高中数学人教版选修1-2全套教案

  • 格式:doc
  • 大小:571.50 KB
  • 文档页数:40

下载文档原格式

  / 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学人教版选修1-2全套教案

第一章统计案例

第一课时 1.1回归分析的基本思想及其初步应用(一)

教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析.

教学难点:解释残差变量的含义,了解偏差平方和分解的思想. 教学过程: 一、复习准备:

1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?

2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报. 二、讲授新课: 1. 教学例题:

① 例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示:

体重. (分析思路→教师演示→学生整理)

第一步:作散点图第二步:求回归方程第三步:代值计算

②提问:身高为172cm的女大学生的体重一定是60.316kg吗?

不一定,但一般可以认为她的体重在60.316kg左右.

③解释线性回归模型与一次函数的不同

事实上,观察上述散点图,我们可以发现女大学生的体重y和身高x之间的关系并不能用一次=+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体函数y bx a

重的关系). 在数据表中身高为165cm的3名女大学生的体重分别为48kg、57kg和61kg,如果能用一次函数来描述体重与身高的关系,那么身高为165cm的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果e(即残差变量或随机

=++,其中残差变量e中包含体重变量)引入到线性函数模型中,得到线性回归模型y bx a e

不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式.

2. 相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义.

3. 小结:求线性回归方程的步骤、线性回归模型与一次函数的不同.

第二课时 1.1回归分析的基本思想及其初步应用(二)

教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 教学难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 教学过程: 一、复习准备:

1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.

2.为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.

二、讲授新课:

1. 教学总偏差平方和、残差平方和、回归平方和:

(1)总偏差平方和:所有单个样本值与样本均值差的平方和,即21()n

i i SST y y ==-∑.

残差平方和:回归值与样本值差的平方和,即21

()n

i i i SSE y y ==-∑.

回归平方和:相应回归值与样本均值差的平方和,即21

()n

i i SSR y y ==-∑.

(2)学习要领:①注意i y 、i y 、y 的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即2

2

21

1

1

()()()n

n

n

i i i i i i i y y y y y y ===-=-+-∑∑∑;③当总

偏差平方和相对固定时,残差平方和越小,则回归平方和越大,此时模型的拟合效果越好;④

对于多个不同的模型,我们还可以引入相关指数2

212

1

()1()

n

i

i i n i

i y

y R y

y ==-=-

-∑∑来刻画回归的效果,它表

示解释变量对预报变量变化的贡献率. 2R 的值越大,说明残差平方和越小,也就是说模型拟合

的效果越好. 2. 教学例题:

例2 关于x 与Y 有如下数据:

为了对x 、Y 两个变量进行统计分析,

现有以下两种线性模型: 6.517.5y x =+,717y x =+,试比较哪一个模型拟合的效果更好.

分析:既可分别求出两种模型下的总偏差平方和、残差平方和、回归平方和,也可分别求出两种模型下的相关指数,然后再进行比较,从而得出结论. (答案:5

2

21

152

1

()155

110.8451000

()i

i i i

i y

y R y

y ==-=-

=-=-∑∑,221R =-

5

2

152

1

()180

10.821000

()i

i i i

i y

y y

y ==-=-=-∑∑,84.5%>82%,所以甲选用的模型拟合效果较好.)

3. 小结:分清总偏差平方和、残差平方和、回归平方和,初步了解如何评价两个不同模型拟合效果的好坏.