应用随机过程第三章习题解
- 格式:pdf
- 大小:139.30 KB
- 文档页数:15
第三章 Poisson 过程(Poisson 信号流)习题解答1、 设}0),({≥t t N 是一强度为λ的齐次泊松过程,而12/)()(-=t N t X ,0≥t 。
对0>s ,试求:(1) 计算)}()({s t N t N E +及})()({s N t s N E +的分布律;(2) 证明过程)(t X ,0≥t 是马氏过程并写出转移概率),;,(j t i s p ,其中t s ≤。
解:(1)由泊松过程状态空间可知)(t X 的状态空间为:},2,1,0:2/)2{(},2,2/3,1,2/1,0,2/1,1{ =-=--=k k St s t t s t t s t t s t N t N E λλλλ++=+++=+)(},min{)()}()({22由于tn e m t n m e n k t k n k t N kP n s N P n s N k t s N P k n s N k t s N kP n s N t s N E m tm n k t n k n k n k nk λλλλλ+=+=-=-=====+===+==+∑∑∑∑∑∞+=-∞+=--∞+=∞+=+∞=0!)()()!()(})({})({})(,)({})()({})()({因此t s N s N t s N E λ+=+)(})()({其分布列为:sn e n s n s N P t n s N t s N E P λλλ-===+=+!)(})({}})()({{(2)由泊松过程的独立增量性可知过程)(t X 也是独立增量的,又因为1)0(-=X ,因此可知过程)(t X 是一马氏过程,其转移概率为:),(;)]!(2[)]([)}1(2)({)}(2)({)}1(2)({)}1(2)({)}1(2)(),1(2)({})({})(,)({),;,()()(2s t i j e i j s t i s N P i j s t N P i s N P i s N P j t N i s N P i s X P j t X i s X P j t i s p s t i j ≥≥--=+=-=-+==+=+=+======---λλ),(;0),;,(s t i j j t i s p ≥<=附:泊松过程相关函数的计算: 设210t t ≤<,我们有:∑∑+∞=+∞=+==+=002121})(,)({)()}()({m n n m t N m t N P n m m t N t N E由于当210t t ≤<时,,2,1,0,,!!)(})(,)({212121=-=+==-+n m e n m t t t n m t N m t N P t nm n m λλ因此,我们有:1212)(1212)(1)(2121112111111212121111101222122121112110121201211112110121001210012120012100212112121212121222222222222)()!1()(!)1()(!)(!)1(!)(!)2(!)1(!)1()(!!)1()(!!)2()(!)1(!)1()(!!)1()(!!)(!!)(!!)()(})(,)({)()}()({t t t e e e t t t e e e t e e e t n t t m t et t t n t t m t et n t t m t et e n m t t t e n m t t t en m t t t en m t t t e n m t t t m en m t t t n m e n m t t t m e n m t t t n m m n m t N m t N P n m m t N t N E t t t t t t t t t t t t n n n m m m t n nn m m m t n nn m m m t m n t n m n m m n t nm n m m n t nm n m m n t n m n m m n t n m n m m n t n m n m m n t n m n m m n t nm n m m n λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ+=-++=----+--+--=---++--+--=---+--=-+-=-+=+==+=------∞+=--∞+=---∞+=∞+=---∞+=∞+=---∞+=∞+=-+∞+=∞+=-+∞+=∞+=-+∞+=∞+=-+∞+=∞+=-+∞+=∞+=-+∞+=∞+=-+∞+=∞+=-++∞=+∞=∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑同理我们有:当120t t ≤<时221221)}()({t t t t N t N E λλ+=因此,有:},min{)}()({),(212122121t t t t t N t N E t t R N λλ+==2、 设}0);({≥t t X 与}0);({≥t t Y 是相互独立,参数分别为1λ与2λ的Poisson 过程。
第3章测验题解答一、填空题1.设}0),({≥t t X 是参数为λ>0的泊松过程对任意的),0[,+∞∈s t ,且t s <,则均值函数为__t λ____;相关函数为__s st λλ+2______。
答案:均值函数为:t X t X E t X E t m X λ=-==)]0()([)]([)(相关函数为:)]}()()()[({)]()([),(s X s X t X s X E t X s X E t s R X +-== 2)]([)]()()][0()([s X E s X t X X s X E +--=2)]}([{)]([)]()([)]0()([s X E s X D s X t X E X s X E ++--=2)()(s s s t s λλλλ++-=)1(2+=+=t s s st λλλλ2. 设}0),({≥t t X 是具有参数λ的泊松过程,}1,{≥n T n 是对应的时间间隔序列,则随机变量,...)2,1(=n T n 独立同分布服从___________。
答案:均值为λ/1的指数分布3.设}0,{≥n W n 是与泊松过程}0),({≥t t X 对应的一个等待时间序列,则n W 服从________,概率密度为______________。
答案:参数为n 与λ的Γ分布)!1(1)(0{)(---=n n t t en W t f λλλ<≥t t4.泊松过程的定义:称计数过程(){},0t ≥X t 为具有参数0λ>的泊松过程,若它满足下列条件:()100;X =();()(2)X t 是独立、平稳增量过程; ()(3)X t 满足下列两式:)(}1)()({h t t X h t X P ολ+==-+)(}2)()({h t X h t X P ο=≥-+5 .设}0),({≥t t X 是参数为λ>0的泊松过程对任意的),0[,+∞∈s t ,且t s <,方差函数为______;协方差函数为__________。
第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
《概率论与随机过程》第三章习题答案3.2 随机过程()t X 为()()ΦωX +=t cos A t 0式中,A 具有瑞利分布,其概率密度为()02222>=-a eaa P a A ,σσ,()πΦ20,在上均匀分布,A Φ与是两个相互独立的随机变量,0ω为常数,试问X(t)是否为平稳过程。
解:由题意可得:()[]()()002121020022222002222=⇒+=*+=⎰⎰⎰⎰∞--∞φφωπσφπσφωX E πσσπd t cos da e a a dad eat cos a t a a ()()()[]()()()()()()[]()()()()()12021202120202120202221202022021012022022202010022222200201021212122112210212212121221212222222222222t t cos t t cos t t cos det t cos da e e a t t cos dea d t t cos t t cos a d ea d t cos t cos da eaadad e at cos a t cos a t t t t R a a a a a a a -=-⨯=-⨯-=-⨯⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫-∞+-=-⨯-=⎩⎨⎧⎭⎬⎫+++---=++=++==-∞∞---∞∞-∞--∞⎰⎰⎰⎰⎰⎰⎰⎰⎰ωσωσωσωωφφωωπσφπφωφωσφσπφωφωX X E σσσσπσπσσπXX )(,可见()[]t X E 与t 无关,()21t t R ,XX 与t 无关,只与()12t t -有关。
∴()t X 是平稳过程另解:()[][]0022000000[cos()][cos()][];(,)cos()cos(())cos()cos(())t E A t E A E t E A R t t E A t t E A E t t E X ωΦωΦτωΦωτΦωΦωτΦ⎡⎤=+=+=⨯=⎣⎦⎡⎤⎡⎤+=+++=+++⎣⎦⎣⎦[][][])cos()cos())cos((τωτωτωω0200022222A E t E A E =+Φ++= ∴()t X 是平稳过程3.3 设S(t) 是一个周期为T 的函数,随机变量Φ在(0,T )上均匀分布,称X(t)=S (t+Φ),为随相周期过程,试讨论其平稳性及各态遍历性。
第三章 习题3-1 设某一随机过程的样本为{x 1,x 2,…,x k },设k 时刻的样本均值和方差分别为21111(),(1)1kkk ik i k i i x x s x x k k k ====-≠-∑∑和 假定新的观测值为x k+1,试推导样本均值x k+1和样本方差s k+1的更新公式。
解:111k k k kx x x k +++=+. ∵ 121111()k k i k i s x x k +++==-∑,而211()1k k i k i s x x k ==--∑,所以 112211111222111111122112211()()111211 ()()()()11111 0()()(1)(1) k k k k k k k i i k i i k k k k k k k k k i k i k k i i i k k k k kkx x x x s x x x k k k k x x x x kx x x x x x x k k k k k k k k k s x x x x k k k +++++==++++===+++-=-=--++--+=---++-+++-=-+-+-++∑∑∑∑∑2111 ().1k k k k s x x k k +-=+-+∴ 更新公式为11111k k k k x x x k k ++=+++, 21111()1k k k k k s s x x k k ++-=+-+.3-2 设某一随机过程样本由x k =a+bk+v k 描述,其中,v k ~N (0,σ2);a 和b 是待定的未知参数。
试求估计量a ˆ,b ˆ的CR 下界。
解:未知参数向量为θ=[a ,b ]T 。
首先计算Fisher 信息矩阵,即222222ln (|)ln (|)[][]()ln (|)ln (|)[][]p x p x E E a a b p x p x E E b a b ⎡⎤∂∂--⎢⎥∂∂∂⎢⎥=⎢⎥∂∂⎢⎥--⎢⎥∂∂∂⎣⎦θθI θθθ (3.1.31) 依题意,似然函数可写成22/22111(|)exp[()](2π)2NkN k p x xa bk σσ==---∑θ对上式等号两边取自然对数,并分别对A 和B 求偏导,得到21ln (|)1()Nkk p x xa bk a σ=∂=--∂∑θ21ln (|)1()Nkk p x xa bk kb σ=∂=--∂∑θ容易验证,以上二式的数学期望为零,满足正则条件(3.1.25)。
3. 正态过程的可加性;
9. 维纳过程的平移不变性;
15. 泊松过程的可加性;泊松过程与复合泊松过程;
16. 泊松过程的两个二项分布;
19. 23. 泊松过程的分解;
21. 一些正态过程的性质,P45例题14;
方法:
8,
10,
13,14,
19,
21,
3,4,5,6 维纳过程的几个不变性;
对于齐次Poisson 过程,有
(){}t
s t N s P =
=≤11τ 即在()1=t N 的条件下,1τ为[]t ,0上的均匀分布。
更一般的,有如下定理, 定理:设(){}0,≥t t N 为强度λ的齐次Poisson 过程,在()n t N =的条件下,n 个到达时刻n τττ<<< 21和n 个相互独立同[]t ,0上均匀分布的随机变量n U U U ,,,21 的顺序统计量()()()n U U U <<< 21有相同分布。
即在()n t N =的条件下,()n τττ,,,21 的联合概率密度为:
()⎪⎩⎪⎨⎧≤<<<≤=其他0
0!,,,2121t u u u t n u u u f n n n
方法:
2
19
20。
习 题一、习题编号3.1,3.3,3.4,3.5,3.7,3.9,3.10,3.11,3.12,3.15 二、习题解答3.1 设(){},0N t t ≥为计数过程,{},1,2,3,...n S n =为事件到达时刻,试问下列事件是否等效:(1)(){}N t n ≤与{}n S t ≥;(2)(){}N t n >与{}1n S t +<。
解3.1:(1) 两者不等价分析:固定n ,来观察两个事件中t 的取值区间分别用蓝色和红色标识。
从图中可以看出,两个事件描述的t 的取之范围不同!因此(){}N t n ≤与{}n S t ≥不等价。
但:事件(){}N t n ≤ 与 事件 {}1n S t +>等价!(2)(){}N t n >与{}n S t <的图形示例如图所示其中(){}N t n >比{}1n S t +<多包涵了一个 s n+1时刻,因此(){}N t n >与{}1n S t +<两者不等价。
但:(){}N t n >与{}1n S t +≤等价。
3.3 设(){},0N t t ≥是参数为λ的泊松过程,,0s t ∀≥,求 (1)()()E N s N t ⎡⎤⎣⎦;(2)()()P N t s j N s i ⎡⎤+==⎣⎦; (1) ()()P N s i N t s j ⎡⎤=+=⎣⎦。
解3.3:(1)()()E N s N t ⎡⎤⎣⎦当t > s 时,()()()(){}()()()()222()()()()()E N s N t E N s N t N s N s E N s E N t N s N s s s t s s s tsλλλλλλ⎡⎤=-+⎡⎤⎣⎦⎣⎦⎡⎤⎡⎤=+-⎣⎦⎣⎦=++-=+所以有:()()()2min ,E N s N t s t ts λλ=+⎡⎤⎣⎦(2)()()P N t s j N s i ⎡⎤+==⎣⎦()()()()()()()()!j itP N t s j N s i P N t N s j N s i P N t j i t e j i λλ--⎡⎤⎡⎤+===+==⎣⎦⎣⎦==-⎡⎤⎣⎦=-(3)()()P N s i N t s j ⎡⎤=+=⎣⎦()()()()()()()()()()()()()()()(),|()!!()!()j i it sjt s i j ii jjP N s i N t s j P N s i N t s j P N t s j P N t s j N s i P N s i P N t s j P N t j i P N s i P N t s j t e s e j i i t s e j s t Cs t λλλλλλ----+-=+=⎡⎤⎣⎦⎡⎤=+==⎣⎦+=⎡⎤⎣⎦+===⎡⎤⎡⎤⎣⎦⎣⎦=+=⎡⎤⎣⎦=-=⎡⎤⎡⎤⎣⎦⎣⎦=+=⎡⎤⎣⎦⨯-=+=+3.4 设(){}1,0N t t ≥与(){}2,0N t t ≥是参数分别为1λ与2λ且彼此独立的泊松过程。
第三章 马尔科夫过程1、将一颗筛子扔多次。
记X n 为第n 次扔正面出现的点数,问{X(n) , n=1,2,3,···}是马尔科夫链吗?如果是,试写出一步转移概率矩阵。
又记Y n 为前n 次扔出正面出现点数的总和,问{Y(n) , n=1,2,3,···}是马尔科夫链吗?如果是,试写出一步转移概率矩阵。
解:1)由已知可得,每次扔筛子正面出现的点数与以前的状态无关。
故X(n)是马尔科夫链。
E={1,2,3,4,5,6} ,其一步转移概率为:P ij = P ij =P{X(n+1)=j ∣X(n)=i }=1/6 (i=1,2,…,6,j=1,2,…,6) ∴转移矩阵为2)由已知可得,每前n 次扔正面出现点数的总和是相互独立的。
即每次n 次扔正面出现点数的总和与以前状态无关,故Y(n)为马尔科夫链。
其一步转移概率为其中2、一个质点在直线上做随机游动,一步向右的概率为p , (0<p<1),一步向左的概率为 q , q =1-p 。
在x = 0 和x = a 出放置吸收壁。
记X(n)为第n 步质点的位置,它的可能值是0,1,2,···,a 。
试写出一步转移概率矩阵。
解:由已知可得, 其一步转移概率如下:故一步转移概率为3、做一系列独立的贝努里试验,其中每一次出现“成功”的概率为p ( 0<p<1 ) ,出现“失败”的概率为q , q = 1-p 。
如果第n 次试验出现“失败”认为 X(n) 取得数值为零;如果第n 次试验出现“成功”,且接连着前面k 次试验都出现“成功”,而第 n-k 次试验出现“失败”,认为X(n)取值k ,问{X(n) , n =1,2,···}是马尔科夫链吗?试写出其一步转移概率。
解:由已知得:故为马尔科夫链,其一步转移概率为616161616161616161616161616161616161P ={6,,2,1,6/1,,8,7,,0)1,(+++=<++==+i i i j i j i i i j ij n n P 或)1(6,,2,1;6,,2,1,+++=++=n n n j n n n n i {}α,,2,1,0 =E )(0,1;)0(0,1)1,1(0,,1,,2,1101,1,ααααα≠==≠==+-≠===-=-+j P P j P P i i j P q P P P x j j ij i i i i 而时,当 10000000000000001Pp q p q p q ={}{}m m m m m m i n X l n X i n X i n X i n X l n X P ==+=====+)(0)()(,,)(,)(0)(2211 {}{}mm m m m m in X k l n X i n X i n X i n X k l n X P ==+=====+)()()(,,)(,)()(22114、在一个罐子中放入50个红球和50个蓝球。
第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===L 。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解 0()()jtxjtkk X k f t E eepq ∞===∑Q()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑Q222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)W2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 1(())x p p e x dx ∞--Γ=⎰Q (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ: 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+:同理可得:()()iiP X b f t b jt∑=∑- W3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。