变温霍尔效应调研报告
- 格式:doc
- 大小:440.50 KB
- 文档页数:4
变温霍尔效应实验报告引言变温霍尔效应是指在磁场作用下,当导体中有电流通过时,导体的一侧会产生电势差。
这种现象被称为霍尔效应,而当温度也发生变化时,导体中的电阻会发生相应的变化,从而产生变温霍尔效应。
本实验旨在探究变温霍尔效应的基本原理,并通过实验测量和计算,验证其存在和影响因素。
实验步骤1. 准备实验所需材料和设备•霍尔效应测量装置•变温装置•直流电源•电流表•电压表•磁场源2. 搭建实验电路将直流电源、电流表和电压表依次连接,并接入霍尔效应测量装置。
根据实验要求设置合适的电流大小和电压测量范围。
3. 定义实验参数确定实验中需要测量的参数,包括导体的电流、电压以及磁场的大小和方向。
4. 设置变温装置根据实验要求,设置合适的温度范围,并将变温装置与实验电路连接。
5. 测量电流和电压通过直流电源进行电流的调节,并使用电压表分别测量导体两端的电压。
6. 改变温度通过调节变温装置的温度,改变导体的温度,并观察电流和电压的变化。
7. 测量霍尔电压在实验过程中,使用霍尔效应测量装置测量导体侧面产生的霍尔电压。
8. 记录实验数据根据实验步骤和测量结果,记录实验数据,并绘制相应的实验曲线。
结果与讨论通过实验观察和测量,我们可以得到导体在不同温度和磁场下的电流、电压和霍尔电压的变化关系。
根据实验数据,我们可以进一步分析和讨论变温霍尔效应的影响因素和规律。
在实验中,温度的变化会导致导体的电阻发生变化,从而影响电流和电压的测量结果。
此外,磁场的大小和方向也会对霍尔电压的测量产生影响。
通过分析实验数据,我们可以得到不同温度和磁场条件下的霍尔电压的变化趋势,并进一步探究变温霍尔效应的特性和应用。
结论通过本实验,我们验证了变温霍尔效应的存在,并探究了其影响因素和规律。
实验结果表明,导体的温度和磁场对霍尔电压产生明显的影响,可以通过实验数据和计算分析得到相应的变化趋势和数值关系。
变温霍尔效应在实际应用中具有重要意义,可以用于温度测量、磁场测量和物质性质研究等领域。
变温霍尔效应实验报告变温霍尔效应实验报告引言变温霍尔效应是一种基于霍尔效应的实验现象,通过在材料中施加不同的温度梯度,可以观察到电流产生的变化。
本实验旨在探究变温霍尔效应的原理和应用,并通过实验验证相关理论。
实验目的1. 理解霍尔效应和变温霍尔效应的基本原理;2. 掌握变温霍尔效应实验的操作方法;3. 分析实验数据,验证变温霍尔效应的存在。
实验原理霍尔效应是指当电流通过一块导电材料时,垂直于电流方向施加磁场,会在材料的一侧产生电势差。
这一现象可以用以下公式描述:VH = B * I * RH其中,VH为霍尔电压,B为磁感应强度,I为电流,RH为霍尔系数。
变温霍尔效应则是在霍尔效应的基础上,通过改变材料的温度,观察霍尔电压的变化。
根据热电效应的原理,当材料的温度发生变化时,电子和空穴的浓度会发生变化,从而影响霍尔电压的大小。
实验装置1. 变温霍尔效应实验装置;2. 电源;3. 磁铁。
实验步骤1. 将变温霍尔效应实验装置连接好,并接入电源;2. 调节磁铁的位置和磁场强度,使其垂直于电流方向;3. 设置不同的温度梯度,记录相应的霍尔电压值;4. 根据实验数据,绘制出霍尔电压与温度梯度的关系曲线。
实验结果与分析根据实验数据,我们得到了一组霍尔电压与温度梯度的关系曲线。
从曲线可以看出,在不同的温度梯度下,霍尔电压呈现出不同的变化趋势。
当温度梯度增大时,霍尔电压也随之增大,呈现出线性关系。
这与变温霍尔效应的理论预测相符。
通过分析实验数据,我们可以得出以下结论:1. 变温霍尔效应存在,通过改变温度梯度可以调节霍尔电压的大小;2. 温度梯度与霍尔电压呈线性关系,即温度梯度越大,霍尔电压越大。
实验应用变温霍尔效应在实际应用中具有广泛的潜力。
例如,在热电转换器件中,可以利用变温霍尔效应实现能量的转换和传输。
此外,变温霍尔效应还可以应用于热敏电阻、温度传感器等领域。
结论通过本次实验,我们深入了解了变温霍尔效应的原理和应用。
霍尔效应实验报告优秀4篇实验四霍尔效应篇一实验原理1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。
TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。
棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。
玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。
上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。
然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。
理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。
取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。
在未加驱动电压的情况下,来自光源的'自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。
这时光的偏振面与P2的透光轴平行,因而有光通过。
在施加足够电压情况下(一般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。
于是原来的扭曲结构被破坏,成了均匀结构。
从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。
这时光的偏振方向与P2正交,因而光被关断。
由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。
变温霍尔效应实验报告【实验原理】1. 霍尔效应和霍尔系数霍耳效应原理设一块半导体的x 方向上有均匀的电流IX 流过,在z 方向上加有磁场Bz ,则在这块半导体的y 方向上出现一横向电势差H U ,这种现象被称为“霍尔效应”,H U 称为“霍尔电压”,所对应的横向电场H E 称为“霍尔电场”。
实验指出,霍尔电场强度EH 的大小与流经样品的电流密度Jx 和磁感应强度Bz 的乘积 成正比Z x H H B J R E ⋅⋅=式中比例系数H R 称为“霍尔系数”。
对于电子、空穴混合导电的情况,在计算H R 时应同时考虑两种载流子在磁场下偏转的效果。
对于球形等能面的半导体材料,可以证明:22222)'()'()()(nb p q nb p A n p q n p A R n p n H p+-=+-=μμμμ式中b’=μn /μp , μn 、 μp 为电子和空穴的迁移率。
从霍尔系数的表达式可以看出:由H R 的符号(也即H U 的符号)可以判断载流子的类型,正为p 型,负为n 型(注意,所谓正、负是指在xyz 坐标系中相对于y 轴方向而言,见图一。
I、B的正方向分别为x 轴、z 轴的正方向,则霍尔电场方向为y 轴方向。
当霍尔电场方向的指向与y 正向相同时,则UH 为正。
);H R 的大小可确定载流子的浓度;还可以结合测得的电导率σ算出如下定义的霍尔迁移率H μσμ⋅=H H RH μ的量纲与载流子的迁移率相同,通常为cm2/V·s(厘米2/伏秒),它的大小与载流子的电导迁移率有密切的关系。
霍尔系数H R 可以在实验中测量出来,若采用国际单位制,可得H H x zU bR I B =(m3/C) 但在半导体学科中习惯采用实用单位制(其中,b:厘米,Bz :高斯Gs ),则H H x zU bR I B ⋅=⋅×108 (cm3/C)2. 霍尔系数与温度的关系H R 与载流子浓度之间有反比关系,当温度不变时,载流子浓度不变,H R 不变,而当温度改变时,载流子浓度发生,H R 也随之变化。
变温霍尔效应摘要本实验利用范德堡法测量变温霍尔效应从85K到290K的温度范围内测量了碲镉汞单晶霍耳电压随温度变化的23组有效数据。
而后对数据进行了处理分析,做出In|Rh|-1/T图找出了不同温度范围的图像变化特点,与理论图现象比较,分析结果从而研究了碲镉汞的结构特性和导电机制关键词霍耳效应半导体一、引言低温条件下,物质中原子、分子的热运动减弱,特别是接近绝对零度时,物质处在能量的基态或低激发态,物质的电学、磁学等物理性质会发生很大变化,而霍耳效应就是其中的一种。
对通电导体或半导体施加一个与电流方向相垂直的磁场,则在垂直于电流和磁场方向上有一横向电位差出现,此即为霍耳效应。
而在不同温度下,霍耳效应具有不同的特点,霍耳系数随着温度的变化而变化。
在20世纪的前半个世纪,霍尔系数及电阻率的测量一直推动着固体导电理论的发展,特别是在半导体纯度以及杂质种类的一种有力手段,也可用于研究半导体材料电输运特征,是半导体材料研制工作中必不可少的一种常备测试方法。
二、实验原理1、半导体内载流子半导体内载流子的产生有两种不同的机制,本征激发和杂质电离。
本征激发:半导体有两种载流子,即电子和空穴。
本征激发情况下有电子和空穴浓度相等,n=p。
共同浓度n i本征载流子浓度。
由经典玻尔兹曼统计可得:杂质电离:绝大部分的半导体材料都含有一定量的杂质,它们在常温下的导电性能,主要由杂质决定。
根据杂质的不同可以分为P型半导体和N型半导体。
2、载流子的电导率在一般电场情况下,半导体导电也服从欧姆定律,电流密度与电场成正比:j = σE从理论可知,电导率σ与导电类型和载流子浓度有关,当混合导电时:σ=nqμn+pqμp μn μp分别为电子和空穴的迁移率。
载流子浓度随温度的变化可分为三个温区来讨论。
以p 型半导体为例:a)当温度较低时(几十k),只有很少受主电离,空穴浓度远小于受主浓度,产生的空穴浓度:2exp()2iAEP NKT=-<<(1)式中NV 为价带的有效能级密度,NA 为受主杂质浓度。
篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。
3、学习利用霍尔效应测量磁感应强度b及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。
随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。
设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。
同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/ (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。
霍尔效应的研究实验报告霍尔效应的研究实验报告引言:霍尔效应是指在一个导电材料中,当通过其垂直于电流方向的磁场时,会在材料中产生一种电势差,这种现象被称为霍尔效应。
霍尔效应的研究对于理解材料的导电性质以及应用于传感器、电子器件等方面具有重要意义。
本实验旨在通过对霍尔效应的研究,探究其产生机制和特性。
实验设计:本实验使用霍尔效应实验装置,包括霍尔元件、电流源、磁场源以及测量电压的仪器。
首先,将霍尔元件固定在试验台上,并接通电流源。
然后,通过调节电流源的电流大小和方向,以及磁场源的磁场强度和方向,测量霍尔元件两侧的电势差。
最后,记录实验数据并进行分析。
实验结果:通过实验测量,我们得到了一系列关于霍尔效应的数据。
首先,我们发现当电流方向与磁场方向垂直时,电势差最大;而当电流方向与磁场方向平行时,电势差最小甚至为零。
这一结果与霍尔效应的基本原理相符,即只有在电流方向与磁场方向垂直时,磁场才会对电子运动产生影响,从而引起电势差的产生。
其次,我们还观察到电势差与电流大小和磁场强度呈线性关系,这表明霍尔效应的电势差与电流和磁场强度成正比。
讨论与分析:通过对实验结果的分析,我们可以得出以下结论。
首先,霍尔效应是由洛伦兹力引起的。
当电流通过导体时,电子受到磁场力的作用,使得电子在导体中产生偏移运动,从而导致电势差的产生。
其次,霍尔效应的电势差大小与电流大小和磁场强度成正比,这意味着我们可以通过调节电流和磁场的大小来控制霍尔效应的电势差,从而实现对电势差的调节。
此外,霍尔效应还具有温度依赖性,即电势差随温度的变化而变化。
这一特性可以应用于温度传感器的设计和制造。
结论:通过本次实验,我们深入了解了霍尔效应的产生机制和特性。
霍尔效应是一种重要的物理现象,广泛应用于传感器、电子器件等领域。
通过对霍尔效应的研究,我们可以更好地理解材料的导电性质,为相关应用提供理论基础和实验依据。
在未来的研究中,我们可以进一步探究霍尔效应与材料性质、温度等因素的关系,以及开发更加高效和精确的霍尔效应传感器,为科学研究和工程应用提供更多可能性。
变温霍尔效应对通电的导体或半导体施加一与电流方向垂直的磁场,则在垂直于电流和磁场方向上有一横向电位差出现,这个现象于1879年为物理学家霍尔所发现,故称为霍尔效应。
在20世纪的前半个世纪,霍尔系数及电阻率的测量一直推动着固体导电理论的发展,特别是在半导体纯度以及杂质种类的一种有力手段,也可用于研究半导体材料电输运特征,至今仍然是半导体材料研制工作中必不可少的一种常备测试手法。
在本实验中,采用范德堡测试方法,测量样品霍尔系数随温度的变化。
1.实验原理1.1霍尔效应霍尔效应是一种电流磁效应,如图1所示:图1霍耳效应示意图当样品通以电流I,并加一磁场垂直于电流,则在样品的两侧产生一个霍尔电位差:H H IBU Rd,H U 与样品厚度d 成反比,与磁感应强度B 和电流I 成正比。
比例系数H R 叫做霍尔系数。
霍尔电位差是洛伦兹力和电场力对载流子共同作用产生的结果。
1.2一种载流子导电的霍尔系数P 型半导体:1HH pR pq μμ⎛⎫= ⎪ ⎪⎝⎭, N 型半导体:1H H n R pq μμ⎛⎫=- ⎪⎝⎭, 式中n 和p 分别表示电子和空穴的浓度,q 为电子电荷,n μ和p μ分别是电子和空穴的电导迁移率,H μ为霍尔迁移率,H H R μσ=(σ为电导率)。
1.3两种载流子导电的霍尔系数假设载流子服从经典的统计规律,在球形等能面上,只考虑晶体散射及弱磁场(410Bμ,μ为迁移率,单位为)2cmV S ,B 的单位为T )的条件下,对于电子和空穴混合导电的半导体,可以证明:()2238H p nb R p nb π-=+(1)其中n p b μμ=。
2.1实验方法本实验采用范德堡法测量单晶样品的霍耳系数,其作用是尽可能地消除各种副效应。
考虑各种副效应,每一次测量的电压是霍耳电压与各种副效应附加电压的叠加,即1H E N RL H U U E E E E=++++∆实其中,H U 实表示实际的霍耳电压,E E 、N E 和RL E 分别表示爱廷豪森效应、能斯特效应、和里纪-勒杜克效应产生的附加电位差,E ∆表示四个电极偏离正交对称分布产生的附加电位差。
学生姓名:李淑万 学号: 5502211037 专业班级:应用物理111 班级编号: S008试验时间:14:00 第 15 周 星期 2 座位号: 教师编号: 成绩:变温霍尔效应实验报告一、实验目的1、了解霍尔效应的产生原理及副效应的产生原理和消除方法。
2、测量不同温度下材料的霍尔系数、电导率和霍尔迁移率。
3、观察载流子类型、变温下载流子类型转变,测量载流子密度、载流子类型转变的临界温度。
二、实验原理1、霍耳效应霍耳效应是一种电流磁效应(如图4)。
当样品通以电流I ,并加一磁场垂直于电流,则在样品的两侧产生一个霍耳电势差:(7)H V 与样品厚度d 成反比,与磁感应强度B 和电流I成正比。
比例系数H R 叫做霍耳系数 。
当电流通过样品(假设为p 型)时,垂直磁场对运动电荷产生一个洛伦兹力,使电荷产生横向的偏转。
偏转的载流子停在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F = qE 与磁 图4 霍尔效应示意图 场作用的洛伦兹力相抵消为止,即(8)这时电荷在样品中流动时将不再偏转,霍耳电势场就是由这个电场建立起来的。
如果样品是n 型,则横向电场与前者相反,所以n 型样品的霍耳系数有不同的符号,据此可以判断材料的导电类型。
2、p 型半导体的变温霍耳系数以p 型为例分四个温度范围讨论T1R H之间关系,并根据曲线斜率求学生姓名:李淑万 学号: 5502211037 专业班级:应用物理111 班级编号: S008试验时间:14:00 第 15 周 星期 2 座位号: 教师编号: 成绩:出禁带宽度g E , 杂质电离能i E ,曲线如图5,图中表示的是绝对值,此曲线包括以下四个部分:1、杂质电离饱和区,所有的杂质都已经电离,载流子浓度保持不变。
P 型半导体中p >> n ,于是式(16)就简化为式(13)。
在这段区域内,R H >0。
3、温度逐渐升高时,价带上的电子开始激发到导带,由于电子迁移率大于空穴迁移率,b >1,当温度升高到使p=nb 2时,H R = 0,如果取对数,就出现图5 中 图5 p 型半导体和n 型半导体的Ln|R H |-1/T 曲线 标有“2”的一段。
大学物理实验报告霍尔效应第一篇:大学物理实验报告霍尔效应大学物理实验报告霍尔效应一、实验名称:霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。
三、仪器用具:YX-04 型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。
对于图1 所示。
半导体样品,若在x 方向通以电流,在z 方向加磁场,则在y 方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。
显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压)。
设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有:(1-1)因为,又根据,则(1-2)其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。
只要测出、以及知道和,可按下式计算:(1-3)(1-4)为霍尔元件灵敏度。
根据RH 可进一步确定以下参数。
(1)由的符号(霍尔电压的正负)判断样品的导电类型。
判别的方法是按图1 所示的和的方向(即测量中的+,+),若测得的 <0(即A′的电位低于A 的电位),则样品属N 型,反之为P 型。
(2)由求载流子浓度,即。
应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。
严格一点,考虑载流子的速度统计分布,需引入的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。
变温霍尔效应测量半导体电学特性霍尔效应的测量是研究半导体性质的重要实验方法。
利用霍尔系数和电导率的联合测量,可以用来确定半导体的导电类型和载流子浓度。
通过测量霍尔系数与电导率随温度的变化,可以确定半导体的禁带宽度、杂质电离能及迁移率的温度系数等基本参数。
本实验通过对霍尔样品在弱场条件下进行变温霍尔系数和电导率的测量,来确定半导体材料的各种性质。
【实验目的】1.了解半导体中霍尔效应的产生机制。
2.通过实验数据测量和处理,判别半导体的导电类型,计算室温下样品的霍尔系数、电导率、迁移率和载流子浓度。
3.掌握变温条件下霍尔系数和电阻率的测量方法,了解两者随温度的变化规律。
【实验仪器】本实验采用CVM200变温霍尔效应测试系统来完成,本仪器系统由可换向永磁体、CME12H变温恒温器、TC202控温仪、CVM-200霍尔效应仪等组成。
本系统自带有两块样品,样一是美国Lakeshore公司HGT-2100高灵敏度霍尔片,厚度为0.18mm,最大工作电流≤10 mA,室温下的灵敏度为55-140 mV/kG; 样二为锑化铟,厚度为1.11mm,最大电流为60mA,其在低温下是典型的P型半导体,而在室温下又是典型的N型半导体,相应的测试磁场并不高,但霍尔电压高,降低了对系统仪表灵敏度、磁铁磁场的要求。
【实验原理】1.霍尔效应和霍尔系数ZYX图1 霍尔效应示意图霍尔效应是一种电流磁效应(如图1)。
当半导体样品通以电流Is ,并加一垂直于电流的磁场B ,则在样品两侧产生一横向电势差U H ,这种现象称为“霍尔效应”,U H 称为霍尔电压,d B I R H S H U =(1)则: IsB d U H H R =(2) R H 叫做霍尔系数,d 为样品厚度。
对于P 型半导体样品, qp H R 1= (3)式中q 为空穴电荷电量,p 为半导体载流子空穴浓度。
对于n 型半导体样品,qn H R 1-= (4)式中为n 电子电荷电量。
变温霍耳效应实验 实验报告模板【实验目的】1.了解半导体中霍耳效应的产生原理,副效应的产生和消除; 2.测变温下的霍耳系数;3.了解利用霍耳效应测量材料的电输运性质的原理和实验方法;4.验证碲化铟半导体样品P 型导电到n 型导电的转变,观察记录转变温度。
【实验原理】(15)简明叙述,突出重点【实验内容】(15)简明叙述,突出重点1.查看样品:按下热开关,打开卡箍,即可取出样品,查看完后,放回样品;2.对恒温其抽真空;3.按照接线图接好线;4.检查确定接线正确后开机设定恒温器温度;5.在室温下测量:在磁场正反向、电流正方向的情况下分别测量并记录下H V ;将样品移出磁场之外,在电流正反向的情况下分别测量并记录细下M V 、N V 。
6.向杜瓦瓶里加灌液氮;7.在磁场正反向、电流正反向的情况下分别测量并记录下H V ;8.将样品移出磁场之外,在电流正反向的情况下分别测量并记录下M V 、N V 。
9.改变设定温度,等到样品温度稳定后,重复步骤7,从液氨温度到室温温度之间选定若干个实验点,测量并记录下数据。
【数据处理】(70)1.计算室温以及低温各温度下样品的ρ、R H 和μH在室温下(T=21oC ),I S = mA ,B=0.457T ,d=1.1mm(1) 求R H()432141V V V V V H +++== mV不确定度: ΔA = ΔB = ΔH = |V H |= ± mVIB dV R HH =移除磁场(2)求 ρ M1M2N1N21V (V V V V )4σ=+++=()2121..2ln 4)(2ln 2N N M M op mn on mp V V V VIf dR R f d+++=+=ππρ=(2) 霍耳系数R H 电阻率与ρ的关系μ=ρ||H R =2.T R H 1~,T H 1~μ和T 1~σ关系曲线。
3. 对实验曲线进行分析,特别注意转变点。
变温霍尔效应摘要:本实验利用德堡法测量变温霍尔效应,在80K-300K的温度围测量了碲镉汞单晶霍尔电压随温度变化,而后对数据进展了分析,做出图,找出了不同温度围的图像变化特点,分析结果从而研究了碲镉汞的构造特点和导电机制。
关键词:霍尔效应半导体载流子霍尔系数一、引言对通电的导体或半导体施加一与电流方向垂直的磁场,那么在垂直于电流和磁场方向上有益横向电位差出现,这个现象于1897年为物理学家霍尔所发现,故称为霍尔效应。
霍尔系数及电导率的测量时分析半导体纯度以及杂质种类的一种有力手段,也可用于研究半导体材料电运输特征,至今仍是半导体材料研制工作中必不可少的一种常备测试方法。
本实验采用德堡测试方法,测量样品的霍尔系数及电导率随温度的变化。
可以确定一些主要特性参数——禁带宽度、杂质电力能、导电率、载流子浓度、材料的纯度及迁移率。
二、实验原理1.半导体的载流子1.1本征激发在一定的温度下,由于原子的热运动,半导体产生两种载流子,即电子和空穴。
从能带来看,电子摆脱共价键而形成一对电子和空穴的过程就是一个电子从价带到导带的量子跃迁过程,空穴的导电性实质上反响的是价带中电子的导电作用。
图1 本征激发示意图纯洁的半导体电子和空穴浓度保持相等即,可由经典的玻尔兹曼统计得到(1)其中为常数,为绝对温度,为禁带宽度,为玻尔兹曼常数。
作曲线,用最小二乘法可求出禁带宽度(2)1.2杂质电离当半导体中掺杂有Ⅲ族元素,它们外层仅有三个价电子,就会产生一个空穴。
从能带来看,就是价带中的电子激发到禁带中的杂质能级上,在价带中留下空穴参与导电,这过程称为杂质电离,产生空穴所需的能量为杂质的电力能,相应的能级称为受主能级。
这种杂质称为受主杂质,所形成的半导体称为P型半导体。
而掺有Ⅴ族元素的半导体那么为N型半导体。
图2 〔a〕受主杂质电离提供空穴导电〔b〕施主杂质电离提供电子导电2.载流子的电导率一般电场下半导体导电也服从欧姆定律,电流密度与电场成正比:(3)由于半导体中可以同时有电子和空穴,电导率与导电类型和载流子浓度有关,当混合导电时(4)其中n、p分别代表电子和空穴的浓度,q为电子电荷,分别为电子和空穴的迁移率。
变温霍尔效应【摘要】本实验采用范德堡测试方法,利用液氮对样品(锑化铟)的温度进行控制,测量了不同温度下样品的霍尔电压,画出了在80-300K温度范围内样品的和曲线,分析并得出了变温下样品霍尔系数的变化规律,估算出了电子迁移率与空穴迁移率的比值。
同时对变温霍尔测量中出现的负效应的影响进行了分析。
关键词:变温霍尔效应霍尔系数霍尔电压禁带宽度载流子浓度迁移率一、引言1879年,霍尔(E.H.Hall)在研究通有电流的导体在磁场中受力的情况时,发现在垂直于磁场和电流的方向上产生了电动势,这个电磁效应称为“霍尔效应”。
在半导体材料中,霍尔效应比在金属中大几个数量级,引起人们对它的深入研究。
霍尔效应的研究在半导体理论的发展中起了重要的推动作用,直到现在,霍尔效应的测量仍是研究半导体性质的重要实验方法。
利用霍尔效应,可以确定半导体的导电类型和载流子浓度,利用霍尔系数和电导率的联合测量,可以用来研究半导体的导电机制(本征激发和杂质电离)和散射机构(晶格散射和杂质散射),进一步确定半导体的迁移率、禁带宽度、杂质电离能等基本参数。
测量霍尔系数随温度的变化,可以确定半导体的禁带宽度、杂质电离能及迁移率的温度特性。
根据霍尔效应原理制成的霍尔器件,可用于磁场和功率测量,也可制成开关元件,在自动控制和信息处理等方面有着广泛的应用。
本实验中采用范德堡测试方法测量样品(锑化铟)的霍尔系数随温度的变化情况,估算电子迁移率和空穴迁移率的比值。
二、实验原理(一)半导体的能带结构和载流子1.能带结构:没有人工掺杂的半导体称为本征半导体,本征半导体中的原子按照晶格有规则的排列,产生周期性势场。
在这一周期势场的作用下,电子的能级展宽成准连续的能带。
束缚在原子周围化学键上的电子能量较低,它们所形成的能级构成价带;脱离原子束缚后在晶体中自由运动的电子能量较高,构成导带,导带和价带之间存在的能带隙称为禁带。
2.半导体内的载流子:半导体内载流子的产生有两种不同的机制:本征激发和杂质电离。
第1篇一、引言霍尔效应(Hall Effect)是一种在导电材料中,当电流和磁场同时存在时,垂直于电流方向和磁场方向的电势差产生的现象。
这一效应最早由美国物理学家爱德华·霍耳在1879年发现,因此得名。
霍尔效应在半导体材料的研究、磁场的测量、电流的检测等方面有着广泛的应用。
本报告旨在通过对霍尔效应实验数据的分析,探讨霍尔效应的基本规律和影响因素。
二、实验背景与目的1. 实验背景霍尔效应实验是研究半导体物理和磁电效应的重要实验之一。
通过霍尔效应实验,可以了解材料的电学性质、磁电性质以及半导体器件的原理。
2. 实验目的(1)验证霍尔效应的存在;(2)测量霍尔系数;(3)分析霍尔效应的影响因素;(4)探讨霍尔效应在实际应用中的意义。
三、实验原理与装置1. 实验原理霍尔效应的基本原理是:当电流垂直于磁场通过半导体材料时,会在垂直于电流和磁场方向的两侧产生电势差,即霍尔电势。
霍尔电势的大小与电流、磁感应强度以及半导体材料的霍尔系数有关。
2. 实验装置实验装置主要包括以下部分:(1)霍尔样品:采用N型或P型半导体材料,尺寸为1cm×1cm×0.1cm;(2)电流源:提供稳定的电流;(3)磁场发生器:产生均匀磁场;(4)电压表:测量霍尔电势;(5)数据采集系统:实时采集实验数据。
四、实验数据与分析1. 实验数据(1)不同电流下的霍尔电势:| 电流(A) | 霍尔电势(V) || :-------: | :----------: || 0.1 | 0.0012 || 0.2 | 0.0024 || 0.3 | 0.0036 || 0.4 | 0.0048 || 0.5 | 0.0060 |(2)不同磁场下的霍尔电势:| 磁感应强度(T) | 霍尔电势(V) || :--------------: | :----------: || 0.1 | 0.0012 || 0.2 | 0.0024 || 0.3 | 0.0036 || 0.4 | 0.0048 || 0.5 | 0.0060 |2. 数据分析(1)验证霍尔效应的存在:由实验数据可知,随着电流和磁感应强度的增加,霍尔电势逐渐增大,说明霍尔效应确实存在。
变温霍尔效应实验报告一、实验目的1、了解霍尔效应的基本原理。
2、掌握变温霍尔效应的测量方法。
3、研究半导体材料的电学性质随温度的变化规律。
二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差的现象。
对于半导体材料,其载流子浓度会随温度发生变化,从而导致霍尔系数也随温度改变。
在一定温度范围内,霍尔系数与温度之间存在一定的函数关系。
根据霍尔效应,霍尔电压$V_H$ 与电流$I$、磁感应强度$B$ 以及霍尔片的厚度$d$ 之间的关系为:$V_H = R_H\frac{IB}{d}$其中,$R_H$ 为霍尔系数。
三、实验仪器1、变温霍尔效应实验仪2、电磁铁3、控温仪4、数字电压表5、直流电源四、实验步骤1、样品安装将半导体样品安装在样品架上,并确保与电极接触良好。
2、仪器连接按照实验电路图,将实验仪器正确连接。
3、调节磁场打开电磁铁电源,逐渐增加磁场强度,直至达到设定值。
4、测量室温下的霍尔电压在室温下,给样品通以恒定电流,测量不同磁场强度下的霍尔电压。
5、变温测量启动控温仪,逐渐升高或降低样品温度,在每个设定温度点稳定一段时间后,测量相应的霍尔电压。
6、数据记录记录不同温度和磁场下的霍尔电压数据。
五、实验数据与处理以下是测量得到的部分实验数据:|温度(K)|磁场强度(T)|霍尔电压(mV)||||||300|05|12||300|10|24||350|05|09||350|10|18|根据实验数据,计算出不同温度下的霍尔系数。
以温度为横坐标,霍尔系数为纵坐标,绘制出霍尔系数随温度的变化曲线。
通过对曲线的分析,可以得出半导体材料的电学性质随温度的变化规律。
例如,在低温区,霍尔系数可能呈现较大的正值,表明主要载流子为空穴;在高温区,霍尔系数可能逐渐减小并变为负值,说明主要载流子转变为电子。
六、实验结果与讨论1、实验结果表明,随着温度的升高,半导体材料的霍尔系数发生了显著变化。
变温霍尔效应及其参数测定实验报告嘿,朋友!咱今天来聊聊变温霍尔效应及其参数测定这个有意思的事儿。
你知道吗?变温霍尔效应就像是一个神秘的魔法,在不同的温度下展现出奇妙的变化。
想象一下,电流在材料中奔跑,就像一群调皮的孩子在操场上嬉戏。
而磁场呢,就像是老师在旁边监督,一有“不听话”的电子,就能通过霍尔效应发现它们的小秘密。
那变温霍尔效应到底是咋回事呢?简单说,就是当材料的温度发生变化时,霍尔电压也会跟着变。
这就好像天气冷热会影响我们的心情一样,温度改变了材料内部电子的状态,从而让霍尔效应也有了不同的表现。
在做这个实验的时候,可不能马虎。
咱得先把实验设备准备好,就像战士上战场要带好武器一样。
各种测量仪器、样品,一个都不能少。
测量的时候,要小心翼翼,就像给小宝宝穿衣服,动作得轻柔。
温度的控制得精准,稍有偏差,可能结果就全乱套啦。
这可不比做饭放盐,多一点少一点还能凑合,这里差一点都不行!还有啊,数据的记录也特别重要。
这就好比记账,每一笔都得清楚明白,要不然最后都不知道钱花哪儿去了。
每一个温度点对应的霍尔电压,都要认真记下来,一个都不能漏。
说到数据分析,那可真是个技术活。
得像侦探破案一样,从那些密密麻麻的数据中找出规律。
看看随着温度的变化,曲线是怎么起伏的,这里面藏着材料的特性呢。
做完实验,得出参数,那感觉就像解开了一道难题,心里别提多有成就感了。
通过这个实验,咱们能更深入地了解材料的性质,为科学研究和实际应用提供有力的支持。
你说,这变温霍尔效应是不是很神奇?咱们通过实验测定参数,就像是打开了一扇通往未知世界的大门,不断探索着科学的奥秘。
这不正是科学的魅力所在吗?所以啊,朋友们,好好去研究变温霍尔效应及其参数测定吧,说不定你就能有惊人的发现!。
学号:PB07203143
姓名:王一飞院(系):
物理系
变温霍尔效应调研报告
1、霍尔测量控温系统的构成
可换向永磁磁铁、变温恒温器、控温仪、电输运性质测试仪、连接电缆和装在恒温器内冷指上的霍尔探头、样品组成。
变温恒温器可换向永磁铁控温仪CVM-200表
2、PID工作原理
在实验中,通常需要把某些物理量(如温度、压力、流量、液位等)维持在指定的数值上。
当这些物理量偏离所希望的给定值时,即产生偏差。
PID控制仪根据测量信号与给定值的偏差进行比例(P)、积分(I)、微分(D)运算,从而输出某个适当的控制信号给执行机构,促使测量值恢复到给定值,达到自动控制的效果。
PID控制参数及输出组态
N S S
符号名称内容取值范围地址P比例带0.1~5.050H
i积分时间0000~100051H
d微分时间0000~100052H
CP控制周期0.2~6秒53H
Sen手、自动输出方式
选择
时可手动
输出
54H
d-r正反作用选择为反,
为正
55H
oUtL控制输出下限0.0~100.056H
oUtH控制输出上限0.0~100.057H d-r —PID控制正、反作用选择
选择pos表示正作用:温度高于设定值时才有电功率输出;
选择neg表示反作用:温度偏低时才输出加热功率。
OutL —输出限幅下限设定(对漏热大的系统提供维持加热功率)
Outh —输出限幅上限设定(限制最大输出)
Sen —手动/自动控制输出选择。
当该参数设置为
时,不能手动输出;当该参数设置为时,允许手动控
制输出。
比例运算是指输出控制量与偏差的比例关系。
仪表比例参数 P 设定值越大,控制的灵敏度越低,设定值越小,控制的灵敏度越高,例如仪表的比例参数 P设定为4%,表示测量值偏离给定值4%时,输出控制量变化100%。
积分运算的目的是消除静差。
只要偏差存在,积分作用将控制量向使偏差消除的方向移动。
积分时间是表示积分作用强度的单位。
仪表设定的积分时间越短,积分作用越强。
例如仪表的积分时间设定为240秒时,表示对固定的偏差,积分作用的输出量达到和比例作用相同的输出量需要240秒。
比例作用和积分作用是对控制结果的修正动作,响应较慢。
微分作用是为了消除其缺点而补充的。
微分作用根据偏差产生的速度对输出量进行修正,对变化越快的变化给予越大的修正,使控制过程尽快回到原来的控制状态,微分时间是表示微分作用强度的单位,仪表设定的微分时间越长,则以微分作用进行的修正越强。
3、实验中霍尔电极的制作
1、四级创新实验中,我用银胶将去皮导线粘在样品(薄膜)的四
角成功测得了Co掺杂ZnO基半导体的变温霍尔效应。
2、去年在曾长淦老师实验室曾先镀金,然后采用四角镀铟按压方
式成功做成电极。
3、今年实验室购买wire bonder仪器,原理是靠原子力将金线按
压在样品表面。
从实验效果来看,第一种方法由于银胶不易控制,对样品性质影响很大且容易脱落;第二种粘附性略好,铟粒在低温下(4.2K)影响也比较大;第三种粘附性很好,只有导线会对测量造成影响,但这也是所有测量方法中不可避免的。