稀土元素及用途
- 格式:doc
- 大小:53.00 KB
- 文档页数:11
17种稀土元素名称及用途镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。
镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。
她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。
铈(Ce)"铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。
铈的广泛应用:(1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。
不仅能防紫外线,还可降低车内温度,从而节约空调用电。
从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨.(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。
美国在这方面的消费量占稀土总消费量的三分之一强。
(3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。
目前领先的是法国罗纳普朗克公司。
(4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。
铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。
如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。
镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。
17种稀土元素用途稀土元素是指化学元素周期表中的镧(La)、铈(Ce)、钕(Pr)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)、钆(Sc)、钪(Y)、铼(Re)。
稀土元素广泛应用于不同领域,以下是它们的主要用途:1.光电材料:稀土元素在光学薄膜、液晶显示器、荧光材料、激光器、LED等领域具有重要作用。
钆、铽、铒等元素用于制备荧光粉,使荧光产品发光。
2.电池:钕铁硼磁体可以用于电动车辆、混合动力汽车、风力发电机、电动工具等高效电动设备。
3.医药:钆、铽、铕、铒等元素被用于核磁共振成像(MRI)和磁性顺磁探针,帮助诊断和治疗各种疾病。
4.环保:稀土催化剂在汽车尾气净化、工业废气处理、油气回收等环保技术中起到重要作用。
5.航空航天:稀土元素被广泛应用于制造航空发动机、导弹、卫星等高科技产品。
6.磁性材料:稀土元素在磁性材料中具有重要作用。
钆、铽、钇等元素用于制造永磁材料,如钕铁硼磁体。
7.钢铁冶金:稀土元素可用于制备稀土镁合金,用作铸造和冶金工业中的添加剂,提高金属耐腐蚀性和强度。
8.钢铁材料:稀土钪、稀土镱和稀土铕等元素可用来改变钢铁的组织和性能,提高钢铁的硬度和耐磨性。
9.电子产品:稀土元素用于制作陶瓷电容器、独立电容电阻器、集成电路等电子元器件。
10.照明:稀土元素可用于制造荧光灯、气体放电灯、导航灯等照明器材。
11.玻璃和陶瓷:稀土元素用于制造高透光玻璃、彩色玻璃和陶瓷材料。
12.高温超导体:稀土铽化合物用于高温超导体材料,可应用于核磁共振成像、磁悬浮列车等领域。
13.印刷和涂料:稀土元素被用于制作防伪印刷油墨、金属涂层等。
14.电视机:稀土元素用于制作彩色显像管,提高图像质量。
15.烟花焰火:稀土元素可用于制作烟花的火焰颜色。
16.核能:稀土元素在核燃料生产中具有重要作用,如铀浓缩、核反应堆控制等。
17.金属合金:稀土元素在制备镍合金、铬合金等金属合金中被广泛应用,提高合金的强度、耐磨性和耐腐蚀性。
一、稀土元素简介稀土,曾称稀土金属,或称稀土元素,是元素周期表第Ⅲ族副族元素钪、钇和镧系元素共17种化学元素的合称。
稀土是制造被称为“灵巧炸弹”的精密制导武器、雷达和夜视镜等各种武器装备不可缺少的元素。
因其天然丰度小,又以氧化物或含氧酸盐矿物共生形式存在,故叫“稀土”。
1.基本简介稀土金属,或称稀土元素,是元素周期表第Ⅲ族副族元素钪、钇和镧系元素共17种化学元素的合称。
钪和钇因为经常与镧系元素在矿床中共生,且具有相似的化学性质,故被认为是稀土元素。
与其名称暗示的不同,稀土元素(钷除外)在地壳中的丰度相当高,其中铈在地壳元素丰度排名第25,占0.0068%(与铜接近)。
然而,由于其化学性质,稀土元素很少富集到经济上可以开采的程度。
稀土元素的名称正是源自其匮乏性。
人类第一种发现的稀土矿物是从瑞典伊特比村的矿山中提取出的硅铍钇矿,许多稀土元素的名称正源自于此地。
2.元素组成稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素。
周期系ⅢB族中原子序数为21、39和57~71的17种化学元素的统称。
其中原子序数为57~71的15种化学元素又统称为镧系元素。
稀土元素的共性是:①它们的原子结构相似;②离子半径相近(REE3+离子半径1.06×10^-10m~0.84×10^-10m,Y3+为0.89×10^-10m);③它们在自然界密切共生。
稀土元素有多种分组方法,目前最常用的有两种:两分法:铈族稀土,La-Eu,亦称轻稀土(LREE)钇族稀土,Gd-Lu+Y,亦称重稀土(HREE)两分法分组以Gd划界的原因是:从Gd开始在4f亚层上新增加电子的自旋方向改变了。
稀土元素的应用及检测方法详解稀土元素对现代工业技术的作用至关重要。
目前,对稀土的检测方法主要是电感耦合等离子体质谱仪,随着科技的发展,检测方法也在不断更新。
一、什么是稀土元素?稀土是化学元素周期表中镧系元素镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)以及钪(Sc)和钇(Y)的17种元素的总称。
钪和钇常与矿床中的镧系元素共生,因而具有相似的化学性质,属于稀土元素。
一个常用的比喻是,如果说石油是工业的血液,那稀土就是工业的维生素。
稀土是宝贵的战略资源,广泛应用于尖端科技领域和军工领域,是新材料之母,稀土在我们的日常生活中也无处不在,堪称“万能之土”。
二、稀土元素的应用?稀土是宝贵的战略资源,有"工业味精"、"新材料之母"之称,广泛应用于尖端科技领域和军工领域。
据工业和信息化部介绍,目前稀土永磁、发光、储氢、催化等功能材料已是先进装备制造业、新能源、新兴产业等高新技术产业不可缺少的原材料,还广泛应用于电子、石油化工、冶金、机械、新能源、轻工、环境保护、农业等。
应用稀土可生产荧光材料、稀土金属氢化物电池材料、电光源材料、永磁材料、储氢材料、催化材料、精密陶瓷材料、激光材料、超导材料、磁致伸缩材料、磁致冷材料、磁光存储材料、光导纤维材料等。
可以说,稀土具有很大的发展前景。
从电动汽车电池到太阳能电池板再到风力涡轮机等快速崛起的绿色技术,再加上稀土元素被广泛使用和价格上涨的其他技术,预计将在不久的将来推动这些金属的巨大增长和需求。
不仅在陆地上,而且在海底沉积物中,我们更有必要加强对稀土资源的寻找。
除了从丰富的煤炭、粉煤灰和赤泥中经济有效地回收稀土外,深海采矿在不久的将来肯定是一个可行的选择。
为保证稀土产业的可持续发展,恢复环境需要较长的时间和大量的资金,因此迫切需要制定各种稀土矿床的可持续开发方案,并严格遵循,以防止对环境的进一步破坏。
稀土17种元素用途
1 镧用于摄影机、照相机、显微镜头和高级光绪仪器棱镜。
2 铈用于汽车玻璃、汽车尾气净化和美容防护品添加剂。
3 镨用于有色玻璃、搪瓷和陶瓷等。
4 钕用于稀土永磁材料,新能源汽车、风力发电和航空航天材料。
5 钷用于荧光粉、航标灯等。
6 钐应用于激光材料、微波和红外器材等。
7 铕应用于镜片和液晶显示屏。
8 钆用于医疗核磁共振成像和原子反应推。
9 铽用于燃料喷射系统、微定位和飞机太空望远镜等领域。
10 铒用于便携式激光测距仪。
11 镝用于电影、印刷以及永磁领域。
12 钬用于制作光通讯器件。
13 铥用于临床诊断和治疗肿瘤。
14 镱用作电脑记忆元件添加剂和生产光纤通讯的原料。
15 镥用于荧光粉激活剂、电池等领域。
16 钇用于陶瓷、催化剂、发光材料等领域。
17 钪常用来制造特种玻璃、轻质高温合金等。
根据物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),稀土元素划分成三组,即轻稀土组为镧、铈、镨、钕、钷;中稀土组为钐、铕、钆、铽、镝;重稀土组为钬、铒、铥、镱、镥、钇。
稀土元素的重要性及应用领域稀土元素,这一名称或许对许多人来说并不陌生,但要确切地说出它们到底是什么以及在我们的生活中扮演着怎样至关重要的角色,可能就不是那么容易回答的问题了。
稀土元素是一组特殊的金属元素,包括镧系元素(镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥)以及与镧系元素化学性质相似的钪和钇,一共 17 种元素。
它们之所以被称为“稀土”,并不是因为它们很稀少,而是因为它们在自然界中分布较为分散,且提取和分离的过程相对复杂。
稀土元素在现代科技和工业领域中具有不可替代的重要性。
首先,在高科技材料领域,稀土元素发挥着关键作用。
例如,钕铁硼永磁材料中就含有大量的钕元素,这种永磁材料具有极高的磁能积和矫顽力,被广泛应用于电机、风力发电、电动汽车等领域。
相比传统的磁体材料,钕铁硼永磁材料能够大大提高设备的效率和性能,使电机更加小型化、轻量化,同时降低能耗。
在电子信息领域,稀土元素也有着重要的应用。
铕、铽等稀土元素常用于制造彩色荧光粉,使得显示器和照明设备能够呈现出更加鲜艳、逼真的色彩。
此外,稀土元素还用于制造高性能的电容器、电阻器等电子元件,提高电子设备的稳定性和可靠性。
在军事领域,稀土元素更是具有战略意义。
稀土元素可以用于制造高性能的导弹、雷达、卫星等军事装备。
例如,稀土元素能够提高导弹的制导精度和射程,增强雷达的探测能力,提升卫星的通信质量和寿命。
在医疗领域,稀土元素也有其独特的用途。
某些稀土元素的化合物可以作为磁共振成像(MRI)的造影剂,帮助医生更清晰地观察人体内部的组织结构和病变情况。
在环保领域,稀土元素也能大展身手。
稀土催化剂可以用于汽车尾气净化,有效地减少有害气体的排放,降低环境污染。
稀土元素在新能源领域的应用也日益广泛。
随着全球对清洁能源的需求不断增长,稀土元素在太阳能电池、风力发电、新能源汽车等领域的重要性愈发凸显。
例如,在太阳能电池中,镧、铈等稀土元素可以提高电池的光电转换效率;在新能源汽车的电池中,稀土元素能够改善电池的性能和寿命。
稀土的用途和功能稀土是指在地壳中含量非常少的金属元素的总称,包括17种元素,如钍、镧、铕等。
虽然它们的含量很少,但是它们在现代科技和工业中扮演着非常重要的角色。
稀土具有多种用途和功能,以下将详细介绍一些主要的应用领域。
首先,稀土在电子产业中扮演着重要的角色。
由于稀土元素在电子能级结构中的特殊性质,它们被广泛应用于电子元器件制造中。
例如,镧和钕可用于制造磁体,使电子设备具有更高的性能;铽和镧可用于制造高压放电管,保证照明设备的高强度发光。
稀土的使用不仅提高了电子设备的性能,还延长了器件的寿命。
其次,稀土在环保技术中起着重要作用。
目前,环境污染越来越严重,稀土被广泛应用于相关环境治理技术中。
以稀土催化剂为例,它们可以降低汽车尾气中的有害排放物,减少空气污染和温室气体排放。
此外,稀土还可以用于废水处理,通过稀土复合材料对废水中的有害物质进行吸附和分解,达到净化水质的目的。
稀土也在冶金工业中发挥着重要的作用。
稀土在钢铁冶炼中作为添加剂,可以提高钢材的脆性和耐热性。
此外,稀土也被广泛应用于钢铁合金制造、真空冶炼和粉末冶金等方面,提高了冶金工业的生产效率和产品质量。
另外,稀土还在能源领域中具有重要作用。
稀土材料可以用于制造高温超导体,提高电能传输效率,从而减少能源损耗。
此外,稀土也被应用于制造太阳能电池和燃料电池等清洁能源设备,推动可再生能源的发展。
最后,稀土还在其他众多领域中有重要的应用。
它们可以用于制造光学玻璃和陶瓷材料,提高材料的硬度和透明度。
稀土还被广泛应用于生物医药、激光技术、涂料、化肥、玩具和珠宝等领域。
总之,稀土作为非常重要的战略资源,具有广泛的用途和功能。
它们在电子产业、环保技术、冶金工业、能源领域以及其他许多领域中扮演着不可替代的角色。
为了合理利用稀土资源和保护环境,人们需要加强稀土资源开发与利用的研究,推动稀土产业的发展和创新。
十七种稀土用途一览1 镧用于合金材料和农用薄膜2 铈大量应用于汽车玻璃3 镨广泛应用于陶瓷颜料4 钕广泛用于航空航天材料5 钷为卫星提供辅助能量6 钐应用于原子能反应堆7 铕制造镜片和液晶显示屏 8 钆用于医疗核磁共振成像9 铽用于飞机机翼调节器 10 铒军事上用于激光测距仪11 镝用于电影、印刷等照明光源12 钬用于制作光通讯器件13 铥用于临床诊断和治疗肿瘤 14 镱电脑记忆元件添加剂15 镥用于能源电池技术 16 钇制造电线和飞机受力构件17 钪常用于制造合金1 . 镧(La)“镧”这个元素是1839年被命名的,当时有个叫“莫桑德”的瑞典人发现铈土中含有其它元素,他借用希腊语中“隐藏”一词把这种元素取名为“镧”。
镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。
镧也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与“超级钙”的美称。
铈可作催化剂、电弧电极、特种玻璃等。
铈的合金耐高热,可以用来制造喷气推进器零件。
(资料图)2. 铈(Ce)“铈”这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。
铈的广泛应用:(1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。
不仅能防紫外线,还可降低车内温度,从而节约空调用电。
从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨。
(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。
(3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。
目前领先的是法国罗纳普朗克公司。
稀土元素的利用与保护现代工业中稀土元素(Rare Earth Elements, REEs)被广泛应用于电子产品、医疗仪器、航天装备等许多领域,然而它的应用也带来了对环境和人类健康的潜在威胁。
因此,对这些稀有资源的利用与保护显得特别重要。
I. 稀土元素原理及应用稀土元素是指一组独特的金属元素,它们在自然界中存在于矿物和岩石中,以极微量的形式存在于地壳中。
稀土元素具有独特的物理性质和化学性质,如高熔点、高磁矩、颜色鲜艳等,因此被广泛用于多种工业领域。
由于具有抗氧化、抗腐蚀、高温耐受等特性,稀土元素常用于电子产品的生产,如稀土永磁体、石墨烯量子点LED等。
此外,稀土元素还广泛应用于医药领域、环境工程、航天工程等,其用途十分广泛。
II. 稀土元素挑战与威胁虽然稀土元素在许多领域被广泛应用,但其开采和加工过程对环境和人体健康造成了一定的危害。
打破矿石并将其提取成为稀土元素的化学品通常会导致矿石中其他有害元素的释放,这些有害物质对环境和健康都会造成潜在威胁。
此外,大量的稀土元素开采和加工过程也会带来能源浪费和污染。
III. 稀土元素的保护措施为了保护稀土元素的资源和环境,我们需要采取一些措施来消除或减少这些风险。
首先,我们应该努力提高稀土元素开采的效率,以最大程度地减少资源的浪费和对环境的影响。
其次,在稀土元素的利用和加工过程中,我们需要采用更环保的技术和方法来降低对环境的污染。
最后,我们应该更加注重回收和再利用稀土元素,以减少我们对这些宝贵资源的依赖。
IV. 结论稀土元素在现代工业中扮演着重要的角色,虽然其利用和加工过程对环境和人体健康造成了一定的危害,但我们可以采取适当的措施来减少这些风险,保护稀土元素的资源和环境。
通过努力提高其开采和利用的效率、采用更环保的技术、回收再利用等举措,我们可以实现稀土元素的可持续利用和环保开发。
稀土矿有何用途稀土矿(Rare Earth Minerals)是指地壳中含有稀土元素且具有商业价值的矿石。
稀土矿主要包括15种稀土元素(即镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥)以及与这些元素有关的辅助元素。
稀土矿是一种非常重要的矿产资源,其在现代科技和工业中发挥着重要作用。
下面将详细介绍稀土矿的主要用途。
1. 电子产品:稀土矿是电子产品制造中不可或缺的原材料之一。
比如,手机、电视、电脑、平板等电子设备中的屏幕和显示器使用的荧光粉主要由稀土矿制成。
稀土矿中的钕铁硼磁铁被广泛应用于电机和电子产业中,常见于微型电机、磁盘驱动器、扬声器和电动汽车等设备中。
2. 高效照明:稀土矿可以用来制造高效、省电的照明设备。
例如,紧凑型荧光灯(CFL)和白炽灯的照明效果能被稀土元素加以优化。
此外,稀土元素还被用于制造LED照明设备,LED的广泛应用领域包括路灯、汽车照明、室内照明等。
3. 钢铁冶炼:稀土矿可以用于冶炼钢铁,提高钢铁的性能和质量。
在钢铁冶炼过程中,加入适量的稀土元素能够提高钢材的延展性、韧性和抗蚀性。
4. 石油精炼:稀土矿也被用于石油精炼过程中的催化剂制造,以提高石油产品的质量和减少环境污染。
5. 新能源:稀土矿在新能源领域发挥着重要作用。
稀土矿被广泛应用于太阳能电池板、风力涡轮机和电动汽车等新能源设备中,以提高能源的转化效率和储存能力。
6. 环保技术:稀土元素在环保技术领域有广泛的应用。
稀土矿可以用于制造催化剂,用于减少汽车尾气和工业废气中的有害物质排放。
此外,稀土元素还可以用于制造高效的纳米催化剂,用于废水处理和空气净化等领域。
7. 医疗器械:稀土矿在医疗器械制造中也具有重要的应用价值。
例如,MRI扫描中需要使用稀土元素制造的钆铒合金。
稀土元素还可以在放射治疗中用于改善疗效和减少副作用。
总而言之,稀土矿在现代工业和科技中发挥着重要的作用。
它们被广泛应用于电子产品、照明设备、钢铁冶炼、石油精炼、新能源领域、环保技术以及医疗器械等诸多领域。
稀土的应用〃镧(La)高级照相机镜头用的光学玻璃;低传输损耗的光纤;储氢电池用的阴极LaNi6;固体燃料的电极材料和连接材料;大功率电子管的发射电极(LaB6);发光材料的基质(如LaPO3,Ce3+,Tb3+);石油裂化催化剂等。
〃铈(Ce)是稀土中含量最多(见表1),最便宜的元素。
用于汽车尾气处理,储氢剂调节空气/燃料比;抛光粉(用于电视机破壳或光学玻璃的抛光);固体照明白光二极管的黄色发光材料(如YAG:Ce);探测高能射线的闪烁晶体;防辐射玻璃;防紫外线眼镜片和护肤品;催化剂等。
〃镨(pr)黄色陶瓷釉;CT断层扫描成像机的探测器;永磁材料等。
〃钕(Nd)永磁材料(钕铁硼),永磁马达(汽车,风力发电机);激光器,(用于测距,制导,寻踪等军用和打孔等激光加工,激光热核聚变等);航空用的钕镁合金等。
〃钷 (Pm) 是人工发射线元素,由于是裂变的发射线产物,数量很少,故目前未找到重要用途,可用作长余辉发光材料或长寿电池的发射线激发源。
〃钐(Sm)有机反应的重要催化剂;红色发光材料,永磁材料SmCo5,光谱烧孔信息存储材料等。
〃铕(Eu)三价铕是重要的红色发光材料用于节能灯,彩电和计算器显示器,二价铕是重要的蓝色发光材料用于节能灯、医疗用X射线增感屏、等离子彩电(PDP)荧光粉;长余辉发光材料,反应堆中资吸收控制棒等。
〃钆(Gd)发光材料的基质;激光晶体;闪烁晶体;磁冰箱的磁致冷介质;光盘的磁光存储材料;医用磁共振成像(MRI)的造影剂等。
〃铽(Tb)三价铽是重要的绿色发光材料用于节能灯、医疗用X射线增感屏,永磁材料(钕铽铁硼),光学用的磁光隔离器;巨磁致伸缩材料(用于声纳);光盘的磁光存储材料等。
〃镝(Dy) 永磁材料(钕镝铁硼);巨磁致伸缩材料(用于声纳);白光发光材料;长余辉发光材料;探测高能射线的固体剂量材料等。
〃钬(Ho)激光手术刀用的红外激光材料,上转换发光材料等。
〃铒(Er)光通信用的掺铒发光纤放大器;红外激光材料;红外光变可见光的上转换材料等。
立志当早,存高远
稀土元素的性质和用途
1、稀土元素的分组稀土元素是元素周期表中第ⅢB 族的16 个元素总称,即LaLu 镧系元素(5771)和钇(Y,39)。
根据文献资料,稀土元素的分组有以下两种:
(1)二分组:即铈组和钇组
①铈组稀土(LaEu),用ΣCe 表示,称轻稀土(组)或铈族稀土(组)
包括:镧(La)、鈰(Ce)、镨(Pr)、釹(Nd)、鉕(Pm)、钐(Sm)、铕(Eu),共7 个。
②钇组稀土(GdLu+Y),用ΣY 表示,称重稀土(组)或钇族稀土(组)
包括:钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)、钇(Y),共9 个。
(2)三分组:由于研究对象与内容不同,通常有下面三种分法。
①轻稀土组:镧(La)、鈰(Ce)、镨(Pr)、釹(Nd)用LREE 表示。
②中稀土组:钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho);或钐(Sm)、铕(Eu)、钆(Gd)。
用MREE 表示。
③重稀土组:铒(Er)、铥(Tm)、镱(Yb)、镥(Lu);或铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)、钇(Y),用HREE 表示。
2、稀土的性质和用途
(1) 稀土的性质
稀土是典型的金属,银白色或灰色,金属光泽,硬度较大,导电性不良,具延展性。
稀土元素化学性质活泼,其活泼性仅次于碱土金属。
常温下,稀土金属需保存在煤油中。
按稀土金属的活泼性次序排列,由镧一镥递减,即镧最活。
元素周期表内的稀土元素位置(资料图)稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。
简称稀土(RE或R)。
稀土一词是历史遗留下来的名称。
稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。
稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。
通常把镧、铈、镨、钕、钷、钐、铕称为轻稀土或铈组稀土;把钆、铽、镝、钬、铒、铥、镱、镥钇称为重稀土或钇组稀土。
也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组,即轻稀土组为镧、铈、镨、钕、钷;中稀土组为钐、铕、钆、铽、镝;重稀土组为钬、铒、铥、镱、镥、钇。
这些稀土元素的发现,从1794年芬兰人加多林(J。
Gadolin)分离出钇到1947年美国人马林斯基(J。
A。
Marinsky)等制得钷,历时150多年。
其中大部分稀土元素是欧洲的一些矿物学家、化学家、冶金学家等发现制取的。
钷是美国人马林斯基、格兰德宁(L。
E。
Glendenin)和科列尔(C。
D。
Coryell)用离子交换分离,在铀裂变产物的稀土元素中获得的。
过去认为自然界中不存在钷,直到1965年,芬兰一家磷酸盐工厂在处理磷灰石时发现了痕量的钷。
大多数稀土元素呈现顺磁性。
钆在0℃时比铁具更强的铁磁性。
铽、镝、钬、铒等在低温下也呈现铁磁性,镧、铈的低熔点和钐、铕、镱的高蒸气压表现出稀土金属的物理性质有极大差异。
钐、铕、钇的热中子吸收截面比广泛用于核反应堆控制材料的镉、硼还大。
稀土金属具有可塑性,以钐和镱为最好。
除镱外,钇组稀土较铈组稀土具有更高的硬度。
稀土是什么?有什么用途?组成元素有哪些稀土是什么?稀土是一种矿物资源。
1794年芬兰化学家加多林从一块形似沥青的重质矿石中分离出第一种稀土“元素”——钇(yǐ)土。
因为当时发现的稀土矿物非常少,当时只能用化学法制得少量不溶于水的氧化物,历史上习惯地把这种氧化物称为“土”,因而得名稀土。
稀土是十七种化学金属元素的总称。
通常被分为轻稀土和重稀土两类。
轻稀土包括:镧(lán)、铈(shì)、镨(pǔ)、钕(nǚ)、钷(pǒ)、钐(shān)、铕(yǒu)。
重稀土包括:钆(gá)、铽(tè)、镝(dī)、钬(huǒ)、铒(ěr)、铥(diū)、镱(yì)、镥(lǔ)、钪(kàng)、钇(yǐ)。
稀土有多“稀有”?1、不可再生稀土是不可再生资源。
在勘探不充分的情况下,目前全世界现有稀土可开采近1000年,意味着世界范围内稀土不那么稀缺。
2、矿藏分布稀土矿藏主要集中在中国、美国、印度、南非、澳大利亚、加拿大、埃及等几个国家。
中国是世界稀土资源储量最大的国家,也是唯一能够提供全部17种稀土金属的国家,主要产区有白云鄂博稀土矿、山东微山稀土矿、冕宁稀土矿等。
其中,白云鄂博矿是世界最大的稀土矿山,占国内稀土资源储量的90%以上,号称“稀土之都”。
3、开采提炼虽然稀土没有黄金白银等贵重金属那么稀有,但由于稀土通常和其他矿物质混合在一起,故而开采和提炼成本高昂。
中国对全球稀土的影响力恰恰就集中于产量上。
“中国稀土之父”“中国稀土之父”是带领中国走进稀土强国、“国家最高科技奖”获得者徐光宪,他研究出来的“稀土串级萃取理论”,使中国稀土产量跃居世界首位,实现了稀土市场的“中国冲击”!稀土能做什么?稀土元素由于原子结构特殊,电子能级异常丰富,具有许多优异的光、电、磁、核等特性,加之化学性质十分活泼,能与其它元素组成品类繁多、功能千变万化、用途各异的新型材料,被称作为“现代工业的维生素”、“工业黄金”、“新材料宝库”、“万能之土”。
什么是稀土?主要成分和用途是什么?一、稀土稀土就是化学元素周期表中镧系元素—镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素—钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。
简称稀土(RE或R)。
稀土元素通常分为二组:1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。
2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。
铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。
稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。
它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。
它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。
稀土一词是历史遗留下来的名称。
稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。
稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。
通常把镧、铈、镨、钕、钷、钐、铕称为轻稀土或铈组稀土;把钆、铽、镝、钬、铒、铥、镱、镥钇称为重稀土或钇组稀土。
也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组,即轻稀土组为镧、铈、镨、钕、钷;中稀土组为钐、铕、钆、铽、镝;重稀土组为钬、铒、铥、镱、镥、钇。
这些稀土元素的发现,从1794年芬兰人加多林(J.Gadolin)分离出钇到1947年美国人马林斯基(J.A.Marinsky)等制得钷,历时150多年。
17种稀土用途一览稀土是指分布较广但含量较低的稀有金属元素的总称,它们在现代工业中广泛应用。
以下是17种稀土的用途一览:1.锂电池:稀土元素(如镧、钕、镨、钐)在锂电池的正极和负极材料中被广泛使用,提高了电池的能量密度和循环寿命。
2.涡轮增压器:稀土元素(如钇、铈)被用作制造涡轮增压器的陶瓷材料,能够耐受高温和高压环境,提高发动机的功率和燃油效率。
3.高温合金:稀土元素(如钨、钼)被用作高温合金的添加剂,增强了合金的耐热性能,使其适用于航空航天、航海等高温环境下的应用。
4.磁性材料:稀土元素(如钕、镨、铕、铽)是制造高性能永磁材料的重要成分,被广泛应用于电机、发电机、电动汽车等领域。
5.液晶显示器:稀土元素(如铽)被用作液晶显示器中的荧光物质,能够发光和改变颜色,实现显示效果。
6.白色LED:稀土元素(如镓、铱)在白色LED的制造中起到了关键作用,能够发出可见光,提供照明效果。
7.光纤通信:稀土元素(如铒、钐、铽)在光纤通信设备中用作掺杂剂,实现光信号的放大和调制。
8.氧化催化剂:稀土元素(如钡、钪)被用作汽车尾气净化催化剂的成分,能够催化氧化有害物质,减少大气污染。
9.太阳能电池:稀土元素(如镧、铈)在太阳能电池的材料中被添加,提高了电池的光吸收性能和转换效率。
10.医疗器械:稀土元素(如钇、镧、铕)被用作医疗器械的成分,如核磁共振成像(MRI)的磁体、X射线荧光屏等。
11.防弹材料:稀土元素(如钍)在防弹材料中被添加,能够吸收和分散子弹的能量,提高防护性能。
12.能源节约灯:稀土元素(如镧、铒)被用作能源节约灯(如荧光灯、高压钠灯)的荧光粉,发出可见光实现照明效果。
13.密封材料:稀土元素(如钇、钡)被用作密封材料,如钡钛酸铅陶瓷材料,具有压电和介电性能,广泛应用于声波器件、传感器等领域。
14.核能技术:稀土元素(如镧、钐)被用于核反应堆的燃料制备、辐射防护、储存等方面。
15.火箭发动机:稀土元素(如钆)被用作火箭发动机的润滑材料,能够在极端条件下提供有效的润滑和保护。
稀土的用途和功能稀土的应用简介稀土元素被誉为"工业的维生素",具有无法取代的优异磁、光、电性能,对改善产品性能,增加产品品种,提高生产效率起到了巨大的作用。
由于稀土作用大,用量少,已成为改进产品结构、提高科技含量、促进行业技术进步的重要元素,被广泛应用到了冶金、军事、石油化工、玻璃陶瓷、农业和新材料等领域。
冶金工业稀土在冶金领域应用已有30多年的历史,目前已形成了较为成熟的技术与工艺,稀土在钢铁、有色金属中的应用,是一个量大面广的领域,有广阔的前景。
稀土金属或氟化物、硅化物加入钢中,能起到精炼、脱硫、中和低熔点有害杂质的作用,并可以改善钢的加工性能;稀土硅铁合金、稀土硅镁合金作为球化剂生产稀土球墨铸铁,由于这种球墨铸铁特别适用于生产有特殊要求的复杂球铁件,被广泛用于汽车、拖拉机、柴油机等机械制造业;稀土金属添加至镁、铝、铜、锌、镍等有色合金中,可以改善合金的物理化学性能,并提高合金室温及高温机械性能。
军事领域稀土在冶金领域应用已有30多年的历史,目前已形成了较为成熟的技术与工艺,稀土在钢铁、有色金属中的应用,是一个量大面广的领域,有广阔的前景。
稀土金属或氟化物、硅化物加入钢中,能起到精炼、脱硫、中和低熔点有害杂质的作用,并可以改善钢的加工性能;稀土硅铁合金、稀土硅镁合金作为球化剂生产稀土球墨铸铁,由于这种球墨铸铁特别适用于生产有特殊要求的复杂球铁件,被广泛用于汽车、拖拉机、柴油机等机械制造业;稀土金属添加至镁、铝、铜、锌、镍等有色合金中,可以改善合金的物理化学性能,并提高合金室温及高温机械性能。
石油化工稀土在石油化工领域可以用来制成分子筛催化剂,具有活性高、选择性好、抗重金属中毒能力强等优点,因而取代了硅酸铝催化剂用于石油催化裂化过程;在合成氨生产过程中,用少量的硝酸稀土作助催化剂,其处理气量比镍铝催化剂大1.5倍;在合成顺丁橡胶和异戊橡胶过程中,采用环烷酸稀土-三异丁基铝型催化剂,所获得的产品性能优良,具有设备挂胶少,运转稳定,后处理工序短等优点;复合稀土氧化物还可以用作内燃机尾气净化催化剂,环烷酸铈还可用作油漆催干剂等。
稀土材料特性及其各类用途探究概述稀土材料是指由稀土元素组成的化合物或合金,具有独特的物理、化学和磁学特性。
稀土元素是指周期表中第57至71号元素,包括镧系和钅系元素。
稀土材料具有广泛的应用领域,包括电子、能源、照明、磁性、催化剂等。
本文将重点介绍稀土材料的特性和各类用途。
稀土材料的特性稀土材料具有以下几个显著特性:1. 强磁性:稀土材料中的一些元素如钕、铕和铽具有较高的磁性,可制成强磁体用于电机、发电机、传感器等。
2. 高抗腐蚀性:稀土材料具有良好的抗腐蚀性能,能够在恶劣环境下保持其稳定性,可用于制造耐腐蚀材料和涂料。
3. 发光性:稀土材料中的某些元素可发出可见光和荧光,在照明、显示器件和荧光粉等领域有着重要应用。
4. 高温稳定性:稀土材料具有优异的高温稳定性,可用于高温合金、陶瓷材料和耐火材料等。
5. 催化活性:稀土材料在催化领域具有重要作用,能够增加催化反应效率和选择性。
6. 电子性能:稀土材料具有优秀的电子性能,可用于制造电子器件、电容器和传感器等。
稀土材料的各类用途1. 磁性材料稀土磁体是稀土材料的重要应用之一。
根据稀土材料的不同配方和处理工艺,可以制备出不同的磁性材料。
这些材料具有高矫顽力、高剩磁、高能量密度和较低的磁延迟损耗。
稀土磁体广泛应用于电子产品、航空航天、交通工具、医疗设备等领域。
2. 光电材料稀土材料在光电领域的应用主要体现在荧光粉、荧光材料和光纤通信中。
稀土材料能够发出不同颜色的荧光,可用于显示器、LED照明、荧光灯等。
3. 催化剂稀土材料在催化剂领域有着广泛的应用。
稀土元素在催化反应中能够提高催化活性、选择性和稳定性。
稀土催化剂常用于汽车尾气净化、化学合成和环境保护等方面。
4. 电池材料稀土材料在电池领域具有重要地位。
稀土镍氢电池和稀土钕铁硼磁体是稀土材料在电池领域的两个主要应用。
稀土镍氢电池具有高能量密度、较长的使用寿命和较低的自放电率,广泛应用于电动汽车、储能系统和移动设备中。
稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。
简称稀土(RE或R)。
稀土的分类】1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。
2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。
铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。
稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。
它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。
它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。
【名称由来】17种稀土元素名称的由来及用途镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。
镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。
她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。
铈(Ce) "铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。
铈的广泛应用:(1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。
不仅能防紫外线,还可降低车内温度,从而节约空调用电。
从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨.(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。
(3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。
目前领先的是法国罗纳普朗克公司。
(4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。
铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。
如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。
镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。
"镨钕"希腊语为"双生子"之意。
大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从"镨钕"中分离出了两个元素,一个取名为"钕",另一个则命名为"镨"。
这种"双生子"被分隔开了,镨元素也有了自己施展才华的广阔天地。
镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。
镨的广泛应用:(1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。
(2)用于制造永磁体。
选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。
广泛应用于各类电子器件和马达上。
(3)用于石油催化裂化。
以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。
我国70年代开始投入工业使用,用量不断增大。
(4)镨还可用于磨料抛光。
另外,镨在光纤领域的用途也越来越广。
钕(Nd) 伴随着镨元素的诞生,钕元素也应运而生,钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。
钕元素凭借其在稀土领域中的独特地位,多年来成为市场关注的热点。
金属钕的最大用户是钕铁硼永磁材料。
钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。
钕铁硼磁体磁能积高,被称作当代"永磁之王",以其优异的性能广泛用于电子、机械等行业。
阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。
钕还应用于有色金属材料。
在镁或铝合金中添加1.5~2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。
另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。
在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。
钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。
随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。
钷(Pm) 1947年,马林斯基(J.A.Marinsky)、格伦丹宁(L.E.Glendenin)和科里尔(C.E.Coryell)从原子能反应堆用过的铀燃料中成功地分离出61号元素,用希腊神话中的神名普罗米修斯(Prometheus)命名为钷(Promethium)。
钷为核反应堆生产的人造放射性元素。
钷的主要用途有:(1)可作热源。
为真空探测和人造卫星提供辅助能量。
(2)Pm147放出能量低的β射线,用于制造钷电池。
作为导弹制导仪器及钟表的电源。
此种电池体积小,能连续使用数年之久。
此外,钷还用于便携式X-射线仪、制备荧光粉、度量厚度以及航标灯中。
钐(Sm) 1879年,波依斯包德莱从铌钇矿得到的"镨钕"中发现了新的稀土元素,并根据这种矿石的名称命名为钐。
钐呈浅黄色,是做钐钴系永磁体的原料,钐钴磁体是最早得到工业应用的稀土磁体。
这种永磁体有SmCo5系和Sm2Co17系两类。
70年代前期发明了SmCo5系,后期发明了Sm2Co17系。
现在是以后者的需求为主。
钐钴磁体所用的氧化钐的纯度不需太高,从成本方面考虑,主要使用95%左右的产品。
此外,氧化钐还用于陶瓷电容器和催化剂方面。
另外,钐还具有核性质,可用作原子能反应堆的结构材料,屏敝材料和控制材料,使核裂变产生巨大的能量得以安全利用。
铕(Eu) 1901年,德马凯(Eugene-Antole Demarcay)从"钐"中发现了新元素,取名为铕(Europium)。
这大概是根据欧洲(Europe)一词命名的。
氧化铕大部分用于荧光粉。
Eu3+用于红色荧光粉的激活剂,Eu2+用于蓝色荧光粉。
现在Y2O2S:Eu3+是发光效率、涂敷稳定性、回收成本等最好的荧光粉。
再加上对提高发光效率和对比度等技术的改进,故正在被广泛应用。
近年氧化铕还用于新型X射线医疗诊断系统的受激发射荧光粉。
氧化铕还可用于制造有色镜片和光学滤光片,用于磁泡贮存器件,在原子反应堆的控制材料、屏敝材料和结构材料中也能一展身手。
钆(Gd) 1880年,瑞士的马里格纳克(G.de Marignac)将"钐"分离成两个元素,其中一个由索里特证实是钐元素,另一个元素得到波依斯包德莱的研究确认,1886年,马里格纳克为了纪念钇元素的发现者研究稀土的先驱荷兰化学家加多林(Gado Linium),将这个新元素命名为钆。
钆在现代技革新中将起重要作用。
它的主要用途有:(1)其水溶性顺磁络合物在医疗上可提高人体的核磁共振(NMR)成像信号。
(2)其硫氧化物可用作特殊亮度的示波管和x射线荧光屏的基质栅网。
(3)在钆镓石榴石中的钆对于磁泡记忆存储器是理想的单基片。
(4)在无Camot循环限制时,可用作固态磁致冷介质。
(5)用作控制核电站的连锁反应级别的抑制剂,以保证核反应的安全。
(6)用作钐钴磁体的添加剂,以保证性能不随温度而变化。
另外,氧化钆与镧一起使用,有助于玻璃化区域的变化和提高玻璃的热稳定性。
氧化钆还可用于制造电容器、x射线增感屏。
在世界上目前正在努力开发钆及其合金在磁致冷方面的应用,现已取得突破性进展,室温下采用超导磁体、金属钆或其合金为致冷介质的磁冰箱已经问世。
铽(Tb) 1843年瑞典的莫桑德(Karl G.Mosander)通过对钇土的研究,发现铽元素(Terbium)。
铽的应用大多涉及高技术领域,是技术密集、知识密集型的尖端项目,又是具有显著经济效益的项目,有着诱人的发展前景。
主要应用领域有:(1)荧光粉用于三基色荧光粉中的绿粉的激活剂,如铽激活的磷酸盐基质、铽激活的硅酸盐基质、铽激活的铈镁铝酸盐基质,在激发状态下均发出绿色光。
(2)磁光贮存材料,近年来铽系磁光材料已达到大量生产的规模,用Tb-Fe 非晶态薄膜研制的磁光光盘,作计算机存储元件,存储能力提高10~15倍。
(3)磁光玻璃,含铽的法拉第旋光玻璃是制造在激光技术中广泛应用的旋转器、隔离器和环形器的关键材料。
特别是铽镝铁磁致伸缩合金(TerFenol)的开发研制,更是开辟了铽的新用途,Terfenol是70年代才发现的新型材料,该合金中有一半成份为铽和镝,有时加入钬,其余为铁,该合金由美国依阿华州阿姆斯实验室首先研制,当Terfenol置于一个磁场中时,其尺寸的变化比一般磁性材料变化大这种变化可以使一些精密机械运动得以实现。
铽镝铁开始主要用于声纳,目前已广泛应用于多种领域,从燃料喷射系统、液体阀门控制、微定位到机械致动器、机构和飞机太空望远镜的调节机翼调节器等领域。
镝(Dy) 1886年,法国人波依斯包德莱成功地将钬分离成两个元素,一个仍称为钬,而另一个根据从钬中"难以得到"的意思取名为镝(dysprosium)。
镝目前在许多高技术领域起着越来越重要的作用.镝的最主要用途是:(1)作为钕铁硼系永磁体的添加剂使用,在这种磁体中添加2~3%左右的镝,可提高其矫顽力,过去镝的需求量不大,但随着钕铁硼磁体需求的增加,它成为必要的添加元素,品位必须在95~99.9%左右,需求也在迅速增加。
(2)镝用作荧光粉激活剂,三价镝是一种有前途的单发光中心三基色发光材料的激活离子,它主要由两个发射带组成,一为黄光发射,另一为蓝光发射,掺镝的发光材料可作为三基色荧光粉。