轴对称图形定义
- 格式:ppt
- 大小:4.22 MB
- 文档页数:33
contents •轴对称图形的定义•轴对称图形的性质•轴对称图形的应用•轴对称图形的证明方法•轴对称图形的运动变换•轴对称图形的实例分析目录轴对称的定义图形中任意一点到对称轴的距离相等。
图形中任意两点连线与对称轴的夹角为直角。
图形自身具有稳定性,因为对称轴两边的形状完全相同,所以无论从哪个角度看,它都是完整的。
定义性质轴对称图形的对称性定义性质轴对称图形的稳定性定义轴对称图形的运动特性是指在其运动过程中保持对称性的能力。
性质轴对称图形在旋转或平移等运动过程中,只要不破坏其对称性,它就能保持其原有的形状和大小。
轴对称图形的运动特性建筑学中的应用建筑结构的稳定性建筑空间的使用效率建筑设计的艺术性降低机械噪音轴对称图形的设计可以降低机械工作时的噪音和振动,使机械更加安静、稳定地运行。
机械部件的平衡性轴对称图形在机械工程中常被用于设计机械部件,通过轴对称的设计,可以增加机械部件的平衡性和稳定性,提高机械的工作效率和使用寿命。
提高机械性能轴对称图形的设计还可以提高机械的性能和精度,使机械更加高效、准确地完成工作任务。
机械工程中的应用自然界中的应用生物形态的对称性许多自然界的生物形态具有轴对称的特点,如蝴蝶、花朵等,这种对称性不仅美观,还可以提高生物的适应性和生存能力。
自然界中的结构稳定性自然界中的一些结构也利用了轴对称的设计,如行星和卫星的轨道等,这种设计可以增加结构的稳定性和平衡性。
定义法垂直平分线法对于函数$f(x)$,如果存在一个整数$k$,使得$f(-x)=kf(x)$,则称$f(x)$为奇函数。
如果一个图形是由奇函数定义的,那么这个图形必定是轴对称的。
对称变换法通过图形的对称变换,将图形转化为其镜像,然后证明镜像与原图形的对应点关于某条直线对称,从而证明图形是轴对称的。
奇函数法VS极坐标法向量法平移变换030201旋转变换对称变换定义对称不改变图形的形状和大小,只改变图形的方向和位置。
性质例子蝴蝶翅膀上的轴对称图形蝴蝶翅膀的轴对称性翅膀的振动与飞行人脸的轴对称性人体结构的轴对称性自然景观的轴对称性人脸、人体和自然的轴对称性月亮的轴对称性月亮表面也具有天然的轴对称性,这种对称性是由于月球的自转和公转引起的。
关于轴对称的知识点1.轴对称的定义把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴。
折叠后重合的点是对应点,也叫做对称点。
【轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合。
成轴对称的两个图形一定全等。
】2.轴对称图形的定义把一个图形沿着某直线折叠,如果直线两旁的部分能互相重合,那么这个图形是轴对称图形,这条直线就是对称轴。
【轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定。
】3.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的主要区别:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.。
4.轴对称的性质轴对称的性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分;成轴对称的两个图形的任何对应部分也成轴对称;成轴对称的两个图形全等。
5.线段的轴对称性①线段是轴对称图形,线段的垂直平分线是它的对称轴。
②线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等。
③线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线上。
【①线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件。
②三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心。
】6.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线。
7.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴。
(2)角平分线上的点到角两边的距离相等。
图形对称轴对称面对称中心对称————————————————————————————————作者:————————————————————————————————日期:图形轴对称与轴对称图形、中心对称,镜面对称【知识要点】一、轴对称图形与图形轴对称1.轴对称图形定义:如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,•这个图形就叫做轴对称图形,这条直线就是它的对称轴.注意:有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.2.图形轴对称:有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.3. 轴对称图形的性质:如果两个图形成轴对称,•那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线4.轴对称与轴对称图形的区别:轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.二、轴对称变换1.定义:由一个平面图形得到它的轴对称图形叫做轴对称变换.•成轴对称的两个图形中的任何一个可以看着由另一个图形经过轴对称变换后得到2.轴对称变换的性质:(1)经过轴对称变换得到的图形与原图形的形状、大小完全一样(2)•经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的对称点.(3)连接任意一对对应点的线段被对称轴垂直平分3.作一个图形关于某条直线的轴对称图形:(1)作出一些关键点或特殊点的对称点.(2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形.三、坐标系相关1.点P(x,y)关于x轴对称的点的坐标是(x,-y)2.点P(x,y)关于y轴对称的点的坐标是(-x,y)3.点P(x,y)关于原点对称的点的坐标是(-x,-y)4.点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);5.点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);四、镜面对称1.镜面对称是关于关于面的对称2..镜面对称的两个图形全等,并且两个图形到镜面的距离相等五、中心对称1.中心对称图形定义:一个图形绕着某点旋转180°后能与自身重合,这种图形叫做中心对称图形,该点叫做对称中心2.中心对称:一个图形绕着某点旋转180°后能与另一个图形重合,这那么这两个图形成中心对称3.性质:①成中心对称的两个图形全等②对应点的连线经过对称中心且被对称中心平分【典型练习】1.如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中轴对称图形的是( )①②③④A.①②③ B.②③④ C.③④① D.④①②2.下列图形中,不是轴对称图形的是( )A.有两个角相等的三角形B.有一个角为45º的直角三角形C.有一个内角为30º,一个内角为120º的三角形D.有一个内角为30º的直角三角形3.等腰三角形是轴对称图形,它的对称轴是( )A.过顶点的直线B.顶角的平分线C.底边的垂直平分线D.腰上的高说明:等腰三角形的对称轴应该是底边的垂直平分线,而腰上的高与顶角的平分线都是线段,根据对称轴的定义,对称轴应该是直线,另外,过顶点的直线有无数多条,所以C 正确,A、B、D都是错误的,答案为C.4.下列图形中,不是轴对称图形的是( )A.角B.等边三角形C.线段 D.不等边三角形5.正五角星的对称轴的条数是( )A.1条 B.2条 C.5条 D.10条6.下列图形中有4条对称轴的是( )A.平行四边形B.矩形C.正方形 D.菱形7.下列说法中,正确的是( )A.两个全等三角形组成一个轴对称图形B.直角三角形一定是轴对称图形C.轴对称图形是由两个图形组成的D.等边三角形是有三条对称轴的轴对称图形8.如图,ΔABC和ΔA’B’C’关于直线对称,下列结论中:①ΔABC≌ΔA’B’C’;②∠BAC’≌∠B’AC;③l垂直平分CC’;④直线BC和B’C’的交点不一定在l上,正确的有( )A.4个B.3个C.2个 D.1个9.如图,∠AOB内一点P,P1、P2分别是P关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P2 = 5cm,则ΔPMN的周长是( )A. 3cm B. 4cm C. 5cm D. 6cm10.下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.等腰梯形D.菱形(注意平行四边形不是轴对称图形,同学们易犯错误)11.在平面上一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是( )A.180°B.90°C.270°D.360°12.下列几组图形中,既是轴对称图形,又是中心对称图形,完全正确的一组是( ) A.正方形、菱形、矩形、平行四边形B.正三角形、正方形、菱形、矩形C.正方形、菱形、矩形D.平行四边形、正方形、等腰三角形13.下列命题正确的个数是( )①两个全等三角形必关于某一点中心对称②关于中心对称的两个三角形是全等三角形(注意比较命题①、②的真假)③两个三角形对应点连线都经过同一点,则这两个三角形关于该点成中心对称(没有说明被这一点平分)④关于中心对称的两个三角形,对应点连线都经过对称中心A.1B.2C.3D.4 14。
性质2023-10-30CATALOGUE 目录•轴对称图形概述•轴对称图形的性质•常见轴对称图形举例•非轴对称图形举例及特性•轴对称图形的应用01轴对称图形概述定义如果一个图形关于某条直线(称轴)对称,那么这个图形叫做轴对称图形。
性质轴对称图形的对称轴也是图形的中垂线,即线段的中点与轴对称图形上相对应点的连线被对称轴垂直平分。
轴对称图形的定义轴对称图形具有对称性,即图形的左右两侧或上下两侧关于某条直线对称。
对称性唯一性美观性每一个轴对称图形都只有一个对称轴,对称轴将图形分成两个完全相同的部分。
轴对称图形具有美观性,常被应用于建筑设计、艺术和日常生活中。
03轴对称图形的特点0201轴对称图形在数学、艺术、建筑等领域有着悠久的历史。
早在古希腊和罗马时期,人们就利用轴对称来设计建筑、雕塑和图案。
历史随着数学、计算机科学和工程技术的进步,轴对称图形在各个领域的应用越来越广泛,如建筑设计、工业设计、计算机图形学等。
同时,对于轴对称图形的理论研究也在不断发展与完善。
发展轴对称图形的历史与发展02轴对称图形的性质总结词轴对称图形在空间或平面上关于某条直线(称为对称轴)具有对称性。
详细描述这意味着图形的一部分相对于对称轴的镜像翻转后,与另一部分完全重合。
例如,一个圆相对于其直径是对称的,一个正方形相对于其对角线是对称的。
这种对称性在自然界中也很常见,如人的身体、树叶等。
总结词轴对称图形的对称轴总是一条直线,且具有平行性。
详细描述这意味着如果一个图形的一部分相对于对称轴进行镜像翻转后,与另一部分完全重合,那么这两部分必然是平行的。
例如,一个矩形相对于其对边中点的连线是对称的,这个连线就是其对称轴。
轴对称图形的性质三总结词轴对称图形的对称轴具有镜像反射性。
详细描述这意味着图形的一部分相对于对称轴的镜像反射后,与另一部分完全重合。
这种性质可以用来解释许多自然现象和社会现象,如物体在水中的倒影、物体在镜子中的影像等。
精心整理一、轴对称1、轴对称图形概念轴对称图形:一个图形如果沿某条直线对折,对折后的两部分能完全重合,那么就称这样的图形为轴对称图形,这条直线叫作这个图形的对称轴。
注:2注:3注:Error!成轴对称的两个图形的面积也相等。
4、线段和角的轴对称性Error!线段是轴对称图形。
把垂直并且平分一条线段的直线称为这条线段的垂直平分线。
Error!角是轴对称图形,对称轴是它的角平分线所在的直线注:角平分线是一条射线,三角形的角平分线是一条线段,而角是轴对称图形,对称轴是角的平分线所在的直线。
5、画图形的对称轴图形对称轴画法:Error!找出轴对称图形的任意一组对称点;Error!连接这组对称点;Error!画出对称点所连接线段的垂直平分线,这条垂直平分线就是该轴对称图形的对称轴。
注:6Error!Error!Error!1对应角:平移前后,互相重合的角称为对应角。
注:Error!平移的前提示图形沿直线运动,而不是图形在曲面上沿曲线运动。
Error!平移由平移的方向和距离决定。
Error!平移可以是左右平移,也可以是上下平移,还可以按任意指定的方向对图形进行平移。
Error!找平移图形的对应元素的关键是找对应点,由对应点确定对应角、对应线段。
2、平移的特征平移特征:平移前后,图形的形状和大小不变,只是位置发生变化。
对应点:对应点所连的线段平行(或在同一条直线上)且相等。
对应角:对应角相等,对应角的两边分别平行或共线且方向一致。
对应线段:对应线段平行(或共线)且相等。
注:3(2(3(4(5Error!。
初中数学知识点——轴对称与中心对称一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
初中数学知识点:轴对称轴对称知识点一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除三线合一外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
定 义示例剖析轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴.这时我们也说这个图形关于这条直线(成轴)对称.如图,等腰三角形ABC △是轴对称图形.注:在理解轴对称图形时.应注意以下几点:(1)一个图形被对称轴分成两部分,对折后能重合(即全等),这样的图形是轴对称图形.常见的有线段、角、等腰三角形、长方形、圆等.(2)轴对称图形的对称轴是一条直线..,不是射线也不是线段,在叙述时应注意.(3)轴对称图形的对称轴条数至少有一条.否则不是轴对称图形.有的轴对称图形的对称轴条数是有限的.还有的有无限多条对称轴.知识互联网知识导航模块一 轴对称图形的认识与应用轴对称初步两个图形轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.如图,ABC△与'''A B C△关于直线l对称,l叫做对称轴.A和'A,B和'B,C和'C是对称点.注:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.轴对称的性质:1.关于一条直线轴对称的图形全等;2.对称点连成的线段被对称轴垂直平分.【例1】⑴在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A B C D⑵在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.A BCA BCA BCCBA⑶正六边形是轴对称图形,它有条对称轴.⑷下列图形中对称轴最多的是()A.圆B.正方形C.等腰三角形D.线段⑸判断下列图形是否为轴对称图形?如果是,说出它有几条对称轴.⑹已知两条互不平行的线段AB和A′B′关于直线l对称,AB和A′B′所在的直线交于点P,下面四个结论:①AB=A′B′;②点P在直线l上;③若A、A′是对应点,则直线l垂直平分线段AA′;④若B、B′是对应点,则PB=PB′,其中正确的是()夯实基础A .①③④B .③④C .①②D .①②③④【例2】 ⑴ 图1的长方形ABCD 中,E 点在AD 上,且∠ABE =30°.分别以BE 、CE 为折线,将A 、D 向BC 的方向折过去,图2为对折后A 、B 、C 、D 、E 五点均在同一平面上的位置图.若图2中,∠AED =15°,则∠BCE 的度数为( )A .30°B .32.5°C .35°D .37.5°⑵如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( ) A .① B .② C .③ D .④⑶ 已知30AOB ∠=°,点P 在AOB ∠内部,1P 与P 关于OB 对称,2P 与P 关于OA 对称,则1P ,O ,2P 三点确定的三角形是( )A .直角三角形B .钝角三角形C .腰底不等的等腰三角形D .等边三角形定 义示例剖析线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也称之为中垂线.EDC BA 如图,若AC BC =,AB CD ⊥,则直线DE 是线段AB 的垂直平分线.模块二 线段的垂直平分线知识导航能力提升图2图1ABCD EED④②线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.EDC BA如图,已知直线DE 是线段AB 的垂直平分线,则DA DB =.线段的垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.EDC BA如图,若DA DB =,则点D 在线段AB 的垂直平分线上.【例3】 ⑴ 如何用圆规与直尺作线段AB 的垂直平分线?⑵ 证明:线段的垂直平分线上的点与这条线段两个端点的距离相等(线段垂直平分线的性质).⑶ 证明:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上(线段垂直平分线的判定).【例4】 ⑴ 如下图1,在△ABC 中,DE 是AC 的中垂线,AE =3cm ,△ABD 得周长为13cm ,则△ABC 的周长是 .⑵ 如下图2,BD 垂直平分线段AC ,AE ⊥BC ,垂足为E ,交BD 于P 点,PE =3cm ,则P 点到直线AB 的距离是 .夯实基础⑶ 如下图3,在ABC △中,90A ∠=︒,:2:3ABD DBE ∠∠=,DE BC ⊥,E 是BC 的中点,求C ∠的度数.图3图2图1ED CBAPE DCBAED CBA【例5】 ABC △的两边AB 和AC 的垂直平分线分别交BC 于点D 、E ,⑴若BC =8,求△ADE 的周长;⑵若150BAC DAE ∠+∠=︒,求BAC ∠.定 义示例剖析角平分线的性质定理:在角的内部平分线上的点到这个角的两边的距离相等.DFEO CBA如图,若射线OC 是∠AOB 的角平分线,则DE=DF .角平分线的判定定理:在角的内部到一个角两边距离相等的点在这个角的平分线上.DFEOCB A能力提升知识导航模块三 角平分线性质及常见辅助线模型(一)H FEDCB A如图,若DE=DF ,则OC 是∠AOB 的角平分线.角平分线的两种基本模型1. 点垂线,垂两边,对称全等要记全A BCDO12E已知:12∠=∠,CD OA ⊥,作CE OB ⊥于E ,则OCD OCE △≌△.2.角平分线+平行线,等腰三角形必呈现321OD CBA已知:12∠=∠,CD OB ∥交OA 于D ,则ODC △为等腰三角形(即OD CD =).【教师铺垫】证明:⑴ 角平分线上的点到这个角的两边的距离相等(角平分线的性质定理).⑵ 在角的内部到一个角两边距离相等的点在这个角的平分线上(角平分线的判定定理).⑶ 三角形的三条内角平分线交于一点.(此点称之为三角形的内心).⑷ 三角形的内心到三边的距离相等.(三角形内心性质).夯实基础CPB ANM O CPBANMO【例6】 ⑴ 如图,已知ABC △的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,求ABC △的面积.⑵ 如图所示,2AB AC =,1∠2=∠,DA DB =. 求证:DC AC ⊥.【例7】 如图,在△ABC 中,AD 是∠BAC 平分线,AD 的垂直平分线分别交AB 、BC 延长线于F 、E ,求证:⑴∠EAD =∠EDA ;⑵DF ∥AC ;⑶∠EAC =∠B .训练1. D 为BC 中点,DE BC ⊥交BAC ∠的平分线于点E ,EF AB ⊥于F ,EG AC ⊥于G .求证:BF CG =.思维拓展训练(选讲)能力提升21ADCBA B C DE F O G ODCBAFAGEDCB训练2.已知:如图,ABC∠及两点M、N.求作:在平面内找一点P,使得PM PN=,且P点到ABC∠两边所在的直线的距离相等.NMBCA训练3.如图,在ABC△中,BD、CD分别平分ABC∠和ACB∠.DE AB FD AC∥,∥.如果6BC=,求DEF△的周长.训练4.已知:如图,在POQ∠内部有两点M、N,MOP NOQ∠=∠.⑴画图并简要说明画法:在射线OP上取一点A,使点A到点M和点N的距离和最小;在射线OQ上取一点B,使点B到点M和点N的距离和最小;⑵直接写出AM AN+与BM BN+的大小关系.知识模块一轴对称图形的认识与应用课后演练【演练1】⑴下面四个图形中,从几何图形的性质考虑,哪一个与其他三个不同?请指出这个图形,并简述你的理由.实战演练FEDCBAMNQO④③②①答:图形__________;理由是__________.⑵ 画出下图所示的轴对称图形的对称轴:⑶ 如图是奥运会会旗上的五环图标,它有( )条对称轴.A .1B .2C .3D .4⑷ 下列图形中,不是轴对称图形的是( ).A .角B .等边三角形C .线段D .不等边三角形⑸ 如图,它们都是对称的图形,请观察并指出哪些是轴对称图形,哪些图形成轴对称.【演练2】 如图,把ABC △纸片沿DE 折叠,当点A 落在四边形BCED 的外部时,则A ∠与1∠和2∠之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ). A .12A ∠=∠-∠B .212A ∠=∠-∠C .3212A ∠=∠-∠D .()3212A ∠=∠-∠知识模块二 线段的垂直平分线 课后演练【演练3】 如图,已知40AOB ∠=︒,CD 为OA 的垂直平分线,求ACB ∠的度数.21E ADCBO DC BA知识模块三角平分线性质及常见辅助线模型(一)课后演练【演练4】如图,BD CD=,90ABD ACD∠=∠=°,点E、F分别在AB、AC 上,若ED平分BEF∠.①求证:FD平分EFC∠;②求证:EF BE CF=+.【演练5】证明:三角形一个内角的平分线与另外两个外角的平分线交于一点.FEDC BA。
轴对称知识梳理一、基本概念1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.2.线段的垂直平分线经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线3.轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.4.等腰三角形有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.5.等边三角形三条边都相等的三角形叫做等边三角形.二、主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离相等.3.(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y).(2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y).4.等腰三角形的性质(1)等腰三角形的两个底角相等(简称“等边对等角”).(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.(4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等.(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。
(6)等腰三角形顶角的外角平分线平行于这个三角形的底边.5.等边三角形的性质(1)等边三角形的三个内角都相等,并且每一个角都等于60°.(2)等边三角形是轴对称图形,共有三条对称轴.(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合.三、有关判定1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.三个角都相等的三角形是等边三角形.4.有一个角是60°的等腰三角形是等边三角形.。
文昌院教育学科教师辅导讲义课 题轴对称图形及性质教学内容轴对称图形及性质(1.1,1.2)第一节一、1. 轴对称定义:把一个图形沿一条直线这段,如果它能够和另一个图形重合,那么这两个图形关于这条直线对称,也称这两个图形轴对称。
这条直线称为对称轴(对称轴是一条直线,不是射线或线段),两个图形的对应点(即沿对称轴对折后,能够重合的点)叫做对称点。
2. 轴对称图形定义:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形3. 轴对称与轴对称图形的区别:(1) 轴对称是两个图形的位置关系,轴对称图形是一个具有特殊形状的图形 (2) 轴对称涉及两个图形,轴对称是一个图形轴对称与轴对称图形的联系:(1) 定义中都有一条直线,沿这条直线折叠重合。
(2) 轴对称图形一定成轴对称,成轴对称的不一定是轴对称图形。
注意:轴对称图形的对称轴有的只有一条,有的存在多条 例1. 下列图形中是轴对称图形的是( )轴对称与轴对称图形轴对称的性质轴对称图形线段角等腰三角形等腰梯形轴对称图①②③④A.①②B.③④C.②③D.①④例2、下列轴对称图形中,对称轴最多的是().A、等腰直角三角形B、有一角为60的等腰三角形C、正方形D、圆例3.下列图形分别是等边三角形、直角三角形、等腰梯形和矩形,其中有且只有一条对称轴的轴对称图形是( )例4、如图,下列图案是我国几家银行的标志,其中是轴对称图形的有()A.1个B.2个C.3个D.4个例5.剪纸是中国的民间艺术.剪纸方法很多,下面是一种剪纸方法的图示(先将纸折叠,然后再剪,展开即得到图案):下面四个图案中,不能用上述方法剪出的是( )二、轴对称的性质:(1.2)1. (1)线段垂直平分线:垂直并且平分一条线段的直线(线段垂直平分线是到线段两端距离相等的点的集合,即①经过线段的中点 ②垂直于线段,两者缺一不可。
)(2)作线段AB 的垂直平分线: ①分别以A 、B 为圆心,大于AB 21的长为半径画弧,两弧相交于点C 、D ②过C 、D 两点作直线③直线CD 就是线段AB 的垂直平分线 2.性质:①成中轴对称的两个图形全等;②如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
精心整理一、轴对称1、轴对称图形概念轴对称图形:一个图形如果沿某条直线对折,对折后的两部分能完全重合,那么就称这样的图形为轴对称图形,这条直线叫作这个图形的对称轴。
注:对称轴是一条直线,不是线段,也不是射线。
23注:4线段是轴对称图形。
把垂直并且平分一条线段的直线称为这条线段的垂直平分线。
角是轴对称图形,对称轴是它的角平分线所在的直线注:角平分线是一条射线,三角形的角平分线是一条线段,而角是轴对称图形,对称轴是角的平分线所在的直线。
5、画图形的对称轴图形对称轴画法:找出轴对称图形的任意一组对称点;连接这组对称点;画出对称点所连接线段的垂直平分线,这条垂直平分线就是该轴对称图形的对称轴。
轴对称图形的性质:如果一个图形是轴对称图形,那么连接对称点的线段的垂直平分线就是该图形的对称轴。
注:画出轴对称图形的对称轴,关键是选取一些对称点(如线段的端点、角的顶点),然后画对称点连线的垂直平分线。
61平移。
找平移图形的对应元素的关键是找对应点,由对应点确定对应角、对应线段。
2、平移的特征平移特征:平移前后,图形的形状和大小不变,只是位置发生变化。
对应点:对应点所连的线段平行(或在同一条直线上)且相等。
对应角:对应角相等,对应角的两边分别平行或共线且方向一致。
对应线段:对应线段平行(或共线)且相等。
注:对应线段、对应角必须在平移前后的两个图形中去找。
平移过程中,对应线段有可能在同一条直线上,对应点的连线也有可能在同一条直线上。
对应点所连的线段与对应线段不同。
3、平移作图平移作图条件:(1)图形原来的位置;(2)平移方向;(3)平移距离(2(3(4(5。
解析几何中的轴对称图形和非轴对称图形在解析几何中,轴对称和非轴对称是两种重要的图形变换,可以用来分析和描述图形在坐标系中的位置和形状。
在本文中,我们将从几何和代数两个角度来探讨这两种图形变换的本质和应用。
一、轴对称图形轴对称是指一个图形可以沿着某一条直线对折,使得对折前后的图形完全重合。
这条直线被称为轴线。
轴对称图形具有以下特点:1. 对称中心在轴线上,即轴线同时也是轴对称图形的对称中心;2. 轴对称图形的任意一点关于轴线是对称的,即对称轴两侧的点对为对称点对;3. 轴对称图形是自反的,即对称轴两侧的点在轴线上的投影互为相反数。
轴对称图形在几何学和物理学等领域都有广泛的应用。
例如,在光学中,镜面反射就是一种轴对称变换,它可以用来制造反射镜、望远镜等光学设备;在工程学中,轴对称结构的设计和分析也是必不可少的,它可以大大提高结构的稳定性和强度。
二、非轴对称图形非轴对称是指一个图形不能通过沿着任何一条直线对折重合的图形变换。
非轴对称图形具有以下特点:1. 没有对称中心,即不存在任何一条直线同时作为对称轴;2. 非轴对称图形的任意一点关于中心对称,即对称中心到任意一点的线段都垂直于这个点的对称轴;3. 非轴对称图形不能通过旋转、平移等简单的刚体运动变换得到。
非轴对称图形在艺术和设计等领域中经常出现。
例如,在花纹设计和装饰中,非轴对称图形可以制造出独特的视觉效果,给人以美感和艺术享受;在科技和生物学等领域,非轴对称的形态也往往具有特殊的物理和生物特性,它们可以用来研究物质的结构和生命的起源等重要问题。
三、代数表示除了几何表示,轴对称和非轴对称变换还可以用代数式来表示。
我们以平面上的点为例,假设轴线方程为y=k,轴对称变换可以表示为:(x,y) -> (x,2k-y)这个式子的意义是,对于平面上的任意点(x,y),通过轴线y=k将其分为两个点对(p,q),其中p和q的y坐标分别为k+y和k-y。
轴对称变换的结果就是将点(x,y)映射为(x,2k-y),也就是和(x,k+y)关于轴线y=k对称的点。
图形的轴对称知识导引1、轴对称的概念:把一个图形沿一条直线翻折过去,如果它能够与另一个图形重合,那么这两个图形关于这条直线对称或轴对称,这条直线就是对称轴,两个图形中的对应点(即两图形重合时互相重合的点)叫做对称点。
2、轴对称图形:把一个图形沿一条直线对折,对折的两部分能够完全重合,那么就称这个图形为轴对称图形,这条直线就是这个轴对称图形的对称轴,一个图形的对称轴可以有1条,也可以有多条。
3、轴对称与轴对称图形的区别与联系:联系区别轴对称轴对称是指两个图形的对称关把轴对称的两个图形看成一个“整体”系(一个图形),则称为轴对称图形;把轴轴对称图形轴对称图形是指具有某种对称对称图形的互相对称的两个部分看成特性的图形“两个图形”,则它们成轴对称。
4、轴对称的性质:(1)关于某条直线对称的两个图形全等;(2)对称点的,连线段被对称轴垂直平分;(3)对应线段所在的直线如果相交,则交点在对称轴上;(4)轴对称图形的重心在对称轴上。
典例精析例1:下列四个图形中,不是轴对称图形的是()A B C D例2:张晓丽从平面镜中看到一个英语单词,如图所示,这个英语单词是,它的中文意思是。
例3:现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑,如图中(1)、(2)所示,观察图(1),图(2)中涂黑部分构成的图案,它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形,请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征。
例4:如图(1)所示,要在街道旁修建一个奶站,向居民区A,B提供牛奶,奶站应建在什么地方,才能使从A,B到它的距离之和最短?‘例5:(1)如图1,把△ABC沿DE折叠,使点A落在点A处,试探索∠1+∠2与∠A的关系(不必证明)。
(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=130°,求∠BIC的度数。
(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF,CG交于点H,把△ABC 折叠,使点A和点H重合,试探索∠BHC与∠1+∠2的关系并证明你的结论。
一、知识整理1.轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线叫做对称抽。
2.成轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.两个图形关于一条直线对称,也叫成轴对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.3. 对称轴和对称点:轴对称图形对折重合后的折痕所在的直线是对称轴,能够互相重合的点叫做对称点.4.轴对称和轴对称图形的性质轴对称的性质:①由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形全等(即形状、大小完全相同)②新图形上的每一点,都是原图形上的某一点关于直线l的对称点③连接任意一对对应点的线段被对称轴垂直平分轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.5.线段的垂直平分线的定义、性质、尺规作法定义:经过线段中点并且垂直于这条线段的直线叫做这条线段的垂直平分线.性质:线段垂直平分线上的点到这条线段两个端点的距离相等.6、画出已知图形关于某条直线对称的图形①对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形。
这种方法我们可以称之为“以点带面”法。
②在直角坐标系中,关于x轴对称的点的坐标的特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标的特点:横坐标互为相反数,纵坐标不变。
二、典例讲解例1::下列图形中不是轴对称图形的是()A B C D答案:C例2:在下列说法中,正确的是( )A .如果两个三角形全等,则它们必是关于直线成轴对称的图形B .如果两个三角形关于某直线成轴对称,那么它们是全等三角形C .等腰三角形是关于底边中线成轴对称的图形D .一条线段是关于经过该线段中点的直线成轴对称的图形答案:B (点拨:全等的三角形不一定是成轴对称,而成轴对称的两个三角形一定是全等的.)例3:如图所示,∠ABC 内有一点P ,在BA 、BC 边上各取一点P 1、P 2,使△PP 1P 2的周长最小..如图12-17,以BC 为对称轴作P 的对称点M ,以BA 为对称轴作出P 的对称点N ,连MN 交BA 、BC 于点P 1、P 2.∴ △PP 1P 2为所求作三角形.例4:如图,已知△ABC 是等腰直角三角形,∠BAC=90°,BE 是∠ABC 的平分线,DE ⊥BC ,垂足为D.(1)请你写出图中所有的等腰三角形; (2)请你判断AD 与BE 垂直吗?并说明理由. (3)如果BC=10,求AB+AE 的长.:(A )(B )(C ) (D )解:(1)△ABC ,△ABD ,△ADE ,△EDC. (2)AD 与BE 垂直.证明: 由BE 为∠ABC 的平分线,知∠ABE=∠DBE ,∠BAE=∠BDE=90°,BE=BE , ∴ △ABE 沿BE 折叠,一定与△DBE 重合. ∴ A 、D 是对称点, ∴ AD ⊥BE. (3)10.例5:如图所示,△ABC 是等边三角形,延长BC 至E ,延长BA 至F ,使AF=BE ,连结CF 、EF ,过点F 作直线FD ⊥CE 于D ,试发现∠FCE 与∠FEC 的数量关系,并说明理由.解:如图所示,延长BE 到G ,使EG=BC ,连FG . ∵AF=BE ,△ABC 为等边三角形,∴BF =BG ,∠ABC =60°,∴△GBF 也是等边三角形.在△BCF 和△GEF 中, ∵BC=EG ,∠B=∠G=60°,BF=FG , ∴△BCF ≌△GEF , ∴CE=DE ,又∵FD ⊥CE ,∴∠FCE=∠FEC (等腰三角形的“三线合一”).三、1.李芳同学球衣上的号码是253,当他把镜子放在号码的正左边时,镜子中的号码是_______.(A)(B)(C)(D)2.我国的文字非常讲究对称美,分析图中的四个图案,图案( )有别于其余三个图案.3.如图是我国几家银行的标志,在这几个图案中是轴对称图形的有( ) A .1个 B .2个 C .3个 D .4个4.轴对称是指 个图形的位置关系;轴对称图形是指 个具有特殊形状的图形.5.设A 、B 两点关于直线MN 对称,则______垂直平分________.6.等腰三角形是_______对称图形,它至少有________条对称轴.7.点(1,3)P -关于x 轴的对称点的坐标为 .8.已知点P 在线段AB 的垂直平分线上,PA=6,则PB= .9.点M )3,5(-关于x 轴的对称点的坐标是( )A . )3,5(--B .)3,5(-C .)3,5(D .)3,5(-10.已知:如图,ABC △的顶点坐标分别为(43)A --,,(03)B -,,(21)C -,,如将B 点向右平移2个单位后再向上平移4个单位到达1B 点,若设ABC △的面积为1S ,1AB C △的面积为2S ,则12S S ,的大小关系为( ) A .12S S > B .12S S =C .12S S <D .不能确定11.已知M (a,3)和N (4,b )关于y 轴对称,则2008)(b a +的值为( ) A.1 B 、-1 C.20077 D.20077-四、课后作业1.下列说法中,不正确的是( ) A .等边三角形是轴对称图形,它的三条高是它的对称轴;B .等腰三角形是轴对称;C .关于某一条直线对称的两个三角形一定全等;D .若△ABC 与△A 1B 1C 1关于直线L 对称,那么它们对应边的高、中线、对应角的平分线分别关于L 对称2.如图所示,Rt △ABC 中,∠C=90°,AB 的垂直平分线DE 交BC 于D ,交AB 于点E . 当∠B=30°时,图中一定相等的线段有( ) A .AC=AE=BE B .AD=BD C .CD=DE D .AC=BD3.如图,点P 在∠AOB 的内部,点M 、N 分别是点P 关于直线OA 、OB •的对称点,线段MN 交OA 、OB 于点E 、F ,若△PEF 的周长是 20cm ,则线段MN 的长是___________.4.如图是未完成的上海大众汽车汽车标志图案,该图案是以直线l为对称轴的轴对称图形,现已完成对称轴的左边的部分,请你补全标志图案,画出对称轴右边的部分.5.已知A (2m +n,2)、B (1,n -m ),当m ,n 分别为何值时 (1)A 、B 关于x 轴对称; (2)A 、B 关于y 轴对称;6.平面直角坐标系中,△ABC 的三个顶点坐标分别为A (0,4),B (2,4),C (3,-1). (1)试在平面直角坐标系中,标出A 、B 、C 三点; (2)求△ABC 的面积.(3)若111C B A 与△ABC 关于x 轴对称,写出1A 、1B 、1C 的坐标.答案: 练习:1.A (点拨:把球衣上253的号码沿水平方向翻折180°,得到的图案即是他背对镜子时的像.)2.D (点拨:图案D 有两条对称轴,其余三个图案都只有一条对称轴.)3.C (点拨;只有中国建设银行的标志不是轴对称图形.) 4.2;1 5.MN ;AB 6. 轴;1 7. (-1,-3) 8. 6 9. C 10.B11.A课后作业:1. A2.B3.20cm4.略5.解:(1)由题意得,⎩⎨⎧=-+=+0212m n n m ,解得⎩⎨⎧-==11n m ,所以当m=1,n=-1时,点A 、B 关于x 轴对称. (2)由题意得,⎩⎨⎧=--=+212m n n m ,解得⎩⎨⎧=-=11n m ,所以当m=-1,n=1时,点A 、B 关于y 轴对称.6.解:略。
轴对称知识点概念总结一、轴对称的概念轴对称是指平面上的任意一点到某条直线的距离等于它的对称点到同一条直线的距离。
这条直线就称为轴对称的轴线。
在轴对称的变换中,图形关于轴线对称,即通过某条直线进行对称变换后,两个图形完全重合。
轴对称变换是一种保持图形形状和大小不变的变换,即如果原图形关于轴对称,则对称后的图形大小、形状和位置都不变。
在平面几何中,轴对称是指通过一条直线,将一个图形对称折叠,并使得折叠后的两部分完全重合。
在三维空间中,轴对称是指通过一个平面,将一个立体图形对称折叠,并使得折叠后的两部分完全重合。
而对于更高维度的空间,轴对称的概念也有相应的推广。
二、轴对称的性质1. 图形经过轴对称变换后仍然保持不变,即大小、形状和位置都不变。
2. 轴对称的轴线可取任意直线,轴对称的性质不随轴线的选取而改变。
3. 轴对称是一种对称变换,它保持了图形的对称性质。
4. 轴对称变换是一种保角变换,保持了图形的内角和外角不变。
5. 如果一个图形关于一条直线轴对称,那么它关于这条直线的对称轴线的对称关系也是轴对称的。
6. 如果两个图形分别关于两条无交点的直线轴对称,那么这两个图形的对称关系也是轴对称的。
7. 如果两个图形分别关于同一条直线轴对称,那么它们之间的对称关系也是轴对称的。
轴对称的性质是轴对称变换在数学、物理和工程等领域中应用的基础,是轴对称图形和轴对称函数等概念的重要基础。
三、轴对称的应用1. 在几何学中,轴对称是通过对称折叠和对称变换等方法,研究图形的性质、构造和证明等问题的基本手段。
2. 在物理学中,轴对称是通过对称抽象和对称分析等方法,研究物理系统的对称性、守恒律和相互作用等问题的基本工具。
3. 在工程学中,轴对称是通过对称设计和对称加工等方法,研究零件的制造、组装和检测等问题的基本技术。
4. 在数学分析和代数中,轴对称是通过对称函数和对称方程等方法,研究函数的性质、解的性质和对称结构等问题的基本手段。