二次函数系数abc与图像的关系精选练习题

  • 格式:doc
  • 大小:188.50 KB
  • 文档页数:9

下载文档原格式

  / 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数系数a、b、c与图像的关系

知识要点

二次函数y=ax2+bx+c系数符号的确定:

(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.

(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号.

(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.(4)b2-4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.

(5)当x=1时,可确定a+b+c的符号,当x=-1时,可确定a-b+c的符号.(6)由对称轴公式x=,可确定2a+b的符号.

一.选择题(共9小题)

1.(2014•威海)已知二次函数y=ax2+bx+c(a≠0)

的图象如图,则下列说法:

①c=0;②该抛物线的对称轴是直线x=﹣1;③当

x=1时,y=2a;④am2+bm+a>0(m≠﹣1).

其中正确的个数是()

A.1B.2C.3D.4 2.(2014•仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③3.(2014•南阳二模)二次函数y=ax2+bx+c的图象

如图所示,那么关于此二次函数的下列四个结论:

①a<0;②c>0;③b2﹣4ac>0;④<0中,正

确的结论有()

A.1个B.2个C.3个D.4个4.(2014•襄城区模拟)函数y=x2+bx+c与y=x的

图象如图,有以下结论:

①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1

<x<3时,x2+(b﹣1)x+c<0.

其中正确结论的个数为()

A.1B.2C.3D.4 5.(2014•宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:

①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.

其中说法正确的是()

A.①②B.②③C.②③④D.①②④

6.(2014•莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()A.m>2 B.m<3 C.m>3 D.2<m<3 7.(2014•玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:

①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.

其中正确结论的个数是()

A.1个B.2个C.3个D.4个8.(2014•乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与

y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:

①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.

其中正确的是()

A.①②B.③④C.①③D.①③④9.(2014•齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.

A.1个B.2个C.3个D.4个

10、(2011•重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()

A、a>0

B、b<0

C、c<0

D、a+b+c>0

11、(2011•雅安)已知二次函数y=ax2+bx+c的图象如图,

其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③

2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是

()

A、①②③④

B、②④⑤

C、②③④

D、①④⑤

12、(2011•孝感)如图,二次函数y=ax2+bx+c的图

象与y轴正半轴相交,其顶点坐标为(12,1),下列结论:①ac<0;②a+b=0;

③4ac-b2=4a;④a+b+c<0.其中正确结论的个数是()

A、1

B、2

C、3

D、4

答案

一.选择题(共9小题)

1.(2014•威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a >0(m≠﹣1).

其中正确的个数是()

A.1B.2C.3D.4

点:

二次函数图象与系数的关系.

分析:由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.

解答:解:抛物线与y轴交于原点,

c=0,(故①正确);

该抛物线的对称轴是:,

直线x=﹣1,(故②正确);

当x=1时,y=a+b+c

∵对称轴是直线x=﹣1,

∴﹣b/2a=﹣1,b=2a,

又∵c=0,

∴y=3a,(故③错误);

x=m对应的函数值为y=am2+bm+c,

x=﹣1对应的函数值为y=a﹣b+c,

又∵x=﹣1时函数取得最小值,

∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,

∵b=2a,

∴am2+bm+a>0(m≠﹣1).(故④正确).

故选:C.

评:

本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系

数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x

轴交点的个数确定.

2.(2014•仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给

出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有

正确结论的序号是()

A.③④B.②③C.①④D.①②③

点:

二次函数图象与系数的关系.

题:

数形结合.

析:

由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符

号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结

论进行判断.

答:

解:①当x=1时,y=a+b+c=0,故①错误;

②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,

∴y=a﹣b+c<0,

故②正确;

③由抛物线的开口向下知a<0,