2.2.2 椭圆的简单几何性质 2
- 格式:ppt
- 大小:5.61 MB
- 文档页数:17
诚西郊市崇武区沿街学校2.2.2椭圆的简单几何性质设计一.教学内容解析:椭圆是生活中常见的曲线,研究它的几何性质,对于后续学习圆锥曲线有重要的指导作用,也为研究双曲线和抛物线奠定了根底。
研究曲线的性质,可以从整体上把握曲线的形状,大小和位置。
利用方程研究椭圆的简单几何性质之前,先引导学生想一想我们应该关注椭圆哪些方面性质。
研究椭圆的详细性质之前,先让学生观察图形直观得到性质,而后利用方程去研究。
根据曲线的条件求出曲线的方程,假设说是解析几何的手段,那么根据曲线的方程研究它的几何性质那么可以说是解析几何的一个手段。
方程研究曲线性质,即代数方法解决几何问题,将复杂的几何关系的研究转化为对曲线方程特点的分析,代数方法可以程序化地进展运算,代数法研究曲线的性质有较强的规律性,这是当年Descartes 创立解析几何的直接目的。
二.教学目的设置: (一)知识与技能:1.给定椭圆标准方程,能说出椭圆的范围,对称性,顶点坐标和离心率;2.在图形中,能指出椭圆中e c b a ,,,的几何意义及其互相关系;3.知道离心率大小对椭圆扁平程度的影响; (二)过程与方法:1.通过画图并观察得到椭圆的一些性质,培养学生观察分析意识;2.方程研究椭圆性质,让学生感受到解析几何的目的——代数法研究几何问题;3.让学生注意“顶点〞“椭圆中心〞的概念,体会到特殊与一般的区别;4.通过设置填表和例2〔2〕,让学生体会类比法和分类讨论的重要性。
(三)情感态度与价值观:讨论打破难点,培养学生意识;通过对椭圆对称性及离心率对椭圆形状影响的研究,让学生感受到数学美;方程研究曲线的性质,可以程序化运算,感悟数学家创立解析几何的目的;结合之前的学习,学生发现曲线与方程的互相结合,体会出事物的辩证统一,互相转化的唯物主义。
三.学生学情分析:本班学生数学根底参差不齐,学习程度开展不平衡;学生已熟悉和掌握椭圆定义及其标准方程,学生有动手体验和探究的兴趣,有一定的观察分析和逻辑推理的才能;学生接触过由函数解析式研究函数图像的性质,由方程求过直线和圆的一些特殊点;离心率概念比较抽象,直接引入比较突兀,给学生明确的问题,结适宜当的点拨与演示,是非常必要的。
§2.2.2 椭圆的简单几何性质(2)●教学目标1.熟悉椭圆的几何性质;2.利用椭圆几何性质求椭圆标准方程; 3.了解椭圆在科学研究中的应用. ●教学重点:椭圆的几何性质应用 ●教学过程:Ⅰ、复习回顾:利用椭圆的标准方程研究了椭圆的几何性质. Ⅱ、讲授新课:例6.点 ),(y x M 与定点 )0,4(F 的距离和它到定直线 425:=x l 的距离的比是常数54,求点的轨迹.解:设 是点 直线 的距离,根据题意,如图所求轨迹就是集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==54d MF M P 由此得54425)4(22=-+-x y x .将上式两边平方,并化简得 22525922=+y x即192522=+y x所以,点M 的轨迹是长轴、短轴分别是10、6的椭圆说明:椭圆的一个重要性质:椭圆上任意一点与焦点的距离和它到定直线的距离的比是常数(e 为椭圆的离心率)。
其中定直线叫做椭圆的准线。
对于椭圆 ,相应于焦点 的准线方程是 .根据椭圆的对称性,相应于焦点 的准线方程是,所以椭圆有两条准线.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.【典例剖析】 [例1]已知椭圆2222by a x +=1(a >b >0)的焦点坐标是F 1(-c ,0)和F 2(c ,0),P (x 0,y 0)是椭圆上的任一点,求证:|PF 1|=a +ex 0,|PF 2|=a -ex 0,其中e 是椭圆的离心率.[例2]已知点A (1,2)在椭圆121622y x +=1内,F 的坐标为(2,0),在椭圆上求一点P 使|PA |+2|PF |最小.[例3]在椭圆92522y x +=1上求一点P ,使它到左焦点的距离是它到右焦点距离的两倍. Ⅲ、课堂练习: 课本P52,练习 5 再练习:已知椭圆上一点 到其左、右焦点距离的比为1:3,求 点到两条准线的距离.(答案: 到左准线的距离为 ,到右准线的距离为.)思考: 已知椭圆 内有一点 ,是椭圆的右焦点,在椭圆上有一点 ,使的值最小,求的坐标.(如图)分析:若设,求出 ,再计算最小值是很繁的.由于 是椭圆上一点到焦点的距离,由此联想到椭圆的第二定义,它与到相应准线的距离有关.故有如下解法. 解:设在右准线 上的射影为.由椭圆方程可知,,.根据椭圆的第二定义,有 即.∴.显然,当 、、 三点共线时,有最小值.过 作准线的垂线.由方程组 解得 .即 的坐标为.【随堂训练】1.椭圆2222ay b x +=1(a >b >0)的准线方程是( )A .y =±222b a a + B.y =±222b a a -C.y =±222ba b - D.x =±222ba a -2.椭圆4922y x +=1的焦点到准线的距离是( )A .554和559 B .559和5514 C .554和5514 D .5514 3.已知椭圆2222by a x +=1(a >b >0)的两准线间的距离为3316,离心率为23,则椭圆方程为( ) A .3422y x +=1 B .31622y x +=1 C .121622y x +=1 D .41622y x +=14.两对称轴都与坐标轴重合,离心率e =0.8,焦点与相应准线的距离等于49的椭圆的方程是( )A .92522y x +=1或92522x y +=1B .92522y x +=1或162522y x +=1C .162x +92y =1 D .162522x y +=15.已知椭圆2222by a x +=1(a >b >0)的左焦点到右准线的距离为337,中心到准线的距离为334,则椭圆的方程为( ) A .42x +y 2=1 B .22x +y 2=1C .42x +22y =1D .82x +42y =16.椭圆22)2()2(-+-y x =25843++y x 的离心率为( )A .251 B .51 C .101 D .无法确定【强化训练】1.椭圆2222by a x +=1和2222by a x +=k (k >0)具有( )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴2.椭圆92522y x +=1上点P 到右焦点的最值为( )A .最大值为5,最小值为4B .最大值为10,最小值为8C .最大值为10,最小值为6D .最大值为9,最小值为13.椭圆的一个顶点与两个焦点构成等边三角形,则此椭圆的离心率是( )A .51 B .43 C .33 D .214.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为( )A .41 B .22 C .42 D .215.椭圆m y m x 21322++=1的准线平行于x 轴,则m 的取值范围是( )A .m >0B .0<m <1C .m >1D .m >0且m ≠16.椭圆92522y x +=1上的点P 到左准线的距离是2.5,则P 到右焦点的距离是________.7.椭圆103334)1()1(22--=-++y x y x 的长轴长是______.8.AB是过椭圆4522y x +=1的一个焦点F 的弦,若AB 的倾斜角为3π,求弦AB 的长.9.已知椭圆的一个焦点是F (1,1),与它相对应的准线是x +y -4=0,离心率为22,求椭圆的方程.10.已知点P在椭圆2222bx a y +=1上(a >b >0),F 1、F 2为椭圆的两个焦点,求|PF 1|·|PF 2|的取值范围.【学后反思】椭圆的离心率是焦距与长轴的比,椭圆上任意一点到焦点的距离与这点到相应..准线的距离的比也是离心率,这也是离心率的一个几何性质.椭圆的离心率反映了椭圆的扁平程度,它也沟通了椭圆上的点的焦半径|PF|与到相应准线距离d之间的关系.左焦半径公式是|PF1|=a+ex0,右焦半径公式是|PF2|=a-ex0.焦半径公式除计算有关距离问题外还证明了椭圆上离焦点距离最远(近)点实a2,但必须注意这是椭圆的为长轴端点.椭圆的准线方程为x=±c中心在原点,焦点在x轴上时的结论.。
2.2 椭圆2.2.2椭圆的简单几何性质 第一课时 椭圆的简单几何性质【学习目标】1、理解椭圆的范围、对称性、顶点、长轴长及短轴长;2、掌握椭圆的离心率及c b a ,,的几何意义。
【重难点】重点:椭圆的简单几何性质 难点:求椭圆的离心率 【学习过程】复习引入:1、椭圆的定义我们把平面内与两个定点21,F F 的距离的和等于常数(大于||21F F )的点的轨迹叫做椭圆。
这两个定点21,F F 叫做椭圆的焦点,两焦点21,F F 间的距离||21F F 叫做椭圆的焦距。
2、椭圆的标准方程焦点在x 轴上:12222=+b y a x )0(>>b a 焦点在y 轴上:12222=+ay b x )0(>>b a3、重要结论:222c b a +=知识点一:椭圆的简单几何性质 1、范围由图形及椭圆的标准方程12222=+b y a x 可知,122≤a x 且122≤by ,即⎩⎨⎧≤≤-≤≤-by b ax a 故椭圆12222=+by a x 位于直线a x ±=和b y ±=所形成的矩形框里。
2、对称性观察椭圆的形状,可以发现椭圆既是轴对称图形,又是中心对称图形。
在椭圆12222=+by a x 中,用y -代替y ,方程不变,所以椭圆关于x 轴对称;用x -代替x ,方程不变,所以椭圆关于y 轴对称;用x -代替x ,用y -代替y ,方程不变,所以椭圆关于原点对称。
结论:椭圆关于x 轴和y 轴都对称,所以x 轴、y 轴叫做椭圆的对称轴;对称轴的交点原点,叫做椭圆的对称中心。
3、顶点椭圆与对称轴的交点,叫做椭圆的顶点。
显然12222=+by a x 有四个顶点,其中在x 轴上有)0,(),0,(21a A a A -,在y 轴上有),0(),,0(21b B b B -。
线段2121,B B A A 分别叫做椭圆的长轴和短轴,它们的长分别和a 2和b 2,b a ,分别叫做椭圆的长半轴长和短半轴长。
2.2.2 椭圆的简单几何性质(第二课时)一、教学目标(一)学习目标1.理解直线与椭圆的位置关系;2.会进行位置关系的判断,计算弦长.(二)学习重点理解直线与椭圆的位置关系,会判定及应用(三)学习难点应用代数方法进行判定,相关计算的准确性,理解用方程思想解决直线与圆锥曲线的位置关系.二.教学设计(一)预习任务设计1.预习任务写一写:直线与椭圆的位置关系设直线:l y kx m =+,椭圆:C 22221(0)x y a b a b+=>>,联立 2222222222222()201y kx m a k b x a kmx a m a b x y ab =+⎧⎪⇒+++-=⎨+=⎪⎩2222224()a b a k b m ⇒∆=+- 若0∆=,则直线和椭圆有唯一公共点,直线和椭圆 相切 ;若0∆>,则直线和椭圆有两个公共点,直线和椭圆 相交 ;若0∆<,则,直线和椭圆没有公共点,直线和椭圆 相离 .2.预习自测(1)直线1y kx k =-+与椭圆22123x y +=的位置关系是( ) A.相交 B.相切 C.相离 D.不确定【知识点】直线与椭圆位置关系.【解题过程】直线(1)1y k x =-+恒过定点(1,1).由11123+<可知:点(1,1)在椭圆内部,故直线与椭圆相交.【思路点拨】注意利用点在椭圆内判断直线与椭圆相交.【答案】A(2)判断(正确的打“√”,错误的打“×”) ①已知椭圆22221x y a b+=(0)a b >>与点(,0)P b ,过点P 可作出该椭圆的一条切线.( )②直线()y k x a =-与椭圆22221x y a b+=的位置关系是相交.( ) 【知识点】直线与椭圆位置关系.【解题过程】点(,0)P b 在椭圆22221x y a b+=内部,故过P 不能作出椭圆的切线;直线()y k x a =-恒过点(,0)a ,而(,0)a 为椭圆22221x y a b+=的有顶点,过直线()y k x a =-一定与椭圆相交.【思路点拨】注意利用点在椭圆内判断直线与椭圆相交.【答案】①×;②√.(3)直线1y mx =+与椭圆2241x y +=有且只有一个交点,则2m =( ) A.21 B.32 C.43 D.54 【知识点】直线与椭圆的位置关系.【解题过程】联立方程22141y mx x y =+⎧⎨+=⎩得:22(14)830m x mx +++=. 由条件知:226412(14)0m m ∆=-+=,解得:234m =. 【思路点拨】利用∆判断直线与椭圆的位置关系.【答案】C(4)椭圆13422=+y x 长轴端点为M 、N ,不同于M 、N 的点P 在此椭圆上,那么PM 、PN 的斜率之积为( )A.34-B.43-C.43D.34 【知识点】直线与椭圆.【解题过程】设00(,)P x y ,则,则2200334x y =-,故00003224PM PN y y k k x x ⋅=⋅=-+- 【思路点拨】按照题意直接代入求解即可.【答案】A(二)课堂设计1. 知识回顾(1)椭圆的简单几何性质;(2)直线与圆的位置关系.2. 新知讲解探究一:探究直线与椭圆的位置关系●活动① 复习回顾,类比学习我们学习过直线与圆的位置关系及判定,请你回忆相关知识.(1)直线与圆有三种位置关系分别是相离(没有公共点)、相切(一个公共点)、相交(两个公共点).(2)判定方法有两种:代数法、几何法.那么直线与椭圆又有什么样的位置关系呢?又该如何来判定直线与椭圆的位置关系呢?【设计意图】由已有的知识类比迁移到新知识.●活动② 思考交流,结论形成通过画图我们看到,直线与椭圆的位置关系也可以归纳为相离,相切和相交,请你类比直线和圆的相离、相切、相交的定义来对直线和椭圆相离,相切和相交进行定义.学生交流,自由发言,教师适时引导,得出结论.直线与椭圆没有公共点⇔直线与椭圆相离;直线与椭圆有一个公共点⇔直线和椭圆相切;直线与椭圆有两个公共点⇔直线与椭圆相交.通过公共点的个数可以判断直线和椭圆的位置关系,如何确定公共点的个数呢?你有什么办法呢?例 1.判断直线123:1;:3;:3l y x l y x l y =+=-+=+与椭圆2214x y +=的位置关系.【知识点】直线与椭圆的位置关系.课堂活动:学生完成练习,根据学生的解题情况引入代数方法.在巡视过程中,大部分学生采用的是代数的方法,及个别的学生画出了图像,但第三条直线与椭圆的位置关系学生画图的很少,但利用代数方法研究的同学也没有得到结论.【解题过程】将直线与椭圆方程联立,根据判别式∆判断,123,,l l l 分别与椭圆的关系为:相交、相离和相切.【思路点拨】利用∆判断直线与椭圆的位置关系.【答案】123,,l l l 分别与椭圆的关系为:相交、相离和相切请你说说如何利用代数方法来进行直线和椭圆的位置关系的判断?直线与椭圆的位置关系的研究方法可通过代数方法即解方程组的办法来研究.因为方程组解的个数与交点的个数是一样的.直线与椭圆的位置关系的判定方法:直线与椭圆的位置关系设直线:l y kx m =+,椭圆:C 22221(0)x y a b a b+=>>,联立 2222222222222()201y kx m a k b x a kmx a m a b x y ab =+⎧⎪⇒+++-=⎨+=⎪⎩2222224()a b a k b m ⇒∆=+- (1)0∆>,方程有两个不等的实数根⇔有两个公共点⇔相交;(2)0∆=,方程有两个相等的实数根⇔有一个公共点⇔相切;(3)0∆<,方程没有实数根⇔没有公共点⇔相离.【设计意图】以旧带新,学生易于理解.同类训练 已知椭圆2241x y +=及直线y x m =+,当m 为何值时,直线与椭圆相切?【知识点】直线与椭圆的位置关系【解题过程】解方程组2241x y y x m⎧+=⎨=+⎩,消去y ,整理得225210x mx m ++-=, 222420(1)2016m m m ∆=--=-,由0∆=得220160m -=,解得m =【思路点拨】用方程实根个数刻画直线和圆锥曲线的位置关系,是研究直线和圆锥曲线位置关系的通法.探究二:计算椭圆的弦长●活动① 互动交流,形成结论例2. 已知斜率为2的直线经过椭圆22154x y +=的右焦点2F ,与椭圆交于,A B 两点,求AB 的长.【提出问题】本题的解决需要什么条件?如何由题目所给的条件去求得?前面的学习中遇到过类似的问题吗?当时是怎么解决的,方法能不能拿来一用?【知识点】直线与椭圆相交【解题过程】由条件知2(1,0)F ,故直线AB 方程为:22y x =-.设1122(,),(,)A x y B x y . 联立方程组2222154y x x y =-⎧⎪⎨+=⎪⎩,消去y 可得:2350x x -=. 法一:由2350x x -=得:1250,3x x ==,从而54(0,2),(,)33A B -. ||AB ∴== 法二:由2350x x -=得:12125,03x x x x +==. 2||=AB x ∴==-. 【思路点拨】初学者常想到求直线和椭圆的交点,然后利用两点间距离公式求弦长,此种方法仅当直线方程和椭圆方程简单时,易得交点坐标,一般情况不采用此法.弦长公式:2||AB x =-,其中k 为直线AB 的斜率,1122(,),(,)A x y B x y .【设计意图】由特殊到一般,让学生体会韦达定理的应用及解析几何中“设而不求,整体代入”的解题思路.同类训练 已知椭圆2241x y +=及直线y x m =+,求直线被椭圆截得最长弦所在直线方程.【知识点】直线与椭圆相交弦长公式.【解题过程】由题意2241x y y x m⎧+=⎨=+⎩得225210x mx m ++-=, 由韦达定理得122122515m x x m x x ⎧+=-⎪⎪⎨-⎪=⎪⎩, ∴弦长l === 当0m =时,l, 此时直线方程为y x =. 【思维点拨】当直线与椭圆相交时,求弦长时,联立直线方程和椭圆方程,利用韦达定理,就可以直接利用弦长公式求得弦长.●活动② 强化提升,灵活应用例3. 已知椭圆2212x y += (1)求斜率为2的平行弦的中点轨迹方程;(2)过(2,1)A 的直线l 与椭圆相交,求l 被截得的弦的中点轨迹方程;【知识点】直线与椭圆相交,曲线的方程.【解题过程】解:(1)设斜率为2的直线方程为2y x b =+.由22212y x b x y =+⎧⎪⎨+=⎪⎩得2298220x bx b ++-=, 由22(8)36(22)0b b ∆=-->,得33b -<<.设该弦的端点坐标为1122(,),(,)A x y B x y ,则12429x x b +=-,444393b -<-<. 设弦的中点坐标为(,)M x y ,则1249,294x x b x b x +==-=-, 代入2y x b =+,得4440()33x y x +=-<<为所求轨迹方程. (2)设l 与椭圆的交点为1122(,),(,)x y x y ,弦的中点为(,)x y ,则221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减并整理得12121212()()2()()0x x x x y y y y -++-+=.又12122,2x x x y y y +=+=121212122()4()=0,()20()x x x y y y y y x y x x ∴-+--+⋅=-① 由题意知1212()1()2y y y x x x --=--,代入①得1202y x y x -+⋅=-. 化简得222220x y x y +--=.∴所求轨迹方程为222220x y x y +--=(夹在椭圆内的部分).【思路点拨】例3(2)解题方法叫做“点差法”,点差法充分体现了“设而不求”的数学思想.【答案】222220x y x y +--=.同类训练 已知定点)01(,-C 及椭圆5322=+y x ,过点C 的动直线与椭圆相交于A B ,两点,若线段AB 中点的横坐标是12-,求直线AB 的方程. 【知识点】直线与椭圆的位置关系.【解题过程】依题意,直线AB 的斜率存在,设直线AB 的方程为(1)y k x =+, 将(1)y k x =+代入5322=+y x ,消去y 整理得2222(31)6350.k x k x k +++-=设1122() () A x y B x y ,,,, 则4222122364(31)(35)0 (1) 6. (2)31k k k k x x k ⎧∆=-+->⎪⎨+=-⎪+⎩, 由线段AB 中点的横坐标是12-, 得2122312312x x k k +=-=-+,解得k =,适合(1). 所以直线AB 的方程为10x +=,或10x ++=.【思维点拨】解决直线和圆锥曲线的相关问题时,韦达定理得应用十分广泛,此题干中涉及中点问题,自然联想到12x x +韦达定理结构.【答案】10x -+=,或10x +=.3.课堂总结知识梳理(1)直线与椭圆的位置关系0∆>,方程有两个不等的实数根⇔有两个公共点⇔相交;0∆=,方程有两个相等的实数根⇔有一个公共点⇔相切;0∆<,方程没有实数根⇔没有公共点⇔相离.(2)弦长公式:2||AB x =-,其中k 为直线AB 的斜率,1122(,),(,)A x y B x y .重难点归纳(1)用方程实根个数刻画直线和圆锥曲线的位置关系,是研究直线和圆锥曲线位置关系的通法;(2)涉及弦中点的问题,常用点差法处理.(三)课后作业基础型 自主突破1.若点P (a,1)在椭圆x 22+y 23=1的外部,则a 的取值范围为( )A.(-233,233)B.(233,+∞)∪(-∞,-233)C.(43,+∞)D.(-∞,-43)【知识点】椭圆的几何性质.【解题过程】因为点P 在椭圆x 22+y 23=1的外部,所以a 22+123>1,解得a >233或a <-233,故选B.【思路点拨】根据点与椭圆的位置关系建立不等式求解.【答案】B 2.点P 为椭圆x 25+y 24=1上一点,以点P 及焦点F 1、F 2为顶点的三角形的面积为1,则P 点的坐标为( )A.(±152,1)B.(152,±1)C.(152,1)D.(±152,±1)【知识点】椭圆的几何性质.【解题过程】设P (x 0,y 0),∵a 2=5,b 2=4,∴c =1,∴12PF F S ∆=12|F 1F 2|·|y 0|=|y 0|=1,∴y 0=±1,∵x 205+y 204=1,∴x 0=±152.故选D.【思路点拨】焦点三角形面积计算以12||F F 为底边.【答案】D3.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( )A.22B.33C.12D.13【知识点】椭圆的几何性质.【解题过程】把x =-c 代入椭圆方程可得y c =±b 2a , ∴|PF 1|=b 2a ,∴|PF 2|=2b 2a ,故|PF 1|+|PF 2|=3b 2a =2a ,即3b 2=2a 2. 又∵a 2=b 2+c 2,∴3(a 2-c 2)=2a 2,∴(c a )2=13,即e =33.【思路点拨】利用椭圆定义和几何关系解题.【答案】B4.如图F 1、F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,A 和B 是以O 为圆心,以|OF 1|为半径的圆与该左半椭圆的两个交点,且△F 2AB 是等边三角形,则椭圆的离心率为( )A.32B.12C.22D.3-1【知识点】椭圆的几何性质.【解题过程】连接AF 1,由圆的性质知,∠F 1AF 2=90°,又∵△F 2AB 是等边三角形,∴∠AF 2F 1=30°,∴AF 1=c ,AF 2=3c ,∴e =c a =2c 2a =2c c +3c=3-1.故选D.【思路点拨】利用圆的几何性质和椭圆离心率的定义. 【答案】D5.若过椭圆x 216+y 24=1内一点(2,1)的弦被该点平分,则该弦所在直线的方程是_____________.【知识点】椭圆的几何性质.【解题过程】设弦两端点A (x 1,y 1),B (x 2,y 2),则x 2116+y 214=1,x 2216+y 224=1,两式相减并把x 1+x 2=4,y 1+y 2=2代入得,y 1-y 2x 1-x 2=-12, ∴所求直线方程为y -1=-12(x -2),即x +2y -4=0. 【思路点拨】中点弦问题灵活利用点差法. 【答案】x +2y -4=0.6.设F 1、F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右两个焦点,若椭圆C 上的点A (1,32)到F 1、F 2两点的距离之和为4,则椭圆C 的方程是________,焦点坐标是________.【知识点】椭圆的几何性质.【解题过程】由|AF 1|+|AF 2|=2a =4得a =2. ∴原方程化为:x 24+y 2b 2=1, 将A (1,32)代入方程得b 2=3.∴椭圆方程为:x 24+y 23=1,焦点坐标为(±1,0). 【思路点拨】把握椭圆的定义解题. 【答案】x 24+y 23=1;(±1,0). 能力型 师生共研7.设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2+bx -c=0的两个实根分别为x 1和x 2,则点P (x 1,x 2)( ) A.必在圆x 2+y 2=2上 B.必在圆x 2+y 2=2外 C.必在圆x 2+y 2=2内 D.以上三种情形都有可能 【知识点】椭圆的几何性质. 【解题过程】e =12⇒c a =12⇒c =a2, a 2-b 2a 2=14⇒b 2a 2=34 ⇒b a =32⇒b =32a .∴ax 2+bx -c =0⇒ax 2+32ax -a2=0⇒x 2+32x -12=0,x 1+x 2=-32,x 1x 2=-12, ∴x 21+x 22=(x 1+x 2)2-2x 1x 2=34+1=74<2. ∴在圆x 2+y 2=2内,故选C.【思路点拨】简化,,a b c 关系将方程具体化. 【答案】C8.如图,在椭圆中,若AB ⊥BF ,其中F 为焦点,A 、B 分别为长轴与短轴的一个端点,则椭圆的离心率e =________.【知识点】椭圆的几何性质.【解题过程】设椭圆方程为x 2a 2+y 2b 2=1,则有A (-a,0),B (0,b ),F (c,0),由AB ⊥BF ,得k AB ·k BF =-1,而k AB =b a ,k BF =-b c 代入上式得()1b b a c -=-,利用b 2=a 2-c 2消去b 2,得a c -c a =1,即1e -e =1,解得e =-1±52,∵e>0,∴e =5-12.【思路点拨】利用椭圆几何性质解题. 【答案】e =5-12.探究型 多维突破9.已知过点A (-1,1)的直线l 与椭圆x 28+y 24=1交于点B ,C ,当直线l 绕点A (-1,1)旋转时,求弦BC 中点M 的轨迹方程. 【知识点】椭圆的几何性质.【解题过程】设直线l 与椭圆的交点B (x 1,y 1),C (x 2,y 2),弦BC 的中点M (x ,y ),则⎩⎪⎨⎪⎧x 218+y 214=1,①x 228+y 224=1,②①-②,得(x 218-x 228)+(y 214-y 224)=0,∴(x 1+x 2)(x 1-x 2)+2(y 1+y 2)(y 1-y 2)=0.③当x 1≠x 2时,③式可化为(x 1+x 2)+2(y 1+y 2)·y 2-y 1x 2-x 1=0.∵x 1+x 22=x ,y 1+y 22=y ,y 2-y 1x 2-x 1=y -1x +1,∴2x +2·2y ·y -1x +1=0,化简得x 2+2y 2+x -2y =0.当x 1=x 2时,∵点M (x ,y )是线段BC 中点, ∴x =-1,y =0,显然适合上式.综上所述,所求弦中点M 的轨迹方程是x 2+2y 2+x -2y =0. 【思路点拨】弦中点问题灵活利用点差法解题. 【答案】x 2+2y 2+x -2y =0.10.已知椭圆方程22123x y +=,试确定m 的范围,使椭圆上存在两个不同点关于直线4y x m =+对称.【知识点】椭圆的几何性质.【解题过程】设点1122(,),(,)A x y B x y 为椭圆上点,且关于直线4y x m =+对称,另设AB 中点坐标为00(,)M x y则22112222123123x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩作差得1212121211023y y y y x x x x -++⋅=-+ 01212121203322AB y y y y y k x x x x x -+⇒⋅=-⇒⋅=--+ ① 1122(,),(,)A x y B x y 关于直线4y x m =+对称,14AB k ∴=-,代入①式得006y x = ②易知点00(,)M x y 必在直线4y x m =+上,004y x m ∴=+ ③ 联立②③解得(,3)2mM m AB 为椭圆的弦,∴中点M 必在椭圆内, 22()(3)2123m m ∴+<,m <<【思路点拨】注意利用弦的中点在椭圆内部建立不等关系解题.【答案】m <<自助餐1.已知m 、n 、m +n 成等差数列,m 、n 、mn 成等比数列,则椭圆x 2m +y 2n =1的离心率为( )A.12B.33C.22D.32【知识点】椭圆的几何性质.【解题过程】由已知得⎩⎨⎧2n =m +m +n ,n 2=m 2n .解得⎩⎨⎧m =2,n =4.∴e =n -m n =22,故选C.【思路点拨】利用离心率的定义. 【答案】C2.AB 为过椭圆x 2a 2+y 2b 2=1中心的弦,F (c,0)为椭圆的左焦点,则△AFB 的面积最大值是( )A.b 2B.bcC.abD.ac 【知识点】椭圆的几何性质.【解题过程】S △ABF =S △AOF +S △BOF =12|OF |·|y A -y B |, 当A 、B 为短轴两个端点时,|y A -y B |最大,最大值为2b . ∴△ABF 面积的最大值为bc .【思路点拨】椭圆几何性质把握图形中的几何关系. 【答案】B3.在△ABC 中,AB =BC ,cos B =-718.若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e =( )A.34B.37C.38D.318 【知识点】椭圆的几何性质.【解题过程】设|AB |=x >0,则|BC |=x , AC 2=AB 2+BC 2-2AB ·BC ·cos B=x 2+x 2-2x 2·(-718)=259x 2,∴|AC |=53x , 由条件知,|CA |+|CB |=2a ,AB =2c , ∴53x +x =2a ,x =2c ,∴e =c a =2c 2a =x 83x =38.【思路点拨】注意转化为椭圆的定义. 【答案】C4.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A.2B.3C.6D.8 【知识点】椭圆的几何性质.【解题过程】由题意可知O (0,0),F (-1,0),设点P 为(x ,y ),则OP →=(x ,y ), FP →=(x +1,y ),∴OP →·FP→=x (x +1)+y 2=x 2+x +y 2=x 2+x +3-34x 2 =14x 2+x +3=14(x +2)2+2. ∵x ∈[-2,2],∴当x =2时,OP →·FP →取最大值.(OP →·FP →)max=14(2+2)2+2=6,故选C. 【思路点拨】数量积问题坐标化处理. 【答案】C5.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(0,4),离心率为35. (1)求椭圆C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 【知识点】椭圆的几何性质.【解题过程】(1)将点(0,4)代入椭圆C 的方程,得16b 2=1,∴b =4, 又e =c a =35,则a 2-b 2a 2=925,∴1-16a 2=925,∴a =5, ∴椭圆C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与椭圆C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入椭圆方程得22(3)12525x x -+=,即x 2-3x -8=0,由韦达定理得x 1+x 2=3,所以线段AB 中点的横坐标为x 1+x 22=32,纵坐标为45(32-3)=-65,即所截线段的中点坐标为(32,-65).【思路点拨】直线与椭圆相交注意利用韦达定理解题. 【答案】见上6.设12F F 、是椭圆:E 2221(01)y x b b+=<<的左、右焦点,过1F 的直线l 与E 相交于A 、B 两点,且22||,||,||AF AB BF 成等差数列. (1)求||AB ;(2)若直线l 的斜率为1,求b 得值. 【知识点】椭圆的几何性质.【解题过程】(1)由椭圆定义知:22||||||4AF AB BF ++=, 又222||||||AB AF BF =+,得4||3AB =. (2)l 的方程为y x c =+,其中c =设1122(,),(,)A x y B x y ,则2221y x c y x b =+⎧⎪⎨+=⎪⎩化简得222(1)2120b x cx b +++-=,则2121222212,11c b x x x x b b--+==++ 因为直线AB 的斜率为1,所以21|||AB x x =-,即214||3x x -.则224212122222284(1)4(12)8()49(1)(1)(1)b b b x x x x b b b --=+-=-=+++,解得b =【思路点拨】将弦长||AB 从两个不同角度考虑,建立等式解题. 【答案】见上。
2.1.2 椭圆的简单几何性质(二)学习目标 1.进一步巩固椭圆的简单几何性质.2.掌握直线与椭圆位置关系的相关知识.知识点一 点与椭圆的位置关系 思考 点与椭圆有几种位置关系?答案 三种位置关系:点在椭圆上,点在椭圆内,点在椭圆外. 设点P (x 0,y 0),椭圆x 2a 2+y 2b2=1(a >b >0).(1)点P 在椭圆上⇔x 20a 2+y 20b 2=1;(2)点P 在椭圆内⇔x 20a 2+y 20b 2<1;(3)点P 在椭圆外⇔x 20a 2+y 20b2>1.知识点二 直线与椭圆的位置关系 思考1 直线与椭圆有哪几种位置关系? 答案 三种位置关系:相离、相切、相交.思考2 我们知道,可以用圆心到直线的距离d 与圆的半径r 的大小关系判断直线与圆的位置关系,这种方法称为几何法,能否用几何法判断直线与椭圆的位置关系? 答案 不能.思考3 用什么方法判断直线与椭圆的位置关系? 答案 代数法——判断直线与椭圆公共点个数来确定. 直线y =kx +m 与椭圆x 2a 2+y 2b2=1,联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1,消y 得一个一元二次方程.知识点三 直线与椭圆的相交弦思考 若直线与椭圆相交,如何求相交弦弦长?答案 弦长公式:(1)|AB |=(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]; (2)|AB |=1+1k2|y 1-y 2|=(1+1k2)[(y 1+y 2)2-4y 1y 2](直线与椭圆的交点A (x 1,y 1),B (x 2,y 2),k 为直线的斜率).其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y 或x 后得到关于x 或y 的一元二次方程得到.类型一 直线与椭圆的位置关系例1 (1)直线y =kx -k +1与椭圆x 22+y 23=1的位置关系是( )A.相交B.相切C.相离D.不确定 答案 A解析 直线y =kx -k +1=k (x -1)+1过定点(1,1),且该点在椭圆内部,因此必与椭圆相交. (2)在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .求k 的取值范围.解 由已知条件知直线l 的方程为y =kx +2,代入椭圆方程得x 22+(kx +2)2=1.整理得⎝⎛⎭⎫12+k 2x 2+22kx +1=0.直线l 与椭圆有两个不同的交点P 和Q 等价于Δ=8k 2-4⎝⎛⎭⎫12+k 2=4k 2-2>0,解得k <-22或k >22. 即k 的取值范围为⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞.反思与感悟 直线与椭圆的位置关系判别方法(代数法) 联立直线与椭圆的方程,消元得到一元二次方程 (1)Δ>0⇔直线与椭圆相交⇔有两个公共点. (2)Δ=0⇔直线与椭圆相切⇔有且只有一个公共点. (3)Δ<0⇔直线与椭圆相离⇔无公共点.跟踪训练1 (1)已知直线l 过点(3,-1),且椭圆C :x 225+y 236=1,则直线l 与椭圆C 的公共点的个数为( ) A.1 B.1或2 C.2 D.0(2)若直线y =kx +2与椭圆x 23+y 22=1相切,则斜率k 的值是( )A.63 B.-63 C.±63 D.±33答案 (1)C (2)C解析 (1)因为直线过定点(3,-1)且3225+(-1)236<1,所以点(3,-1)在椭圆的内部,故直线l 与椭圆有2个公共点.(2)把y =kx +2代入x 23+y 22=1得(2+3k 2)x 2+12kx +6=0,由于Δ=0,∴k 2=23,∴k =±63.类型二 直线与椭圆的相交弦问题例2 已知椭圆x 236+y 29=1和点P (4,2),直线l 经过点P 且与椭圆交于A 、B 两点.(1)当直线l 的斜率为12时,求线段AB 的长度;(2)当P 点恰好为线段AB 的中点时,求l 的方程. 解 (1)由已知可得直线l 的方程为y -2=12(x -4),即y =12x .由⎩⎨⎧y =12x ,x 236+y29=1,消去y 可得x 2-18=0,若设A (x 1,y 1),B (x 2,y 2).则x 1+x 2=0,x 1x 2=-18.于是|AB |=(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+14(x 1-x 2)2=52(x 1+x 2)2-4x 1x 2 =52×62=310.所以线段AB 的长度为310. (2)方法一 设l 的斜率为k ,则其方程为y -2=k (x -4). 联立⎩⎪⎨⎪⎧y -2=k (x -4),x 236+y 29=1,消去y 得(1+4k 2)x 2-(32k 2-16k )x +(64k 2-64k -20)=0. 若设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=32k 2-16k1+4k 2,由于AB 的中点恰好为P (4,2),所以x 1+x 22=16k 2-8k 1+4k 2=4,解得k =-12,且满足Δ>0. 这时直线的方程为y -2=-12(x -4),即x +2y -8=0.方法二 设A (x 1,y 1),B (x 2,y 2),则有⎩⎨⎧x 2136+y 219=1,x 2236+y229=1,两式相减得x 22-x 2136+y 22-y 219=0,整理得k AB =y 2-y 1x 2-x 1=-9(x 2+x 1)36(y 2+y 1),由于P (4,2)是AB 的中点,∴x 1+x 2=8,y 1+y 2=4, 于是k AB =-9×836×4=-12,于是直线AB 的方程为y -2=-12(x -4),即x +2y -8=0.反思与感悟 处理直线与椭圆相交的关系问题的通法是通过解直线与椭圆构成的方程.利用根与系数的关系或中点坐标公式解决,涉及弦的中点,还可使用点差法:设出弦的两端点坐标,代入椭圆方程,两式相减即得弦的中点与斜率的关系. 跟踪训练2已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左,右焦点分别为F 1(-c,0),F 2(c,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A 、B 两点,与以F 1F 2为直径的圆交于C 、D 两点,且满足|AB ||CD |=534,求直线l 的方程.解 (1)由题意可得⎩⎪⎨⎪⎧b =3,c a =12,a 2=b2+c 2,解得b =3,c =1,a =2,∴椭圆的方程为x 24+y 23=1.(2)由题意可得以F 1F 2为直径的圆的方程为x 2+y 2=1, ∴圆心到直线l 的距离d =2|m |5,由d <1,可得|m |<52,(*) ∴|CD |=21-d 2=21-4m 25=255-4m 2.设A (x 1,y 1),B (x 2,y 2),联立⎩⎨⎧y =-12x +m ,x 24+y23=1,化为x 2-mx +m 2-3=0,可得x 1+x 2=m ,x 1x 2=m 2-3, ∴|AB |= ⎣⎡⎦⎤1+⎝⎛⎭⎫-122[m 2-4(m 2-3)] =1524-m 2. 由|AB ||CD |=534,得 4-m 25-4m2=1,解得m =±33满足(*). 因此直线l 的方程为y =-12x +33或y =-12x -33.类型三 椭圆中的最值(范围)问题例3 已知焦点在x 轴上的椭圆C 的左,右焦点分别为F 1,F 2,椭圆的离心率为12,且椭圆经过点P (1,32).(1)求椭圆C 的标准方程;(2)线段PQ 是椭圆过点F 2的弦,且PF 2→=λF 2Q →,求△PF 1Q 内切圆面积最大时实数λ的值. 解 (1)e =c a =12,P (1,32)满足1a 2+(32)2b 2=1,又a 2=b 2+c 2,∴a 2=4,b 2=3, ∴椭圆标准方程为x 24+y 23=1.(2)显然直线PQ 不与x 轴重合,当直线PQ 与x 轴垂直时,|PQ |=3,|F 1F 2|=2,1PF Q S ∆=3;当直线PQ 不与x 轴垂直时,设直线PQ :y =k (x -1),k ≠0代入椭圆C 的标准方程,整理,得(3+4k 2)y 2+6ky -9k 2=0, Δ>0,y 1+y 2=-6k 3+4k 2,y 1·y 2=-9k 23+4k 2.1PF Q S ∆=12·|F 1F 2|·|y 1-y 2|=12k 2+k 4(3+4k 2)2,令t =3+4k 2,∴t >3,k 2=t -34,∴1PF Q S ∆=3-3(1t +13)2+43,∵0<1t <13,∴1PF Q S ∆∈(0,3),∴当直线PQ 与x 轴垂直时1PF Q S ∆最大,且最大面积为3. 设△PF 1Q 内切圆半径为r ,则1PF Q S ∆=12(|PF 1|+|QF 1|+|PQ |)·r =4r ≤3.即r max =34,此时直线PQ 与x 轴垂直,△PF 1Q 内切圆面积最大,∴PF 2→=F 2Q →,∴λ=1.反思与感悟 求最值问题的基本策略(1)求解形如|P A |+|PB |的最值问题,一般通过椭圆的定义把折线转化为直线,当且仅当三点共线时|P A |+|PB |取得最值.(2)求解形如|P A |的最值问题,一般通过二次函数的最值求解,此时一定要注意自变量的取值范围.(3)求解形如ax +by 的最值问题,一般通过数形结合的方法转化为直线问题解决. 跟踪训练3 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段|AB |长度的最小值.解 (1)椭圆C :x 2+2y 2=4化为标准方程为x 24+y 22=1,∴a =2,b =2,c =2, ∴椭圆C 的离心率e =c a =22.(2)设A (t,2),B (x 0,y 0),x 0≠0,∵OA ⊥OB , ∴OA →·OB →=0,∴tx 0+2y 0=0,∴t =-2y 0x 0,又∵x 20+2y 20=4,∴0<x 20≤4.∴|AB |2=(x 0-t )2+(y 0-2)2=x 202+8x 20+4≥4+4=8,当且仅当x 202=8x 20,即x 20=4时等号成立, ∴线段|AB |长度的最小值为2 2.1.点A (a,1)在椭圆x 24+y 22=1的内部,则a 的取值范围是( )A.-2<a < 2B.a <-2或a > 2C.-2<a <2D.-1<a <1答案 A解析 由题意知a 24+12<1,解得-2<a < 2.2.已知直线l :x +y -3=0,椭圆x 24+y 2=1,则直线与椭圆的位置关系是( )A.相交B.相切C.相离D.相切或相交 答案 C解析 把x +y -3=0代入x 24+y 2=1,得x 24+(3-x )2=1,即5x 2-24x +32=0. ∵Δ=(-24)2-4×5×32=-64<0, ∴直线与椭圆相离. 3.椭圆x 24+y 23=1的右焦点到直线y =3x 的距离是( )A.12B.32 C.1 D.3 答案 B解析 椭圆的右焦点为F (1,0),由点到直线的距离公式得d =33+1=32.选B. 4.椭圆x 216+y 24=1上的点到直线x +2y -2=0的最大距离是( )A.3B.11C.2 2D.10解析 设与直线x +2y -2=0平行的直线为x +2y +m =0与椭圆联立得,(-2y -m )2+4y 2-16=0,即4y 2+4my +4y 2-16+m 2=0得2y 2+my -4+m 24=0. Δ=m 2-8⎝⎛⎭⎫m 24-4=0,即-m 2+32=0, ∴m =±4 2.∴两直线间距离最大是当m =42时, d max =|-2-42|5=10. 5.若直线y =x +1与椭圆x 22+y 2=1相交于A ,B 两个不同的点,则|AB |=__________.答案423解析 由题意⎩⎪⎨⎪⎧y =x +1,x 22+y 2=1, 解得A ,B 两个不同的点的坐标分别为(0,1),⎝⎛⎭⎫-43,-13, 故|AB |=169+169=423. 6.经过椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点且垂直于椭圆长轴的弦长为__________.答案 2b 2a解析 ∵垂直于椭圆长轴的弦所在直线为x =±c ,由c 2a 2+y 2b 2=1,得y 2=b 4a 2, ∴|y |=b 2a ,故弦长为2b 2a.解决直线与椭圆的位置关系问题经常利用设而不求的方法,解题步骤为: (1)设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2); (2)联立直线与椭圆的方程;(3)消元得到关于x 或y 的一元二次方程; (4)利用根与系数的关系设而不求;(5)把题干中的条件转化为x 1+x 2,x 1·x 2或y 1+y 2,y 1·y 2,进而求解.1.已知AB 为过椭圆x 2a 2+y 2b 2=1中心的弦,F (c,0)为椭圆的右焦点,则△AFB 面积的最大值为( ) A.b 2 B.ab C.ac D.bc答案 D解析 当直线AB 为y 轴时面积最大,|AB |=2b ,△AFB 的高为c ,∴此时S △AFB =12·2b ·c =bc .2.已知直线y =kx +1和椭圆x 2+2y 2=1有公共点,则k 的取值范围是( ) A.k <-22或k >22 B.-22<k <22 C.k ≤-22或k ≥22 D.-22≤k ≤22答案 C解析 由⎩⎪⎨⎪⎧y =kx +1x 2+2y 2=1,得(2k 2+1)x 2+4kx +1=0. ∵直线与椭圆有公共点. ∴Δ=16k 2-4(2k 2+1)≥0,则k ≥22或k ≤-22. 3.直线l 交椭圆x 216+y 212=1于A ,B 两点,AB 的中点为M (2,1),则l 的方程为( )A.2x -3y -1=0B.3x -2y -4=0C.2x +3y -7=0D.3x +2y -8=0答案 D解析 根据点差法求出k AB =-32,∴l 的方程为y -1=-32(x -2),∴化简得3x +2y -8=0.4.若直线mx +ny =4和⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为( ) A.2个 B.至多一个 C.1个 D.0个答案 A解析 若直线与圆没有交点,则d =4m 2+n 2>2,∴m 2+n 2<4,即m 2+n 24<1.∴m 29+n 24<1, ∴点(m ,n )在椭圆的内部,故直线与椭圆有2个交点.5.已知F 1、F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( ) A.(0,1) B.⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫0,22 D.⎣⎡⎭⎫22,1答案 C解析 ∵MF 1→·MF 2→=0,∴点M 的轨迹是以F 1F 2为直径的圆,其方程为x 2+y 2=c 2.由题意知椭圆上的点在该圆的外部,设椭圆上任意一点P (x ,y ),则|OP |min =b , ∴c <b ,即c 2<a 2-c 2.解得e =c a <22.∵0<e <1,∴0<e <22. 6.过椭圆x 2+2y 2=4的左焦点F 作倾斜角为π3的弦AB ,则弦AB 的长为( )A.67B.167C.716D.76 答案 B解析 椭圆的方程可化为x 24+y 22=1,∴F (-2,0).又∵直线AB 的斜率为3, ∴直线AB 的方程为y =3x + 6.由⎩⎨⎧y =3x +6,x 2+2y 2=4,得7x 2+122x +8=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-1227,x 1x 2=87,∴|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=167.二、填空题7.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为________.答案 27解析 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0)与直线方程联立消去x 得(a 2+3b 2)y 2+83b 2y +16b 2-a 2b 2=0,由Δ=0及c =2得a 2=7,∴2a =27.8.以等腰直角三角形ABC 的两个顶点为焦点,并且经过另一顶点的椭圆的离心率为____________.答案 2-1或22解析 当以两锐角顶点为焦点时,因为三角形为等腰直角三角形,故有b =c ,此时可求得离心率e =c a =c b 2+c2=c 2c =22;同理,当以一直角顶点和一锐角顶点为焦点时,设直角边长为m ,故有2c =m,2a =(1+2)m ,所以离心率e =c a =2c 2a =m (1+2)m =2-1. 9.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为原点,则△OAB 的面积为________.答案 53解析 直线方程为y =2x -2,与椭圆方程x 25+y 24=1联立,可以解得A (0,-2),B ⎝⎛⎭⎫53,43,∴S △=12|OF |·|y A -y B |=53(也可以用设而不求的方法求弦长|AB |,再求出点O 到AB 的距离,进而求出△AOB 的面积). 三、解答题10.如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8,求椭圆E 的方程.解 由题意得|AB |+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =8,得a =2.又e =c a =12, ∴c =1.∴b 2=a 2-c 2=22-12=3.∴椭圆E 的方程为x 24+y 23=1. 11.已知椭圆的短轴长为23,焦点坐标分别是(-1,0)和(1,0).(1)求这个椭圆的标准方程;(2)如果直线y =x +m 与这个椭圆交于不同的两点,求m 的取值范围.解 (1)∵2b =23,c =1,∴b =3,a 2=b 2+c 2=4.故所求椭圆的标准方程为x 24+y 23=1. (2)联立方程组⎩⎪⎨⎪⎧y =x +m ,x 24+y 23=1, 消去y 并整理得7x 2+8mx +4m 2-12=0.若直线y =x +m 与椭圆x 24+y 23=1有两个不同的交点, 则有Δ=(8m )2-28(4m 2-12)>0,即m 2<7,解得-7<m <7.即m 的取值范围是(-7,7).12.椭圆ax 2+by 2=1与直线x +y -1=0相交于A ,B 两点,C 是AB 的中点,若|AB |=22,OC 的斜率为22,求椭圆的方程. 解 由⎩⎪⎨⎪⎧ax 2+by 2=1,x +y =1,得(a +b )x 2-2bx +b -1=0. 设A (x 1,y 1)、B (x 2,y 2),则|AB |=(k 2+1)(x 1-x 2)2=2·4b 2-4(a +b )(b -1)(a +b )2. ∵|AB |=22,∴a +b -ab a +b=1.① 设C (x ,y ),则x =x 1+x 22=b a +b ,y =1-x =a a +b, ∵OC 的斜率为22,∴a b =22. 代入①,得a =13,b =23. ∴椭圆方程为x 23+23y 2=1. 13.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,椭圆的离心率为23.如果|AB |=154,求椭圆C 的方程.解 由题意知离心率e =c a =23,c =23a , 由b 2=a 2-c 2,得b =53a . ∴椭圆C 的方程为x 2a 2+9y 25a2=1.① 设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =3(x -c ),即y =3⎝⎛⎭⎫x -23a ,与①联立得 32x 2-36ax +7a 2=0,(4x -a )·(8x -7a )=0,解得x 1=a 4,x 2=7a 8. 由|AB |=1+3|x 1-x 2|=2|a 4-7a 8|=54a =154, 解得a =3,∴b =53a = 5. ∴椭圆C 的方程为x 29+y 25=1.。
2.2.2 椭圆的简单几何性质
【学情分析】:
学生已经掌握了椭圆的概念、标准方程的概念,也能够运用标准方程中的a,b,c的关系解决题目,但还不够熟练。
另外对于求轨迹方程、解决直线与椭圆关系的题目,还不能很好地分析、解决。
【三维目标】:
1、知识与技能:
①进一步强化学生对于椭圆标准方程中a,b,c关系理解,并能运用到解题当中去。
②强化求轨迹方程的方法、步骤。
③解决直线与椭圆的题目,强化数形结合的运用。
2、过程与方法:
通过习题、例题的练讲结合,达到学生熟练解决椭圆有关问题的能力。
3、情感态度与价值观:
通过一部分有难度的题目,培养学生克服困难的毅力。
【教学重点】:
知识与技能②③
【教学难点】:
知识与技能②③
【课前准备】:
学案。
椭圆的简单几何性质YZK19018一、概述本节课是普通高中课程标准实验教科书人教版数学理科选修2-1的第二章《2.2.2椭圆的简单几何性质》,主要学习椭圆的简单几何性质及其应用。
在此之前,学生已经学习过了椭圆的定义及其标准方程,而本节课是结合椭圆定义、方程和图形来发现总结椭圆的几何性质,再利用性质去解决问题;本节课教材,让学生用方程在探究推出性质的基础上,充分认识到数形结合的奇妙和转化思想,体会到数与形的辩证统一,且本节课内容的掌握程度直接影响以后学习双曲线和抛物线几何性质,为双曲线和抛物线几何性质的学习奠定了基础。
二、学习目标分析根据课程标准,结合高考要求和我校实际学情,制定以下教学目标:【知识与技能】:理解并掌握椭圆的几何性质,能根据这些几何性质解决简单问题,初步学会利用方程研究曲线几何性质的方法。
运用数形结合、函数与方程、转化的思想。
培养学生培养学生勇于探索、勤于思考的精神;培养学生观察、分析、探究、归纳、概括的能力以及运用数学工具解决实际问题的能力。
【过程和方法】:这是第一次学习用方程研究几何性质,通过初步尝试,是学生经历性质的得出过程,使学生认识到不仅注意对研究结果的理解和掌握,也要注意对过程的重视和其中数学思想和方法的渗透;以自主探究,合作讨论为主,进一步体会数形结合的思想,掌握利用方程研究几何性质的方法,也培养学生良好的合作和分享意识。
【情感态度和价值观】:通过对本节课的学习,进一步体会曲线与方程的对应关系,体会椭圆的和谐美和对称美,培养审美习惯和良好的思维品质,认识椭圆在刻画现实世界和解决实际问题中的作用。
三、学习者特征分析我校是一所农村普通高中,根据中考录取统计,学生大多属于二类生源,本课上课班级是一个普通理科班,大部分同学基础较为薄弱,自主分析,独立解决问题的能力不是很强,但是同时,学生也已经具备一定的自学能力,多数同学对数学有较强的兴趣和学习积极性,在探究问题的能力,合作交流的意识等方面发展不够均衡,尚有待加强。
2.2.2椭圆的简单几何性质第1课时椭圆的几何性质学习目标 1.掌握椭圆的几何性质,了解椭圆标准方程中a,b,c的几何意义.2.会用椭圆的几何意义解决相关问题.知识点一椭圆的简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)范围-a≤x≤a,-b≤y≤b -b≤x≤b,-a≤y≤a顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长短轴长=2b,长轴长=2a焦点(±a2-b2,0)(0,±a2-b2) 焦距|F1F2|=2a2-b2对称性对称轴:x轴、y轴对称中心:原点离心率e=ca∈(0,1) 知识点二离心率对椭圆扁圆程度的影响如图所示,在Rt△BF2O中,cos∠BF2O=ca,记e=ca,则0<e<1,e越大,∠BF2O越小,椭圆越扁;e越小,∠BF2O越大,椭圆越圆.1.椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴长是a .( × )2.椭圆的离心率e 越大,椭圆就越圆.( × )3.若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x 225+y 216=1.( × )4.设F 为椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点,M 为其上任一点,则|MF |的最大值为a +c (c 为椭圆的半焦距).( √ )一、椭圆的简单几何性质例1 求椭圆m 2x 2+4m 2y 2=1(m >0)的长轴长、短轴长、焦点坐标、顶点坐标和离心率. 解 由已知得x 21m 2+y 214m 2=1(m >0),因为0<m 2<4m 2,所以1m 2>14m2,所以椭圆的焦点在x 轴上,并且长半轴长a =1m ,短半轴长b =12m ,半焦距c =32m,所以椭圆的长轴长2a =2m ,短轴长2b =1m ,焦点坐标为⎝⎛⎭⎫-32m ,0,⎝⎛⎭⎫32m ,0,顶点坐标为⎝⎛⎭⎫1m ,0,⎝⎛⎭⎫-1m ,0,⎝⎛⎭⎫0,-12m ,⎝⎛⎭⎫0,12m , 离心率e =c a =32m 1m=32.反思感悟 从椭圆的标准方程出发,分清其焦点位置,然后再写出相应的性质.跟踪训练1 已知椭圆C 1:x 2100+y 264=1,设椭圆C 2与椭圆C 1的长轴长、短轴长分别相等,且椭圆C 2的焦点在y 轴上.(1)求椭圆C 1的长半轴长、短半轴长、焦点坐标及离心率;(2)写出椭圆C 2的方程.解 (1)由椭圆C 1:x 2100+y 264=1,可得其长半轴长为10,短半轴长为8,焦点坐标为(6,0),(-6,0),离心率e =35.(2)椭圆C 2:y 2100+x 264=1.二、由几何性质求椭圆的标准方程 例2 求适合下列条件的椭圆的标准方程. (1)短轴长25,离心率e =23;(2)在x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为6. 解 (1)由2b =25,e =c a =23,得b 2=5,a 2-b 2a 2=49,a 2=9.当焦点在x 轴上时,所求椭圆的标准方程为x 29+y 25=1;当焦点在y 轴上时,所求椭圆的标准方程为y 29+x 25=1.综上,所求椭圆的标准方程为x 29+y 25=1或y 29+x 25=1.(2)依题意可设椭圆方程为x 2a 2+y 2b 2=1(a >b >0).如图所示,△A 1F A 2为一等腰直角三角形,OF 为斜边A 1A 2的中线(高),且|OF |=c ,|A 1A 2|=2b , 所以c =b =3, 所以a 2=b 2+c 2=18, 故所求椭圆的方程为x 218+y 29=1.反思感悟 此类问题应由所给的几何性质充分找出a ,b ,c 所应满足的关系式,进而求出a ,b ,在求解时,需注意椭圆的焦点位置.跟踪训练2 分别求出满足下列条件的椭圆的标准方程.(1)短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3; (2)离心率为32,经过点(2,0). 解 (1)由题意知a =5,c =3,b 2=25-9=16, 焦点所在坐标轴可为x 轴,也可为y 轴, 故椭圆的标准方程为x 225+y 216=1或x 216+y 225=1.(2)由e =c a =32,设a =2k ,c =3k ,k >0,则b =k . 又经过的点(2,0)为其顶点,故若点(2,0)为长轴顶点,则a =2,b =1, 椭圆的标准方程为x 24+y 2=1;若点(2,0)为短轴顶点,则b =2,a =4,椭圆的标准方程为x 24+y 216=1.三、求椭圆的离心率例3 (1)如图所示,A ,B ,C 分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的顶点与焦点,若∠ABC =90°,则该椭圆的离心率为( )A.-1+52 B .1-22 C.2-1 D.22答案 A解析 由(a +c )2=a 2+2b 2+c 2, 又因为b 2=a 2-c 2,所以c 2+ac -a 2=0. 因为e =ca,所以e 2+e -1=0,所以e =-1+52.(2)已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别是椭圆的左、右焦点,椭圆上总存在点P 使得PF 1⊥PF 2,则椭圆的离心率的取值范围为________. 答案 ⎣⎡⎭⎫22,1解析 由PF 1⊥PF 2,知△F 1PF 2是直角三角形, 所以|OP |=c ≥b ,即c 2≥a 2-c 2,所以a ≤2c , 因为e =c a ,0<e <1,所以22≤e <1.反思感悟 求椭圆离心率及范围的两种方法(1)直接法:若已知a ,c 可直接利用e =ca 求解.若已知a ,b 或b ,c 可借助于a 2=b 2+c 2求出c 或a ,再代入公式e =ca求解.(2)方程法:若a ,c 的值不可求,则可根据条件建立a ,b ,c 的关系式,借助于a 2=b 2+c 2,转化为关于a ,c 的齐次方程或不等式,再将方程或不等式两边同除以a 的最高次幂,得到关于e 的方程或不等式,即可求得e 的值或范围.跟踪训练3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B ,若椭圆C 的中心到直线AB 的距离为66|F 1F 2|,求椭圆C 的离心率. 解 由题意知A (a ,0),B (0,b ), 从而直线AB 的方程为x a +yb =1,即bx +ay -ab =0, 又|F 1F 2|=2c ,∴aba 2+b 2=63c . ∵b 2=a 2-c 2,∴3a 4-7a 2c 2+2c 4=0, 解得a 2=2c 2或3a 2=c 2(舍去),∴e =22.椭圆几何性质的应用典例 神舟五号飞船成功完成了第一次载人航天飞行,实现了中国人民的航天梦想.某段时间飞船在太空中运行的轨道是一个椭圆,地心为椭圆的一个焦点,如图所示.假设航天员到地球的最近距离为d 1,最远距离为d 2,地球的半径为R ,我们想象存在一个镜像地球,其中心在神舟飞船运行轨道的另外一个焦点上,上面住着一个神仙发射某种神秘信号,需要飞行中的航天员中转后地球人才能接收到,则传送神秘信号的最短距离为( )A .d 1+d 2+RB .d 2-d 1+2RC .d 2+d 1-2RD .d 1+d 2答案 D解析 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),半焦距为c ,两焦点分别为F 1,F 2,飞行中的航天员为点P ,由已知可得⎩⎪⎨⎪⎧d 1+R =a -c ,d 2+R =a +c ,则2a =d 1+d 2+2R ,故传送神秘信号的最短距离为|PF 1|+|PF 2|-2R =2a -2R =d 1+d 2.[素养提升] 将太空中的轨迹与学过的椭圆建立起对应关系.利用椭圆的几何性质来解决航空航天问题,考查了学生运用所学知识解决实际问题的能力.1.椭圆以两坐标轴为对称轴,并且过点(0,13),(-10,0),则焦点坐标为( ) A .(±13,0) B .(0,±10) C .(0,±13) D .(0,±69)答案 D解析 由题意知,椭圆的焦点在y 轴上, 且a =13,b =10,则c =a 2-b 2=69,故选D.2.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则椭圆C 的方程是( )A.x 23+y 24=1 B.x 24+y 23=1 C.x 24+y 23=1 D.x 24+y 2=1 答案 C解析 依题意知,所求椭圆的焦点位于x 轴上, 且c =1,e =c a =12,即a =2,b 2=a 2-c 2=3,因此椭圆的方程是x 24+y 23=1.3.若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为( ) A.12 B.32 C.34D.64答案 A解析 不妨设椭圆的左、右焦点分别为F 1,F 2,B 为椭圆的上顶点.依题意可知,△BF 1F 2是正三角形. ∵在Rt △OBF 2中,|OF 2|=c , |BF 2|=a ,∠OF 2B =60°, ∴cos 60°=c a =12,即椭圆的离心率e =12,故选A.4.椭圆x 2k +8+y 29=1的离心率为12,则k 的值为( )A .4B .-54C .4或-54D .不能确定答案 C解析 当k +8>9,即k >1时,e 2=c 2a 2=k +8-9k +8=14,k =4.当0<k +8<9,即-8<k <1时, e 2=c 2a 2=9-k -89=14,k =-54.5.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m 的值为( ) A.12 B.14 C .2 D .4 答案 B解析 椭圆x 2+my 2=1的焦点在y 轴上,短半轴长为1,长轴长是短轴长的2倍, 故1m =2,解得m =14.1.知识清单: (1)椭圆的几何性质. (2)求椭圆的离心率.2.方法归纳:定义法、数形结合、函数与方程.3.常见误区:忽略椭圆离心率的范围0<e <1及长轴长与a 的关系.1.已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则椭圆C 的离心率为( )A.13B.12C.22D.223 答案 C解析 ∵a 2=4+22=8,∴a =22,∴e =c a =222=22.故选C.2.椭圆(m +1)x 2+my 2=1的长轴长是( )A.2m -1m -1B.-2-m mC.2m mD .-21-m m -1答案 C解析 椭圆方程可化简为x 211+m +y 21m =1,由题意,知m >0,∴11+m <1m,∴a =m m ,∴椭圆的长轴长2a =2mm.3.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的方程为( ) A.x 236+y 216=1 B.x 216+y 236=1 C.x 26+y 24=1 D.y 26+x 24=1 答案 A解析 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),依题意得c =25,a +b =10,又a 2=b 2+c 2, 解得a =6,b =4.则椭圆的方程为x 236+y 216=1.4.已知椭圆x 2a 2+y 2b 2=1与椭圆x 225+y 216=1有相同的长轴,椭圆x 2a 2+y 2b 2=1的短轴长与椭圆y 221+x 29=1的短轴长相等,则( ) A .a 2=25,b 2=16 B .a 2=9,b 2=25C .a 2=25,b 2=9或a 2=9,b 2=25D .a 2=25,b 2=9 答案 D解析 椭圆x 225+y 216=1的长轴长为10,椭圆y 221+x 29=1的短轴长为6,由题意可知椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,即有a =5,b =3.5.过椭圆x 24+y 23=1的焦点的最长弦和最短弦的长分别为( )A .8,6B .4,3C .2, 3D .4,2 3答案 B解析 由题意知a =2,b =3,c =1,最长弦过两个焦点,长为2a =4,最短弦垂直于x 轴,长度为当x =c =1时,纵坐标的绝对值的2倍为3. 6.已知椭圆的短半轴长为1,离心率0<e ≤32,则长轴长的取值范围为________. 答案 (2,4] 解析 ∵e =1-⎝⎛⎭⎫b a 2,b =1,0<e ≤32, ∴1-⎝⎛⎭⎫b a 2≤32,则1<a ≤2,∴2<2a ≤4, 即长轴长的取值范围是(2,4].7.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为_____________. 答案 x 216+y 28=1解析 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由e =22,知c a =22,故b 2a 2=12.由于△ABF 2的周长为|AB |+|BF 2|+|AF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =16,故a =4,∴b 2=8,∴椭圆C 的方程为x 216+y 28=1.8.已知长方形ABCD ,AB =4,BC =3,则以A ,B 为焦点,且过C ,D 的椭圆的离心率为________. 答案 12解析 如图,AB =2c =4,∵点C 在椭圆上,∴CB +CA =2a =3+5=8,∴e =2c 2a =48=12. 9.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.解 椭圆方程可化为x 2m +y 2m m +3=1(m >0), ∵m -m m +3=m (m +2)m +3>0,∴m >m m +3. ∴a 2=m ,b 2=m m +3,c =a 2-b 2=m (m +2)m +3. 由e =32,得m +2m +3=32,∴m =1. ∴椭圆的标准方程为x 2+y 214=1. ∴a =1,b =12,c =32. ∴椭圆的长轴长为2,短轴长为1;两焦点坐标分别为F 1⎝⎛⎭⎫-32,0,F 2⎝⎛⎭⎫32,0; 四个顶点坐标分别为A 1(-1,0),A 2(1,0),B 1⎝⎛⎭⎫0,-12,B 2⎝⎛⎭⎫0,12. 10.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),且椭圆C 经过点M ⎝⎛⎭⎫43,13,求椭圆C 的离心率.解 2a =|MF 1|+|MF 2|=⎝⎛⎭⎫43+12+⎝⎛⎭⎫132+⎝⎛⎭⎫43-12+⎝⎛⎭⎫132=2 2. 所以a = 2. 又由已知c =1,所以椭圆C 的离心率e =c a =12=22.11.椭圆的短轴的一个顶点与两焦点组成等边三角形,则它的离心率为( ) A.12B.13C.14D.22答案 A 解析 由题意知a =2c ,∴e =c a =c 2c =12. 12.已知椭圆x 2a 2+y 2b2=1(a >b >0),A ,B 分别为椭圆的左顶点和上顶点,F 为右焦点,且AB ⊥BF ,则椭圆的离心率为( )A.22 B.32 C.3-12 D.5-12 答案 D解析 在Rt △ABF 中,AB =a 2+b 2,BF =a ,AF =a +c ,由AB 2+BF 2=AF 2,得a 2+b 2+a 2=(a +c )2.将b 2=a 2-c 2代入,得a 2-ac -c 2=0,即e 2+e -1=0,解得e =-1±52, 因为0<e <1,所以e =5-12. 13.若将一个椭圆绕中心旋转90°,所得椭圆的两顶点恰好是旋转前椭圆的两焦点,这样的椭圆称为“对偶椭圆”.下列椭圆的方程中,是“对偶椭圆”的方程是( ) A.x 28+y 24=1 B.x 23+y 25=1 C.x 26+y 22=1 D.x 26+y 29=1 答案 A解析 由题意,知当b =c 时,将一个椭圆绕中心旋转90°,所得椭圆的两顶点恰好是旋转前椭圆的两焦点,该椭圆为“对偶椭圆”.选项中只有A 中b =c =2符合题意,故选A.14.如图,已知F 1,F 2分别是椭圆的左、右焦点,现以F 2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M ,N ,若过F 1的直线MF 1是圆F 2的切线,则椭圆的离心率为( )A.3-1B .2- 3 C.22 D.32答案 A解析 ∵过F 1的直线MF 1是圆F 2的切线,∴∠F 1MF 2=90°,|MF 2|=c ,∵|F 1F 2|=2c ,∴|MF 1|=3c ,由椭圆定义可得|MF 1|+|MF 2|=c +3c =2a ,∴椭圆离心率e =21+3=3-1. 15.已知椭圆x 249+y 224=1上一点P 与椭圆两焦点F 1,F 2的连线夹角为直角,则|PF 1|·|PF 2|=________.答案 48解析 依题意知,a =7,b =26,c =49-24=5,|F 1F 2|=2c =10.∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=|F 1F 2|2,即|PF 1|2+|PF 2|2=100.又由椭圆定义知|PF 1|+|PF 2|=2a =14,∴(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|=100.即196-2|PF 1|·|PF 2|=100.解得|PF 1|·|PF 2|=48.16.在平面直角坐标系中,椭圆x 2a 2+y 2b2=1(a >b >0)的焦距为2c ,以O 为圆心,a 为半径的圆,过点⎝⎛⎭⎫a 2c ,0作圆的两切线互相垂直,则离心率e =________.答案 22 解析 如图,切线P A ,PB 互相垂直,又半径OA 垂直于P A ,所以△OAP 是等腰直角三角形,a 2c=2a . 解得e =c a =22, 则离心率e =22.17.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A.⎝⎛⎦⎤0,32B.⎝⎛⎦⎤0,34 C.⎣⎡⎭⎫32,1 D.⎣⎡⎭⎫34,1 答案 A解析 设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形. ∵|AF |+|BF |=4, ∴|AF |+|AF 0|=4, ∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2. 离心率e =c a=c 2a 2=a 2-b 2a 2=4-b 24∈⎝⎛⎦⎤0,32, 故选A.18.如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率; (2)若椭圆的焦距为2,且AF 2→=2F 2B →,求椭圆的方程.解 (1)由∠F 1AB =90°及椭圆的对称性知b =c ,则e =c a =c 2a 2=c 2b 2+c 2=22. (2)由已知a 2-b 2=1,A (0,b ),F 2(1,0),设B (x ,y ), 则AF 2→=(1,-b ),F 2B →=(x -1,y ), 由AF 2→=2F 2B →,即(1,-b )=2(x -1,y ),解得x =32,y =-b 2,则94a 2+b 24b 2=1, 得a 2=3,因此b 2=2,椭圆的方程为x 23+y 22=1.。
(六)教学设计椭圆的简单几何性质(2)教学设计一、基本情况1.面向对象:高二学生2.学科:数学3.课题:椭圆的几何性质4.课时:2课时5.课前准备:(1)学生回顾本节内容,熟悉椭圆的范围、对称性和顶点,离心率等性质(2)教师准备课件。
二、教材分析《椭圆的几何性质》是人教版2-1的内容。
本节课是在学生学习了椭圆的定义和标准方程的基础上,由椭圆方程出发研究椭圆的几何性质。
这是学生第一次利用方程研究曲线的几何性质,要注意对研究结果的掌握,更要重视对研究方法的学习。
本节课使学生感受“数”和“形”的对立统一,是研究双曲线和抛物线几何性质的基础,起着承上启下的作用。
三、教学目标知识目标1.通过对椭圆标准方程的讨论,让学生掌握椭圆的几何性质。
2.领会椭圆几何性质的内涵,并会运用它们解决一些简单问题。
3.通过对方程的讨论,让学生领悟解析几何是怎样用代数方法研究曲线性质的。
能力目标1.培养学生观察、分析、抽象、概括的能力。
2.渗透数形结合、类比等数学思想。
3.强化学生的参与意识,培养学生的合作精神。
情感目标1.通过自主探究、交流合作,使学生体验探究的过程,从中体会学习的愉悦,激发学生的学习积极性。
2.通过数与形的辨证统一,对学生进行辩证唯物主义教育。
3.通过感受椭圆方程结构的和谐美和椭圆曲线的对称美,培养学生良好的思维品质,激发学生对美好事物的追求。
四、教学重点与难点重点:掌握椭圆的范围、对称性、顶点等简单几何性质。
难点:利用椭圆的标准方程探究椭圆的几何性质。
五、学法、教法与教学用具1.学法:(1)自主探究+合作学习:教师设置问题,鼓励学生从椭圆的标准方程出发,自主探究,合作交流,发现数学规律和问题解决的途径,使学生经历知识形成的过程。
(2)反馈练习法:以练习来检验知识的应用情况,找出掌握不足的内容以及存在的差距。
2.教法:本节课采用自主探究、合作交流相结合的教学方法,运用多媒体教学手段,通过设置问题,让学生在独立思考的基础上合作交流,加强知识发生过程的教学。