学期数理统计与随机过程(研)试题(答案)
- 格式:doc
- 大小:158.50 KB
- 文档页数:10
1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
北京工业大学2010-2011学年第一学期期末数理统计与随机过程(研) 课程试卷学号 姓名 成绩 注意:试卷共七道大题,请写明详细解题过程。
数据结果保留3位小数。
考试方式:半开卷,考试时只允许看教材《概率论与数理统计》 浙江大学 盛骤等编第三版(或第四版)高等教育出版社,不能携带和查阅任何其他书籍、纸张、资料等。
考试时允许使用计算器。
考试时间120分钟。
考试日期:2011年1月4日1.某茶叶制造商声称其生产的一种包装茶叶平均每包重量不低于150克,已知茶叶包装重量服从正态分布,现从一批包装茶叶中随机抽取100包,经计算得到样本均值为149.7,样本标准差为0.9,试在α=0.01的显著性水平上检验该制造商的说法是否可信?2. 某食品市场的经理将根据预期到达商店的顾客来决定职员分配数目以及收款台的数目。
为检验工作日上午顾客到达数(用5分钟时间段内进入商店的顾客数来定义)是否服从泊松分布,随机选取了一个由3周内工作日上午的128个5分钟时间段组成通过这些样本,请你帮忙分析到达顾客数服从泊松分布吗?(取显著性水平)3.一家关于MBA 报考、学习、就业指导的网站希望了解国内MBA 毕业生的起薪是否与各自所学的专业有关,为此,他们在已经在国内商学院毕业并且获得学位的MBA 学生中按照专业分别随机抽取了5人,调查了他们的起薪情况,数据如下表所示(单 位: 万元),根据这些数据他们能否得出专业对MBA 起薪有影响的结论?(取显著性水平050.=α)4.为定义一种变量,用来描述某种商品的供给量与价格之间的相关关系.首先要收集(1) 试确定(2) 对回归方程进行显著性检验(α=0.05);(3) 当x=20时,求y 的95%的预测区间。
5.6.设{,}n X n T ∈是一个齐次马尔可夫链,其状态空间{0,1,2}I =,其一步转移概率矩阵为 3104411142431044P ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭其初始状态的概率分布为01(0)(),0,1,2,3i i p P X i i ====求: (1)求2{1}P X =;(2)求2{2|1}n n P X X +==;(3)求012{1,2,1}P X X X ===;(4)讨论此链是否具有遍历性,若是遍历的求其极限分布。
一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
第一章概率论的基本概念注意:这是第一稿(存在一些错误)第一章概率论习题__偶数.doc2、解(1)AB BC AC 或ABC ABC ABC ABC ;(2)AB BC AC(提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似);(3)ABCABC ABC ;(4)A B C 或ABC ;(提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生);4、解(1)因为A B ,不相容,所以A B ,至少有一发生的概率为:()()()=0.3+0.6=0.9P A B P A P B =+ (2)A B ,都不发生的概率为:()1()10.90.1P A B P A B =-=-= ;(3)A 不发生同时B 发生可表示为:A B ,又因为A B ,不相容,于是()()0.6P A B P B == ;6、解设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”}若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则(1)88()0.641010P A =⨯=;(2)88()210.321010P B =⨯⨯-=();(3)由于每次抽样的样本空间一样,所以:8()0.810P C ==若是不放回抽样,则(1)2821028()45C P A C ==;(2)82210()45P B C ==;(3)111187282104()5A A A A P C A +==。
8、解(1)设A ={“1红1黑1白”},则1112323712()35C C C P A C ==;(2)设B ={“全是黑球”},则33371()35C P B C ==;(3)设C ={第1次为红球,第2次为黑球,第3次为白球”},则2322()7!35P C ⨯⨯==。
10、解由已知条件可得出:()1()10.60.4P B P B =-=-=;()()()0.70.50.2P AB P A P AB =-=-=;()()()()0.9P A B P A P B P AB =+-= ;(1)(())()7(|==()()9P A A B P A P A A B P A B P A B = );(2)()()()0.40.20.2P AB P B P AB =-=-=()(+()()0.5P A B P A P B P AB =-= )于是(())()2(|==5()()P A A B P AB P A A B P A B P A B = );(3)(())()2(|)()()9P AB A B P AB P AB A B P A B P A B === 。
北京工业大学2009-20010学年第一学期期末数理统计与随机过程(研) 课程试卷学号 姓名 成绩 注意:试卷共七道大题,请写明详细解题过程。
考试方式:半开卷,考试时只允许看教材《概率论与数理统计》 浙江大学 盛骤等编第三版(或第二版)高等教育出版社。
可以看笔记、作业,但不允许看其它任何打印或复印的资料。
考试时允许使用计算器。
考试时间120分钟。
考试日期:2009年12月31日一、随机抽取某班28名学生的英语考试成绩,算得平均分数为80=x 分,样本标准差8=s 分,若全年级的英语成绩服从正态分布,且平均成绩为85分,问:能否认为该班的英语成绩与全年级学生的英语平均成绩有显著差异(取显著性水平050.=α)?解:这是单个正态总体),(~2σμN X ,方差2σ未知时关于均值μ的假设检验问题,用T 检验法.解 85:0=μH ,85:1≠μH选统计量n s x T /0μ-= 已知80=x ,8=s ,n =28,850=μ, 计算得n s x T /0μ-=31.328/88580=-=查t 分布表,05.0=α,自由度27,临界值052.2)27(025.0=t . 由于052.2>T 2622.2>,故拒绝0H ,即在显著水平05.0=α下不能认为该班的英语成绩为85分.解:由极大似然估计得.2ˆ==x λ在X 服从泊松分布的假设下,X 的所有可能的取值对应分成两两不相交的子集A 0, A 1,…, A 8。
则}{k X P =有估计=i p ˆ ,7,0,!2}{ˆ2===-k k e k X P k=0ˆp三、某公司在为期10年内的年利润表如下:(1)求该公司年利润对年份的线性回归方程;(2)对回归方程进行显著性检验:(取05.0=α);(3)解释回归系数的意义;(4)求第11年利润的预测区间(取050.=α)。
四、用三种不同材料的小球测定引力常数,实验结果如下:在单因素试验方差分析模型下,检验材料对引力常数的测定是否有显著影响?取显著性水平05.0=α, 计算结果保留三位小数。
1解:该试验的结果有9个:(0,a ),(0,b ),(0,c ),(1,a ),(1,b ),(1,c ),(2,a ),(2,b ),(2,c )。
所以,(1)试验的样本空间共有9个样本点。
(2)事件A 包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。
即A 所包含的样本点为(0,a ),(1,a ),(2,a )。
(3)事件B 包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。
即B 所包含的样本点为(0,a ),(0,b ),(0,c )。
2、解 (4)(1)ABBC AC 或ABC ABC ABC ABC ; (5)(2)ABBC AC (6)(提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似); (7)(3)ABC ABC ABC ;(8)(4)AB C 或ABC ;(9)(提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生);3(1)错。
依题得,但,故A 、B 可能相容。
(2)错。
举反例 (3)错。
举反例 (4)对。
证明:由,知,即A 和B 交非空,故A 和B 一()()()()0=-+=B A p B p A p AB p 空集≠B A ()6.0=A p ()7.0=B p ()()()()()3.03.1>-=-+=B A p B A p B p A p AB p定相容。
4、解(1)因为A B ,不相容,所以A B ,至少有一发生的概率为:()()()=0.3+0.6=0.9P A B P A P B =+(2) A B , 都不发生的概率为:()1()10.90.1P A B P A B =-=-= ;(3)A 不发生同时B 发生可表示为:AB ,又因为A B ,不相容,于是()()0.6P A B P B == ;5解:由题知,. 因得,故A,B,C 都不发生的概率为.6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”} 若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则 (1)88()0.641010P A =⨯=; ()3.0=BC AC AB p ()05.0=ABC P ()()()()()ABC p BC p AC p AB p BC AC AB p 2-++= ()()()()4.023.0=+=++ABC p BC p AC p AB p ()()C B A p C B A p -=1()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1()05.04.02.11+--=15.0=(2)88()210.321010P B =⨯⨯-=(); (3)由于每次抽样的样本空间一样,所以:8()0.810P C == 若是不放回抽样,则(1)2821028()45C P A C ==;(2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。
一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
一、设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:袋中有一个白球,两个红球,每隔单位时间从袋中任取一球后放回,对每一个确定的t对应随机变量X(t)t3te如果对如果对t时取得红球t时取得白球试求这个随机过程的一维分布函数族.设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
设随机过程X(t)U cos2t U E(U)5,D(U)5.求:,其中是随机变量,且(1)均值函数;(2)协方差函数;(3)方差函数.设有两个随机过程X(t)Ut2Y(t)Ut3,U随机变量,且D(U)5.,其中是试求它们的互协方差函数。
设A,B,X(t)At3B t T(,)的均值是两个随机变量试求随机过程,函数和自相关函数.A,B,~(1,4),~(0,2),()(,)若相互独立且A N B U则m X t及R X t1t2为多少?一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令N(t)表示(0,t)时间内的体检人数,则N(t)为参数为30的poisson过程。
以小时为单位。
则E(N(1))30。
40k(30) P(N(1)40)ek!k030。
在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1,2,当1路公共汽车有N人乘坐后出发;2路公共汽车1在有N2人乘坐后出发。
设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当N1=N,1=22时,计算上述概率。
第二章 随机过程分析1.1 学习指导 1.1.1 要点随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。
1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。
可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。
2. 随机过程的分布函数和概率密度函数如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。
ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1)如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为1111111(,)(, ) (2 - 2)∂=∂F x t f x t x对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率{}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤称为随机过程ξ (t )的二维分布函数。
如果2212122121212(,;,)(,;,) (2 - 4)F x x t t f x x t t x x ∂=∂⋅∂存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程ξ (t )的二维概率密度函数。
对于任意时刻t 1,t 2,…,t n ,把{}n 12n 12n 1122n n ()(),(),,() (2 - 5)=≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程ξ (t )的n 维分布函数。
如果n n 12n 12n n 12n 12n 12n(x )() (2 - 6)∂=∂∂∂F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,,存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程ξ (t )的n 维概率密度函数。
随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的一维概率密度、均值和相关函数。
解 因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的一维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的一维概率密度及),(),(21t t R t EX X 。
解 对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的一维概率密度xtt x f t x f Y 1)ln ();(-=,0>t均值函数⎰∞+--===0)(][)]([)(dy y f e eE t X E t m yt tY X相关函数⎰+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X2.3 若从0=t 开始每隔21秒抛掷一枚均匀的硬币做实验,定义随机过程⎩⎨⎧=时刻抛得反面时刻抛得正面t t t t t X ,2),cos()(π 试求:(1))(t X 的一维分布函数),1(),21(x F x F 和;(2))(t X 的二维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,方差 )1(),(22X Xt σσ。
、1.1设二维随机变量(X , F)的联合概率密度函数为:=—i—[l241-ι>⅛= "k"QTh Xl-JF)1.2 设离散型随机变量X服从几何分布:Hm=(Ip)HPJt=U-试求/的特征函数,并以此求其期望E(X)与方差I K X)¾0 = Efr ir) = ∑e⅛ = *)解:一=⅛α-ri M P=√^∑^α-p)t U O-P) ⅛J1—(I-JI)1—q/(O)=α⅛24(1-小丄0<y<x<l苴它试求:在OJu <■ 1时,求I『F)解:J;240 H)JKfc0<y<l Jj2Jf(I_y)3 0<JF<1P 其它^{θ其它当OJXI 时,Aw)2OT(Xy)y<x<l其它所以:-⅛(0)二丄f PZUr=J Er3-(JEIf)3=^^-^=4PPp2.1袋中有一个白球,两个红球,每隔单位时间从袋中任取一球后放回,对每一个确定的t 对应随机变量x(t^3如果对t时取得红球e t如果对t时取得白球试求这个随机过程的一维分布函数族2.2设随机过程 W 加吨MIF)∙ gZ I叫,其中吗是常数,/与F是相互独立的随机变量,F服从区间(°2刘上的均匀分布,/服从瑞利分布,其概率密度为x>0x≤0试证明Xu)为宽平稳过程。
解:( 1)⑷+F)} q啊诚如+ f)}= 与无关(2)枚F(M 仪加血I(Q/伽说如")汁F(才),f _ t t⅛(Q) =-J PQ ÷g)= -te^t∣Γ÷p ^dt =-2σ1e^i∣Γ=2σ3所以必U)啟0⑴卜"(3)R lM壊M∞¼⅛+Hl∕∞Ψ⅛+y)]}=豺]£{oKs(A +Γ)∞<β(A +Γ)}=2^Jtt 2{α≈(0A + β⅛+ y)-rasfflfc A)I^⅛心’皿叫仏Z L)只与时间间隔有关,所以XU)为宽平稳过程2.3设随机过程 X(t)=Ucos2t,其中U是随机变量,且 E(U)= 5, D(U)= 5.求: (1)均值函数;(2)协方差函数;(3)方差函数2.4设有两个随机过程 X(t)=Ut2, Y(t)=Ut3,其中U是随机变量,且D(U) = 5.试求它们的互协方差函数2.5设代B是两个随机变量,试求随机过程X(t) =At ∙3B,t∙ T =(」:「:)的均值函数和自相关函数若A, B相互独立,且A~ N(1,4), B ~U (0,2),则mχ (t)及Rχ(t1,t2)为多少?3.1 一队学生顺次等候体检。
数理统计与随机过程复习题数理统计与随机过程复习资料第1章抽样与抽样分布1. 设母体,是来自母体的一个子样,若问C为何值时,CY服从t分布,并给出其自由度。
2. 设母体,是来自母体的一个容量为6的子样,设,求常数C,使CY服从分布。
3. 设是来自总体的简单样本,记为前个样本的均值和方差,试求证:。
第2章参数估计1. 设母体(二项分布),其中:N已知,p是未知参数。
求p的最大似然估计量。
并确定所得估计量的无偏性和相合性。
2. 设母体(二项分布),求参数N,p的矩估计量。
3. 设为母体的一个子样,,当为何值时,Y为的无偏估计量且方差最小。
4. 设为母体的一个子样,,当满足什么条件时,Y为的无偏估计量,并求方差。
5. 设为母体的一个子样,求常数C,使为的无偏估计。
6. 设母体X的密度函数为a与b为参数,求a与b的矩估计。
7. 设母体(正态分布),其中:和为参数。
求和的最大似然估计量。
并确定所得估计量的无偏性;若是有偏,进行修正。
8.设母体X的分布密度为,其中,求参数的最大似然估计量。
9. 设母体(均匀分布),为参数,为母体的一个子样,,求参数的置信概率的置信区间。
10. 设母体(正态分布),其中为未知参数,为母体的一个子样,求母体平均数的置信概率为的置信区间。
11. 两台机床加工同一种零件,分别抽取6个和9个零件,测量其长度计算得到.。
假定各台机床零件长度服从正态分布。
求两个母体方差比的置信区间(=0.95)。
12.设是取自总体的一个样本,总体X的密度函数为(1)求的矩估计和极大似然估计;(2)的矩估计和极大似然估计是否为无偏的。
第3章假设检验1. 设母体和,和分别是来自母体X和母体Y的独立子样。
给定显著水平,检验假设,2. 设和分别是来自母体和母体的独立子样,且。
给定显著水平,检验假设,第4章方差分析1. 下表给出某种化工过程在三种浓度、四种温度水平下的得率数据:取显著水平,在不考虑交互作用的条件下,检验浓度和温度对得率是否有显著影响?浓度(%)温度(℃)102438522101191047876651312102. 在一元方差分析中,,而,试求的无偏估计量及其方差。
注意:这是第一稿(存在一些错误)第八章假设检验习题__奇数.doc1解~(0,1)X N (1)对参数μ提出假设:0: 2.3H μ≤,1: 2.3H μ>(2)当0H 为真时,检验统计量~(0,1)X N ,又样本实测得 2.4x =,于是00 2.04)1(2.04)0.0207H H X X P P P -=≥==-Φ=(3)由(2)知,犯第I 类错误的概率为0.0207(4)如果0.05α=时,经查表得 1.645z α=,于是} 1.645}X X W z W α>=>(5)是。
3解(1)由题意得,检验统计量X Z ={}{ 1.66}X W Z z W X α==≥=≥当2μ=时,犯第II 类错误的概率为:00{|}{ 1.66|2}P{X P H H P X βμ==≤==接受是错误的(2)222(n 1)S ~(n 1)χσ--,当2σ未知时,检验统计量224S ,其拒绝域为:2221W {24S (24)}{S 0.577}αχ-=<=<当21.25σ=时,检验犯第I 类错误的概率为:2220024S 240.577{|}{S 0.577| 1.25}P{}=0.0121.251.25P H H P ασ⋅==<==拒绝是正确的5解(1~(1)X t n -。
由题意得,样本测得的值为167.2x =, 4.1s =,100n =,经查表得()/299 1.984t α=,于是均值μ的95%的置信区间为:()()/2/2(99s /99s /(166.4,168.0)x t x t αα+-=(2)全国男子身高的平均值是169.7,从(1)中的结果中,可以看出该地区男子的身高明显低于全国水平。
7解由题意得,建立检验的原假设和备择建设:220:8H σ≥,221:8H σ<又222(n 1)S ~(n 1)χσ--。
当2σ未知时,检验统计量224S ,又样本实测得 4.98s =,于是22024.98*14 5.4218χ==利用Excel 计算得2{(14) 5.421}0.0210.05P P χ-=>=<所以有充分的理由拒绝原假设,不需要退货。
知到答案大全数理统计与随机过程课后作业答案问:()大力宣扬詹姆斯的实用主义。
答:普特南问:()大学被称为“数学的麦加”。
答:第一空:哥廷根问:()大学教授钱理群曾评论道:“我们的一些大学,正在培养一些'精致'的利己主义者”答:北京问:()代表公权力,为了公共利益而制定、解释和实施法律。
答:国家问:()代表了欧洲大陆哲学的传统。
答:海德格尔问:中国当前工资、薪金所得,缴纳个人所得税适用超额累进税率的上限是多少?()答:45%问:美国的选举权范围从建国至今是不变的。
()答:错误问:工作是为了给周围的人、给整个社会贡献财富和智慧,这说的是()。
答:为信仰而工作问:海南经济特区建立于()年。
答:1988问:除了提供善恶的评价,让人可以正确地认识和评价,完善自身之外,道德还承担着将人实现为,成为真正的“人”的功能和作用。
()答:正确问:下列哪些昆虫或其产品可入药()答:斑蝥素蝉蜕地鳖冬虫夏草问:1960年,文化部明确表示,要提出三种戏曲的并举发展,其中不包括下列哪个剧种?答:旧编历史剧问:3.3 龙泉窑的鼎盛时期是在答:宋朝问:昆虫触角的类型和功能在实践上的意义()答:鉴别昆虫的种类鉴别昆虫的雌雄诱集或驱避昆虫问:按昆虫取食的食物性质把昆虫分为()几类答:植食性昆虫肉食性昆虫腐食性昆虫杂食性昆虫问:领导者的核心角色是学习者。
答:错问:不规则显性是指答:杂合体的显性基因未能形成相应的表型问:一般担保公司担保的责任担保分为一般责任和( )。
答:第一空:连带责任问:著名世界遗产阿波美王宫是在哪一年被列入世界濒危遗产名录的?()答:1985年问:《文化财保护法》是日本第一部有关文化遗产保护的综合性法典。
答:正确问:欧盟理事会秘书长负责欧盟的共同外交与安全政策责任,在国际上代表欧盟。
答:×问:民事主体民事权利的保护法包括()答:A.确认之诉 D形成之诉问:商人来自内地,而周人来自海边。
()答:×问:下列关于程序设计语言的叙述中,错误的是_______________。
北京工业大学2009-20010学年第一学期期末
数理统计与随机过程(研) 课程试卷
学号 姓名 成绩 注意:试卷共七道大题,请写明详细解题过程。
考试方式:半开卷,考试时只允许看教材《概率论与数理统计》 浙江大学 盛
骤等编第三版(或第二版)高等教育出版社。
可以看笔记、作业,但不允许看其它任何打印或复印的资料。
考试时允许使用计算器。
考试时间120分钟。
考试日期:2009年12月31日
一、随机抽取某班28名学生的英语考试成绩,算得平均分数为80=x 分,样本标准差8=s 分,若全年级的英语成绩服从正态分布,且平均成绩为85分,问:能否认为该班的英语成绩与全年级学生的英语平均成绩有显著差异(取显著性水平050.=α)?
解:这是单个正态总体
),(~2σμN X ,方差2σ未知时关于均值μ的假设检验问题,用T 检验法.
解 85:0=μH ,85:1≠μH
选统计量 n s x T /0
μ-= 已知80=x ,8=s ,n =28,850=μ, 计算得n s x T /0μ-=
31
.328/885
80=-=
查t 分布表,05.0=α,自由度27,临界值052.2)27(025.0=t . 由于052.2>T 2622.2>,故拒绝
0H ,即在显著水平05.0=α下不能认为
该班的英语成绩为85分.
050.=
解:由极大似然估计得.2ˆ==x λ
在X 服从泊松分布的假设下,X 的所有可能的取值对应分成两两不相交的子集A 0, A 1,…, A 8。
则}{k X P =有估计
=i p ˆΛΛ,7,0,
!2}{ˆ2
===-k k e k X P k
=0ˆp
三、某公司在为期10年内的年利润表如下:
(1)求该公司年利润对年份的线性回归方程;(2)对回归方程进行显著性检验:
α);(3)解释回归系数的意义;(4)求第11年利润的预测区间(取(取05
=
.0
α)。
=
0.
05
四、用三种不同材料的小球测定引力常数,实验结果如下:
在单因素试验方差分析模型下,检验材料对引力常数的测定是否有显著影响?取α, 计算结果保留三位小数。
显著性水平05
.0
=
五、某大型设备在任何长度为t 的时间区间内发生故障的次数{}+∞<≤t t N 0),(是强度λ的Poisson 过程,记设备无故障运行时间为T 。
(1)求})(|)({4365==N N P ; (2)求自相关函数),(t s R N ,写出推导过程;
(3)求T 的概率分布函数; (4)已知设备已经无故障运行了10小时,求再无故障运行8小时的概率。
六、(15分)设{,}n X n T ∈是一个齐次马尔可夫链,其状态空间}4,3,2,1{,=I ,
一步转移概率矩阵为 ⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛=2/12/1004/12/14/1004/14/12/1002/12/1P (1)求}4,2,1,3,2{54321=====X X X X X P ;
(2)求}1|3{2==+n n X X P ;
(3)讨论此链是否具有遍历性,若是遍历的求其极限分布。
七、设X(t)是平稳随机过程,若)
X
t
t
Yπ,其中Θ是在)
,0(π上
2
=t
cos(
2
+
)
(
(Θ
)
服从均匀分布的随机变量且与X(t)独立,问)
Y是否是平稳随机过程?
(t
标准答案(仅供参考)
一.这是单个正态总体
),(~2σμN X ,方差2σ未知时关于均值μ的假设检验问题,用T 检验法.
解 85:0=μH ,85:1≠μH
选统计量 n s x T /0
μ-= 已知80=x ,8=s ,n =28,850=μ, 计算得n s x T /0μ-=
31
.328/885
80=-=
查t 分布表,05.0=α,自由度27,临界值052.2)27(025.0=t . 由于052.2>T 2622.2>,故拒绝
0H ,即在显著水平05.0=α下不能认为
该班的英语成绩为85分.
七.解:设)(,)(τμx x R c t =,
)]2[cos()()]([)(Φ+∏==t E t t Y E t X Y μμ
0)2cos(2120=+∏=⎰∏θθd t
τ
τττ∏=-=-∏⋅=Θ++∏+-∏==2cos )()(2cos 2
1)(]}2)(2cos[21)(2cos 21{),()]
()([),(X X X Y R t s s t R s t s t E s t R s Y t Y E s t R 其中 所以,是平稳随机过程
五 解: (}1|3{2==+n n X X P =1/8。
中无零元,所以遍历3)3(P 。
⎩⎨⎧=+++=1
),,,(),,,(.432143214321ππππππππππππP 的解,具体求解略平稳分布为以下方程组 解得平稳分布为7/1,7/24321====ππππ。