程队单独完成这项工程需要3×200=600天设甲工程队至少要施工y天,由题意得≤300∴y≥199答:甲工程队至少要施工199天.10.解:(1)设原计划每天挖掘x米,则实际每天挖掘1.5x米,根据题意得:﹣=25,解得x=4.经检验,x=4是原分式方程的解,且符合题意,则1.5x=6答:实际每天挖掘6米.(2)设每天还应多挖掘y米,由题意,得(70﹣)(6+y)≥500﹣300,解得y≥4.答:每天还应多挖掘4米.11.解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,可得:=,解得:x=0.3,经检验x=0.3是原方程的解,∴汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是36÷0.3=120(千米);(2)汽车行驶中每千米用油费用为0.3+0.5=0.8(元),设汽车用电行驶ykm,可得:0.3y+0.8(120﹣y)≤50,解得:y≥92,所以至少需要用电行驶92千米.12.解:(1)设第一次购进水果x千克,依题意可列方程:.解得x=200.经检验:x=200是原方程的解.答:第一次购进水果200千克;(2)由(1)可知,二次共购进水果600千克,设最初水果标价为y元,依题意可列不等式:500y+100×﹣3800≥1700.解得y≥10.答:最初每千克水果标价至少为10元.13.解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=25,经检验x=25是原方程的解,则甲工程队每天能完成绿化的面积是25×2=50(m2),答:甲、乙两工程队每天能完成绿化的面积分别是50m2、25m2;(2)设应安排甲队工作y天,根据题意得:0.35y+×0.25≤8,解得:y≥20,答:至少应安排甲队工作20天.14.解:(1)设该商场第一次购进这种运动服x套,第二次购进2x 套,由题意得,﹣=10,解得:x=200,经检验:x=200是原分式方程的解,且符合题意,答:该商场第一次购进200套;(2)设每套售价是y元,两批运动服总数:200+400=600由题意得:600y﹣32000﹣68000≥(32000+68000)×20%,解得:y≥200,答:每套售价至少是200元.15.解:设小雪的速度是x米/分钟,则珂铭速度是1.2x米/分钟,依题意得:,解得:x=50,经检验x=50是原方程的解,答:小雪的速度是50米/分钟.(2)1.2×50=60(米/分钟),1800÷50=36(分钟),1800÷60=30(分钟),设小雪比珂铭提前a分钟出发,根据题意得,a+30﹣36≥6,解得a≥12,答:小雪至少要比珂铭提前出发12分钟.16.解:(1)设甲队单独完成此项工程需x天,乙队单独完成此项工程需(x+8)天根据题意得:=解得x=12经检验x=12是原方程的解当x=12时,x+8=20答:甲队单独完成此项工程需12天,乙队单独完成此项工程需20天.(2)设甲乙两队合作m天,根据题意得:5.5m+×3≤65,解得m≤10;又∵(+)m≤1,∴m≤7.5,∴甲乙两队最多合作7天.答:甲乙两队最多合作7天.17.解:(1)设购买一副羽毛球拍需要x元,则购买一根跳绳需要(x﹣20)元,依题意,得:=×,解得:x=25,经检验,x=25是原方程的解,且符合题意,∴x﹣20=5.答:购买一副羽毛球拍需要25元,购买一根跳绳需要5元.(2)设八(1)班购买m副羽毛球拍,则购买(2m+10)根跳绳,依题意,得:25m+5(2m+10﹣m)≤350,解得:m≤10.答:八(1)班最多可购买10副羽毛球拍.18.解:(1)设该超市第一批购进这种葡萄x市斤,则第二批购进这种葡萄2x市斤,依题意,得:﹣=0.2,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:该超市第一批购进这种葡萄100市斤.(2)设每市斤葡萄的售价应该定为y元,依题意,得:(100+100×2)y﹣320﹣680≥(320+680)×20%,解得:y≥4.答:每市斤葡萄的售价应该至少定为4元.19.解:(1)设甲工程队单独完成这项工程需要2x天,则乙工程队单独完成这项工程需要3x天,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴2x=60,3x=90.答:甲工程队单独完成这项工程需要60天,乙工程队单独完成这项工程需要90天.(2)由题意,得:+=1,∴n=90﹣m.设施工总费用为w万元,则w=15m+8n=15m+8×(90﹣m)=3m+720.∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,∴,∴20≤m≤40.∵15>0,∴w值随m值的增大而增大,∴当m=20时,完成此项工程总费用最少,此时n=90﹣m=60,w=780万元.答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.20.解:(1)设B种图书每本价格为x元,则A种图书每本价格为2.5x元,依题意,得:﹣=25,解得:x=40.8,经检验,x=40.8是原方程的解,且符合题意,∴2.5x=102.答:A种图书每本价格为102元,B种图书每本价格为40.8元.(2)设购买y本A种图书,则购买(2y+8)本B种图书,依题意,得:102y+40.8(2y+8)≤1164,解得:y≤4.∵y为整数,∴y的最大值为4,∴(2y+8)的最大值为16.答:该学校最多可以购买16本B种图书.。
中考真题分类汇编(数与式)----分式一、选择题1.(2021•江苏省苏州市)已知两个不等于0的实数a、b满足a+b=0,则+等于()A.﹣2B.﹣1C.1D.2【分析】先把所求式子通分,然后将分子变形,再根据两个不等于0的实数a、b满足a+b =0,可以得到ab≠0,再将a+b=0代入化简后的式子即可解答本题.【解答】解:+===,∵两个不等于0的实数a、b满足a+b=0,∴ab≠3,当a+b=0时,原式=,故选:A.2.(2021•江西省)计算的结果为()A.1B.﹣1C.D.【分析】根据分式的加减运算法则即可求出答案.【解答】解:原式===1,故选:A.3.(2021•山东省临沂市)计算(a﹣)÷(﹣b)的结果是()A.﹣B.C.﹣D.【分析】根据分式的减法和除法法则可以化简题目中的式子.【解答】解:(a﹣)÷(﹣b)=÷==﹣,故选:A.4.(2021•四川省眉山市)化简(1+)÷的结果是()A.a+1B.C.D.【分析】分式的混合运算,先算小括号里面的,然后算括号外面的.【解答】解:原式==,故选:B.5.(2021•四川省南充市)下列运算正确的是()A.•=B.÷=C.+=D.﹣=【分析】根据分式的乘除法和加减法可以计算出各个选项中式子的正确结果,从而可以解答本题.【解答】解:=,故选项A错误;==,故选项B错误;==,故选项C错误;===,故选项D正确;故选:D .6. (2021•天津市)计算33a ba b a b---的结果是( ) A. 3 B. 33a b +C. 1D.6aa b- 【答案】A 【解析】【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可. 【详解】原式33a ba b-=-, 3()a b a b-=-3=.故选A .7.(2021•贵州省铜仁市)下列等式正确的是( ) A. 3tan 452-+︒=- B. ()5510x xy x y ⎛⎫÷= ⎪⎝⎭C. ()2222a b a ab b -=++ D. ()()33x y xy xy x y x y -=+-【答案】D8. (2021•浙江省宁波市)要使分式12x +有意义,x 的取值应满足( ) A. 0x ≠ B. 2x ≠-C. 2x ≥-D. 2x >-【答案】B 【解析】【分析】由分式有意义,分母不为零,再列不等式,解不等式即可得到答案. 【详解】解:分式12x +有意义, 20,x ∴+≠2.x ∴≠-故选:.B9. 2021•黑龙江省大庆市)已知b >a >0,则分式a b 与a +1b +1的大小关系是( )AA . a b <a +1b +1B . a b =a +1b +1C . a b >a +1b +1D . 不能确定二.填空题1. (2021•湖南省衡阳市)计算:= 1 .【分析】根据同分母的分式加减法则进行计算即可. 【解答】解:原式==1.故答案为:1.2. (2021•岳阳市)要使分式51x -有意义,则x 的取值范围为_________. 【答案】x ≠13. (2021•四川省南充市)若=3,则+=.【分析】利用分式化简,得出n =2m ,代入即可求解.【解答】解:∵,∴n =2m , ∴+=+=+4=,故答案为:.4. (2021•四川省自贡市)化简:22824a a -=-- _________. 【答案】22a + 【解析】【分析】利用分式的减法法则,先通分,再进行计算即可求解. 【详解】解:22824a a --- ()()28222a a a =--+- ()()()()()2282222a a a a a +=-+-+-()()()2222a a a -=+-22a =+, 故答案为:22a +. 5. (2021•福建省)已知非零实数x ,y 满足y =,则的值等于 .【答案】4 【解析】【分析】由条件1xy x =+变形得,x -y =xy ,把此式代入所求式子中,化简即可求得其值. 【详解】由1xy x =+得:xy +y =x ,即x -y =xy ∴3344x y xy xy xy xyxy xy xy-++===故答案为:4三、解答题1. (2021•湖南省常德市)化简:2593111aa a a a a ++⎛⎫+÷ ⎪---⎝⎭【答案】31a a ++ 【解析】【分析】直接将括号里面的分式,通分运算进而结合分式的混合运算法则,计算得出答案. 详解】2593111aa a a a a ++⎛⎫+÷⎪---⎝⎭222591=113a a a a a a a ++-⨯--+(+) 2691=(1)(1)3a a a a a a ++-⨯+-+ 2(3)1=(1)(1)3a a a a a +-⨯+-+ 31a a +=+故答案为:31a a ++. 2. (2021•怀化市)先化简,再求值:,其中x =.【分析】直接利用分式的混合运算法则化简,再把已知数据代入得出答案. 【解答】解:原式=+•=+=+= = =,当x =+2时, 原式===.3. (2021•湖南省邵阳市)先化简,再从﹣1,0,1,2,+1中选择一个合适的x 的值代入求值.(1﹣)÷.【分析】先计算分式的混合运算进行化简,先算小括号里面的,然后算括号外面的,最后根据分式成立的条件确定x 的取值,代入求值即可. 【解答】解:原式==,又∵x ≠±1,∴x 可以取0,此时原式=﹣1; x 可以取2,此时原式=1; x 可以取,此时原式=.4. (2021•株洲市)先化简,再求值:2223142x x x x ⎛⎫⋅-- ⎪-+⎝⎭,其中22x =. 【答案】12x -+,25. (2021•江苏省南京市)计算222ab a b b ab a b a ab ab-⎛⎫-+÷ ⎪+++⎝⎭. 【答案】a ba b-+ 【解析】【分析】先对括号里的分式进行通分,将通分后的分式进行合并,将合并后的结果与最后一项分式相除,将除法运算转化为乘法运算,最后约分化简后即可得到计算结果.【详解】解:原式=()()2a bab b a b a b a a b a b ⎛⎫-+⋅ ⎪ ⎪+++-⎝⎭=()()()222a ab b ab ab a b ab a b ab a b a b ⎛⎫-+⋅ ⎪ ⎪+++-⎝⎭=()222a ab b abab a b a b-+⋅+-=()()2a b ab ab a b a b-⋅+- =a ba b-+. 6. (2021•山东省聊城市) 先化简,再求值:22212211111a a a a a a a a +--⎛⎫+÷-- ⎪+--⎝⎭,其中a =﹣32. 【答案】21aa +;6 【解析】【分析】先把分式化简后,再把a 的值代入求出分式的值即可.【详解】解:原式=22212(21)(1)(1)111a a a a a a a a a +---+-+÷+-- 2222122111a a a a aa a a +--+=+÷+-- 21111a a a +=-++ 21a a =+,当32a=-时,原式=6.7.(2021•四川省达州市)化简求值:(1﹣)÷(),其中a与2,3构成三角形的三边【分析】直接将括号里面通分运算,再利用分式的混合运算法则化简,再结合三角形三边关系、分式有意义的条件得出a的值,求出答案即可.【解答】解:原式=•=•=﹣2(a﹣2)=﹣2a+4,∵a与2,6构成三角形的三边,∴3﹣2<a<8+2,∴1<a<4,∵a为整数,∴a=2,3或6,又∵a﹣2≠0,a﹣5≠0,∴a≠2且a≠5,∴a=3,∴原式=﹣2a+5=﹣2×3+2=﹣6+4=﹣3.8.(2021•四川省乐山市)已知2612(1)(2)A B xx x x x--=----,求A、B的值.【答案】A的值为4,B的值为-2【解析】【分析】根据分式、整式加减运算,以及二元一次方程组的性质计算,即可得到答案.【详解】(2)(1)12(1)(2)(1)(2)A B A x B xx x x x x x---=+------,∴(2)(1)26(1)(2)(1)(2)A xB x x x x x x -+--=----,∴(2)(1)26A x B x x -+-=-, 即()(2)26A B x A B x +-+=-.∴226A B A B +=⎧⎨+=⎩,解得:42A B =⎧⎨=-⎩∴A 的值为4,B 的值为2-.。
2023年中考数学----分式方程之分式方程的解与解分式方程知识总结与练习题(含答案解析)知识总结1. 分式方程的定义:分母中含有未知数的方程叫做分式方程。
2. 分式方程的解:使分式方程成立的未知数的值叫做分式方程的解。
3. 解分式方程。
具体步骤:①去分母——分式方程的两边同时乘上分母的最简公分母。
把分式方程化成整式方程。
②解整式方程。
③检验——把解出来的未知数的值带入公分母中检验公分母是否为0。
若公分母不为0,则未知数的值即是原分式方程的解。
若公分母为0,则未知数的值是原分式方程的曾根,原分式方程无解。
练习题(含答案解析)1.(2022•营口)分式方程223−=x x 的解是( ) A .x =2 B .x =﹣6C .x =6D .x =﹣2 【分析】方程两边都乘x (x ﹣23(x ﹣2)=2x ,求出方程的解,再进行检验即可.【解答】解:=,方程两边都乘x (x ﹣2),得3(x ﹣2)=2x ,解得:x =6,检验:当x =6时,x (x ﹣2)≠0,所以x =6是原方程的解,即原方程的解是x =6,故选:C .2.(2022•海南)分式方程12−x ﹣1=0的解是( ) A .x =1 B .x =﹣2C .x =3D .x =﹣3 【分析】方程两边同时乘以(x ﹣1),把分式方程化成整式方程,解整式方程检验后,即可得出分式方程的解.【解答】解:去分母得:2﹣(x ﹣1)=0,解得:x =3,当x =3时,x ﹣1≠0,∴x =3是分式方程的根,故选:C .3.(2022•毕节市)小明解分式方程33211+=+x x x ﹣1的过程如下. 解:去分母,得3=2x ﹣(3x +3).①去括号,得3=2x ﹣3x +3.②移项、合并同类项,得﹣x =6.③化系数为1,得x =﹣6.④以上步骤中,开始出错的一步是( )A .①B .②C .③D .④【分析】按照解分式方程的一般步骤进行检查,即可得出答案.【解答】解:去分母得:3=2x ﹣(3x +3)①,去括号得:3=2x ﹣3x ﹣3②,∴开始出错的一步是②,故选:B .4.(2022•无锡)分式方程x x 132=−的解是( ) A .x =1 B .x 1C .x =3 D .x =﹣3 【分析】将分式方程转化为整式方程,求出x 的值,检验即可得出答案.【解答】解:=,方程两边都乘x (x ﹣3)得:2x =x ﹣3,解得:x =﹣3,检验:当x =﹣3时,x (x ﹣3)≠0,∴x =﹣3是原方程的解.故选:D .5.(2022•济南)代数式23+x 与代数式12−x 的值相等,则x = . 【分析】根据题意列方程,再根据解分式方程的步骤和方法进行计算即可.【解答】解:由题意得,=,去分母得,3(x ﹣1)=2(x +2),去括号得,3x ﹣3=2x +4,移项得,3x ﹣2x =4+3,解得x =7,经检验x =7是原方程的解,所以原方程的解为x =7,故答案为:7.6.(2022•绵阳)方程113−+=−x x x x 的解是 . 【分析】先在方程两边乘最简公分母(x ﹣3)(x ﹣1)去分母,然后解整式方程即可.【解答】解:=,方程两边同乘(x ﹣3)(x ﹣1),得x (x ﹣1)=(x +1)(x ﹣3),解得x =﹣3,检验:当x =﹣3时,(x ﹣3)(x ﹣1)≠0,∴方程的解为x =﹣3.故答案为:x =﹣3.7.(2022•盐城)分式方程121−+x x =1的解为 .【解答】解:方程的两边都乘以(2x ﹣1),得x +1=2x ﹣1,解得x =2.经检验,x =2是原方程的解.故答案为:x =2.8.(2022•内江)对于非零实数a ,b ,规定a ⊕b =a 1﹣b1.若(2x ﹣1)⊕2=1,则x 的值为 .【分析】利用新规定对计算的式子变形,解分式方程即可求得结论.【解答】解:由题意得:=1,解得:x =.经检验,x =是原方程的根,∴x =.故答案为:.9.(2022•永州)解分式方程112+−x x =0去分母时,方程两边同乘的最简公分母是 .【分析】根据最简公分母的定义即可得出答案.【解答】解:去分母时,方程两边同乘的最简公分母是x (x +1).故答案为:x (x +1).10.(2022•常德)方程()xx x x 25212=−+的解为 . 【分析】方程两边同乘2x (x ﹣2),得到整式方程,解整式方程求出x 的值,检验后得到答案.【解答】解:方程两边同乘2x (x ﹣2),得4x ﹣8+2=5x ﹣10,解得:x =4,检验:当x =4时,2x (x ﹣2)=16≠0,∴x =4是原方程的解,∴原方程的解为x =4.11.(2022•宁波)定义一种新运算:对于任意的非零实数a ,b ,a ⊗b =a 1+b 1.若(x +1)⊗x =xx 12+,则x 的值为 . 【分析】根据新定义列出分式方程,解方程即可得出答案.【解答】解:根据题意得:+=,化为整式方程得:x +x +1=(2x +1)(x +1),解得:x =﹣,检验:当x =﹣时,x (x +1)≠0,∴原方程的解为:x =﹣.故答案为:﹣.12.(2022•成都)分式方程xx x −+−−4143=1的解为 .【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x ﹣1=x ﹣4,解得:x =3,经检验x =3是分式方程的解,故答案为:x =3.13.(2022•牡丹江)若关于x 的方程11−−x mx =3无解,则m 的值为( ) A .1 B .1或3 C .1或2 D .2或3【分析】先去分母,再根据条件求m .【解答】解:两边同乘以(x ﹣1)得:mx ﹣1=3x ﹣3,∴(m ﹣3)x =﹣2.当m ﹣3=0时,即m =3时,原方程无解,符合题意.当m ﹣3≠0时,x =, ∵方程无解,∴x ﹣1=0,∴x =1,∴m ﹣3=﹣2,∴m =1,综上:当m =1或3时,原方程无解.故选:B .14.(2022•通辽)若关于x 的分式方程:2﹣221−−x k =x−21的解为正数,则k 的取值范围为( )A .k <2B .k <2且k ≠0C .k >﹣1D .k >﹣1且k ≠0 【分析】先解分式方程可得x =2﹣k ,再由题意可得2﹣k >0且2﹣k ≠2,从而求出k 的取值范围.【解答】解:2﹣=,2(x ﹣2)﹣(1﹣2k )=﹣1,2x ﹣4﹣1+2k =﹣1,2x =4﹣2k ,x =2﹣k ,∵方程的解为正数,∴2﹣k >0,∴k <2,∵x ≠2,∴2﹣k ≠2,∴k ≠0,∴k <2且k ≠0,故选:B .15.(2022•黑龙江)已知关于x 的分式方程xx m x −−−−1312=1的解是正数,则m 的取值范围是( )A .m >4B .m <4C .m >4且m ≠5D .m <4且m ≠1 【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可.【解答】解:方程两边同时乘以x ﹣1得,2x ﹣m +3=x ﹣1,解得x =m ﹣4.∵x 为正数,∴m ﹣4>0,解得m >4,∵x ≠1,∴m ﹣4≠1,即m ≠5,∴m 的取值范围是m >4且m ≠5.故选:C .16.(2022•德阳)如果关于x 的方程12−+x m x =1的解是正数,那么m 的取值范围是( ) A .m >﹣1B .m >﹣1且m ≠0C .m <﹣1D .m <﹣1且m ≠﹣2【分析】先去分母将分式方程化成整式方程,再求出方程的解x =﹣1﹣m ,利用x >0和x ≠1得出不等式组,解不等式组即可求出m 的范围.【解答】解:两边同时乘(x ﹣1)得,2x +m =x ﹣1,解得:x =﹣1﹣m ,又∵方程的解是正数,且x ≠1,∴,即, 解得:,∴m 的取值范围为:m <﹣1且m ≠﹣2.故答案为:D .17.(2022•重庆)关于x 的分式方程xx x a x −++−−3133=1的解为正数,且关于y 的不等式组()⎪⎩⎪⎨⎧−+≤+132229>a y y y 的解集为y ≥5,则所有满足条件的整数a 的值之和是( ) A .13 B .15 C .18 D .20【分析】解分式方程得得出x =a ﹣2,结合题意及分式方程的意义求出a >2且a ≠5,解不等式组得出,结合题意得出a <7,进而得出2<a <7且a ≠5,继而得出所有满足条件的整数a 的值之和,即可得出答案.【解答】解:解分式方程得:x =a ﹣2,∵x >0且x ≠3,∴a ﹣2>0且a ﹣2≠3,∴a >2且a ≠5,解不等式组得:,∵不等式组的解集为y ≥5,∴<5,∴a <7,∴2<a <7且a ≠5,∴所有满足条件的整数a 的值之和为3+4+6=13,故选:A .18.(2022•重庆)若关于x 的一元一次不等式组⎪⎩⎪⎨⎧−−≥−ax x x <153141的解集为x ≤﹣2,且关于y 的分式方程111+=+−y a y y ﹣2的解是负整数,则所有满足条件的整数a 的值之和是( ) A .﹣26 B .﹣24 C .﹣15 D .﹣13【分析】解不等式组得出,结合题意得出a >﹣11,解分式方程得出y =,结合题意得出a =﹣8或﹣5,进而得出所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,即可得出答案.【解答】解:解不等式组得:,∵不等式组的解集为x ≤﹣2,∴>﹣2,∴a >﹣11,解分式方程=﹣2得:y =,∵y 是负整数且y ≠﹣1,∴是负整数且≠﹣1,∴a =﹣8或﹣5,∴所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,故选:D .19.(2022•遂宁)若关于x 的方程122+=x m x 无解,则m 的值为( ) A .0 B .4或6C .6D .0或4 【分析】解分式方程可得(4﹣m )x =﹣2,根据题意可知,4﹣m =0或2x +1=0,求出m 的值即可.【解答】解:=, 2(2x +1)=mx ,4x +2=mx ,(4﹣m )x =﹣2,∵方程无解,∴4﹣m =0或2x +1=0,即4﹣m =0或x =﹣=﹣, ∴m =4或m =0,故选:D .20.(2022•黄石)已知关于x 的方程()1111++=++x x a x x x 的解为负数,则a 的取值范围是 .【分析】先求整式方程的解,然后再解不等式组即可,需要注意分式方程的分母不为0.【解答】解:去分母得:x +1+x =x +a ,解得:x =a ﹣1,∵分式方程的解为负数,∴a ﹣1<0且a ﹣1≠0且a ﹣1≠﹣1,∴a <1且a ≠0,∴a 的取值范围是a <1且a ≠0,故答案为:a <1且a ≠0.21.(2022•齐齐哈尔)若关于x 的分式方程4222212−+=++−x m x x x 的解大于1,则m 的取值范围是 .【分析】先解分式方程,再应用分式方程的解进行计算即可得出答案.【解答】解:, 给分式方程两边同时乘以最简公分母(x +2)(x ﹣2),得(x +2)+2(x ﹣2)=x +2m ,去括号,得x +2+2x ﹣4=x +2m ,解方程,得x =m +1,检验:当m +1≠2,m +1≠﹣2,即m ≠1且m ≠﹣3时,x =m +1是原分式方程的解,根据题意可得,m +1>1,∴m >0且m ≠1.故答案为:m >0且m ≠1.22.(2022•泸州)若方程xx x −=+−−23123的解使关于x 的不等式(2﹣a )x ﹣3>0成立,则实数a 的取值范围是 .【分析】先解分式方程,再将x 代入不等式中即可求解.【解答】解:+1=,+=, =0,解得:x=1,∵x﹣2≠0,2﹣x≠0,∴x=1是分式方程的解,将x=1代入不等式(2﹣a)x﹣3>0,得:2﹣a﹣3>0,解得:a<﹣1,∴实数a的取值范围是a<﹣1,故答案为:a<﹣1.。