(推荐精选)呼吸机波形分析及临床应用
- 格式:ppt
- 大小:22.13 MB
- 文档页数:94
我们都知道机械通气时有四个最基本的变量:容量、压力、流量、时间。
这四个变量是机械通气的核心。
所谓的波形其实就是反映这四个变量之间关系的曲线,包括容量、压力、流量这三个变量的时间曲线以及压力-容量、流量-容量和压力-流量等三个环。
其中以压力-时间曲线、流量-时间曲线和压力-容量环最为常用,在基础讲座中我们将着重讲解。
这是几种最常见的流量时间曲线。
(本图引自PB840呼吸机的波形说明,绿色表示强制通气的吸气过程,红色表示自主呼吸的吸气过程,黄色表示呼气过程)横轴代表时间,单位是秒s;纵轴代表流量,单位是升/分L/min。
曲线上任意一点的流量都是由流量传感器测得的。
呼吸机送气时,气流通过吸气端流量传感器,此时流量曲线位于横轴上方。
呼吸机送气停止,如果此时有平台时间,则流量时间曲线的这一段与横轴重合。
开始呼气时,送气阀关闭,呼气阀打开,气流通过呼气端流量传感器,此时流量曲线位于横轴下方。
呼吸机送气的容量就等于吸气曲线下的面积。
我们先来看一下上图的左半部分。
左边三个图都是强制通气时的流量曲线。
第一个就是最经典,以前也最常用的方波square(矩形波)。
方波是定容通气时可选择的流量波形之一。
我们知道,定容通气时需要设置的参数有潮气量、呼吸频率、峰流量(或吸气时间或吸呼比)、流量波形、平台时间、氧浓度、PEEP等等。
方波的特点就是呼吸机在整个吸气时间内所输送的流量均是恒定的,吸气开始后很快就达到峰值,并保持恒定直到吸气结束才降为0,故形态呈方形(临床实际的情况是由于流量从0上升到最大值多多少少会需要一点时间,因此流量曲线就象是个梯形)。
第二个是递减波(线性)。
线性递减波也是定容通气时可选择的流量波形之一。
其特点是呼吸机输送的流量在吸气时间刚开始时立即达到峰值,然后呈线性递减至0(吸气结束)。
方波和线性递减波都是定容通气时的流量曲线,在其他所有参数都相同的情况下,方波的吸气时间短(如果设定了吸气时间,则峰流量较小),但气道峰压高;而线性递减波的吸气时间稍长(如果设定了吸气时间,则峰流量较大),气道峰压较低。
呼吸力学波形分析与临床意义概述:呼吸力学波形分析是通过监测和分析患者的呼吸波形来评估其呼吸功能和机械通气支持的效果。
该技术已经在临床上广泛应用,在重症监护科、康复医学和呼吸科等领域发挥了重要作用。
本文将探讨呼吸力学波形分析的原理、临床应用意义以及相关的研究进展。
一、呼吸力学波形分析的原理呼吸力学波形是通过呼吸机、气道插管或面罩等设备采集到的呼吸相关信号,包括压力、流速和容积等参数。
这些信号可以通过传感器转化为电信号,并经过信号处理后显示为图形波形。
呼吸力学波形分析基于呼吸波形的形状和特征,来评估患者的呼吸机械特性和肺功能状况。
二、呼吸力学波形分析的临床应用意义1. 监测呼吸机械通气效果:呼吸力学波形分析可以实时监测患者的呼吸机械通气效果,帮助调整通气参数和预测治疗效果。
例如,通过观察呼气末正压波形的趋势和形态,可以判断患者肺顺应性的变化,评估肺泡塌陷的情况,并调整呼气末正压水平,以提高患者的通气效果。
2. 诊断和评估肺病变:呼吸力学波形分析可以帮助诊断患者的肺病变,并评估其严重程度。
例如,通过观察流速波形的平坦度和上升时间,可以判断患者是否存在患者呼吸道阻塞,如哮喘和慢性阻塞性肺疾病等。
通过观察容积波形的形态和波峰时间,可以评估患者的肺顺应性和气道阻力,辅助判断ARDS等严重肺疾病的程度。
3. 指导机械通气策略:呼吸力学波形分析可以为临床医生提供指导机械通气策略的信息。
例如,通过观察呼吸系统压力波形和流速波形的相位关系和形态,可以判断患者呼吸机和患者的呼吸同步状况,辅助调整呼气末正压水平和呼吸机触发敏感度,以提高通气效果和减少不适感。
三、呼吸力学波形分析的研究进展随着对呼吸力学波形的深入研究,人们不断探索和发现其在临床上的新应用。
例如,部分研究表明,呼吸力学波形分析可以预测ARDS的发生和预后,有助于早期干预和预防。
另外,通过结合机器学习和人工智能等技术,呼吸力学波形分析还有望在未来实现自动化和个体化的呼吸支持治疗。
呼吸机基本波形详解流速测定流速通常在呼吸机环路(从进气口到呼气阀之间的管道)中测知,流量感应器根据设计类型不同而有些许差异,但大部分都可以测量一个较大的范围(-300—+150LPM),但会由于假呼吸运动、水气、呼吸道分泌物等而影响其准确性。
流速波有两个组成部分:吸气波和呼气波,它描述了流速大小、持续时间和机控呼吸下的流速释放方式(正压通气),或者病人自主呼吸下的流速大小,持续时间和流速需求。
我们先介绍机控呼吸的吸气波,然后是自主呼吸的,等掌握了基本原理,再来讨论呼气波形。
吸气流速波——机控呼吸图1是一个假设呼吸机给于恒定流速的一次机控呼吸的吸气流速波(方波),虚线部分是呼气波,我们会在后面介绍图1 吸气流速波——机控呼吸①呼吸机送气开始开始吸气取决于以下两点:1)到达了预设的呼吸周期时间,即“时间循环”2)病人吸气努力达到了触发辅助通气的阈值,通常是一个吸气负压或吸气流速增量,即“病人循环”。
前者常出现在控制呼吸模式,后者常出现于辅助呼吸模式②吸气峰流速在容控性呼吸机上,预设流速是很有必要的,流速设置也可以设置潮气量和吸气时间来间接得到。
假设设置了一个恒定流速的容控性呼吸机(如图一),峰流速就是设置值。
当流速不恒定,即流速波形是曲线波,流速在吸气时不同时间点上表现为不同的值。
此时中间流速或称平均流速通过下式计算:流速(LPM)=[潮气量(L)/时间(S)]X60③吸气末停止送气这个转换可能达到了预期的容量送气、流速、压力或吸气时间④吸气流速的持续时间常与吸气时间相应,容控呼吸机上,吸气时间常取决于预设的潮气量、峰流速和流速释放方式(波型:如递减波),有的也可以直接设置。
因此,吸气时间可以长于峰流速持续时间,尤其当应用吸气暂停时。
⑤整个呼吸周期时间(TCT)取决于预设的呼吸次数 TCT=60/Rate 图1的流速波型是方波,从吸气开始即达到峰值,直到吸气末都是一个恒定值,在实际应用当中,像图1那样“真正的”方波是不可能达到的,因为流速输送系统都有一个固定的延迟时间,在这段时间内,流速从0达到预设的峰流速。
呼吸波形分析入门呼吸波形分析是指对人体呼吸过程中产生的波形进行分析和解读的技术。
通过对呼吸波形的分析,可以了解人体的呼吸情况、肺功能以及一些疾病的发生与发展情况,具有重要的临床应用价值。
本文将介绍呼吸波形分析的基本原理、常用的呼吸波形参数及其临床意义,以及呼吸波形分析的应用领域。
呼吸波形是人体呼吸过程中产生的一种连续变化的曲线,它反映了呼吸肌肉的收缩与放松、胸腔的扩张与收缩。
通过对呼吸波形的分析,可以得到一系列的参数,如呼吸频率(RR)、潮气量(TV)、呼气末正压(PEEP)等,这些参数可以帮助医生了解患者的呼吸情况,判断肺功能是否正常以及是否存在呼吸衰竭。
在呼吸波形分析中,最常用的参数是呼吸频率(RR)。
呼吸频率是指每分钟呼吸次数,正常成人的呼吸频率为12-20次/分钟。
通过对呼吸频率的分析,可以判断患者的呼吸节律是否规律,是呼吸快还是呼吸慢,这对于判断患者是否存在呼吸障碍是非常重要的。
另一个常用的呼吸波形参数是潮气量(TV)。
潮气量是指每次正常呼吸时进出肺部的空气量,正常成人的潮气量为500-800ml。
通过对潮气量的分析,可以判断患者肺功能的情况,如患者是否存在过度通气或通气不足的情况,以及判断患者是否存在通气与灌注不匹配等问题。
此外,呼吸波形分析还可以得到呼吸时间、峰值呼气流速(PEF)和呼气末正压(PEEP)等参数。
呼吸时间是指从吸气开始到呼气结束的时间,正常成人的呼吸时间约为4-6秒。
峰值呼气流速是指呼气过程中的最大流速,反映患者的呼气能力。
呼气末正压是指在呼气末时,呼吸机对患者施加的正压情况,用于维持患者的肺泡开放和改善通气效果。
呼吸波形分析的应用领域非常广泛。
在重症监护室(ICU)中,呼吸波形分析可以帮助医生监测患者的呼吸状况,及时发现呼吸异常,是重症患者管理中的重要手段。
在麻醉领域中,呼吸波形分析可以帮助麻醉医生监测患者的呼吸情况,及时调整麻醉深度和通气参数,确保患者的安全。
在呼吸疾病的诊断和治疗中,呼吸波形分析可以帮助医生判断疾病的类型和严重程度,选择合适的治疗方案。
呼吸机波形分析⼊门+彩图引⾔近10 年来因微理器和有关软件的发展, 现代呼吸机除提供各种有关监测参数外, 同时能提供机械通⽓时压⼒、流速和容积的变化曲线以及各种呼吸环. ⽬的是根据各种不同呼吸波形曲线特征, 来指导调节呼吸机的通⽓参数, 如通⽓模式是否合适、⼈机对抗、⽓道阻塞、呼吸回路有⽆漏⽓、评估机械通⽓时效果、使⽤⽀⽓管扩张剂的疗效和呼吸机与患者在通⽓过程中各⾃所作之功等.有效的机械通⽓⽀持或通⽓治疗是在通⽓过程中的压⼒、流速和容积相互的作⽤⽽达到以下⽬的:a. 能维持动脉⾎⽓/⾎pH 的基本要求(即PaCO2 和pH 正常, PaO2 达到基本期望值如⾄少 > 50-60 mmHg)b. ⽆⽓压伤、容积伤或肺泡伤.c. 患者呼吸不同步情况减低到最少,减少镇静剂、肌松弛剂的应⽤.d. 患者呼吸肌得到适当的休息和康复.1.呼吸机⼯作过程:上图中,⽓源部份(Gas Source)是呼吸机的⼯作驱动⼒, 通过调节⾼压空⽓和氧⽓流量⼤⼩的阀门来供应混合氧⽓体. ⽓体流量经流速传感器在毫秒级时间内测定流量, 调整⽓体流量阀门(Flow Valve)的直径以控制流量。
测定在流速曲线的吸⽓流速⾯积下的积分, 计算出潮⽓量. Vt= 流速(升/秒)×Ti(流速恒定).图中控制器(Control Unit)是呼吸机⽤于控制吸⽓阀和呼⽓阀的切换,它受控于肺呼吸⼒学改变⽽引起的呼吸机动作.吸⽓控制有 :a. 时间控制: 通过预设的吸⽓时间使吸⽓终⽌, 如PCV 的设置Ti 或I:E.b. 压⼒控制: 上呼吸道达到设置压⼒时使吸⽓终⽌,现巳少⽤, 如PCV 的设置⾼压报警值.c. 流速控制: 当吸⽓流速降⾄预设的峰流速%以下(即 Esens), 吸⽓终⽌.d. 容量控制: 吸⽓达到预设潮⽓量时,吸⽓终⽌.呼⽓控制有:a. 时间控制: 通过设置时间长短引起呼⽓终⽌(控制通⽓) 代表呼⽓流速(吸⽓阀关闭, 呼⽓阀打开以便呼出⽓体), 呼⽓流速的波形均为同⼀形态.b. 病⼈触发: 呼吸机捡测到吸⽓流速到吸⽓终⽌标准时即切換呼⽓(Esens).图中⽓体流量定量阀(Dosing Flow-Valve)是控制呼吸机输送的⽓体流量, 由流量传感器监测并控制, 如此⽓体流量经Y 形管进⼊病⼈⽓道以克服⽓道粘性阻⼒,再进⼊肺泡的容积以克服肺泡弹性阻⼒. 通过打开和关闭呼⽓阀, 即控制了吸⽓相和呼⽓相. 在吸⽓时呼⽓阀是关闭的. 若压⼒,容量或吸⽓时间达到设置值, 呼⽓阀即打开, 排出呼出⽓体.呼⽓阀后的PEEP 阀是为了维持呼⽓末⽓道压⼒为正压(即0 cmH2O 以上), ⽬的是克服內源性(PEEPi);维持肺泡的张开.由于各⼚图形处理软件不⼀, 故显⽰的波形和环稍有差别,但对波形的判断並⽆影响.为便识别吸、呼⽓相,本波形分析⼀律以绿⾊代表吸⽓,以兰⾊代表呼⽓.2. 流量-时间曲线(F-T curve)流速定义:呼吸机在单位时间内在两点之间输送出⽓体的速度, 单位为cm/s 或m/s.流量:是指每单位时间内通过某⼀点的⽓体容量. 单位L/min 或L/sec ⽬前在临床上流速、流量均混⽤! 本⽂遵守习称.流量-时间曲线的横座标代表时间(sec), 纵座标代表流速(Flow= ), 流速(量)的单位通常是"升/分"(L/min 或LPM).在横座标的上部代表吸⽓(绿⾊), 吸⽓流量(呼吸机吸⽓阀打开, 呼⽓阀关闭, ⽓体输送⾄肺),曾有⼋种波形(见下图).⽬前多使⽤⽅波和递减波.横座标的下部代表呼⽓(兰⾊)(呼吸机吸⽓阀关闭, 呼⽓阀打开以便病⼈呼出⽓体). 呼⽓流量波形均为同⼀形态, 只有呼⽓流量的振幅⼤⼩和呼⽓流量回复到零时间上差异.图. 各种吸、呼⽓流量波形 A.指数递减波 B.⽅波 C.线性递增波 D.线性递减波 E. 正弦波 F.50%递减波 G.50%递增波H.调整正弦波2.1. 吸⽓流量波形(Fig.1) 恒定的吸⽓流速是指在整个吸⽓时间内呼吸机输送的⽓体流量恒定不变, 故流速波形呈⽅形,( ⽽PCV 时吸⽓流量均采⽤递减形-即流量递减), 横轴下虚线部分代表呼⽓流速(在呼⽓流量波形另⾏讨论)Fig.1 吸⽓流量恒定的曲线形态1: 代表呼吸机输送⽓体的开始:取决于 a)预设呼吸周期的时间巳达到, 呼⽓转换为吸⽓(时间切换)如控制呼吸(CMV). b)患者吸⽓努⼒达到了触发阀,呼吸机开始输送⽓体,如辅助呼吸(AMV).2: 吸⽓峰流量(PIF 或PF): 在容量控制通⽓(VCV)时PIF 是预设的, 直接决定了Ti 或I:E.在PCV 和PSV 时,PIF 的⼤⼩决定了潮⽓量⼤⼩、吸⽓时间长短和压⼒上升时间快慢.3: 代表吸⽓结束, 呼吸机停⽌输送⽓体.此时巳完成预设的潮⽓量(VCV)或压⼒巳达标(PCV),输送的流量巳完成(流速切换),或吸⽓时间已达标(时间切换).4→5:代表整个呼⽓时间:包括从呼⽓开始到下⼀次吸⽓开始前这⼀段时间.6: 1→4为吸⽓时间: 在VCV 中其长短由预设的潮⽓量,峰流速和流速波型所决定, 它尚包含了吸⽓后摒⽓时间(VCV 时摒⽓时间内⽆⽓体流量输送到肺,PCV 时⽆吸⽓后摒⽓时间).7: 代表⼀个呼吸周期的时间(TCT): TCT=60 秒/频率.2.1.1 吸⽓流量的波型(类型)(Fig.2)根据吸⽓流量的形态有⽅波, 递减波, 递增波, 和正弦波, 在定容型通⽓(VCV)中需预设频率, 潮⽓量和峰流量, 并选择不同形态的吸⽓流量波.!(见Fig.2 以⽅波作为对⽐) 正弦波是⾃主呼吸的波形,其在呼吸机上的疗效⽆从证明(指在选擇流速波形时),巳少⽤.雾化吸⼊或欲使吸⽓时间相对短时多数⽤⽅波.Fig.2 吸⽓流速波型图2 中流速以⽅波作为对⽐(以虚线表⽰), 在流速,频率和潮⽓量均不变情况下, ⽅波由于流速恒定不变,故吸⽓时间最短, 其他波形因的递减, 递增或正弦状, 因它们的流速均⾮恒定不变, 故吸⽓时间相应延长.⽅波: 是呼吸机在整个吸⽓时间内所输送的⽓体流量均按设置值恒定不变, 故吸⽓开始即达到峰流速, 且恒定不变持续到吸⽓结束才降为 0. 故形态呈⽅形递减波: 是呼吸机在整个吸⽓时间内, 起始时输送的⽓体流量⽴即达到峰流速(设置值), 然后逐渐递减⾄0 (吸⽓结束), 以压⼒为⽬标的如定压型通⽓(PCV)和压⼒⽀持(PSV=ASB)均采⽤递减波.递增波: 与递增波相反, ⽬前基本不⽤.正弦波: 是⾃主呼吸的波形. 吸⽓时吸⽓流速逐渐达到峰流速⽽吸⽓末递减⾄0,(⽐⽅波稍缓慢⽽⽐递减波稍快).呼⽓流速波除流速振幅⼤⼩和流速回⾄基线(即0 流速)的时间有所不同外,在形态上⽆差别.2.1.2 AutoFlow(⾃动变流) (见Fig.3)AutoFlow 并⾮流速的波形, ⽽是呼吸机在VCV 中⼀种功能. 呼吸机根据当前呼吸系统的顺应性和阻⼒及设置的潮⽓量, 计算出下⼀次通⽓时所需的最低⽓道峰压, ⾃动控制吸⽓流量, 由起始⽅波改变为减速波,在预设的吸⽓时间内完成潮⽓量的输送.Fig.3 AutoFlow 吸⽓流速⽰意图图3 左侧为控制呼吸,由原⽅波改变为减速波形(⾮递减波), 流速曲线下的⾯积=Vt.图右侧当阻⼒或顺应性发⽣改变时, 每次供⽓时的最⾼⽓道压⼒变化幅度在+3 - -3 cmH2O 之间, 不超过报警压⼒上限5cm H2O.在平台期内允许⾃主呼吸, 适⽤于各种VCV 所衍⽣的各种通⽓模式.2.1.3 吸⽓流量波形(F-T curve)的临床应⽤2.1.3.1 吸⽓流速曲线分析--鉴别通⽓类型(Fig.4)Fig.4 根据吸⽓流速波形型鉴别通⽓类型图4 左侧和右侧可为VCV 的强制通⽓时, 由操作者预选吸⽓流速的波形,⽅波或递减波.中图为⾃主呼吸的正弦波. 吸⽓、呼⽓峰流速⽐机械通⽓的正弦波均⼩得多.右侧图若是压⼒⽀持流速波, 形态是递减波, 但吸⽓流速可未递减⾄ 0, ⽽突然下降⾄ 0, 这是由于在吸⽓过程中吸⽓流速递减⾄呼⽓灵敏度(Esens)的阈值, 使吸⽓切换为呼⽓所致, 压⼒⽀持(PS) 只能在⾃主呼吸基础上才有作⽤. 这三种呼吸类型的呼⽓流速形态相似, 差别仅是呼⽓流速⼤⼩和持续时间长短不⼀.2.1.3.2 判断指令通⽓在吸⽓过程中有⽆⾃主呼吸(Fig.5)Fig.5 指令通⽓过程中有⾃主呼吸图5 中A 为指令通⽓吸⽓流速波, B、C 为在指令吸⽓过程中在吸⽓流速波出现切迹, 提⽰有⾃主呼吸.⼈机不同步, 在吸⽓流速前有微⼩呼⽓流速且在指令吸⽓近结束时⼜出现切迹, (⾃主呼吸)使呼⽓流速减少.2.1.3.2 评估吸⽓时间(Fig.6)Fig.6 评估吸⽓时间图6 是VCV 采⽤递减波的吸⽓时间:A:是吸⽓末流速巳降⾄0 说明吸⽓时间合适且稍长, 在VCV 中设置了”摒⽓时间”.(注意在PCV ⽆吸⽓后摒⽓时间).B:的吸⽓末流速突然降⾄0 说明吸⽓时间不⾜或是由于⾃主呼吸的呼⽓灵敏度(Esens) 巳达标(下述), 切换为呼⽓. 只有相应增加吸⽓时间才能不增加吸⽓压⼒情况下使潮⽓量增加.2.1.3.4 从吸⽓流速检查有泄漏(Fig.7)Fig.7 呼吸回路有泄漏当呼吸回路存在较⼤泄漏,(如⽓管插管⽓囊泄漏,NIV ⾯罩漏⽓,回路连接有泄漏)⽽流量触发值⼜⼩于泄漏速度,使吸⽓流速曲线基线(即0 升/分)向上移位(即图中浅绿⾊部分) 为实际泄漏速度, 使下⼀次吸⽓间隔期延长, 此时宜适当加⼤流量触发值以补偿泄漏量,在CMV 或NIV 中,因回路连接, ⾯罩或插管⽓囊漏⽓可⾒及.2.1.3.5 根据吸⽓流速调节呼⽓灵敏度(Esens)(Fig.8)Fig.8 根据吸⽓峰流速调节呼⽓灵敏度左图为⾃主呼吸时, 当吸⽓流速降⾄原峰流速10→25%或实际吸⽓流速降⾄10 升/分时, 呼⽓阀门打开呼吸机切换为呼⽓. 此时的吸⽓流速即为呼⽓灵敏度(即Esens).现代的呼吸机呼⽓灵敏度可供⽤户调节(Fig.8 右侧). 右侧图A 因回路存在泄漏或预设的Esens 过低, 以致呼吸机持续送⽓, 使吸⽓时间过长. B 适当地将Esens 调⾼及时切换为呼⽓, 但过⾼的Esens 使切换呼⽓过早, ⽆法满⾜吸⽓的需要. 故在PSV 中Esens 需和压⼒上升时间⼀起来调节, 根据F-T,和P-T 波形来调节更理想.2.1.3.6 Esens 的作⽤(Fig.9)Fig.9 Esens 的作⽤图9 为⾃主呼吸+PS, 原PS 设置15 cmH2O, Esens 为10%. 中图因呼吸频率过快、压⼒上升时间太短, ⽽Esens 设置太低, 吸⽓峰流速过⾼以致PS 过冲超过⽬标压,呼吸机持续送⽓,T I 延长,⼈机易对抗. 经将Esens 调⾼⾄30%, 减少T I,解决了压⼒过冲, 此Esens 符合病⼈实际情况.2.2 呼⽓流速波形和临床意义呼⽓流速波形其形态基本是相似的,其差别在呼⽓波形的振幅和呼⽓流速持续时间时的长短, 它取决于肺顺应性,⽓道阻⼒(由病变情况⽽定)和病⼈是主动或被动地呼⽓.(见Fig.10)1:代表呼⽓开始.2:为呼⽓峰流速:正压呼⽓峰流速⽐⾃主呼吸的稍⼤⼀点.3:代表呼⽓的结束时间(即流速回复到0),4:即1 – 3 的呼⽓时间5:包含有效呼⽓时间 4, ⾄下⼀次吸⽓流速的开始即为整个呼⽓时间,结合吸⽓时间可算出I:E.TCT:代表⼀个呼吸周期 = 吸⽓时间+呼⽓时间2.2.1 初步判断⽀⽓管情况和主动或被动呼⽓(Fig.11)图11 左侧图虚线反映⽓道阻⼒正常, 呼⽓峰流速⼤,呼⽓时间稍短, 实线反映呼⽓阻⼒增加, 呼⽓峰流速稍⼩,呼⽓时延长.右侧图虚线反映是病⼈的⾃然被动呼⽓, ⽽实线反映了是患者主动⽤⼒呼⽓, 单纯从本图较难判断它们之间差别和性质. 尚需结合压⼒-时间曲线⼀起判断即可了解其性质.2.2.2 判断有⽆内源性呼⽓末正压(Auto-PEEP/PEEPi)的存在(Fig.12)Fig.12 为三种不同的Auto-PEEP 呼⽓流速波形图12 吸⽓流速选⽤⽅波,呼⽓流速波形在下⼀个吸⽓相开始之前呼⽓流速突然回到0, 这是由于⼩⽓道在呼⽓时过早地关闭, 以致吸⼊的潮⽓量未完全呼出,使部分⽓体阻滞在肺泡内产⽣正压⽽引起Auto-PEEP( PEEPi). 注意图中的A,B 和C, 其突然降⾄0 时呼⽓流速⾼低不⼀, B 最⾼,依次为A, C. 实测Auto-PEEP 压⼒⼤⼩也与波形相符合.Auto-PEEP 在新⽣⼉, 幼婴⼉和45 岁以上正常⼈平卧位时为3.0 cmH2O. 呼⽓时间设置不适当, 反⽐通⽓, 肺部疾病(COPD)或肥胖者均可引起PEEPi.临床上医源性PEEP= 所测PEEPi × 0.8. 如此即打开过早关闭的⼩⽓道⽽⼜不增加肺容积.2.2.3 评估⽀⽓管扩张剂的疗效(Fig.13)Fig.13 呼⽓流速波形对⽀⽓扩⼤剂疗效评估图13 中⽀⽓管扩张剂治疗前后在呼⽓流速波上的变化, A: 呼出⽓的峰流速, B: 从峰流速逐渐降⾄0 的时间. 图右侧治疗后呼⽓峰流速A 增加, B 有效呼出时间缩短, 说明⽤药后⽀⽓管情况改善. 另尚可监测Auto-PEEP 有⽆改善作为佐证.3.压⼒-时间曲线3.1 VCV 的压⼒-时间曲线(P-T curve)(Fig.14)呼吸周期由吸⽓相和呼⽓相所组成. 在VCV 中吸⽓相尚有⽆流速期是⽆⽓体进⼊肺内(即吸⽓后摒⽓期-吸⽓后平台), PCV 的吸⽓相是始终为有流速期(⽆吸⽓后摒⽓). 在呼⽓时均有呼⽓流速. 在压⼒-时间曲线上吸⽓相和呼⽓相的基线压⼒为0 或0 以上(即PEEP).压⼒-时间曲线反映了⽓道压⼒(Paw)的逐步变化(Fig.14), 纵轴为⽓道压⼒,单位是cmH2O (1 cmH2O=0.981 mbar), 横轴是时间以秒(sec)为单位, 基线压⼒为0 cmH2O. 横轴上正压, 横轴下为负压.Fig.14 VCV 的压⼒-时间曲线⽰意图图14 为VCV,流速恒定(⽅波)时⽓道压⼒-时间曲线, ⽓道压⼒等于肺泡压和所有⽓道阻⼒的总和, 并受呼吸机和肺的阻⼒及顺应性的影响. 当呼吸机阻⼒和顺应性恒定不变时, 压⼒-时间曲线却反映了肺部情况的变化.A ⾄B 点反映了吸⽓起始时所需克服通⽓机和呼吸系统的所有阻⼒,A ⾄B 的压⼒差(△ P)等于⽓道粘性阻⼒和流速之乘积(△P=R× ),阻⼒越⾼或选择的流速越⼤, 则从 A 上升⾄B 点的压⼒也越⼤,反之亦然.B 点后呈直线状增加⾄C 点为⽓道峰压(PIP),是⽓体流量打开肺泡时的压⼒, 在C 点时通⽓机输送预设潮⽓量的⽓道峰压.A ⾄C 点的吸⽓时间(Ti)是有流速期, D ⾄E 点为吸⽓相内”吸⽓后摒⽓”为⽆流速期.与B ⾄C 点压⼒曲线的平⾏的斜率线(即A-D), 其ΔP=VtxErs(肺弹性阻⼒), Ers=1/C 即静态顺应性的倒数, Ers=V T/Cstat).C 点后压⼒快速下降⾄D 点, 其下降速度与从A 上升⾄B 点速度相等. C ⾄D 点的压⼒差主要是由⽓管插管的内径所决定, 内径越⼩C-D 压差越⼤.D ⾄E 点即平台压是肺泡扩张进⾏⽓体交换时的压⼒, 取决于顺应性和潮⽓量的⼤⼩. D-E 的压⼒若轻微下降可能是吸⼊⽓体在不同时间常数的肺泡区再分佈过程, 或整个系统(指通⽓机和呼吸系统)有泄漏. 通过静态平台压测定, 即可计算出⽓道阻⼒(R)和顺应性(C), PCV 时只能计算顺应性⽽⽆阻⼒计算.E 点开始是呼⽓开始, 依靠胸廓、肺弹性回缩⼒使肺内⽓体排出体外(被动呼⽓), 呼⽓结束⽓道压⼒回复到基线压⼒的⽔平(0 或PEEP). PEEP 是呼⽓结束维持肺泡开放避免萎陷的压⼒.3.1.1平均⽓道压(mean Paw 或 Pmean)( Fig.15)Fig.15 平均⽓道压平均⽓道压(MAP)在正压通⽓时与肺泡充盈效果和⼼脏灌注效果相关(即⽓体交换),在⼀定的时间间隔内计算N 个压⼒曲线下的区域⾯积⽽得, 直接受吸⽓时间影响. ⽓道峰压, PEEP, 吸/呼⽐和肺含⽔量均影响它的升降. 图中A-B 为吸⽓时间, B-C 为呼⽓时间, PIP= 吸⽓峰压,呼吸基线=0 或PEEP. ⼀般平均⽓道压=10-15cmH2O, 不⼤于30cmH2O.3.1.2 在VCV 中根据压⼒曲线调节峰流速(即调整吸/呼⽐) (Fig.16)VCV 通⽓时, 调节吸⽓峰流速即调正吸⽓时间(Ti)或I/E ⽐. 图16 中A 处因吸⽓流速设置太低, 吸⽓时间稍长, 故吸⽓峰压也稍低.在B 处设置的吸⽓流速较⼤, 吸⽓时间也短, 以致压⼒也稍⾼, 故在VCV 时调节峰流速既要考虑Ti, I/E ⽐和Vt, 也要考虑压⼒上限.结合流速,压⼒曲线调节峰流速即可达到预置的⽬的..2 PCV 的压⼒-时间曲线(Fig.17)Fig.17 PCV 的压⼒-时间曲线虚线为VCV, 实线为PCV 的压⼒曲线. 与VCV 压⼒-时间曲线不同, PCV 的⽓道压⼒在吸⽓开始时从基线压⼒(0 或PEEP) 增⾄预设⽔平呈平台样並保持恒定, 是受预设压⼒上升时间控制. PCV 的⽓体流量在预设吸⽓时间内均呈递减形. 在呼⽓相, 压⼒下降和VCV ⼀样回复⾄基线压⼒⽔平, 本图提⽰了在相同频率、吸⽓时间、和潮⽓量情况下PCV 的平台样压⼒⽐VCV 吸⽓末平台压稍低. 呼吸回路有泄漏时⽓道压将⽆法达到预置⽔平.3.2.1 压⼒上升时间(压⼒上升斜率或梯度)(Fig.18)以压⼒为⽬标的通⽓(如PCV, PSV), 压⼒上升时间是在吸⽓时间内使预设的⽓道压⼒达到⽬标压⼒所需的时间, 事实上是呼吸机通过调节吸⽓流速的⼤⼩, 使达到预设压⼒的时间缩短或延长.Fig.18 PCV 和PSV 压⼒上升时间与吸⽓流速的关系图18 是PCV 或PSV(ASB)压⼒上升时间在压⼒,流速曲线上的表现. a,b,c 分别代表三种不同的压⼒上升时间, 快慢不⼀. 调节上升时间即是调节呼吸机吸⽓流速的增加或减少, a,b,c 流速⾼低不⼀, 导致压⼒上升时间快慢也不⼀. 吸⽓流速越⼤, 压⼒达标时间越短(上图),相应的潮⽓量亦增加. 反之亦然. 流速图a 有短⼩的呼⽓流速波是由于达到⽬标压有压⼒过冲, 主动呼⽓阀释放压⼒过冲所致, 压⼒上升时间的名称和所⽤单位各⼚设置不⼀.如Evita 设定的是时间0.05-2.0s(4), PB-840 是流速加速%FAP50-100%, ⽽Servo-i 为占吸⽓时间的%.3.3 临床意义3.3.1 评估吸⽓触发阈和吸⽓作功⼤⼩(Fig.19)Fig.19 评估吸⽓作功⼤⼩图19 为CPAP 模式, 根据吸⽓负压⾼低和吸⽓相内负压触发⾯积(PTP=压⼒时间乘积), 可初步對患者吸⽓⽤⼒是否达到预置触发阈和作功⼤⼩作定性判断. 负压幅度越⼤,引起触发时间越长,PTP 越⼤,病⼈吸⽓作功越⼤. 图中a. 吸⽓负压⼩, 吸⽓时间短, 吸⽓相⾯积⼩, 吸⽓作功也⼩. b. c. 吸⽓负压⼤, 吸⽓时间长, 吸⽓相⾯积⼤, 吸⽓作功也⼤.是否达到触发阈在压⼒曲线上,可⾒及触发是否引起吸⽓同步.3.3.2 评估平台压(Fig.20)Fig.20 评估平台压在PCV 或PSV 时, 若压⼒曲线显⽰⽆平台样压⼒, 如图20 A 所⽰, PCV 的吸⽓时间巳消逝, 但压⼒曲线始终未出现平台样压⼒.应先排除压⼒上升时间是否设置太长, 呼吸回路有⽆漏⽓. 如为VCV 时,设置的吸⽓流速是否符合病⼈需要或未设置吸⽓后摒⽓(需同时检查流速曲线和呼出潮⽓量是否达标以查明原因). 此外有的呼吸机因吸⽓流速不稳定, 也会出现这种情况3.3.3 呼吸机持续⽓流对呼吸作功的影响 (Fig.21)Fig.21 持续⽓流对呼吸作功的影响图21 中, 呼吸机提供的持续⽓流增加时, Paw 在⾃主呼吸中基线压⼒下是降低的, 同时呼⽓压⼒增加(因呼⽓时持续⽓流使阻⼒增加). 正确使⽤持续流速使吸⽓作功最⼩, ⽽在呼⽓压⼒并⽆过份增加, 在本病例中,当持续⽓流为10-20 L/min 时, 在吸⽓作功最⼩, 呼⽓压⼒稍有增加.但持续⽓流增⾄30 L/min 则呼⽓作功明显增加. 本图是患者⾃主呼吸(CPAP=5cmH2O), 流速波形为正弦波, 图中的病⼈呼吸流速和潮⽓量均⽆变化.3.3.4 识别通⽓模式通过压⼒-时间曲线可识别通⽓模式, 如CMV/AMV, SIMV, SPONT(CPAP), BIPAP 等.3.3.4.1 ⾃主呼吸(SPONT/CPAP)的吸⽓⽤⼒和压⼒⽀持通⽓(PSV/ASB) (Fig.22)Fig.22 ⾃主呼吸和压⼒⽀持通⽓的压⼒-时间曲线图22 均为⾃主呼吸使⽤了PEEP, 在A 处曲线在基线处向下折返代表吸⽓, ⽽B 处曲线向上折返代表呼⽓, 此即是⾃主呼吸, 若基线压⼒⼤于0 的⾃主呼吸称之为CPAP.右侧图吸⽓开始时有向下折返波以后压⼒上升, 第⼀个为PCV-AMV, 第⼆个为⾃主呼吸+PSV, PS ⼀般⽆平台样波形出现(除⾮呼吸频率较慢且压⼒上升较快), 注意压⼒⽀持通⽓是必需在患者⾃主呼吸基础上才可有压⼒⽀持, ⽽⾃主呼吸的吸⽓时间并⾮恒定不变, 因此根据吸⽓时间和肺部情况同时需调节压⼒上升时间和呼⽓灵敏度.3.3.4.2 控制机械通⽓(CMV)和辅助机械通⽓(AMV)的压⼒-时间曲线, Fig.23Fig.23 CMV(左侧)和AMV(右侧)的压⼒-时间曲线图中基线压⼒未回复到0, 是由于使⽤了PEEP. 且患者触发呼吸机是使⽤了压⼒触发,左侧图在基线压⼒均⽆向下折返⼩波(A), 呼吸机完全控制患者呼吸, 为CMV 模式.右侧在吸⽓开始均有向下折返的压⼒⼩波, 这是患者吸⽓努⼒达到触发阈使呼吸机进⾏了⼀次辅助通⽓, 为AMV 模式. 若使⽤了流速触发, 则不论是CMV 或AMV, 在基线压⼒可能⽆向下折返⼩波, 这需视设置的流量触发值⽽定.3.3.4.3 同步间歇指令通⽓(SIMV) Fig.24.Fig.24 SIMV 的压⼒波形⽰意图SIMV 在⼀个呼吸周期有强制通⽓期和⾃主呼吸期. 触发窗有在⾃主呼吸末端(呼吸周期末端), 也有触发窗位于强制通⽓起始端(呼吸周期起始端).若病⼈的呼吸努⼒在触发窗达到触发阈, 呼吸机即同步强制通⽓. 在隨后的⾃主呼吸的吸⽓⽤⼒即使达到触发阈也仅给于PS(需预设).若在触发窗⽆同步触发且强制呼吸频率的周期巳逝过, 则在下⼀个呼吸周期⾃动给于⼀次强制通⽓. 因触发窗缩短了有效的SIMV 时间, 即图中所⽰ΔT, 由此可避免SIMV 的频率增加. 图24 的触发窗是在呼吸周期末端!触发窗在强制通⽓期或在⾃主呼吸期末, 各⼚设计不⼀, 触发窗时限也不⼀. 图24a 是触发窗在强制通⽓期(即呼吸周期起始端)Fig.24a 同步间歇指令通⽓(SIMV)图24a 中⽅框部分是SIMV 的触发窗位于呼吸周期的起始段强制通⽓期, 在触发窗期间内⾃主呼吸达到触发阈, 呼吸机即同步输送⼀次指令(强制)通⽓(即设置的潮⽓量或吸⽓峰压), 若⽆⾃主呼吸或⾃主呼吸较弱不能触发时, 在⾃主呼吸期结束时(即⼀个呼吸周期结束)呼吸机⾃动给⼀次指令通⽓. 此后在⾃主呼吸期的剩余时间内允许患者⾃主呼吸, 即使⾃主呼吸⼒达到触发阈,呼吸机也不给指令通⽓, 但可给予⼀次 PS(需预设). 图中笫⼆、五个⽅框说明触发窗期巳消逝, 呼吸机给于⼀次强制通⽓. 第⼀、三、四、六均为在触发窗期内⾃主呼吸⼒达到触发阈, 呼吸机给予⼀次同步指令通⽓.3.3.4.4 双⽔平正压通⽓(BIPAP) Fig.25Fig.25 BIPAP 的压⼒-时间曲线BIPAP 属于PCV 所衍⽣的模式, 即在两个不同压⼒⽔平上患者进⾏⾃主呼吸⾒图25 上图. ⾼压(P high)相当于VCV 中的平台压,低压(P low)相当于PEEP, T high 相当于呼吸机的吸⽓时间(Ti), T low 相当于呼吸机的呼⽓时间(Te), 呼吸机的频率=60/Thigh+T low.下图左侧起始是PCV 吸⽓峰压呈平台状⽆⾃主呼吸. 隨后的⾼压或低压⽔平上均有⾃主呼吸+压⼒⽀持. P H 和P L 的PS 最⼤值不⼤于P high +2 cmH2O.3.3.4.5 BIPAP 和VCV 在压⼒-时间曲线上差别Fig.26VCV 可选⽤不同流速波, 在压⼒曲线上有峰压, ⽽BIPAP 采⽤递减波流速, ⽆峰压只有平台样压⼒波, 且压⼒上升呈直线状(其差别见图26). BIPAP 的⾼, 低压⼒等于VCV 的平台压和 PEEP. BIPAP 的⾼低压的差数⼤⼩即反映了潮⽓量的⼤⼩.Fig.26 VCV 与BIPAP 在压⼒曲线的差别和关系 3.3.4.6 BIPAP 衍⽣的其他形式BIPAP(Fig.27)通过调节BIPAP 四个参数如P high, P low, T high, T low 可衍⽣出多种形式BIPAP:Fig.27 BIPAP 所衍⽣的四种模式a.P high>P low 且T high<T low, 即是CMV/AMV-BIPAP(也称IPPV-BIPAP)b.P high>P low, P high 上⽆⾃主呼吸, 即IMV-BIPAPc.为真正的BIPAP:P high>P low, 且T high<T low, P high 和P low 均有⾃主呼吸d.P high=P low 时即为C PAP3.3.4.7 ⽓道压⼒释放通⽓(APRV)的通⽓波形(Fig.28)APRV 事实上也属于PCV 中的BIPAP, 主要是当T high<T low 或T low ⼩于1.0 – 0.5 秒即是IRV-BIPAP 或APRV 见Fig.28. 常⽤于ARDS 主要⽬的除在P high 期提⾼PO2 外, 通过定时的⽓道压⼒下降以便排出 CO2, 使⽤时应密切注意⽓压伤.。
呼吸机波形及临床应用呼吸机波形是通过连续监测患者的呼吸运动所得到的一种表示方法,能够提供有关患者的呼吸状态和效果的宝贵信息。
通过观察和分析呼吸机波形,可以评估患者的呼吸力度、呼吸模式以及是否存在呼吸不同步等问题,从而为临床应用提供参考依据。
一般来说,呼吸机波形可以分为压力波形、流量波形和容量波形等几种类型。
压力波形反映了患者受到的气道或肺泡内压力变化情况,流量波形反映了患者呼吸流量的变化情况,容量波形则是通过连续测定患者的呼吸流量以及呼吸时间来对患者的呼吸容量进行示波分析。
在临床应用中,呼吸机波形可以广泛用于各种情况的监测和评估。
在机械通气中,呼吸机波形可以帮助医生判断通气的有效性和患者对机械通气的耐受性。
例如,在呼吸机波形中可以观察到患者的吸气峰值压力、呼气末正压水平等指标,这些指标可以反映患者的呼吸力度和肺排气情况,从而对机械通气的效果进行评估。
另外,在呼吸支持模式下,呼吸机波形也可以用于监测患者的呼吸模式和呼吸同步情况。
例如,在辅助控制通气模式下,医生可以通过观察呼吸机波形中的流速曲线和流量曲线来了解患者的吸气和呼气时间以及流速的变化情况,从而判断患者对该模式的适应性和呼吸同步性。
此外,呼吸机波形还可以用于评估呼吸道阻力、肺顺应性等指标,从而判断患者的呼吸状况和肺功能。
例如,在呼气末正压水平的调整过程中,观察呼吸机波形中的顺应性曲线变化情况,可以帮助医生判断患者的肺顺应性是否正常,从而调整呼吸机参数,提高机械通气效果。
除了以上的临床应用,呼吸机波形还可以帮助医生判断患者的气道情况和呼吸机连接是否正常。
例如,呼吸机波形中的流速曲线可以反映气道阻力的变化情况,如果流速曲线不正常,可能提示患者的气道存在狭窄或者阻塞等问题。
此外,呼吸机波形中的压力曲线和流量曲线也可以帮助医生判断呼吸机连接是否正常,如是否存在漏气等情况。
总之,呼吸机波形作为一种重要的监测手段,可以提供有关患者的呼吸状态和效果的宝贵信息。
呼吸机波形分析入门引言:呼吸机波形是指通过呼吸机监护系统获得的呼吸机输出的波形图像。
波形图像是由时间作为横轴,压力、流量或体积作为纵轴所构成的图像。
通过对呼吸机波形进行分析可以了解患者的呼吸状况、通气情况以及呼吸机的设置是否合理等。
本文将介绍呼吸机波形的基本分析方法,以帮助初学者快速入门。
一、呼吸机波形的采集和显示常见的呼吸机波形包括压力波形、流量波形和体积波形。
压力波形显示了呼吸机输出的气道压力变化情况,流量波形显示了气体进出肺部的速度变化情况,体积波形显示了肺部的体积变化情况。
在呼吸机波形中,一般以吸气期为正,呼气期为负。
二、呼吸机波形的常见特征1.呼吸频率:通过计算波形上吸气峰值或呼气峰值的数量,可以得到呼吸频率。
常用的方法是计算每分钟的呼吸次数。
2.吸气时间和呼气时间:从吸气峰值到呼气峰值的时间间隔为一个完整的吸呼气周期。
通过计算吸气时间和呼气时间的长短,可以了解患者的通气情况。
3.吸气峰值压力和呼气峰值压力:波形中的压力峰值反映了肺的通气效果,通常情况下,吸气峰值压力应该较呼气峰值压力高。
4.呼气末正压(PEEP):波形中的底线或基线表示了呼气末正压。
PEEP是在呼气末保持气道压力的一种方式,能保持肺泡的开放性,增加氧合和通气效果。
5. 吸气延迟时间(inspiratory delay):吸气波形图中延迟时间指的是吸气流量波形开始上升直到达到吸气峰值的时间。
延迟时间过长可能表明存在气道阻力或机械问题。
三、呼吸机波形的分析方法1.波形形状:通过观察波形的形状可以判断患者的通气状态,如是否存在阻塞或排空障碍等。
正常的吸气波形应该是上升快、下降缓慢的斜坡状。
2.吸气和呼气峰值压力:通过分析吸气和呼气峰值压力的变化,可以判断患者的通气状态。
吸气峰值压力过高可能表明气道阻塞或气道峰压过高,呼气峰值压力过低可能表明肺容积不足。
3.吸气延迟时间:延迟时间过长可能表明存在气管插管位置不当、气道阻力增加或呼吸机设置不当等问题。