材料力学复习笔记

  • 格式:doc
  • 大小:1.43 MB
  • 文档页数:92

下载文档原格式

  / 92
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学

(一)轴向拉伸与压缩

【内容提要】

材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。

【重点、难点】

重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。

【内容讲解】

一、基本概念

强度——构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形。

刚度——构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。

稳定性——构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。

杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。

根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。

二、材料力学的基本假设

工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。

(一)连续性假设——假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。

(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体)。

(三)各向同性假设——沿各个方向均具有相同力学性能。具有该性质的材料,称为各向同性材料。

综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。

三、外力内力与截面法

(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力。

外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等。

当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况。在小变形的情况下,三个坐标平面内的力互相独立,即一个坐标平面的载荷只引起这一坐标平面内的内力分量,而不会引起另一坐标平面内的内力分量。此即小变形条件的叠加法。

(二)内力与截面法

内力在外力作用下,构件发生变形,同时,构件内部相连各部分之间产生相互作用力,由于外力作用,构件内部相连两部分之间的相互作用力,称为内力。

截面法将构件假想地截(切)开以显示内力,并由平衡条件建立内力与部分外力间的关系或由部分外力确定内力的方法,称为截面法。

由连续性假设可知,内力是作用在切开面截面上的连续分布力。称连续分布内力。将连续分布内力向横截面的形心C简化,得主矢与主矩。为了分析内力,沿截面轴线建立轴,在所切横截面内建立轴和轴,并将主矢与主矩沿x、y、z三轴分解,得内力分量,以及内力偶矩分量。这些内力及内力偶矩分量与作用在保留杆段上的部分外力,形成平衡力系,并由相应的平衡方程,建立内力与部分外力间的关系,或由部分外力确定内力。内力分量及内力偶矩分量,统称为内力分量。

(三)应力正应力与剪应力

为了描述内力的分布情况,引入内力分布集度即应力的概念。平均应力在截面m—m上任一点K的周围取一微面积△A,设作用于该面积上的内力为△P,则△A内的平均应力:

单元体(微体)围绕某点(如K).切取一无限小的六面体,称为单元体(或微体)。为全面研究一点处在不同方位的截面上的应力(称为一点的应力状态)而切取的研究对象之一。

四、轴向拉伸与压缩的力学模型

轴向拉伸与压缩是杆件受力或变形的一种最基本的形式。

受力特征作用于等直杆两端的外力或其合力的作用线沿杆件的轴线,一对大小相等、矢向相反。

变形特征受力后杆件沿其轴向方向均匀伸长(缩短)即杆件任意两横截面沿杆件轴

向方向产生相对的平行移动。

拉压杆以轴向拉压为主要变形的杆件,称为拉压杆或轴向受力杆。作用线沿杆件轴向的载荷,称为轴向载荷

五、轴力轴力图

㈠轴力

拉压杆横截面上的内力,其作用线必是与杆轴重合,称为轴力。用N_表示。是拉压杆横截面上唯一的内力分量。

轴力N符号规定拉力为正,压力为负。

根据截面法和轴力N正负号规定,可得计算拉压杆轴力N的法则:横截面上的轴力N,在数值上等于该截面的左侧(或右侧)杆上所有轴向外力的代数和。

无论左侧或右侧杆上,方向背离截面的轴向外力均取正值:反之则取负值。

(二)轴力图

表示沿杆件轴向各横截面上轴力变化规律的图线。称为轴力图或N图。以x轴为横坐标平行于杆轴线,表示横截面位置,以N轴为纵坐标,表示相应截面上的轴力值。

六、拉压杆横截上、斜截面上的应力

(一) 拉压杆横截上的应力

(二)拉压杆斜截面上的应力

由拉压杆横截面上的应力均匀分布,可推断斜截面上的应力,也为均匀分布,且其方向必与杆轴平行。

斜截面上

剪应力符号规定:将截面外法线,沿顺时方向旋转900,与该方向同向的剪应力为正。

七、材料拉压时力学性能强度条件

㈠破坏(失效)许用应力

由于脆性材料均匀性较差,且断裂又是突然发生的,其达到极限应力时的危险性要比塑性材料大的多,因此,在普通荷载作用下,比大,一般取 =1.5~2.0;对脆性材料规定取 =2.5~3.0,甚至更大。

㈡强度条件

利用上述条件,可解决以下三类问题。

1.校核强度_

当已知拉压杆所受外力,截面尺寸和许用应力,通过比较工作应力与许用应力大小,以判断该杆在所受外力作用下能否安全工作。

2.选择截面尺寸

若已知拉压杆所受外力和许用应力,由强度条件确定该杆所需截面面积。对于等截面拉压杆,其所需横截面面积为

3.确定承载能力

若已知拉压杆截面尺寸和许用应力,由强度条件可以确定该杆所能承受的最大轴力,其值为

八、轴向拉压变形轴向拉压应变能

当杆件承受轴向载荷后,其轴向与横向尺寸均发生变化,杆件沿轴向方向的变形称为轴向变形或纵向变形;垂直于轴向方向的变形称为横向变形。与此同时,杆件因变形而贮存的能量,称为应变能。

(一)轴向变形与胡克定律