移动通信课程设计—链路预算模型含源程序
- 格式:docx
- 大小:133.06 KB
- 文档页数:19
移动通信第二版课程设计1. 概述本课程设计是移动通信第二版课程的一项重要内容,旨在帮助学生通过实践掌握移动通信领域中的基本知识和技能,提高分析、设计和解决移动通信问题的能力。
课程设计分为两个部分:第一部分是面向理论知识的教学,其中包括基础理论、通信技术和信令技术等内容;第二部分是面向实践的课程设计,学生将通过小组协作完成一个实际项目,并为其开发一个移动通信解决方案。
2. 课程设计内容2.1 项目需求分析在本课程设计中,学生需要选择一个具体的项目进行实践,并为其设计一个解决方案。
在项目选择之前,需要对现有的移动通信技术、市场需求、资源和成本等进行深入的调研和分析,确定项目的可行性和需要解决的问题。
2.2 系统架构设计在项目需求分析的基础上,学生需要确定系统的整体架构和设计方案,包括硬件和软件的选择、通信协议的设计、信令和控制的实现等内容。
在系统架构设计中,需要对现有研究成果和技术标准进行充分的了解和参考。
2.3 技术实现方案在完成系统架构设计后,学生需要具体实现系统的各个模块,并进行调试和测试,验证系统的可行性和功能是否符合要求。
在技术实现方案中,需要注意代码的可维护性、可扩展性和安全性等方面。
2.4 系统评估和优化在实现系统之后,学生需要对系统进行评估和优化,包括对系统的性能、稳定性和用户体验等进行测试和分析,识别存在的问题并进行优化和改进。
在系统评估和优化中,需要采用科学的分析方法和工具,充分评估系统的整体效果和效益。
3. 学习目标通过完成本课程设计,学生将达到以下目标:•掌握移动通信领域中的基础理论和技术,并理解其应用场景和应用需求;•培养分析和解决移动通信问题的能力,包括需求分析、系统设计和技术实现等方面;•培养团队协作和沟通能力,能够与他人合作完成一个实际项目;•掌握科学的系统评估和优化方法,能够从整体上对系统进行评估和改进。
4. 学习评估本课程设计的学习评估采用综合考评的方式,主要包括以下内容:•项目报告和演示:学生需要为所选的项目撰写一份报告,并展示其设计方案和技术实现成果;•系统效果和评估:学生需要对完成的系统进行测试和评估,并撰写一份详细的评估报告;•课程作业和考核:学生需要完成与课程设计相关的课堂作业和考核内容,并参加期末考试。
兰州交通大学本科生课程设计中文题目: LTE链路预算分析英文题目:LTE link budget analysis课程:移动通信原理学院:电信学院专业:通信工程班级:通信1403班组长:组员:指导教师:邸敬完成日期: 2017年6月28日成绩打分表摘要链路预算是无线网络规划的基础环节,对网络覆盖能力和建设成本的估算具有十分重要的意义。
良好的网络覆盖是所有无线网络赖以生存的根本,直接影响最终的用户感知。
而链路预算是评估无线通信系统覆盖能力的主要方法,是无线网络规划中的一项重要工作。
因此,在进行无线网络规划时需要进行链路预算以得到合理的无线覆盖预测结果,指导后续的网络建设。
本文重点对LTE链路预算的方式及主要参数进行研究,给出了关键参数的典型取值,并分析总结不同的场景或双工方式对链路预算及覆盖能力的影响。
本文结合LTE系统的特点对其链路预算参数进行分析,并着重研究了LTE系统的链路预算方法,并根据链路预算介绍小区覆盖半径和单站覆盖面积的方法,本文给出的方法可用于LTE网络规划和设计(室内和室外)。
本文对链路预算中几种传播模型的比较,包括OKUMURA模型、OKUMURA--HATA模型、COST-231模型和COST-231 HATA模型,并对各个模型进行了建模仿真。
最后,对兰州交通大学移动通信链路损耗,使用COST 231-Hata模型和ITU-R P.1238模型进行了具体分析。
关键词:LTE;链路预算;传播模型;基站半径;最大允许路径损耗AbstractThe link budget is a mobile communication network planning and design process is an important part. Link by link budget gain margin and loss accounting, calculate the maximum allowable air link path loss, thereby combining the propagation model to determine the cell coverage and station spacing. In this paper, the characteristics of LTE system link budget parameters were analyzed, and focuses on the link budget methodology LTE system and method described cell coverage radius and single station coverage based link budget to this article the method can be used for LTE-FDD network planning and design. In this paper, the link budget compare several propagation models, including OKUMURA model, OKUMURA - HATA model, COST-231 WALFISCH-IKEGAMI model and COST-231 HATA model, and each model is a modeling and simulation. Finally, the lanzhou City mobile communications link loss, use COST 231-Hata model is analyzed in detail for the wireless environment cities, small cities, suburban areas in three different transmission path loss, path loss biggest cities, small cities times the suburban minimum.Key words:LTE; Link Budget;Propagation Model;Base Station Radius;Allowable Path Loss目录第一章LTE网络关键技术分析 (1)1.1双工方式 (1)1.2OFDMA技术 (1)1.3MIMO技术 (2)1.4ICIC技术 (2)1.5分集技术 (2)1.6多址接入技术 (3)第二章链路预算的概述 (4)2.1链路预算定义 (4)2.2移动通信网络链路预算思想方法 (5)2.3LTE链路预算方式 (6)2.4链路预算的具体步骤 (6)第三章链路预算中几种传播模型的比较 (7)3.1O KUMURA模型 (7)3.2O KUMURA-H ATA模型 (8)3.3COST-231W ALFISCH-I KEGAMI(WIM)模型 (9)3.4COST-231H ATA模型 (11)第四章链路损耗的具体计算分析 (12)4.1室内链路预算的简单分析和计算 (12)4.1.1 TD-LTE 室内无线传播模型选择 (12)4.1.2 TD-LTE 链路预算 (12)4.1.3 天线口功率测算 (13)4.1.4 TD-LTE 室内覆盖设计实例 (13)4.2室外链路预算 (13)4.2.1 计算LTE室外链路预算的主要公式 (13)4.2.2 发射端参数(发射端EIRP) (13)4.2.3 接收端参数(最小接收信号电平) (14)4.2.4 其他增益、损耗及余量 (14)4.3室外链路预算结果及分析 (14)4.3.1具体参数设置及理论计算结果(室外) (15)4.3.2利用链路预算及传播模型进行小区规划 (15)结束语 (17)参考文献 (18)第一章 LTE网络关键技术分析1.1 双工方式TD- LTE系统支持和优化了TDD 特有技术, 更加灵活的支持波束赋形等MIMO技术和可变的上下行比例。
目录摘要 (1)一、绪论 (1)二、课程设计名称 (1)三、课程设计时间 (1)四、课程设计环境 (1)五、课程设计任务和要求 (2)5.1课程设计任务 (2)六、课程设计原理 (2)6.1 交织编码 (2)6.2 去交织硬件模型 (3)6.3去交织基本原理 (4)6.4单片机CPU2电路 (5)6.5去交织软件实现 (5)七、课程设计过程及调试、结果 (9)7.1 实验箱设置 (9)7.2 实时仿真方式开发程序 (9)7.3在系统编程(ISP)方式开发程序 (10)7.4 实验结果图 (11)八、课程设计体会 (15)参考文献 (16)附录(源程序) (17)摘要由于数字通信系统传输的是一个接一个按节拍传送的数字信号单元,即码元,因而在接收端必须按与发送端相同的节拍进行接收,否则,会因收发节拍不一致而导致接收性能变差。
此外,为了表述消息的内容,基带信号都是按消息内容进行编组的,因此,编组的规律在收发之间也必须一致。
在数字通信中,称节拍一致为“位同步”,称编组一致为“帧同步”。
在时分复用通信体统中,为了正确地传输信息,必须在信息码流中插入一定数量的帧同步码,它可以是一组特定的码组,也可以是特定宽度的脉冲,可以集中插入,也可以分散插入。
CDMA移动通信系统收端帧同步提取,我采用交织编码的方法。
交织编码是在实际移动通信环境下改善移动通信信号衰落的一种通信技术。
将造成数字信号传输的突发性差错,利用交织编码技术可离散并纠正这种突发性差错,改善移动通信的传输特性。
关键字:帧同步提取,帧同步,交织编码1、绪论数字移动通信系统使用数字信号传送信息,为第二代移动通信系统。
交织编码的目的是把一个较长的突发差错离散成随机差错,再用纠正随机差错的编码(FEC)技术消除随机差错。
交织深度越大,则离散度越大,抗突发差错能力也就越强。
但交织深度越大,交织编码处理时间越长,从而造成数据传输时延增大,也就是说,交织编码是以时间为代价的。
5.3 链路预算在确定基站的工程参数后,需要进行链路预算才能进一步估算其覆盖范围。
这时必须考虑所选用基站设备的灵敏度。
在移动通信系统中,无线链路分为上行和下行两个方向。
一个优良的系统应在设计时就要做好功率预算,使覆盖区内的上行信号与下行信号达到平衡。
否则,如果上行信号覆盖大于下行信号覆盖,小区边缘下行信号较弱,容易被其它小区的强信号“淹没”;如果下行信号覆盖大于上行信号覆盖,移动台将被迫守侯在该强信号下,但上行信号太弱,话音质量不好。
当然,平衡并不是绝对的相等。
通过Abis 接口上的测量报告,可以很清楚的判断上下行是否达到平衡,一般上下行电平差值为基站接收机和手机接收机灵敏度的差值时就认为达到了平衡。
但是由于上下行信道的衰落性不完全一致,以及接收机噪声恶化性能差异等其他一些因素,这个差值一般会波动2-3dB。
5.3.1 链路预算模型图5-5 链路估算模型计算上下行平衡,其中有一个很重要的器件需要考虑,由于基站接收系统的有源器件和射频导体中的电子热运动引起的热噪声,降低了系统接收的信噪比(S/N),从而限制了基站接收灵敏度的提高,降低了通话质量。
塔顶放大器的原理就是通过在基站接收系统的前端,即紧靠接收天线下增加一个低噪声放大器来实现对基站接收性能的改善。
塔放从技术原理上是降低基站接收系统噪声系数,从而提高服务区内的服务质量,这样它起到的作用是对基站接收性能的改善。
塔放对上行链路的贡献需根据塔放自身的低噪放大器性能来区分,而不能单看其增益的大小。
一般增加了塔放的上下行平衡要根据其实际灵敏度的测试方法进行修正计算。
1. 无塔放无塔放时以机柜顶双工器输入口为灵敏度参考点。
对下行信号链路,基站发射机输出功率为Poutb,合路器损耗为Lcb,馈线损耗为Lfb,基站天线增益为Gab,空间传输损耗为Ld,移动台天线增益为Gam,移动台接收电平为Pinm,衰落余量为Mf,移动台侧噪声恶化量为Pmn 。
则有:Pinm+Mf=Poutb-Lcb-Lfb+Gab-Ld+Gam-Pmn (1)对上行信号链路,移动台发射机输出功率Poutm,基站分集接收增益Gdb ,基站接收电平Pinb,基站侧噪声恶化量为Pbn。
移动通信课程设计引言作为移动通信的一门核心课程,本次课程设计将涵盖移动通信的基础知识、技术以及实践操作。
移动通信已经成为当代人们日常生活和工作中不可或缺的一部分,具有广泛应用前景和经济价值,因此对于大学生来说,熟练掌握移动通信技术以及实践操作,具有重要的现实意义和意义深远的学术意义。
通过本次课程设计的学习和实践操作,希望能够让同学们更好地了解移动通信技术,并掌握相关技能,为日后的学习和工作打下坚实的基础。
设计目标和要求本次课程设计的目标是让学生们全面了解移动通信的基础知识和技术,掌握不同种类的通信协议和通信技术,并能够通过实践操作来深入学习。
同时,还要求学生们熟练掌握通信网络的搭建,能够使用相关工具进行实验和调试,并能够在课程设计的框架下完成一项完整的通信系统方案设计。
设计内容第一章移动通信基础知识•移动通信概述•移动通信技术发展历程•移动通信系统组成及其基本结构•移动通信网络协议第二章无线传输技术•无线传输信道的特点和分类•传输技术常见的数字调制类型•无线信号传输中的多径效应及其解决方案第三章移动通信协议•移动通信协议的结构和种类•移动通信网络中的路由协议•移动通信协议的应用实例第四章移动通信系统设计•移动通信系统设计的基本要求•移动通信系统硬件设计•移动通信系统软件设计第五章移动通信实践操作•移动通信实践操作环境搭建•移动通信实验的常见操作•移动通信系统实际应用实例设计要求•学生们需要按照给定的文档步骤逐一完成课程设计。
•课程设计要求包含理论学习、实践操作和报告撰写三个环节。
•实践操作要求每位同学独立完成,在完成后进行实验报告撰写和评估。
•课程设计完成后,需要将实验报告进行整合,形成一份完整的课程设计报告,并进行课程总结和学习反思。
结语移动通信课程设计是一项比较复杂和综合性很强的课程,要求学生们具备一定的编程以及网络基础知识,因此需要学生们逐一完成各个环节,不断加强自身能力的提升和提高。
通过本次课程设计,相信同学们能够更好地理解移动通信技术,并掌握相关技能,为将来的学习和工作做出更大的贡献。
移动通信技术课程设计报告一、课程设计的目的移动通信技术作为现代通信领域的重要组成部分,其发展日新月异。
本课程设计旨在通过实际项目的实践,加深对移动通信技术原理的理解,提高解决实际问题的能力,培养创新思维和团队合作精神。
二、课程设计的任务与要求本次课程设计的任务是设计一个简单的移动通信系统模型,并对其性能进行分析和优化。
具体要求包括:1、熟悉移动通信系统的基本组成和工作原理,包括无线信道、调制解调、编码解码、多址接入等。
2、选择合适的技术和算法,设计系统的架构和模块功能。
3、使用相关软件或工具进行系统建模和仿真。
4、对系统的性能进行评估,如误码率、吞吐量、频谱效率等,并分析影响性能的因素。
5、提出优化方案,提高系统性能。
三、移动通信系统的基本原理移动通信系统主要由移动台、基站、移动交换中心和传输网络等部分组成。
无线信道是移动通信中信号传输的媒介,具有多径衰落、多普勒频移等特性。
为了克服这些不利影响,采用了多种技术,如分集接收、均衡、纠错编码等。
调制解调是将数字信号转换为适合在无线信道中传输的模拟信号,以及将接收到的模拟信号还原为数字信号的过程。
常用的调制方式有幅度调制、频率调制和相位调制等。
多址接入技术用于多个用户共享有限的频谱资源,常见的有频分多址、时分多址和码分多址等。
四、系统设计与实现1、系统架构设计基于对移动通信系统原理的理解,设计了一个包括发送端、无线信道和接收端的简单系统架构。
发送端包括信源编码、信道编码、调制等模块;接收端包括解调、信道解码、信源解码等模块。
2、模块功能实现信源编码采用了高效的压缩算法,以减少数据量。
信道编码选用了具有较强纠错能力的卷积码或 Turbo 码。
调制方式选择了 QPSK 或 16QAM 等,根据系统要求和信道条件进行调整。
3、软件工具选择使用了 MATLAB 作为主要的建模和仿真工具,利用其强大的通信工具箱和信号处理功能。
五、系统性能评估1、误码率分析通过改变信道条件(如信噪比),仿真得到系统的误码率曲线。
移动通信课程设计移动通信是指通过无线技术实现的移动设备间的通信方式,目前已经成为我们生活中不可或缺的一部分。
为了培养学生对移动通信的理解和掌握,设计一门移动通信课程是非常重要的。
本文将为您介绍一种高质量的移动通信课程设计。
1. 引言移动通信的发展给我们的生活带来了极大的方便和快捷。
为了适应这个时代的发展,我们需要培养学生对移动通信的理解和应用能力。
因此,设计一门系统全面、实用性强的移动通信课程就显得尤为重要。
2. 课程目标(1)了解移动通信的基本概念和原理;(2)掌握移动通信技术的发展历程和趋势;(3)熟悉移动通信系统的组成和工作原理;(4)能够使用移动通信技术进行实际应用和解决问题。
3. 课程内容(1)移动通信基本概念和原理a. 移动通信的定义和分类b. 信号传输和调制技术c. 射频传输原理和频谱分析d. 移动通信中的时隙分配和协议设计(2)移动通信系统和网络a. 移动通信系统的组成和功能b. GSM和CDMA等主要移动通信标准c. 移动通信网络结构和拓扑设计d. 移动通信系统的性能评估和安全防护(3)无线传感器网络与物联网a. 无线传感器网络的基本概念和应用b. 物联网的意义和发展趋势c. 物联网中的移动通信技术和应用案例d. 智能家居和智慧城市中的移动通信应用(4)移动通信技术的发展与展望a. 5G通信技术的特点和应用b. 虚拟现实和增强现实中的移动通信技术c. 移动通信中的人工智能技术和机器学习应用d. 未来移动通信技术的前景和挑战4. 教学方法(1)理论授课:通过讲授基本概念和原理,帮助学生建立起移动通信的知识体系。
(2)案例分析:通过分析实际应用案例,培养学生解决问题的能力和实践经验。
(3)实验实践:通过实际操作和实验,使学生亲自体验移动通信技术的应用和工作原理。
(4)小组讨论:鼓励学生在小组中讨论和交流,共同解决问题和发现新的思路。
5. 课程评估(1)平时表现:包括课堂参与、作业完成情况等,占总评成绩的30%。
兰州交通大学本科生课程设计中文题目:LTE链路预算分析英文题目:LTE link budget analysis课程:移动通信原理学院:电信学院专业:通信工程班级:通信1403班组长:组员:指导教师:邸敬完成日期: 2017年6月28日成绩打分表摘要链路预算是无线网络规划的基础环节,对网络覆盖能力和建设成本的估算具有十分重要的意义。
良好的网络覆盖是所有无线网络赖以生存的根本,直接影响最终的用户感知。
而链路预算是评估无线通信系统覆盖能力的主要方法,是无线网络规划中的一项重要工作。
因此,在进行无线网络规划时需要进行链路预算以得到合理的无线覆盖预测结学号 姓名 考勤(10) 团队合作能力沟通能力(5) 课程设计报告 团队中承担相应的职责(10) 共享信息(5) 技术水平(10) 实践能力(10) 设计完成的正确性(30) 设计完成的规范程度(20)总分(100) 201409727 姜海军201409732 裴振启201409710 卢有德201409711 赵乃璇任务分配表姜海军链路预算的概述和传播模型的比较 裴振启链路预算的概述和具体计算分析 卢有德资料查找和LTE 关键技术的分析 赵乃璇英文文献翻译果,指导后续的网络建设。
本文重点对LTE链路预算的方式及主要参数进行研究,给出了关键参数的典型取值,并分析总结不同的场景或双工方式对链路预算及覆盖能力的影响。
本文结合LTE系统的特点对其链路预算参数进行分析,并着重研究了LTE系统的链路预算方法,并根据链路预算介绍小区覆盖半径和单站覆盖面积的方法,本文给出的方法可用于LTE网络规划和设计(室内和室外)。
本文对链路预算中几种传播模型的比较,包括OKUMURA模型、OKUMURA--HATA模型、COST-231模型和COST-231 HATA模型,并对各个模型进行了建模仿真。
最后,对兰州交通大学移动通信链路损耗,使用COST 231-Hata模型和ITU-R P.1238模型进行了具体分析。
移动通信网课程设计一、课程目标知识目标:1. 理解并掌握移动通信网的基本概念、原理和技术;2. 学习并了解移动通信网的体系结构、关键技术和发展趋势;3. 掌握移动通信网络的规划、优化和运维基本知识。
技能目标:1. 能够运用所学知识分析和解决移动通信网络中的实际问题;2. 培养对移动通信网络进行规划和优化的实际操作能力;3. 提高查阅资料、整理信息和沟通交流的能力。
情感态度价值观目标:1. 培养学生对移动通信技术及其应用的兴趣,激发学生的创新意识;2. 培养学生具备团队协作精神,学会倾听、尊重他人意见;3. 增强学生对国家移动通信产业发展现状和趋势的认识,提高社会责任感和使命感。
课程性质:本课程为高中信息技术学科拓展课程,以理论教学和实践操作相结合的方式开展。
学生特点:高中年级学生,具有一定的信息技术基础,对移动通信技术有一定了解,求知欲强,喜欢探索新技术。
教学要求:结合课程性质、学生特点,注重理论与实践相结合,强调学生的主动参与和实际操作能力的培养。
通过本课程的学习,使学生能够达到上述具体的学习成果。
二、教学内容1. 移动通信网基本概念:包括移动通信的发展历程、移动通信系统的组成及功能;- 教材章节:第一章“移动通信概述”2. 移动通信网原理与技术:学习移动通信的基本原理、关键技术及标准化进程;- 教材章节:第二章“移动通信原理与技术”3. 移动通信网体系结构:了解移动通信网络的分层结构、接口标准及相关协议;- 教材章节:第三章“移动通信网络体系结构”4. 移动通信网络的规划与优化:学习网络规划、优化方法以及工具的使用;- 教材章节:第四章“移动通信网络规划与优化”5. 移动通信网络的运维与管理:了解移动通信网络的运维流程、管理制度及发展趋势;- 教材章节:第五章“移动通信网络运维与管理”6. 移动通信应用与案例分析:探讨移动通信在物联网、5G等领域的应用,分析实际案例;- 教材章节:第六章“移动通信应用与案例分析”教学内容安排和进度:- 第1周:移动通信概述及发展历程;- 第2周:移动通信原理与技术;- 第3周:移动通信网络体系结构;- 第4周:移动通信网络规划与优化;- 第5周:移动通信网络运维与管理;- 第6周:移动通信应用与案例分析。
5g链路预算模型
5G技术是当前最新的移动通信技术,它可以实现更快的数据传输速度、更高的带宽和更低的延迟。
而链路预算模型则是为了评估和优化5G网络中链路质量而开发的一种模型。
5G链路预算模型非常重要,因为它可以帮助我们预估5G网络中链路的质量,并通过相应的优化来提升网络性能。
这个模型的核心是建立一个数学模型,用来描述信号在传输过程中的损耗和衰减情况。
具体来说,这个模型需要考虑以下因素:
1.传输距离:信号在传输过程中会受到距离的影响,传输距离越远,信号的质量就会越差。
2.频率:频率是指信号传输时所使用的频段,频率越高,信号的传输速度就越快,但也会受到干扰和衰减的影响。
3.天线:天线的方向和位置也会影响信号的质量,因此在建立预算模型时需要考虑天线的类型和放置位置。
4.环境:信号传输的环境也会影响链路的质量,例如建筑、地形和气象条件等。
通过这些因素的综合考虑,我们可以建立一个多元线性回归模型,来预测5G网络中链路的质量。
通过这个模型,我们可以计算出链路预算,也就是信号可以承受的最大损耗和最小接收功率。
如果链路
预算计算出来的值比实测值大,那么可以通过一些技术手段来优化信号的传输质量。
具体的优化措施包括:调整天线的放置位置和方向,增加中继设备的数量,使用高增益天线等。
这些优化手段可以有效地提升信号的传输质量,使得5G网络可以实现更高的速度和更低的延迟。
总的来说,5G链路预算模型是5G网络优化的重要工具之一。
通过建立这个模型,我们可以预估链路质量,优化网络性能,从而为智慧城市、5G物联网等新兴应用提供更加稳定可靠的网络支撑。
移动通信课程设计—链路预算模型含源程序The pony was revised in January 20213链路预算模型概述移动通信系统的性能主要受到无线信道特性的制约。
发射机与接收机之间的传播路径一般分布有复杂的地形地物,而电磁波在无线信道中传播受到反射、绕射、散射、多经传播等多种因素的影响,其信道往往是非固定的和不可预见的。
具有复杂时变的电波传播特性,因而造成了信道分析和传播预测的困难。
影响无线信道最主要的因素就是信号衰减。
在无线通信系统中,电波传播经常在不规则地区。
在估计预测路径损耗时,要考虑特定地区的地形地貌,同时还要考虑树木、建筑物和其他遮挡物等因素的影响。
在无线通信系统工程设计中,常采用电波传播损耗模型来计算无线链路的传播损耗,这些模型的目标是为了预测特定点的或特定区域的信号场强。
常用的电波传播模型损耗分为宏蜂窝模型和室内模型两大类。
其中宏蜂窝模型中使用最广泛的是Okumura模型,还有建立在Okumura模型基础上的其他模型,如Okumura-Hata模型,COST-231-Hata模型,COST-231 Wslfisch-Ikegami模型等;室内模型有衰减因子模型,Motley模型,对数距离路径损耗模型等。
下面就着重来讨论这些模型并对部分模型进行仿真分析。
宏蜂窝模型Okumura模型(1)概述Okumura模型为预测城区信号时使用最广泛的模型。
应用频率在150MHz到1920MHz之间(可扩展到300MHz),收发距离为1km到100km,天线高度在30m到1000m之间。
Okumura模型开发了一套在准平滑城区,基站有效天线高度h_b为200m,移动台天线高度h_m为3m的空间中值损耗(A mu)曲线。
基站和移动台均使用自由垂直全方向天线,从测量结果得到这些曲线,并画成频率从100MHz到1920MHz的曲线和距离从1km到100km 的曲线。
使用Okumura 模型确定路径损耗,首先确定自由空间路径损耗,然后从曲线中读出A mu (f,d)值,并加入代表地物类型的修正因子。
移动通信原理与技术课程设计1. 引言移动通信技术,是指在移动通信设备之间进行语音和数据通信的技术和系统。
目前,移动通信技术已经成为人们生活中不可或缺的一部分。
移动通信原理与技术课程设计将探讨移动通信的原理,经典的系统结构、以及移动通信中的调制解调和信道编解码技术等等。
在本篇文章中,将会进行一个简单的课程设计,以供读者参考。
2. 课程设计介绍在此次课程设计中,将涉及三部分内容:1.移动通信信道和基带调制2.移动通信中的信道编码和串并转换3.移动通信收发机设计2.1 移动通信信道和基带调制这部分内容将会涉及偏移调制的原理与实现。
读者将会学到带限信号将会是如何被调制到无线电频率中的,并能理解为什么需要解调器去执行该操作。
2.2 移动通信中的信道编码和串并转换我们将会涵盖信道编码,串并转换以及不同步调制等内容。
结合基带调制,读者将了解到信号如何在移动通信网络中传输以及如何编码与解码。
2.3 移动通信收发机设计最后,我们将会探索如何构建一个收发机来将数字信息转换为模拟信号。
该部分重点将会是将信号从数字领域调制至模拟领域并反向操作。
3. 移动通信课程设计实现在此课程设计中,我们将会使用MATLAB模拟移动通信系统。
我们将会创建一个简单的等化器,并将其用于移动通信信道的等化。
此外,还将使用全软件开发平台的GNU Radio来构建从数字信号到模拟信号的收发机通道。
3.1 MATLAB移动通信系统模拟在MATLAB中,我们将会使用梅勒和PAM调制来实现数字信号的调制和解调。
此外,我们还将使用复杂平面偏移调制来将信号调制到RF频率。
该过程包括带限信号的滤波、采样和信道调制等步骤。
最后,我们将展示如何应用等化器和Viterbi解调器来恢复数字信号。
3.2 GNU Radio移动通信收发机通道衷心推荐GNU Radio,这是一个支持软件无线电(SDR)的全软件开发平台。
这个HDSDR软件已经包含了非常强大的信号处理功能,包括信号生成、滤波、混叠、信号识别、信道仿真、波形显示、功率谱分析和调制解调。
3链路预算模型概述 移动通信系统的性能主要受到无线信道特性的制约。
发射机与接收机之间的传播路径一般分布有复杂的地形地物,而电磁波在无线信道中传播受到反射、绕射、散射、多经传播等多种因素的影响,其信道往往是非固定的和不可预见的。
具有复杂时变的电波传播特性,因而造成了信道分析和传播预测的困难。
影响无线信道最主要的因素就是信号衰减。
在无线通信系统中,电波传播经常在不规则地区。
在估计预测路径损耗时,要考虑特定地区的地形地貌,同时还要考虑树木、建筑物和其他遮挡物等因素的影响。
在无线通信系统工程设计中,常采用电波传播损耗模型来计算无线链路的传播损耗,这些模型的目标是为了预测特定点的或特定区域的信号场强。
常用的电波传播模型损耗分为宏蜂窝模型和室内模型两大类。
其中宏蜂窝模型中使用最广泛的是Okumura 模型,还有建立在Okumura 模型基础上的其他模型,如Okumura-Hata 模型,COST-231-Hata 模型,COST-231 Wslfisch-Ikegami 模型等;室内模型有衰减因子模型,Motley 模型,对数距离路径损耗模型等。
下面就着重来讨论这些模型并对部分模型进行仿真分析。
宏蜂窝模型Okumura 模型(1)概述Okumura 模型为预测城区信号时使用最广泛的模型。
应用频率在150MHz 到1920MHz 之间(可扩展到300MHz ),收发距离为1km 到100km ,天线高度在30m 到1000m 之间。
Okumura 模型开发了一套在准平滑城区,基站有效天线高度h_b 为200m ,移动台天线高度h_m 为3m 的空间中值损耗(A mu )曲线。
基站和移动台均使用自由垂直全方向天线,从测量结果得到这些曲线,并画成频率从100MHz 到1920MHz 的曲线和距离从1km 到100km 的曲线。
使用Okumura 模型确定路径损耗,首先确定自由空间路径损耗,然后从曲线中读出A mu (f,d)值,并加入代表地物类型的修正因子。
模型可表示为:AREA m b mu F G h G h G d f A L dB L ---+=)()(),()(50 ()Okumura 发现,其中,L 50(dB)为传播路径损耗值的50%(即中值),L F 为自由空间传播损耗,A mu 为自由空间中值损耗,G(h b )为基站天线高度增益因子,G(h m )为移动天线高度增益因子,G AREA 为环境类型的增益。
(注: 天线高度增益为严格的高度函数,与天线形式无关)。
Okumura 模型完全基于测试数据,不提供任何分析解释。
对许多情况,通过外推曲线来获得测试范围以外的值,但这中外推法的正确性依赖于环境和曲线的平滑性。
Okumura 模型为成熟的蜂窝和陆地移动无线系统路径预测提供最简单和最精确的解决方案。
但这种模型的主要缺点是对城区和郊区快速变化的反应较慢。
预测和测试的路径损耗偏差为10dB 到14dB 。
(2)中等起伏地上市区传播损耗的中值在计算各种地形。
地物上的传播损耗是时,均以中等起伏地上市区传播损耗的中值或场强中值作为基准,因而将其称作基准中值或基本中值。
如果A mu (f,d)曲线在基准天线高度下测的,即基站天线高度h b =200m ,移动台天线高度h m =3m 。
中等起伏地上市区实际传播损耗(L T )应为自由空间的传播损耗(L F )加上基本中值A mu (f,d)(可查得)。
即:),(__d f A F L T L mu += ()如果基站天线高度h_b 不是200m 则损耗中值的差异用基站天线高度增益因子G(h b )表示,当移动台高度不是3m 时,需用为移动天线高度增益因子G(h m )加以修正。
中等起伏地上市区实际传播损耗(L T )为:)()(),(m b F T h g h G d f Amu L L --+= ()(3)郊区和开阔地传播损耗的中值郊区的建筑物一般是分散的、低矮的,故电波传播条件优于市区。
郊区的传播损耗中值比市区传播损耗中值要小。
郊区场强中值与基准场强中值之差定义为郊区修正因子,记作K mr 。
开阔地的传播条件优于市区、郊区及准开阔地,相同条件下,开阔地上的场强中值比市区高近20dB 。
Q 0表示开阔地修正因子,Q r 表示准开阔地修正因子。
(4)不规则地形上传播损耗的中值实际的传播环境中,如下一些地形需要考虑,用来修正传播损耗预测模型,其分析方法与前面类似。
丘陵地的修正因子K h孤立山丘修正因子K js斜坡地形修正因子K sp水陆混合路径修正因子K s(5)任意地形地区的传播损耗的中值任意地形地区的传播损耗修正因子K T 一般可写成s sp js h r mr T K K K K Q Q K K ++++++=0 ()根据实际的地形地物情况,K T 修正因子可以为其中的某几项,其余为零。
任意地形地区的传播损耗的中值T T K L L -= ()式中, )()(),(m b mu F T h G h G d f A L L --+=Okumura-Hata 模型(1)概述Okumura-Hata 模型在900MHz GSM 中得到广泛应用,适用于宏蜂窝的路径损耗预测。
该模型的主要缺点是对城市和郊区快速变化的反应快慢。
预测和测试的路径损耗偏差为10到14dB 。
Okumura-Hata 模型是根据测试数据统计分析得出的经验公式,应用频率在150MHz 到1?500MHz 之间,并可扩展3000MHz;适用于小区半径大于1km 的宏蜂窝系统,作用距离从1km 到20km 经扩展可延伸至100km;基站有效天线高度在30m 到200m 之间,移动台有效天线高度在1m 到10m 之间。
Okumura-Hata 模型路径损耗计算的经验公式为:terrain cell te re te c p C C dh h h f dB L ++-+--+=lg )lg 55.69.44()(lg 82.13lg 16.2655.69)(α ()式中,f c (MHz )为工作频率; h te (m )为基站天线有效高度,定义为基站天线实际海拔高度与天线传播范围内的平均地面海拔高度之差;h re (m )为终端有效天线高度,定义为终端天线高出地表的高度; d (km ):基站天线和终端天线之间的水平距离;α(h re ) 为有效天线修正因子,是覆盖区大小的函数,其数字与所处的无线环境相关,参见以下公式。
22(1.1lg 0.7)(1.56lg 0.8)(), 8.29(lg1.54) 1.1(), 300MHz,3.2(lg1.75) 4.97(), 300MHz,m m m m f h f dB h h dB f h dB f α---⎧⎪-≤⎨⎪->⎩中、小城市()=大城市大城市() C cell :小区类型校正因子,即[]20, 2(lg /28) 5.4(dB), 4.78(lg )18.33lg 40.98(dB), cellC f f f ⎧⎪⎪=--⎨⎪---⎪⎩城市郊区乡村 ()C:地形校正因子,地形校正因子反映一些重要的地形环境因素对路径损耗的影terrain响,如水域、树木、建筑等。
合理的地形校正因子可以通过传播模型的测试和校正得到,也可以由用户指定。
(2)Okumura-Hata模型仿真Okumura-Hata模型是预测城市及周边地区路径损耗时使用最为广泛的模型。
它基于测试数据所作的图表, 不提供任何的分析解释。
工作频率在150MHz到1500MHz之间, 并可扩展3000MHz; 作用距离从1km 到20km 经扩展可延伸至100km; 基站天线高度在30m 到200m 之间, 经扩展可延伸至1000m;移动台天线高度从1m 到10m。
Hata模型则根据Okumura图表数据, 经曲线拟合得出一组经验公式。
它以市区路径传播损耗为基准, 在此基础上对其他地区进行修正。
实测中在基本确定了设备的功率、天线的高度后,可利用Okumura-Hata模型对信号覆盖范围做一个初步的测算。
损耗单位为dB。
以下就是仿真过程,仿真所用程序见附录,仿真得图形如图3-1和3-2所示:图3-1 Okumura-Hata模型(d=0:100km; f=450MHz; h_m=5m;c_t=0;)图3-2 Okumura-Hata模型(d=0:100km; f=900MHz; h_m=5m;c_t=0;)从仿真结果中可以看出,中小城市和大城市地形地物基本上差别不大,而移动台高度、频率、基站高度一定的情况下,损耗曲线基本上是重合的;从仿真结果得知,在0~10km范围中损耗急剧上升,10km之后信道的衰减虽然也是随着距离的增加也有增大的趋势但相比之下,衰减更为平缓,从图中不难看出,在相同的频率下中小城市和大城市的衰减最为严重,郊区次之,农村的衰减最少,这是因为在城市当中造成衰减的因素更多。
此外,在其他条件不变的情况下,频率越大,衰减也就越大。
Okumura-Hata模型适用于大区制移动系统,但是不适合覆盖距离不到1km的个人通信系统,Okumura-Hata模型基站天线高度高于其周围屋顶的宏蜂窝系统,因为在宏蜂窝中,基站天线都安装在高于屋顶的位置,传播路径损耗主要由移动台附近的屋顶绕射和散射决定。
Okumura-Hata模型的建模不仅为蜂窝移动和陆地无线信道传播损耗的预测提供了方便实用的可视化解决方案, 而且解决了在无线信道建模中存在的人机交互性差, 对模型进行参数分析、综合计算及全过程演示困难的问题。
COST-231 Walfisch-Ikegami模型(1) COST-231 Walfisch-Ikegami模型的基本原理COST-231 Walfisch-Ikegami模型广泛地用于建筑物高度近似一致的郊区和城区环境,它可用于宏蜂窝及微蜂窝作传播路径损耗预测,经常在移动通信的系统(GSM/PCS/DECT/DCS )的设计中使用。
COST-231 Walfisch-Ikegami 模型是基于Walfisch 模型和Ikegami 模型得到的,该模型也考虑了自由空间的路径损耗、散射损耗以及由建筑物边缘引起的附加损耗,其使用范围为频率f 在800—2000MHz 之间,基站天线高度h 为4—50米,移动台天线高度h m 为1—3米,距离d 为—5km 。
图3-3为COST-231 Walfisch-Ikegami 模型的示意图。
图3-3 COST-231 Walfisch-Ikegami 模型的示意图COST-231 Walfisch-Ikegami 模型分视距传播(LOS )和非视距传播(NLOS )两种情况计算路径损耗。