船舶结构力学初参数法单元测试集美大学船舶与海洋工程专业2012级用
- 格式:doc
- 大小:291.50 KB
- 文档页数:1
大工15春《船舶与海洋工程结构力学》在线测试一、单选题(共20 道试题,共20 分。
)1. 下面描述错误的是()。
A. 恒载的作用位置是固定不变的,它引起的结构上的任一量值也是不变的B. 在进行结构设计时,需要计算出结构在恒载和活载共同作用下各量值的最大值C. 移动活荷载或可动活荷载的共同特点是大小会发生改变D. 移动活荷载或可动活荷载的共同特点是方向是固定不变的正确答案:C2. 题面见图片A.B.C.D.正确答案:A3.题面见图A.B.C.D.正确答案:A4. 力矩分配法计算得出的结果()A. 可能是近似解,也可能使精确解B. 一定是近似解C. 是精确解D. 不是精确解正确答案:A5. 机动法作影响线是以()为依据的。
A. 刚体虚位移原理B. 静力平衡方程C. 变形协调方程D. 以上均不对正确答案:A6.对下图所示的简支梁中心的竖向位移计算,正确的是()。
A.B.C.D.正确答案:B7.题面见图A.B.C.D.正确答案:A8. 下面选项中,不属于静定结构特性的是()。
A. 结构是无多余约束的几何不变体系B. 结构的内力与结构截面的刚度有关C. 支座位移不会使结构产生内力D. 温度改变不会使结构产生内力正确答案:B9. 杆件杆端转动刚度的大小取决于()A. 力B. i和远端支承情况C. 杆件形状正确答案:B10. 在求桁架的内力时,截取桁架的结点为隔离体,利用各结点的静力平衡条件来计算各杆内力,这种方法为()。
A. 结点法B. 截面法C. 力矩法D. 以上均不对正确答案:A11. 长度、材料均相同,但截面积不同的两根简支梁,在相同荷载作用下,试指出下列哪一种说法是正确的()。
A. 截面大的内力较大,变形较小B. 截面小的内力较小,变形较大C. 内力一样大,但变形不同D. 变形一样,但内力不同正确答案:C12. 题面见图示A.B.C.D.正确答案:D13. 题面见图示A.B.C.D.正确答案:D14.内容如下所示A.B.C.D.正确答案:D15. 刚体体系和变形体系虚位移原理的虚功方程两者的区别在于()A. 前者用于求解位移,后者用于求未知力B. 前者用于求解未知力,后者用于求位移C. 前者的外力总虚功等于零,后者的外力总虚功等于其总虚应变能D. 前者的外力总虚功不等于零,后者的外力总虚功等于其总虚应变能正确答案:C16.关于下图等截面直杆的转动刚度、传度系数、侧移刚度正确的是()A.B.C.D.正确答案:A17. 三个刚片用在一条直线上的三个铰两两相连,组成()。
目录第1章绪论 (2)第2章单跨梁的弯曲理论 (2)第3章杆件的扭转理论 (15)第4章力法 (17)第5章位移法 (28)第6章能量法 (41)第7章矩阵法 (56)第9章矩形板的弯曲理论 (69)第10章杆和板的稳定性 (75)第1章绪论1.1题1)承受总纵弯曲构件:连续上甲板,船底板,甲板及船底纵骨,连续纵桁,龙骨等远离中和轴的纵向连续构件(舷侧列板等)2)承受横弯曲构件:甲板强横梁,船底肋板,肋骨3)承受局部弯曲构件:甲板板,平台甲板,船底板,纵骨等4)承受局部弯曲和总纵弯曲构件:甲板,船底板,纵骨,递纵桁,龙骨等1.2题甲板板:纵横力(总纵弯曲应力沿纵向,横向货物或上浪水压力,横向作用)舷侧外板:横向水压力等骨架限制力沿中面内底板:主要承受横向力货物重量,骨架限制力沿中面为纵向力舱壁板:主要为横向力如水,货压力也有中面力第2章单跨梁的弯曲理论2.1题设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(1x)1)图2.1o333 2334243()()()424 ()26666l l ll l lp x p x p x M x N xv xEI EI EI EI EI---=++++o原点在跨中:3230111104()4()266llp xM x N xv x vEI EI EI-=+++o,'11'11()0()022(0)0(0)2l lv vpv N⎧==⎪⎨⎪==⎩2)3323()3 2.2()266llp xN xMxv x xEI EI EIθ-=+++o o图3)333002()2 2.3()666xx x llp xN x qx dxv x xEI EI EIθ-=++-⎰o o图2.2题a)33111311131(3)(2)616444641624 pp ppl plv v vEI EI⎡⎤⎡⎤=+=⨯⨯-+⨯-⨯⎢⎥⎢⎥⎣⎦⎣⎦=3512plEI333321911()61929641624pl pl pl V EI EI EI⎡⎤⎛⎫=-++=⎪⎢⎥⎝⎭⎣⎦b)2'292 (0)(1)3366Ml Ml PlvEI EI EI-=+++=2220.157316206327Pl Pl PlEIEI EI-+=⨯2291()(1)3366Ml Ml PllEI EI EIθ-=+-+=2220.1410716206327Pl Pl PlEIEI EI---=⨯()()()2222133311121333363l lp llv m mEIl EI⎛⎫⎛⎫⎪ ⎪⎛⎫⎝⎭⎝⎭⎡⎤=----+⎪⎣⎦⎝⎭=2372430plEIc) ()44475321927682304qlql qllvEI EI EI=-=()23233 '11116(0)962416683612l q lql pl ql ql v EI EI EI EI EI⎡⎤=--=--=⎢⎥⎣⎦d)2.1o图、2.2o图和2.3o图的弯矩图与剪力图如图2.1、图2.2和图2.3图2.1图2.2图2.32.3题1)()32212120624452313120Ml ql l l Mlq q EI EI EI EI q l M θ⎡⎤=---+=⎢⎥⎣⎦∴=Q 右2)32101732418026q l Ml l l Ml lq EI EI EIEI θ⎡⎤=-++-⎢⎥⎣⎦=3311117131824360612080q l q l EI EI⎛⎫-++-=-⎪⨯⎝⎭ 2.4 题2.5o图 3000()6N x v x v x EIθ=++Q ,()00v A p N =-300()6x v x Ap x A N EI θ⎛⎫∴=++- ⎪⎝⎭如图2.4, ()()0v l v l '==由得300200200060263l Ap l A N EI l N EI pl Ap l EI pN θθθ⎫⎛⎫++-=⎪⎪⎪⎝⎭⎬⎪+=⎪⎭⎧-==-⎪⎨⎪=⎩解出 3333()1922pl x x v x EI l l ⎛⎫∴=-+ ⎪⎝⎭图2.42.6o图()()()()()()()2300122300012120001221223121212260,42026622M x N x v x x EI EIv l v l M l N l EI EI M l l l EI EIEI M l N l N l EI EI x x v x x l l θθθθθθθθθθθθθθ=++'==⎫⎧=--++=⎪⎪⎪⎪⎬⎨⎪⎪=+++=⎪⎪⎩⎭++∴=++由得解得 2.5题2.5o图:(剪力弯矩图如2.5)()132023330222002332396522161848144069186pl Mp pR p ll p pl v AR EI EI v l Mlpl pl pl v EI EI EI EI v Ml pl pl pl v l EI EI EI EIθ-∴==-===⋅=⎛⎫=-=-=⎪⎝⎭-'==--=-=-()16A pa b b M A l K l ⎡⎤=++⎢⎥⎣⎦, 图2.5 111,0,6632A l a l b A K ====+=将代入得:()16312pl pl M ==2.7o图:(剪力弯矩图如2.6)341113422244440.052405021005112384240100572933844009600l ql ql v A R EI EI l ql ql v A R EI EIl qlql v EI EI ql ql EI EI==⋅===⋅=⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭⎛⎫=+=⎪⎝⎭ 图2.6()()3331233312111202424401007511117242440100300v v ql ql ql EI l EI EIv v ql ql qll EI l EI EIθθ-⎛⎫=-=-+=⎪⎝⎭--⎛⎫=--=--+=⎪⎝⎭2.8o图(剪力弯矩图如2.7)()2221401112124,,0,11,82411118243212121248243,82864AA Qa b M A K l Q qa a l b A K ql ql M ql qlql R ql v AR EIα⎡⎤⎛⎫=⋅++⎢⎥⎪⎝⎭⎢⎥⎣⎦======++==⨯⨯⨯+==-===由,代入得图2.7442433032355238412816384111(0)246246448192()6488l qlql Ml ql v EI EI EI EI v ql Ml ql EI l EI EI ql EIl ql ql l M EI EI θθα⎛⎫∴=+-=⎪⎝⎭⎛⎫=--=-- ⎪⎝⎭=-=-=-⋅=2.6题. []1max 2max 2113212132142.()()62()()62()()242(0)sN EIv s sss s N dv dx dx dx GGA N EI v dx v C GA GA EI ax bx v v v f x cx d f x ax b C GA EI EIax bx f x f x c a x d GA GA qx qx f x f x EI EIv v τγ'''====-''=−−−→-+⎡⎤''∴=+=++++-+++⎢⎥⎣⎦⎛⎫''=-+++-+ ⎪⎝⎭''==''=⎰式中由于11142323432342(0)00()()00242602,224()241222425()23848s s s ssd b v l v l ql EI ql al EI c a l EI GA EIGA qlal EIql ql c EI EIqx qlx qx qx qlv x x EI EI GA EI GA l ql ql v EI GA ===''==⎧⎛⎫-++-=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩=⎛⎫∴=--++⎪⎝⎭∴=+可得出由得方程组:解出:a=2.7.题先推广到两端有位移,,,i i j j θθ∆∆情形:212,i j s EI GA l β⎛⎫∆=∆-∆=⎪⎝⎭令 321011322162(0)(0)()62()2sii i i j i i j s jjEIax bx v cx d ax GA v d v v c al bl EIv l l al GA al v l bl θθθθθ=+++-=∆∴==∆⎫⎪⎬'=∴=⎪⎭⎫=∆∴+++∆-=∆⎪⎪⎬⎪'=∴+=⎪⎭Q 而由由由()()()2213121i j j i i j a l l b l l l θθθβθθθθβ⎧∆⎡⎤=+-⎪⎣⎦+⎪⎨-⎪∆=-+-⎪+⎩解出 ()()()()()()()()()()()()1121(0)(0)62416642162(0)(0)1()(0)()()4261j i i j i j i j j i j i EI M EIv EIb l l EI l l l EI N EIv EIa l l N l N EI M l EIv l EI b al l l βθβθββθβθβθθββθβθβ∆⎡⎤''∴===+--+⎢⎥+⎣⎦⎡⎤=-∆-∆+++-+⎢⎥+⎣⎦⎧⎡⎤''===+-∆-∆⎪⎢⎥+⎣⎦⎪⎪=⎨⎪∆⎡⎤⎪''==+=++--⎢⎥+⎪⎣⎦⎩令上述结0i j ∆=∆=∆果中,即同书中特例2.8题 已知:20375225, 1.8,751050kgl cm t cm s cm cm σ=⨯====1025100.7576.875kgq hs cm γ==⨯⨯=面积2cm 距参考轴cm面积距3cm惯性矩4cm自惯性矩4cm外板1.845⨯ 81 0 0 0 (21.87)略 球扁钢O N 24a38.75 9430.2 2232 ∑119.8 15.6 604.5 9430.22253.9ABC=11662224604.55.04116628610119.8BBe cm I C cm AA===-=-=275 1.838.75174min ,4555A cm l lI be s cm=⨯+=⎧⎫===⎨⎬⎩⎭计算外力时面积计算时,带板形心至球心表面1240.9 5.0419.862t y h e cm =+-=+-=形心至最外板纤维321186105.94433.5219.86t I y e cm w cm y =+=∴===()32206186101449.45.9422510501740.3662221086100.988,()0.980Iw cm y A l u EI x u u σϕ===⨯===⨯⨯== ()()()222212012020176.8752250.988320424.1212176.8752250.980158915)242415891510501416433.53204241050127114503204241050378433.5ql M x u kg cm ql M u kgcm M kg cm w M kg cm w M kg w ϕσσσσσσ==⨯⨯==-=-⨯⨯⨯=-=+=+==+=+==+=+=中中球头中板固端球头端(2max 21416kg cm cm σ⎫⎪⎪⎪⎪∴=⎬⎪⎪⎪⎪⎭若不计轴向力影响,则令u=0重复上述计算:222max 0176.875225241050142424433.5142414160.56%1424ql kg w cm σσσ⨯==+=+=⨯-=球头中相对误差:结论:轴向力对弯曲应力的影响可忽略不及计。
xy 船舶海洋结构力学复习1、请用初参数法确定图示单跨梁0-1的挠曲线方程,其中单跨梁的刚度为EI ,跨长为l ,均布载荷q 如图所示。
左端刚性固定,右端弹性支座的柔性系数EIl A 4831=。
2、请用初参数法确定图示单跨梁0-1的挠曲线方程,其中单跨梁的刚度为EI ,跨长为l ,均布载荷q 如图所示。
左右端均为刚性固定。
3、用力法计算图示结构1点的弯矩1M ,已知杆1-2及杆2-3的刚度均为EI ,l l l ==2312。
4、用力法计算图示结构2点的弯矩2M ,已知杆1-2及杆2-3的刚度均为EI ,l l l ==2312,ql P =,且P 作用于杆1-2的跨中。
qx5、请用位移法解如图所示结构,只写出正则方程即可,不必求解。
各杆的长度及刚度均为l 及EI 。
6、请用位移法解如图所示结构,只写出正则方程即可,不必求解。
各杆的长度及刚度均为l 及EI ,P 分别作用于杆1-2及2-3的跨中。
7、如图所示的结构,杆1-2长为l ,刚度为EI ,在右端受有集中力P 的作用。
试用应力能原理求右端在集中力P 作用下的挠度。
8、请用应力能原理计算图示简单钢架的端点1在外力 P 作用下的垂向位移。
已知112l l =,223l l =,各杆的刚度均为EI 。
9、设有一纵骨架式船,船底肋板间距为1.2m,纵骨间距为0.7m ,如要保证船底板的临界应力达到2/240mm N cr =σ,求所需板厚为多少?10、设有一纵骨架式船,船底纵桁为T 型材,断面尺寸为:翼板100⨯102m m ,腹板180⨯82m m 。
请分别计算纵桁翼板和腹板的临界应力cr σ。
11、四周自由支持的矩形板长边cm a 400=, 短边cm b 100=,板受垂直于板面的均布载荷2/05.0mm N q =作用,板厚cm t 8.0=,材料弹性模量为25101.2mm N E ⨯=。
(1)请写出板筒形弯曲的条件。
(2)按筒形弯曲画出本题矩形板的计算模型,并计算板中心的挠度及弯矩。
船舶结构力学习题答案船舶结构力学习题答案船舶结构力学是船舶工程中的重要学科,它研究船舶结构的力学行为和性能。
在学习船舶结构力学时,我们常常会遇到一些习题,用以检验我们对该学科的理解和掌握程度。
本文将给出一些船舶结构力学习题的答案,希望能够帮助读者更好地理解和应用相关知识。
1. 什么是船舶结构的刚度?船舶结构的刚度是指船体在受力作用下的抵抗变形的能力。
它是通过船舶结构的刚度系数来描述的,常用符号为K。
刚度系数K等于单位力作用下的结构变形与该力的比值。
刚度系数越大,说明船舶结构越刚硬,抵抗变形的能力越强。
2. 如何计算船舶结构的刚度系数?船舶结构的刚度系数可以通过以下公式计算:K = F / δ其中,K表示刚度系数,F表示作用力,δ表示结构变形。
需要注意的是,这个公式只适用于线弹性范围内的结构变形。
3. 什么是船舶的自然频率?船舶的自然频率是指船体在没有外界作用力的情况下,自由振动的频率。
它是船舶结构的固有特性,与船舶的刚度和质量分布有关。
自然频率越高,说明船舶的结构越刚硬,抵抗外界扰动的能力越强。
4. 如何计算船舶的自然频率?船舶的自然频率可以通过以下公式计算:f = 1 / (2π) * √(K / m)其中,f表示自然频率,K表示刚度系数,m表示质量。
需要注意的是,这个公式只适用于线弹性范围内的结构变形。
5. 什么是船舶的静力稳定性?船舶的静力稳定性是指船舶在静止状态下,抵抗外力翻覆的能力。
它是通过船舶的稳定性曲线来描述的。
稳定性曲线是以船舶的倾覆角度为横坐标,以船舶的稳定性指标(如右倾力矩或倾覆力矩)为纵坐标的曲线。
6. 如何计算船舶的稳定性指标?船舶的稳定性指标可以通过以下公式计算:M = V * GZ其中,M表示稳定性指标,V表示船舶的体积,GZ表示船舶的倾覆力矩曲线与纵轴之间的距离。
稳定性指标越大,说明船舶的稳定性越好,抵抗倾覆的能力越强。
7. 什么是船舶的动力稳定性?船舶的动力稳定性是指船舶在航行状态下,抵抗外力翻覆的能力。
第一章:绪论1由于船舶经常在航行状态下工作,它所受到的外力是相当复杂的。
这些外力包括船的各种载重〔静载荷〕、水压力、冲击力、以及运动所产生的惯性力〔动载荷〕等。
为了保证船舶在各种受力下都能正常工作,船舶具有一定的强度。
所谓具有一定的强度是指船体构造在正常使用的过程中和一定的年限内具有不破坏或不发生过大变形的才能。
2船体强度包括中拱状态、总纵强度、部分强度、改变强度问题、应力集中问题、低周期疲劳。
3把船舶整体当做空心薄壁梁计算出来的强度就成为船体的总纵强度。
部分强度是指船体的横向构件〔如横梁、肋骨、及肋板等〕一集船体的部分构建〔如船底板、底纵衍等〕在部分载荷作用下的强度。
4船体强度所研究的问题通常包括外力,构造在外力作用下的响应,及内力与变形,以及许用应力确实定等一系列问题。
船舶构造力学只研究船体构造的静力响应,及内力与变形,以及受压构造的稳定性问题,因此,船舶构造力学的首要任务是说明构造力学的根本原理与方法,即说明经典的方法、位移法及能量原理。
5船舶设计与制造是一个综合性很强的行业。
学习本课程不要仅仅满足于会计算船体构造中一些典型构件〔如连续梁、钢架、板架、板〕还应学会解决一般工程构造的计算问题。
6船体构造是由板和骨架等构件组成的空间复杂构造,在进展构造计算之前需要对实际的船体构造加以简化。
简化后的构造图形称为实际构造的理想化图形或计算图形〔又称计算模型或力学模型等〕7构造的计算图形是根据实际构造的受力特征,构建之间的互相影响,计算精度的要求以及所采用的计算方法,计算工具等因素确定的。
因此,对于同一个实际构造,基于不同的考虑就会得出不同的计算图形,对于同一个实际构造,其计算图形不是唯一的,一成不变的。
8首先是船体构造中的板,板是船体的纵、横骨架相连接的,且通常被纵、横骨架划分成许多矩形的板格。
9其次是船体构造中的骨架,船体构造中的骨架无外乎是横向构件—横梁、肋骨、肋板和纵向构件—纵桁、纵骨等,它们大都是细长的型钢或组合型材,故称为“杆件〞或简称为“杆〞。
集美大学船舶与海洋工程专业2012级船舶结构力学初参数法单元测试题(参考答案及评分标准)1.已知单跨梁如图1所示,试写出该梁用初参数表达的挠曲线及边界条件(不必确定初参数;梁端外力并入边界条件之中)。
(10分)图1 解:挠曲线方程:224302000)2(22462)(l x EI m x EI q x EI N x EI M x v x v --++++=θ (2分) 梁左端边界条件:P A v N M +-==000000;αθ (4分) 梁右端边界条件:1'''1''';A v EIv v EIv l l l l =-=α (4分) 2.两端刚性固定的单跨梁如图2所示,不受外荷重作用,当其左、右支座分别发生已知位移21,v v 时, 试求挠曲线。
(15分)图2解:1) EIx N EI x M v x v v v 62)(0,30201010++===θ (5分) 2)代入梁右边条0)(',)(2==l v v l v 有: 0262200230201=+=++l EIN l EI M v l EI N l EI M v (4分) 3)由上式得:31202120)12;)6l v v EI N l v v EI M --=-=(( (4分) 4) 331222121)2)3)(x lv v x l v v v x v ---+=(( (2分) 3.试求出图3所示单跨梁的挠曲线。
(5分) l EI ,x y omlEI ,x y o P图3解:1) 00=N (2分); 2) l EI m =0θ (2分);3)22)(x EI m lx EI m x v -=(1分)。