八年级数学轴对称图形单元测试卷
- 格式:docx
- 大小:102.54 KB
- 文档页数:7
第13章轴对称(单元测试·培优卷)一、单选题(本大题共10小题,每小题3分,共30分)1.下列图形中是轴对称图形的是()A .B .C .D .2.如图,点A 在直线l 上,△ABC 与AB C '' 关于直线l 对称,连接BB ',分别交AC ,AC '于点D ,D ¢,连接CC ',下列结论不一定正确的是()A .BACB AC ∠=∠''B .CC BB '' C .BD B D =''D .AD DD ='3.我们知道光的反射是一种常见的物理现象.如图,某V 型路口放置如图所示的两个平面镜1l ,2l ,两个平面镜所成的夹角为1∠,位于点D 处的甲同学在平面镜2l 中看到位于点A 处的乙同学的像,其中光的路径为入射光线AB 经过平面镜1l 反射后,又沿BC 射向平面镜2l ,在点C 处再次反射,反射光线为CD ,已知入射光线2AB l ∥,反射光线1CD l ∥,则1∠等于()A .40︒B .50︒C .60︒D .70︒4.如图,已知a b ∥,直线l 与直线a ,b 分别交于点A ,B ,分别以点A ,B 为圆心,大于12AB 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交直线a ,b 于点D 、C ,连接AC ,若135∠=︒,则BAD ∠的度数是()A .35︒B .55︒C .65︒D .70︒5.如图,在等腰Rt ABC △,90BAC ∠=︒,AB AC =,BD 为ABC V 的角平分线,过点C 作CE BD ⊥交BD 的延长线与点E ,若2CE =,则BD 的长为()A .3B .4C .5D .66.如图,90ACB AED ∠=∠=︒,CAE BAD ∠=∠,BC DE =,若BD AC ∥,则ABC ∠与CAE ∠间的数量关系为()A .2ABC CAE∠=∠B .ABC CAE ∠=∠C .290ABC CAE ∠+∠=︒D .2180ABC CAE ∠+∠=︒7.某平板电脑支架如图所示,其中AB CD =,EA ED =,为了使用的舒适性,可调整AEC ∠的大小.若AEC ∠增大16︒,则BDE ∠的变化情况是()A .增大16︒B .减小16︒C .增大8︒D .减小8︒8.如图,在ABC V 中,80BAC ∠=︒,边A 的垂直平分线交BC 于点E ,边AC 的垂直平分线交AC 于点F ,连接AE ,AG .则EAG ∠的度数为()A .35︒B .30︒C .25︒D .20︒9.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,AD 是△ABC 的角平分线,若P ,Q 分别是AD 和AC 边上的动点,则PC +PQ 的最小值是()A .65B .2C .125D .5210.如图,在ABC V 中,90BAC ∠=︒,A 是高,BE 是中线,C 是角平分线,C 交A 于G ,交BE 于H ,下面说法:①ACF BCF S S = ;②AFG AGF ∠=∠;③2FAG ACF ∠=∠;④BH CH =.其中正确的是()A .①②③④B .①③C .②③D .①③④二、填空题(本大题共8小题,每小题4分,共32分)11.如图,在ABC V 中,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于点M 、N ,作直线MN ,交AB 于点D ,连接CD ,若ABC V 的周长为24,9BC =,则ADC △的周长为.12.如图,直线m n ∥,点A 是直线m 上一点,点B 是直线n 上一点,AB 与直线m ,n 均不垂直,点P为线段AB 的中点,直线l 分别与m ,n 相交于点C ,D ,若90,CPD CD ∠=︒=m ,n 之间的距离为2,则PC PD ⋅的值为.13.如图,A EGF ∠=∠,F 为BE CG ,的中点,58DB DE ==,,则AD 的长为.14.如图所示,在平面直角坐标系中,ABC V 满足45,90BAC CBA ∠=︒∠=︒,点A ,C 的坐标分别是()()2,0,3,5--,点B 在y 轴上,在坐标平面内存在一点D (不与点C 重合),使ABC ABD △≌△,且AC 与AD 是对应边,请写出点D 的坐标.15.如图,60AOB ∠=︒,C 是BO 延长线上一点,12cm OC =,动点M 从点C 出发沿射线CB 以2cm /s 的速度移动,动点N 从点O 出发沿射线OA 以1cm /s 的速度移动,如果点M 、N 同时出发,设运动的时间为s t ,那么当t =s 时,MON △是等腰三角形.16.如图,锐角ABC 中,30A ∠=︒,72BC =,ABC 的面积是6,D ,E ,F 分别是三边上的动点,则DEF 周长的最小值是.17.如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ,…在x 轴正半轴上,点1B ,2B ,3B ,…在直线()0y x =≥上,若()11,0A ,且112A B A △,223A B A △,334A B A △,…均为等边三角形,则线段20212022A A 的长度为.18.如图,将长方形纸片ABCD 沿EF 折叠(折线EF 交AD 于E ,交BC 于F ),点C D 、的对应点分别是1C 、1D ,1ED 交BC 于G ,再将四边形11C D GF 沿FG 折叠,点1C 、1D 的对应点分别是2C 、2D ,2GD 交EF 于H ,给出下列结论:①2EGD EFG∠=∠②2180EFC EGC ∠=∠+︒③若26FEG ∠=︒,则2102EFC ∠=︒④23FHD EFB∠=∠上述正确的结论是.三、解答题(本大题共6小题,共58分)19.(8分)在ABC V 中,90ACB ∠=︒,AC BC BE ==,AD EC ⊥,交EC 延长线于点D .求证:2CE AD =.20.(8分)如图,点P 是AOB ∠外的一点,点E 与点P 关于OA 对称,点F 与点P 关于OB 对称,直线FE 分别交OA OB 、于C 、D 两点,连接PC PD PE PF 、、、.(1)若20OCP F ∠=∠=︒,求CPD ∠的度数;(2)若求=CP DP ,13CF =,3DE =,求CP 的长.21.(10分)如图,在ABC V 中,AD 平分BAC ∠,点E 为AC 中点,AD 与BE 相交于点F .(1)若38,82ABC ACB ∠=︒∠=︒,求ADB ∠的度数;(2)过点B 作BH AD ⊥交AD 延长线于点H ,作ABH 关于AH 对称的AGH ,设BFH △,AEF △的面积分别为12,S S ,若6BCG S V =,试求12S S -的值.22.(10分)已知:OP 平分MON ∠,点A ,B 分别在边OM ,ON 上,且180OAP OBP ∠+∠=︒.(1)如图1,当BP OM ∥时,求证:OB PB =.(2)如图2,当90OAP ∠<︒时,作PC OM ⊥于点C .求证:2OA OB AC -=.23.(10分)已知,在ABC V 中,90CAB ∠=︒,AD BC ⊥于点D ,点E 在线段BD 上,且CD DE =,点F 在线段AB 上,且45BEF ∠=︒(1)如图1,求证:DAE B∠=∠(2)如图1,若2AC =,且2AF BF =,求ABC V 的面积(3)如图2,若点F 是AB 的中点,求AEF ABCS S的值.24.(12分)如图,在ABC V 中,90ACB ∠=︒,30ABC ∠=︒,CDE 是等边三角形,点D 在边AB 上.(1)如图1,当点E 在边BC 上时,求证DE EB=(2)如图2,当点E 在ABC V 内部时,猜想ED 和EB 数量关系,并加以证明;(3)如图3,当点E 在ABC V 外部时,EH AB ⊥于点H ,过点E 作GE AB ,交线段AC 的延长线于点G ,5AG CG =,3BH =,求CG 的长.。
人教版八年级数学上册《第十三章轴对称》单元测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.如图,ABC 与A B C '''关于直线l 对称,若78A ∠=︒,48C '∠=︒则B ∠的度数为( )A .48︒B .54︒C .74︒D .78︒2.如图,ABC 中36A ∠=︒,AB=AC , BD 平分ABC ∠, DE BC ∥则图中等腰三角形有( )个A .4个B .5个C .6个D .7个3.如图,在ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于点E ,下列结论错误的是( )A .DB 平分CDE ∠ B .DE 平分ADB ∠C .AD BD BC == D .BD 平分ABC ∠ 4.已知ABC 中6BC AB =,、AC 的垂直平分线分别交边BC 于点M 、N ,若2MN =,则AMN 的周长是( )A .4B .6C .4或8D .6或105.如图AB AC BD CD ==,,若70B ∠=︒,则DAC ∠=( )A .15︒B .20︒C .25︒D .30︒6.若点A 和点B ()2,3-关于y 轴对称,则点A 与点B 的距离为( )A .4B .5C .6D .107.若等腰三角形一腰上的高与另一腰的夹角为20︒,则它的底角为( ) A .35︒ B .55︒ C .55︒或35︒ D .70︒或35︒ 8.下列说法错误的有( )个①三角形的高不在三角形内就在三角形外;①多边形的内角和必小于它的外角和; ①周长和面积相等的两个三角形全等;①周长相等的两个等边三角形全等; ①两边和一角分别对应相等的两个三角形全等;①等腰三角形顶角的外角平分线平行于这个等腰三角形的底A .2个B .3个C .4个D .5个二、填空题9.在ABC 中,AB=AC ,=60B ∠︒则A ∠的度数是 .10.在ABC 中,AB=AC ,DE 垂直平分AB ,若10cm 6cm AB AC BC ===,,则BCE 的周长是 .11.如图,在ABC 中90ACB ∠=︒与30B ∠=︒,CD 是AB 边上的中线,则ACD 是 三角形.12.如图ABC 中,AB AC DE AB D =⊥,,是AB 的中点,DE 交AC 于E 点,连接10BE BC =,,BEC 的周长是21,那么AB 的长是 .13.如图,ABC 中70C ∠=︒,AC 边上有一点D ,使得A ABD ∠=∠,将ABC 沿BD 翻折得A BD ',此时∥A D BC ',则ABC ∠= 度.14.点()1,5P -关于x 轴的对称点P '的坐标是 .15.把一张长方形纸条按如图所示的方式折叠,则1∠= .16.如图,Rt ABC △中,906810ACB AC BC AB BD ∠=︒===,,,,平分①ABC ,如果点M ,N 分别为BD BC ,上的动点,那么CM MN +的最小值是 .三、解答题17.如图,ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE CD =,连接DE .求证:DB DE =.18.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题.(1)画出格点ABC (顶点均在格点上)关于直线l 对称的111A B C △;(2)在直线l 上画出点P ,使得PB PC +最短;19.若等腰三角形一腰上的中线分周长为9和12两部分,请你画出示意图,并结合图形,求这个等腰三角形的各边长20.如图,在直角坐标系中,ABC 的三个顶点坐标分别为()()()144235A B C ,,,,,,请回答下列问题.(1)作ABC 的关于y 轴的对称图形, A 、B 、C 对应点坐标分别为A B C '''、、.(2)分别写出A B C '''的坐标:A ' ;B ' ;C ' ;(3)求ABC 的面积.21.如图,BA AF ⊥于点A ,ED DC ⊥于点D ,点E 、F 在线段BC 上,DE 与AF 交于点O ,且AB DC =,BE=CF .(1)求证:AF DE =;(2)若OP 平分EOF ∠,求证:OP 垂直平分EF .22.在ABC 中,AB 边的垂直平分线1l 交BC 于D ,AC 边的垂直平分线2l 交BC 于E ,1l 与2l 相交于点O .ADE 的周长为12cm =110BAC ∠︒(1)求BC 的长和DAE ∠的度数;(2)分别连接OA 、OB 、OC ,若OBC △的周长为29cm ,求OA 的长.23.如图,在ABC 中,AB AC AB =,的垂直平分线交AB 于M ,交AC 于N(1)若70ABC ∠=︒,求MNA ∠的度数.(2)连接NB ,若8AB cm BC =,的长6cm ,求NBC 的周长.24.如图,在等腰ABC 中CA CB =,点D 是AB 边上一点,连接DC ,且DA DC =.(1)如图1,CH AB ⊥若78ACB ∠=︒,求HCD ∠的度数.(2)如图2,若点E 在BC 边上且DE DB =,连接AE .点M 为线段CE 的中点,过M 点作MN DE ∥交AB 于点N ,求证:CD BN DN =+.第 1 页 共 7 页 参考答案: 1.B2.B3.A4.D5.B6.A7.C8.C9.60度10.16cm11.等边12.1113.82.514.()1,5--15.65︒16.4.819.这个等腰三角形的底为9或5,这个等腰三角形的腰为6或820. (2)()()()144235-,,-,,-,(3)7222.(1)12cm BC = 40︒(2)8.5cm OA =23.(1)50︒(2)14cm24.(1)12︒。
八年级上《轴对称图形》单元测试含答案解析一、填空题1.角有条对称轴,其对称轴是.2.已知等腰三角形的一边等于4cm,一边等于9cm,那么它的周长等于cm;若等腰三角形的一个角为70°,则它的另两个角是.3.如图,在△ABC中,AB=AC=30cm,DE是AB的垂直平分线,分别交AB、AC于D、E两点.(1)若∠C=70°,则∠BEC= ;(2)若BC=20cm,则△BCE的周长是cm.4.如图,在∠MON的两边上顺次取点,使 DE=CD=BC=AB=OA,若∠MON=20°,则∠NDE= .5.如图,以正方形ABCD的一边CD为边向形外作等边三角形CDE,则∠AEB= .6.在等腰△ABC中,周长=8cm,AC=3cm,BC= .(2)等腰△ABC中,若∠A=40°,则底角= .7.如图,已知∠AOB=α,在射线OA、OB上分别取点OA1=OB1,连接A1B1,在B1A1、B1B上分别取点A2、B2,使B1B2=B1A2,连接A2B2…按此规律上去,记∠A2B1B2=θ1,∠A3B2B3=θ2,…,∠An+1BnBn+1=θn,则(1)θ1= ;(2)θn= .二、选择题8.小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的()A.B.C.D.9.和三角形三条边距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点10.如图,△ABC中BD是角平分线,∠A=∠CBD=36°,则图中等腰三角形有()A.3个B.2个C.1个D.0个11.下列语句中正确的有()句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.412.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,当∠A的位置及大小变化时,线段EF和BE+CF的大小关系()A.EF>BE+CF B.EF=BE+CF C.EF<BE+CF D.不能确定13.已知在正方形网格中,每个小方格都是边长为1的正方形,A、B两点在格点上,位置如图,点C也在格点上,且△ABC为等腰三角形,则点C的个数为()A.7 B.8 C.9 D.10三、画图题14.以直线为对称轴,画出下列图形的另一部分使它们成为轴对称图形:15.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.16.已知右边方格纸中的每个小方格是边长为1的正方形,A、B两点在小方格的顶点上,位置如图所示.请在小方格的顶点上确定一点C,连接AB、AC、BC,使△ABC为等腰三角形且它的面积为4个平方单位.17.利用网格线作图:在BC上找一点P,使点P到AB和AC的距离相等.然后,在射线AP上找一点Q,使QB=QC.18.已知△ABC中,AB=AC,∠A=36°,仿照图①,请你再设计两种不同的分法,将△ABC分割成3个三角形,使得每个三角形都是等腰三角形.四、解答题19.如图,D是△ABC中BC边上一点,AB=AC=BD,已知∠1=70°,求∠2的度数.20.如图,CD、CF分别是△ABC的内角平分线和外角平分线,DF∥BC交AC于点E,那么DE=EF吗?说出你的理由.21.如图,四边形ABCD中,∠A=90°,∠C=90°,EF分别是BD、AC的中点,请你说明EF与AC的位置关系.22.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,E、F为垂足,连接EF交AD于G,试判断AD与EF垂直吗?并说明理由.《第2章轴对称图形》参考答案与试题解析一、填空题1.角有一条对称轴,其对称轴是角平分线所在直线.【考点】轴对称的性质.【分析】根据角和轴对称的定义和性质,即可得出答案.【解答】解:角是轴对称图形,有一条对称轴,它的平分线所在直线就是它的对称轴.故答案为:一,角平分线所在直线.【点评】本题考查轴对称图形的性质和定义.如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.2.已知等腰三角形的一边等于4cm,一边等于9cm,那么它的周长等于22 cm;若等腰三角形的一个角为70°,则它的另两个角是70°,40°或55°,55°.【考点】等腰三角形的性质;三角形三边关系.【分析】分为两种情况①三角形三边为4cm,4cm,9cm,②三角形三边为4cm,9cm,9cm,看看是否符合三角形的三边关系定理,求出即可;分为两种情况:①当底角为70°时,②当顶角为70°时,根据三角形的内角和定理求出即可.【解答】解:∵等腰三角形的一边等于4cm,一边等于9cm,∴分为两种情况:①三角形三边为4cm,4cm,9cm,∵4+4<9,∴不符合三角形的三边关系定理,此种情况不行;②三角形三边为4cm,9cm,9cm,此时符合三角形的三边关系定理,三角形的周长为4+9+9=22(cm);∵等腰三角形的一个角为70°,∴分为两种情况:①当底角为70°时,顶角为180°﹣70°﹣70°=40°;②当顶角为70°时,底角为×(180°﹣70°)=55°;即它的另两个角是70°,40°或55°,55°,故答案为:22,70°,40°或55°,55°.【点评】本题考查了等腰三角形的性质,三角形的三边关系定理,三角形内角和定理的应用,题目比较好,难度适中.3.如图,在△ABC中,AB=AC=30cm,DE是AB的垂直平分线,分别交AB、AC于D、E两点.(1)若∠C=70°,则∠BEC= 80°;(2)若BC=20cm,则△BCE的周长是50 cm.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】(1)先根据等腰三角形的性质得出∠ABC的度数,再由三角形内角和定理求出∠A的度数,根据线段垂直平分线的性质求出AE=BE,故可得出∠ABE的度数,进而可得出结论;(2)根据AE=BD可知,BE+CE=AE+CE=AC,由此可得出结论.【解答】解:(1)∵在△ABC中,AB=AC=30cm,∠C=70°,∴∠ABC=∠C=70°,∴∠A=180°﹣∠ABC﹣∠C=180°﹣70°﹣70°=40°.∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=40°,∴∠EBC=∠ABC﹣∠ABE=70°﹣40°=30°,∴∠BEC=180°﹣∠C﹣∠EBC=180°﹣70°﹣30°=80°.故答案为:80°;(2)∵由(1)知AE=BE,∴BE+CE=AE+CE=AC=30cm,∵BC=20cm,∴△BCE的周长=AC+BC=30+20=50(cm).故答案为:50.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.4.如图,在∠MON的两边上顺次取点,使 DE=CD=BC=AB=OA,若∠MON=20°,则∠NDE= 100°.【考点】等腰三角形的性质.【分析】根据等腰三角形的性质求出∠ABO=∠MON=20°,∠BAC=∠ACB,∠CBD=∠CDB,∠DCE=∠DEC,根据三角形的外角性质逐个求出即可.【解答】解:∵DE=CD=BC=AB=OA,∠MON=20°,∴∠ABO=∠MON=20°,∴∠BAC=∠ACB=∠MON+∠ABO=20°+20°=40°,∴∠CBD=∠CDB=∠MON+∠BCA=20°+40°=60°,∴∠DCE=∠DEC=∠MON+∠CDB=20°+60°=80°,∴∠NDE=∠MON+∠DEC=20°+80°=100°,故答案为:100°.【点评】本题考查了等腰三角形的性质,三角形的外角性质的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和,等边对等角.5.如图,以正方形ABCD的一边CD为边向形外作等边三角形CDE,则∠AEB= 30°.【考点】正方形的性质;等边三角形的性质.【分析】根据条件可以求出△ADE和△BCE为等腰三角形,就可以求出∠AED=∠BEC=15°,从而可以求出∠AEB的度数.【解答】解:∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠BCD=90°.∵△DCE是等边三角形,∴CD=DE=CE,∠CDE=∠DCE=60°.∴AD=ED,BC=CE,∠ADE=150°,∠BCE=150°.∴∠AED=∠BEC=15°,∴∠AEB=60°﹣15°﹣15°=30°.故答案为30°.【点评】本题考查了正方形的性质的运用,等边三角形的性质的运用,等腰三角形的性质的运用,解答时求出∠AED和∠BEC的度数很关键.6.在等腰△ABC中,周长=8cm,AC=3cm,BC= 3cm或2cm或2.5cm .(2)等腰△ABC中,若∠A=40°,则底角= 70°或40°.【考点】等腰三角形的性质;三角形三边关系.【分析】(1)由于已知周长和一边,边是腰长和底边没有明确,因此需要分两种情况讨论.(2)根据已知内角为顶角和底角,分类求解.【解答】解:(1)当腰长AC=BC=3cm时,底边为8﹣3﹣3=2(cm),而3,3,2能组成三角形,符合题意;当腰长AC=AB=3cm时,底边为BC=8﹣3﹣3=2(cm),而3,3,2能组成三角形,符合题意;当底边AC=3cm时,腰长BC=(8﹣3)÷2=2.5(cm),3,2.5,2.5能组成三角形,符合题意.故BC的长为3cm或2cm或2.5cm.(2)当∠A=40°为顶角时,底角=(180°﹣40°)÷2=70°;当∠A=40°为底角时,直接得出结论.故底角=70°或40°.故答案为:3cm或2cm或2.5cm;70°或40°.【点评】(1)考查了等腰三角形的性质与三角形三边关系,注意分类思想的运用.(2)考查了等腰三角形的性质.关键是根据已知角为顶角和底角,分类讨论.7.如图,已知∠AOB=α,在射线OA 、OB 上分别取点OA 1=OB 1,连接A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2=B 1A 2,连接A 2B 2…按此规律上去,记∠A 2B 1B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n+1B n B n+1=θn ,则(1)θ1= ;(2)θn = .【考点】等腰三角形的性质.【专题】压轴题;规律型.【分析】设∠A 1B 1O=x ,根据等腰三角形性质和三角形内角和定理得α+2x=180°,x=180°﹣θ1,即可求得θ1=;同理求得θ2=;即可发现其中的规律,按照此规律即可求得答案.【解答】解:(1)设∠A 1B 1O=x ,则α+2x=180°,x=180°﹣θ1,∴θ1=;(2)设∠A 2B 2B 1=y ,则θ2+y=180°①,θ1+2y=180°②,①×2﹣②得:2θ2﹣θ1=180°,∴θ2=; …θn =.故答案为:(1);(2)θn =.【点评】此题主要考查学生对等腰三角形性质和三角形内角和定理的理解和掌握,解答此题的关键是总结归纳出规律.二、选择题8.小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的()A.B.C.D.【考点】镜面对称.【分析】根据镜面对称的性质求解.【解答】解:8点的时钟,在镜子里看起来应该是4点,所以最接近8点的时间在镜子里看起来就更接近4点,所以应该是图B所示,最接近8点时间.故选B.【点评】主要考查镜面对称的性质:在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面对称.9.和三角形三条边距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点【考点】角平分线的性质.【分析】题目要求到三边距离相等,可两两分别思考,根据角平分线上的点到角两边的距离相等可得答案.【解答】解:中线交点即三角形的重心,三角形重心到一个顶点的距离等于它到对边中点距离的2倍,B 错误;高的交点是三角形的垂心,到三边的距离不相等,C错误;线段垂直平分线上的点和这条线段两个端点的距离相等,D错误;∵角平分线上的点到角两边的距离相等,∴要到三角形三条边距离相等的点,只能是三条角平分线的交点,A正确.故选A.【点评】本题考查了角平分线的性质;熟练掌握三角形中角平分线,重心,垂心,垂直平分线的性质,是解答本题的关键.10.如图,△ABC中BD是角平分线,∠A=∠CBD=36°,则图中等腰三角形有()A.3个B.2个C.1个D.0个【考点】等腰三角形的判定;三角形内角和定理;三角形的外角性质.【分析】根据已知可求得∠ABD与∠C的度数,从而可推出AD=DB,AB=AC,再根据三角形外角的性质可得到∠BDC的度数,从而可推出BD=DC,即不难求得图中等腰三角形的个数.【解答】解:∵△ABC中BD是角平分线,∠A=∠CBD=36°∴∠ABD=36°,∠C=72°∴AD=DB(△ADB是等腰三角形),∠ABC=72°∴AB=AC(△ABC是等腰三角形)∴∠BDC=72°∴BD=BC(△BDC是等腰三角形)故选A.【点评】此题主要考查等腰三角形的判定,三角形外角的性质及三角形内角和定理的综合运用.11.下列语句中正确的有()句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.4【考点】轴对称的性质.【分析】认真阅读4个小问题提供的已知条件,根据轴对称的性质,对题中条件进行一一分析,得到正确选项.【解答】解:①关于一条直线对称的两个图形一定能重合,正确;②两个能重合的图形全等,但不一定关于某条直线对称,错误;③一个轴对称图形不一定只有一条对称轴,正确;④两个轴对称图形的对应点不一定在对称轴的两侧,还可以在对称轴上,错误.故选B.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,找着每个问题的正误的具体原因是正确解答本题的关键.12.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,当∠A的位置及大小变化时,线段EF和BE+CF的大小关系()A.EF>BE+CF B.EF=BE+CF C.EF<BE+CF D.不能确定【考点】等腰三角形的判定与性质;平行线的性质.【专题】证明题.【分析】根据平行线的性质和角平分线的性质,解出△BED和△CFD是等腰三角形,通过等量代换即可得出结论.【解答】解:由BD平分∠ABC得,∠EBD=∠ABC,∵EF∥BC,∴∠AEF=∠ABC=2∠EBD,∠AEF=∠EBD+∠EDB,∴∠EBD=∠EDB,∴△BED是等腰三角形,∴ED=BE,同理可得,DF=FC,(△CFD是等腰三角形)∴EF=ED+EF=BE+FC,∴EF=BE+CF.故选B.【点评】本题综合考查了等腰三角形的性质及平行线的性质;一般是利用等腰(等边)三角形的性质得出相等的边,进而得出结果.进行等量代换是解答本题的关键.13.已知在正方形网格中,每个小方格都是边长为1的正方形,A、B两点在格点上,位置如图,点C也在格点上,且△ABC为等腰三角形,则点C的个数为()A.7 B.8 C.9 D.10【考点】等腰三角形的判定.【专题】网格型.【分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C 以点B为标准,AB为等腰三角形的一条边.【解答】解:①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.故选C.【点评】此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.注意数形结合的解题思想.三、画图题14.以直线为对称轴,画出下列图形的另一部分使它们成为轴对称图形:【考点】作图-轴对称变换.【分析】从各点分别向直线引垂线并延长相同长度找到对应点,顺次连接即可.【解答】解:从三角形的三顶点分别向直线引垂线并延长相同长度找到对应点,顺次连接.【点评】本题主要考查了轴对称图形的性质.作轴对称变换找对应点是关键.15.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.【考点】作图—基本作图.【专题】作图题.【分析】(1)作出∠AOB的平分线,(2)作出CD的中垂线,(3)找到交点P即为所求.【解答】解:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P.【点评】解答此题要明确两点:(1)角平分线上的点到角的两边的距离相等;(2)中垂线上的点到两个端点的距离相等.16.已知右边方格纸中的每个小方格是边长为1的正方形,A、B两点在小方格的顶点上,位置如图所示.请在小方格的顶点上确定一点C,连接AB、AC、BC,使△ABC为等腰三角形且它的面积为4个平方单位.【考点】作图—应用与设计作图;等腰三角形的性质.【分析】可根据面积来确定高和底边,那么要确定的三角形的高和底边的长一个是4,一个是,2,我们发现可以用底4高2来确定三角形.【解答】解:作图如下:△ABC即为所求的等腰三角形且它的面积为4个平方单位的图形.【点评】考查了作图﹣应用与设计作图和等腰三角形的性质,解决此类方格内画三角形的题,主要是根据已知和所求先确定三角形的边的长.17.利用网格线作图:在BC上找一点P,使点P到AB和AC的距离相等.然后,在射线AP上找一点Q,使QB=QC.【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】根据网格特点先作出∠A的角平分线与BC的交点就是点P,再作BC的垂直平分线与AP的交点就是点Q.【解答】解:如图,点P就是所要求作的到AB和AC的距离相等的点,点Q就是所要求作的使QB=QC的点.【点评】本题主要考查了利用网格结构作角的平分线,线段的垂直平分线,找出相应的点是解题的关键.18.已知△ABC中,AB=AC,∠A=36°,仿照图①,请你再设计两种不同的分法,将△ABC分割成3个三角形,使得每个三角形都是等腰三角形.【考点】等腰三角形的性质;三角形内角和定理;三角形的外角性质.【专题】作图题.【分析】利用三角形内角和定理和三角形外角性质以及提供的分法来作图.【解答】解:如图,.【点评】本题考查了等腰三角形的性质及三角形的内角和定理及三角形外角的性质;顶角为36°和108°的等腰三角形也是特殊的三角形,它可得到与它相似的三角形,主要是作底角的平分线.四、解答题19.如图,D是△ABC中BC边上一点,AB=AC=BD,已知∠1=70°,求∠2的度数.【考点】等腰三角形的性质.【分析】根据等腰三角形两底角相等可得∠1=∠BAD,再求出∠B,然后根据等腰三角形的性质求出∠BAC,再根据∠2=∠BAC﹣∠BAD计算即可得解.【解答】解:∵AB=BD,∠1=70°,∴∠1=∠BAD=70°,在△ABD中,∠B=180°﹣2×70°=40°,∵AB=AC,∴∠BAC=180°﹣2×40°=100°,∴∠2=∠BAC﹣∠BAD=100°﹣70°=30°.故∠2的度数是30°.【点评】本题考查了等腰三角形两底角相等的性质,等边对等角的性质,是基础题,准确识图是解题的关键.20.如图,CD、CF分别是△ABC的内角平分线和外角平分线,DF∥BC交AC于点E,那么DE=EF吗?说出你的理由.【考点】等腰三角形的判定与性质;平行线的性质.【分析】DE=EF,首先根据角平分线定义得出∠DCE=∠ACB,∠ECF=∠ACG,从而得出∠DCF=90°;再由平行线的性质得出∠EDC=∠BCD,即可得ED=EC.【解答】答:DE=EF,理由如下:解:∵CD与CF分别是△ABC的内角、外角平分线,∴∠DCE=∠ACB,∠ECF=∠ACG,∵∠ACB+∠ACG=180°,∴∠DCE+∠ECF=90°,∴△DCF为直角三角形,∵DF∥BC,∴∠EDC=∠BCD,∵∠ECD=∠BCD,∴∠EDC=∠ECD,∴ED=EC,同理EF=EC,∴DE=EF.【点评】本题考查了等腰三角形的判定和性质以及平行线的性质,是基础知识比较简单.21.如图,四边形ABCD中,∠A=90°,∠C=90°,EF分别是BD、AC的中点,请你说明EF与AC的位置关系.【考点】直角三角形斜边上的中线;等腰三角形的判定与性质.【分析】连接AE、CE,根据直角三角形斜边上中线性质求出AE=CE,根据等腰三角形的性质得出即可.【解答】解:EF⊥AC,理由是:连接AE、CE,∵∠BAD=∠BCD=90°,E为BD中点,∴AE=BD,CE=BD,∴AE=CE,∵F为AC中点,∴EF⊥AC.【点评】本题考查了直角三角形斜边上中线性质,等腰三角形的性质的应用,注意:直角三角形斜边上的中线等于斜边的一半.22.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,E、F为垂足,连接EF交AD于G,试判断AD与EF垂直吗?并说明理由.【考点】角平分线的性质;全等三角形的判定与性质.【专题】探究型.【分析】根据角平分线上的点到角的两边的距离相等可得DE=DF,然后利用“HL”证明Rt△AED和Rt△AFD 全等,根据全等三角形对应边相等可得AE=AF,再利用等腰三角形三线合一的性质证明即可.【解答】解:AD⊥EF.理由如下:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△AED和Rt△AFD中,∵,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠EAF,∴AD⊥EF(等腰三角形三线合一).【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,熟记性质是解题的关键.第21页(共21页)。
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AE,且AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,若△ABC周长为16,AC =6,则DC为()A.5B.8C.9D.103.如图,在△ABC中,∠ACB=90°,CD是高,∠B=60°,则下列关系正确的是()A.B.C.D.4.如图,在△ABC中,AB=AC,CD平分∠ACB,交AB于点D,若∠BAC=100°,则∠ADC的度数为()A.60°B.50°C.65°D.70°5.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A′B′C′成轴对称,则△ABC一定与△A′B′C′全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.1B.2C.3D.46.已知等腰三角形两边的长x、y满足|x2﹣9|+(y﹣4)2=0,则三角形周长为()A.10B.11C.12D.10或117.如图,在等边三角形ABC中,BC边上的中线AD=6,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是()A.6B.4C.3D.28.如图,在正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.49.如图,△ABC是等腰三角形,AB=AC,∠BAC是钝角.点D在底边BC上,连接AD,恰好把△ABC分割成两个等腰三角形,则∠B的度数是()A.30°B.36°C.45°D.60°10.若二元一次方程组的解x,y的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m的值为()A.4B.1.5或2C.2D.4或2二.填空题(共8小题)11.等边三角形的两条中线所成的锐角的度数是度.12.已知点P(1﹣a,3+2a)关于x轴的对称点落在第三象限,则a的取值范围是.13.等腰三角形一腰上的高与另一腰的夹角为42°,则顶角为.14.如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.15.如图,在△ABC中,DE是BC的垂直平分线,若AB=6,AC=9,则△ABD的周长是.16.如图,∠ABC和∠ACB的角平分线相交于点M,且过点M的直线DE∥BC,分别交AB、AC于D、E两点,若AB =12,AC=10,则△ADE的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.如图,在△ABC中,AB=AC,BC=4,△ABC的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则BM+DM的最小值为.三.解答题(共7小题)19.△ABC在直角坐标系内的位置如图所示:(1)分别写出点A,C的坐标:A的坐标:,C的坐标:;(2)请在这个坐标系内画出与△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(3)求△A1B1C1的面积.20.已知一个三角形的两条边长分别为4cm,8cm.设第三条边长为x cm.(1)求x的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.21.如图所示,△ABC是等边三角形,AD为中线,AD=AE.(1)求∠EDC的度数;(2)若AD=2,求△AED的面积.22.如图,DC平分∠ACE,且AB∥CD,求证:△ABC为等腰三角形.23.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.24.如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,BD=4,EC=6,求AC的长.25.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,CD的垂直平分线MF交AC 于F,交BC于M.(1)求∠BDE的度数;(2)证明△ADF是等边三角形;(3)若MF的长为2,求AB的边长.参考答案一.选择题(共10小题)1.B.2.A.3.:D.4.A.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题(共8小题)11.60.12.a>1.13.48°或132°.14.250.15.15.16.22.17.4.18.10.三.解答题(共7小题)19.解:(1)A(0,3),C(﹣2,1);(2)如图所示,△A1B1C1即为所求;点B1(﹣4,﹣4);故答案为:(﹣4,﹣4);(3)△A1B1C1的面积=.20.解:(1)根据三角形三边关系得,8﹣4<x<8+4即4<x<12;(2)∵三角形是等腰三角形,等腰三角形两条边长分别为4cm,8cm,且4<x<12∴等腰三角形第三边只能是8cm∴等腰三角形周长为4+8+8=20cm.21.(1)解:∵△ABC是等边三角形∴∠BAC=60°AB=AC=BC∵AD为中线∴AD⊥CD∵AD=AE∴∴∠CDE=∠ADC﹣∠ADE=15°;(2)解:过D作DH⊥AC于H∴∠AHD=90°∵∠CAD=30°∴∵AD=AE=2∴.22.证明:∵AB∥CD∴∠A=∠ACD,∠B=∠DCE.∵DC平分∠ACE∴∠ACD=∠DCE∴∠B=∠A∴AC=BC∴△ABC为等腰三角形.23.解:(Ⅰ)∵三角形ABC为等边三角形∴∠BAE=60°∵∠BAD=15°∴∠DAC=60°﹣15°=45°∵∠DAE=80°∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE∴∠ADE=(180°﹣80°)=50°∠ADC=∠BAD+∠B=15°+60°=75°又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.24.(1)证明:∵AB=AC∴∠B=∠C∵FE⊥BC∴∠F+∠C=90°,∠B+∠BDE=90°∴∠F=∠BDE∵∠BDE=∠FDA∴∠F=∠FDA∴AF=AD∴△ADF是等腰三角形;(2)解:∵DE⊥BC∴∠DEB=90°∵∠F=30°∴∠BDE=30°∵BD=4∴∵AB=AC∴△ABC是等边三角形∴AC=AB=BE+EC=825.(1)解:在△ABC中,AB=AC,∠BAC=120°∴∠B=∠C=×(180°﹣∠BAC)=30°在△BDE中,BD=BE∴∠BDE=∠BED=×(180°﹣∠B)=75°;(2)证明:∵CD的垂直平分线MF交AC于F,交BC于M ∴DF=CF,∠FMC=90°∴∠FDC=∠C=30°∴∠AFD=∠FDC+∠C=60°在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线∴∠BAD=∠CAD=∠BAC=60°∴∠CAD=∠AFD=60°∴△ADF是等边三角形;(3)在Rt△FMC中,∠C=30°,MF=2∴CF=2MF=4∴DF=CF=4由(2)可知:△ADF是等边三角形∴AF=DF=4∴AB=AC=AF+CF=4+4=8.。
一、选择题(每题2分,共20分)1. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 梯形2. 下列各点中,关于直线x=2对称的是()A. (1, 3)B. (3, 3)C. (4, 2)D. (2, 2)3. 若点A(2, 3)关于y轴对称的点为A',则A'的坐标为()A. (-2, 3)B. (2, -3)C. (-2, -3)D. (2, 3)4. 下列关于轴对称的说法正确的是()A. 轴对称图形的对称轴是图形的对称中心B. 轴对称图形的两部分完全重合C. 轴对称图形的对称轴是图形的对称轴D. 轴对称图形的两部分完全不同5. 若点P(3, 4)关于直线y=x+1对称的点为P',则P'的坐标为()A. (4, 3)B. (2, 3)C. (4, 2)D. (3, 2)6. 下列图形中,关于直线y=x+2对称的是()A. 正方形B. 等腰梯形C. 等边三角形D. 长方形7. 若点M(5, 6)关于直线y=3对称的点为M',则M'的坐标为()A. (5, 9)B. (3, 6)C. (5, 3)D. (3, 9)8. 下列关于轴对称的说法错误的是()A. 轴对称图形的两部分是关于对称轴对称的B. 轴对称图形的对称轴是图形的对称中心C. 轴对称图形的两部分完全重合D. 轴对称图形的对称轴是图形的对称轴9. 下列各点中,关于直线x=4对称的是()A. (3, 2)B. (4, 2)C. (5, 2)D. (6, 2)10. 若点N(1, 1)关于直线y=-x+3对称的点为N',则N'的坐标为()A. (1, 2)B. (2, 1)C. (2, 2)D. (1, 3)二、填空题(每题3分,共30分)11. 图形关于x轴的对称点坐标为(x,y),则其关于y轴的对称点坐标为(____,____)。
12. 若点P(2, -3)关于直线y=1对称的点为P',则P'的坐标为(____,____)。
人教版数学八年级上学期《轴对称》单元测试满分120分时间100分钟一.选择题(每题3分,共计30分)1.(2020•泰兴市一模)如图,四个图标分别是剑桥大学、北京理工大学、浙江大学和北京大学的校徽的重要组成部分,其中是轴对称图形的是()A.B.C.D.2.(2020•大丰区期末)如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B 度数为()A.30°B.60°C.90°D.120°3.(2020•顺德区四模)若点A(﹣3,2)与点B关于x轴对称,则点B的坐标是() A.(﹣3,2) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)4.(2020•忻州期末)如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位5.(2020•宿豫区期中)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12 B.10 C.8 D.66.(2020•碑林区模拟)如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°7.(2020 •北镇市期中)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm8.(2020•上城区二模)若等腰三角形的一个外角度数为100°,则该等腰三角形顶角的度数为()A.80°B.100° C.20°或100°D.20°或80°9.(2020•方城县期末)如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根 B.8根C.9根D.10根10.(2020•射阳县期末)如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)二.填空题(每题3分,共计15分)11.(2020•萧山区期末)在平面直角坐标系xOy中,点(﹣3,2)与点(3,2)关于(填写x或y)轴对称.12.(2020•厦门模拟)如图,AB=AC,AD∥BC,∠DAC=50°,则∠B的度数是.13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.14.(2020•宿豫区期中)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为.15.(2020•平潭县期末)已知A(0,2)和B(4,2),点P在x轴上,若要使PA+PB最小,则点P的坐标为.三.解答题(共75分)16.(8分)(2020 •南岗区期中)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.17.(9分)(2020•平谷区期末)如图,已知∠AOB,作∠AOB的平分线OC,将直角尺DEMN 如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P.(1)猜想△DOP是三角形;(2)补全下面证明过程:∵OC平分∠AOB∴=∵DN∥EM∴=∴=∴=18.(9分)(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.19.(9分)(2020黑河期末)如图,在正方形网格中,△ABC的三个顶点都在格点上,A(2,3),B(1,1),C(4,2).结合所给的平面直角坐标系解答下列问题:(1)直接写出△ABC的面积;(2)请在图中作出与△ABC关于x轴对称的△A'B'C';(3)在(2)的条件下,若M(x,y)是△ABC内部任意一点,请直接写点M在△A'B'C'内部的对应点M'的坐标.20.(9分)(2020•兴化市期中)△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于点E、F.(1)求证:EF=BE+FC;(2)若△ABC的周长比△AEF的周长大10,试求出BC的长度.21.(10分)(2020•曹县期末)如图,已知△ABC,点B在直线a上,直线a,b相交于点O.(1)画△ABC关于直线a对称的△A1B1C1;(2)在直线b上画出点P,使BP+CP最小.22.(10分)(2020•永安市期末)已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.23.(11分)(2020•济源期末)如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)参考答案一.选择题(每题3分,共计30分)1.(2020•泰兴市一模)如图,四个图标分别是剑桥大学、北京理工大学、浙江大学和北京大学的校徽的重要组成部分,其中是轴对称图形的是()A.B.C.D.【解析】D【解答】A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.2.(2020•大丰区期末)如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B 度数为()A.30°B.60°C.90°D.120°【解析】C【解答】∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠C=∠C′=60°,∵∠A=30°,∴∠B=180°﹣∠A﹣∠C=90°,故选:C.3.(2020•顺德区四模)若点A(﹣3,2)与点B关于x轴对称,则点B的坐标是() A.(﹣3,2) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)【解析】B【解答】∵点A(﹣3,2)与点B关于x轴对称,∴点B的坐标是(﹣3,﹣2).故选:B.4.(2020•忻州期末)如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位【解析】A【解答】∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选:A.5.(2020•宿豫区期中)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12 B.10 C.8 D.6【解析】B【解答】∵DE是AB的垂直平分线,∴EA=EB,由题意得,BC+CE+BE=18,则BC+CE+AE=18,即BC+AC=18,又BC=8,∴AC=10,故选:B.6.(2020•碑林区模拟)如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°【解析】B【解答】∵CD=DE,∴∠DEC=∠C=75°,∴∠D=180°﹣∠C﹣∠DEC=180°﹣75°﹣75°=30°,∵AB∥CD,∴∠A=∠D=30°;故选:B.7.(2020 •北镇市期中)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm【解析】D【解答】∵CD是斜边AB上的高,∴∠ADC=90°,∵∠A=60°,∠ACB=90°,∴∠B=180°﹣∠ACB﹣∠A=30°,∠ACD=180°﹣∠ADC﹣∠A=30°,∵AD=3cm,∴AC=2AD=6cm,∴AB=2AC=12cm,故选:D.8.(2020•上城区二模)若等腰三角形的一个外角度数为100°,则该等腰三角形顶角的度数为()A.80°B.100° C.20°或100°D.20°或80°【解析】D【解答】当100°的角是顶角的外角时,顶角的度数为180°﹣100°=80°;当100°的角是底角的外角时,底角的度数为180°﹣100°=80°,所以顶角的度数为180°﹣2×80°=20°;故顶角的度数为80°或20°.故选:D.9.(2020•方城县期末)如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根 B.8根C.9根D.10根【解析】B【解答】∵添加的钢管长度都与BD相等,∠ABC=10°,∴∠DBE=∠DEB=10°,∴∠EDF=∠DBE+∠DEB=20°,∵DE=EF,∴∠EDF=∠EFD=20°,∴∠FEG=∠ABC+∠EFD=30°,…由此思路可知:第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,第四个是40°,第五个是50°,第六个是60°,第七个是70°,第八个是80°,第九个是90°(与三角形内角和为180°相矛盾)就不存在了.所以一共有8个,∴添加这样的钢管的根数最多是8根.故选:B.10.(2020•射阳县期末)如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)【解析】D【解答】由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.二.填空题(每题3分,共计15分)11.(2020•萧山区期末)在平面直角坐标系xOy中,点(﹣3,2)与点(3,2)关于(填写x或y)轴对称.【解析】y【解答】∵点(﹣3,2)与点(3,2)的横坐标互为相反数,纵坐标相同,∴点(﹣3,2)与点(3,2)关于y轴对称,故答案为y.12.(2020•厦门模拟)如图,AB=AC,AD∥BC,∠DAC=50°,则∠B的度数是.【解析】50°【解答】∵AD∥BC,∠DAC=50°,∴∠C=∠DAC=50°,∵AB=AC,∴∠B=∠C=50°,故答案为:50°.13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.【解析】6【解答】∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE∥AB,DF∥AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.14.(2020•宿豫区期中)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为.【解析】18【解答】∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠ABO=∠MOB,∴BM=OM,同理CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=10+8=18.故答案为:18.15.(2020•平潭县期末)已知A(0,2)和B(4,2),点P在x轴上,若要使PA+PB最小,则点P的坐标为.【解析】(2,0)【解答】如图,∵A(0,2)∴点A关于x轴的对称点A′(0,﹣2),∵B(4,2),连接A′B交x轴于点P, ∵AB=4,AB∥x轴,O是AA′中点,∴P是A′B的中点,∴OP是△A′AB的中位线,∴OP=12AB=2,若要使PA+PB最小,则点P的坐标为(2,0).故答案为(2,0).三.解答题(共75分)16.(8分)(2020 •南岗区期中)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.解:(1)当等腰三角形的腰长为4,∴底边长为18﹣4×2=10,∵4+4<10,∴4、4、10不能组成三角形,当等腰三角形的底边长为4,∴腰长为(18﹣4)÷2=7,∵4+7>7,∴4、7、7能组成三角形,综上所述,其他两边分别为4和7.(2)设等腰三角形的三边长为x、x、y,由题意可知:2x+y=18,且2x>y,∴y<9,∵x=18−y2=9−y2,x与y都是整数,∴y是2的倍数, ∴y=2时,x=8, y=4时,x=7,y=8,x=5.17.(9分)(2020•平谷区期末)如图,已知∠AOB,作∠AOB的平分线OC,将直角尺DEMN 如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P.(1)猜想△DOP是等腰三角形;(2)补全下面证明过程:∵OC平分∠AOB∴∠DOP=∠BOP∵DN∥EM∴∠DPO=∠BOP∴∠DOP=∠DPO∴OD=PD解:(1)我们猜想△DOP是等腰三角形;(2)补全下面证明过程:∵OC平分∠AOB,∴∠DOP=∠BOP,∵DN∥EM,∴∠DPO=∠BOP,∴∠DOP=∠DPO,∴OD=PD.故答案为:等腰,∠DOP,∠BOP,∠DPO,∠BOP,∠DOP,∠DPO,OD,PD.18.(9分)(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.证明:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∠A=36°,∴BD=AD,即△ABD是等腰三角形;(2)∵点E是AB的中点,∴AE=EB,∴∠DEB=90°,∴∠BDE=90°﹣36°=54°.19.(9分)(2020黑河期末)如图,在正方形网格中,△ABC的三个顶点都在格点上,A(2,3),B(1,1),C(4,2).结合所给的平面直角坐标系解答下列问题:(1)直接写出△ABC的面积;(2)请在图中作出与△ABC关于x轴对称的△A'B'C';(3)在(2)的条件下,若M(x,y)是△ABC内部任意一点,请直接写点M在△A'B'C'内部的对应点M'的坐标.解:(1)△ABC的面积为2×3−12×1×2−12×1×2−12×1×3=52;(2)如图所示,△A'B'C'即为所求.(3)点M在△A'B'C'内部的对应点M'的坐标为(x,﹣y).20.(9分)(2020•兴化市期中)△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于点E、F.(1)求证:EF=BE+FC;(2)若△ABC的周长比△AEF的周长大10,试求出BC的长度.解:(1)∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵∠ABC和∠ACB的平分线交于点O,∴∠EBO=∠OBC,∠OCB=∠FCO,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,OF=FC;∴EF=BE+FC;(2)由(1)证得BE=OE,OF=CF,∴△AEF的周长=AE+EF+AF=AE+EO+OF+AF=AE+BE+FC+AF=AB+AC,∵△ABC的周长比△AEF的周长大10,∴BC=AB+AC+BC﹣AB+AC=10.21.(10分)(2020•曹县期末)如图,已知△ABC,点B在直线a上,直线a,b相交于点O.(1)画△ABC关于直线a对称的△A1B1C1;(2)在直线b上画出点P,使BP+CP最小.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,点P即为所求.22.(10分)(2020•永安市期末)已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.解:(1)∵△ABC是等边三角形,∴∠B=∠A=∠C=60°,∵∠B+∠1+∠DEB=180°,∠DEB+∠DEF+∠2=180°,∵∠DEF=60°,∴∠1+∠DEB=∠2+∠DEB,∴∠2=∠1=50°;(2)∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°,又∵∠B=60°,∠DEF=60°,∠1=∠3,∴∠FDE=∠DEB,∴DF∥BC.23.(11分)(2020•济源期末)如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)解:(1)①△BMN≌△CDM.理由如下:∵V N=V M=3厘米/秒,且t=2秒,∴CM=2×3=6(cm)BN=2×3=6(cm)BM=BC﹣CM=10﹣6=4(cm)∴BN=CM∵CD=4(cm)∴BM=CD∵∠B=∠C=60°,∴△BMN≌△CDM.(SAS)②设运动时间为t秒,△BMN是直角三角形有两种情况:Ⅰ.当∠NMB=90°时,∵∠B=60°,∴∠BNM=90°﹣∠B=90°﹣60°=30°.∴BN=2BM,∴3t=2×(10﹣3t)∴t=209(秒);Ⅱ.当∠BNM=90°时,∵∠B=60°,∴∠BMN=90°﹣∠B=90°﹣60°=30°.∴BM=2BN,∴10﹣3t=2×3t∴t=109(秒).∴当t=209秒或t=109秒时,△BMN是直角三角形;(2)分两种情况讨论:I.若点M运动速度快,则3×25﹣10=25V N,解得V N=2.6;Ⅱ.若点N运动速度快,则25V N﹣20=3×25,解得V N=3.8.故答案是3.8或2.6.。
第十三章 轴对称时间:60分钟 满分:100分一、选择题(本大题共10小题,每小题3分,满分30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·辽宁盘锦双台子区期末)下列由黑白棋子摆成的图案中,是轴对称图形的是( ) A B C D2.(2022·福建福州鼓楼区期中改编)在平面直角坐标系中,若点(2,m)与点(n,3)关于x 轴对称,则(m+n)2 023的值为( )A.0B.-1C.1D.32 0233.如图是3×3的正方形网格,其中已有2个小方格被涂成了黑色.现在要从编号为①—④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是( )A.①B.②C.③D.④4.(2022·四川遂宁期末)若等腰三角形的一个外角等于70°,则它的底角的度数为( ) A.35° B.70° C.110° D.55°5.(2022·河南周口期末)元旦联欢会上,同学们玩抢凳子游戏,在与A,B,C三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A,B,C三名同学所在位置看作△ABC的三个顶点,那么凳子应该放在△ABC的( )A.三边中线的交点处B.三边垂直平分线的交点处C.三边上高的交点处D.三条角平分线的交点处6.(2022·山东菏泽期中)如图,在△ABC中,AB=AC,AD,BE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ABE的度数为( ) A.20° B.35° C.40° D.70°(第6题) (第7题)7.如图,直线a,b相交形成的夹角中,锐角为52°,交点为O,点A在直线a上,直线b 上存在点B,使以点O,A,B为顶点的三角形是等腰三角形,这样的点B有( )A.4个B.3个C.2个D.1个8.(2022·广东广州天河区期末)在△ABC中,AB=AC,∠A=36°,若按如图所示的尺规作图方法作出线段BD,则下列结论错误的是( )A.AD=BDB.∠BDC=72°C.S△ABD∶S△BCD=BC∶ACD.△BCD的周长=AB+BC9.(2022·山东烟台期末)如图,∠AOB=60°,点P在射线OA上,OP=22,点M,N在射线OB上(点M在点N的左侧),且PM=PN.若MN=4,则OM的长为( ) A.7 B.8 C.9 D.11(第9题) (第10题) 10.(2022·辽宁大连期末)如图,∠ABC=30°,点D是∠ABC内部的一点,连接BD.若BD=1m,点E,F分别是边BA,BC上的动点,则△DEF的周长的最小值为( )A.0.5mB.1mC.1.5mD.2m二、填空题(本大题共6小题,每小题3分,共18分)11.新风向开放性试题汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性,黑体的汉字“王”“中”“田”等都是轴对称图形,请再写出两个这样的汉字: .12.(2022·安徽合肥庐阳区期末改编)如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE.若CE=3,则AE= .(第12题) (第13题)13.如图,在△ABC中,AB=AD=DC,若∠BAD=24°,则∠C的度数为 .14.新风向新定义试题(2021·江苏苏州期末)定义:等腰三角形的一个底角与其顶角的度数的比值k(k>1)称为这个等腰三角形的优美比.若在等腰三角形ABC中,∠A=36°,则它的优美比为 .15.(2022·河南济期末)在平面直角坐标系中,对△ABC进行如图所示的轴对称变换.若原来点A的坐标是(a,b),则经过第2 023次变换后,点A所对应的坐标是 .16.(2021·北京西城区期末)如图,△ABC是等边三角形,AD⊥BC于点D,DE⊥AC于三、解答题(共6小题,共52分)17.(6分)(2022·湖北十堰期末节选)如图,△ABC的顶点A,B,C都在小正方形的格点上,利用网格线按下列要求画图.(1)画出△A1B1C1,使它与△ABC关于直线l成轴对称;(2)在直线l上找一点P,使点P到点A,B的距离之和最短.(要求:不写作法,保留作图痕迹)18.(8分)(2022·湖北十堰郧阳区期中改编)某市发生地震后,为了抢救伤员,一架救援直升机从该市A地起飞,运送一批地震伤员沿正北方向到机场N,如图.上午8时,直升机从A地出发,以200 km/h的速度向正北方向飞行,9时到达B地,此时,机场的导航站传来信息:在C处有一座高山,因受天气影响,高山周围80 km内能见度低,飞行时会遇到危险.经测量得∠NAC=15°,∠NBC=30°.问该直升机继续向机场N飞行是否有危险,请说明理由.19.(8分)新风向开放性试题(2022·江苏南京鼓楼区期中)证明:有两个角相等的三角形是等腰三角形.已知:如图,在△ABC中, .求证: .证明:20.(8分)如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=15°,求∠AEB的度数;21.(10分)新风向探究性试题(2022·河北石家庄裕华区期末)【问题】如图,在△ABC中,点D为BC边上一点,BD=BA.EF垂直平分AC,交AC 于点E,交BC于点F,连接AD,AF.若∠B=30°,∠BAF=90°,求∠DAC的度数.【探究】如果把【问题】中的条件“∠B=30°”去掉,其他条件不变,那么∠DAC的度数会变吗?请说明理由.22.(12分)如图,在△ABC中,AB=BC=AC=12 cm,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N 第一次到达点B时,M,N同时停止运动.(1)当点M,N运动几秒时,M,N两点重合?(2)当点M,N运动几秒时,可得到等边三角形AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如果能,请求出此时M,N运动的时间.第十三章 轴对称选择填空题答案速查12345678910D B D A B B A C C B11.甲,本(答案不唯一)12.613.39°14.215.(-a,b)16.181.D高分锦囊判断一个图形是不是轴对称图形,关键看能否找到这样一条直线,使这个图形沿这条直线折叠,直线两旁的部分能够互相重合.2.B ∵点(2,m)与点(n,3)关于x轴对称,∴m=-3,n=2,∴(m+n)2 023=(2-3)2 023=-1.3.D 图示速解如图,将编号为④的小方格涂成黑色,黑色部分不是轴对称图形.4.A 由题意可得,与等腰三角形的这个外角相邻的内角等于110°.∵三角形的内×(180°-110°)=35°.角和为180°,∴底角不可能等于110°,∴底角度数为125.B ∵三角形的三边垂直平分线的交点到三角形三个顶点的距离相等,∴凳子应放在△ABC的三边垂直平分线的交点处.6.B ∵AD是△ABC的中线,AB=AC,∠CAD=20°,【关键】等腰三角形的“三线合一”∴∠CAB=2∠CAD=40°,∴∠ABC=1×(180°-40°)=70°.∵BE是△ABC的角平分线,2∴∠ABE=1∠ABC=35°.2一题多解∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴AD⊥BC,∴∠C=90°-20°=70°,∴∠ABC=∠C=70°.又BE是△ABC的角平分线,∴∠ABE=1∠ABC=35°.27.A 图示速解如图,要使△OAB为等腰三角形,应分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B1;②当OA=AB时,以点A为圆心,OA 的长为半径作圆,与直线b交于点B2;③当OA=OB时,以点O为圆心,OA的长为半径作圆,与直线b交于点B3,B4.故选A.8.C ∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.由作图痕迹可知BD平分∠ABC∴∠DBC=∠ABD=∠A=36°,【关键】由尺规作图可以得出BD平分∠ABC∴AD=BD,∠BDC=72°.故A,B选项不符合题意.由以上可知∠C=∠BDC,∴BD=BC,∴AD=BC.∵S△ABD∶S△BCD=AD∶CD,∴S△ABD∶S△BCD=BC∶CD.【关键】两三角形同高不同底故C选项符合题意.∵BD=AD,△BCD的周长=BC+CD+BD,∴△BCD的周长=BC+CD+AD=BC+AC=AB+BC.故D选项不符合题意.7.C 如图,过点P作PC⊥OB于点C,∵∠AOB=60°,∴∠OPC=90°-∠AOB=30°.∵OP=22,∴OC=1OP=11.∵2MN=2,∴OM=OC-MC=11-2=9.PM=PN,MN=4,∴MC=1210.B (转化思想)如图,作点D关于AB的对称点G,作点D关于BC的对称点H,连接GH交AB于点E,交BC于点F,此时△DEF的周长有最小值,连接GB,BH.由线段垂直平分线的性质可得,GE=ED,DF=FH,由轴对称的性质得BG=BD,BD=BH,∴ED+DF+EF=GE+EF+FH=GH,此时△DEF的周长最小值为GH.∵∠GBA=∠ABD,∠DBC=∠CBH,BD=m,∴∠GBH=2∠ABC=2×30°=60°,∴△GBH是等边三角形,∴GH=BG=BD=m,∴△DEF的周长的最小值为m.【关键】发现△GBH是等边三角形11.甲,本(答案不唯一,只要是轴对称图形即可)12.6 ∵∠C=90°,∠A=30°,∴∠CBA=60°.∵DE是线段AB的垂直平分线,∴BE=AE,∴∠ABE=∠A=30°,∴∠CBE=60°-30°=30°.∵∠C=90°,CE=3,∴BE=2CE=2×3=6,∴AE=6.13.39° ∵AB=AD,∠BAD=24°,∴∠B=∠ADB=1×(180°-24°)=78°.2又AD=DC ,∴∠C=∠CAD=12∠ADB=12×78°=39°.14.2 (分类讨论思想)当∠A 为顶角时,则底角∠B=∠C=72°,此时,优美比=72°36°=2;当∠A 为底角时,则顶角为108°,此时,优美比=36°108°=13(不合题意,舍去).15.(-a ,b ) 第1次变换后,点A 在第四象限;第2次变换后,点A 在第三象限;第3次变换后,点A 在第二象限;第4次变换后,点A 在第一象限,回到原始位置,…,以此类推,每4次变换为一组循环.因为2 023÷4=505……3,所以第2 023次变换后,点A 在第二象限,坐标为(-a ,b ).16.18 ∵△ABC 是等边三角形,∴∠C=∠BAC=60°.∵AD ⊥BC ,∴BD=CD ,∠DAC=12∠BAC=30°.∵AD=12,∴DE=12AD=6.∵DE ⊥AC ,∴∠EDC=90°-∠C=90°-60°=30°,∴EC=12DC ,∴BC=4EC.∵S △EDC =12ED ·EC=12×6×EC=3EC ,S △ABC =12AD×BC=12×12×BC=6BC=24EC ,∴S △EDCS △ABC =3EC24EC =18.17.【参考答案】(1)如图,△A 1B 1C 1即为所求作.(3分)(2)如图,点P 即为所求作.(6分)18.【参考答案】该直升机继续向机场N 飞行无危险.(1分)理由:如图,过点C 作CD ⊥AN 于点D ,∵∠NAC=15°, ∠NBC=30°,∴∠ACB=15°,CD=12BC ,∴∠ACB=∠NAC ,∴BC=AB.(5分)由题意可得,AB=200 km,∴BC=200 km,∴CD=100 km.∵100>80,∴该直升机继续向机场N飞行无危险.(8分)19.【参考答案】已知:如图,在△ABC中,∠B=∠C.(2分)求证:△ABC是等腰三角形.(4分)证明:如图,过点A作AD⊥BC,垂足为点D.∵AD⊥BC,∴∠ADB=∠ADC=90°.在△ABD和△ACD中,∠B=∠C,∠ADB=∠ADC,AD=AD,∴△ABD≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.(8分)20.【参考答案】(1)补全图形如图所示. (3分) (2)在等边三角形ABC中,AC=AB ,∠BAC=60°.由对称可知AD=AC ,∠PAD=∠PAC=15°,∴∠BAD=90°,AB=AD ,∴∠ABD=∠D=45°,∴∠AEB=∠D+∠PAD=60°.(8分)21.思路导图【参考答案】【问题】∵AB=BD ,∠B=30°,∴∠BAD=∠ADB=180°―30°2=75°.∵∠BAF=90°,∴∠AFB=90°-30°=60°.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=30°,∴∠CAD=∠ADB-∠C=75°-30°=45°.(5分)【探究】不变.(6分)理由:∵AB=BD ,∴∠BAD=∠ADB=180°―∠B 2=90°-12∠B.∵∠BAF=90°,∴∠AFB=90°-∠B.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=45°-12∠B ,∴∠CAD=∠ADB-∠C=90°-12∠B-(45°-12∠B )=45°.(10分)22.【参考答案】(1)设当点M ,N 运动x s 时,M ,N 两点重合,由题意,可得x×1+12=2x ,解得x=12.故当点M ,N 运动12 s 时,M ,N 两点重合.(2分)(2)设当点M ,N 运动t s 时,可得到等边三角形AMN ,此时AM=t ,AN=AB-BN=12-2t ,∴t=12-2t ,解得t=4.(4分)故当点M ,N 运动4 s 时,可得到等边三角形AMN.(5分)(3)当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰三角形.(6分)若△AMN 是以MN 为底边的等腰三角形,则AN=AM ,∴∠AMN=∠ANM ,∴∠AMC=∠ANB.∵在△ABC 中,AB=BC=AC ,∴△ACB 是等边三角形,∴∠C=∠B=60°.(8分)在△ACM 和△ABN 中,∠AMC =∠ANB ,∠C =∠B ,AC =AB ,∴△ACM ≌△ABN ,∴CM=BN.(10分)设当点M ,N 运动时间为y s 时,△AMN 是以MN 为底边的等腰三角形,∴CM=y-12,NB=36-2y ,∴y-12=36-2y ,解得y=16.故能得到以MN 为底边的等腰三角形AMN ,此时M ,N 运动的时间为16 s .(12分)。
2022-2023学年人教版八年级数学上册《第13章轴对称》单元综合测试题(附答案)一.选择题(共8小题,满分32分)1.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AC、∠ABC=72°,CD∥AB,BD交AC于E,且CE=DE,则∠D的度数是()A..36°B.30°C..22.5°D.40°3.如图,在△ABC中,∠C=90°,AP是角平分线,AP=5,CP=2,则P到AB的距离是()A.5B.2C.3D.44.等腰三角形两边长分别为3和6,则该三角形的周长为()A.12B.15C.12或15D.条件不够无法计算5.如图,∠ABC是一个锐角,以点A为圆心,适当长度为半径画弧,交射线BC于点D,E.若∠ABC=40°,∠BAD=25°,则∠DAE的度数是()A.40°B.50°C.60°D.70°6.如图,在△ABC中,边AB,AC的垂直平分线交于点P,连结BP,CP,若∠A=50°,则∠BPC=()A.50°B.100°C.130°D.150°7.如图,已知长方形纸片ABCD,点E,F在AD边上,点G,H在BC边上,分别沿EG,FH折叠,使点D和点A都落在点M处,若α+β=118°,则∠EMF的度数为()A.56°B.58°C.60°D.62°8.如图,在△ABC中,∠A=90°,BE是△ABC的角平分线,ED⊥BC于点D,CD=4,△CDE周长为12,则AC的长是()A.14B.8C.16D.6二.填空题(共8小题,满分40分)9.已知三角形的三边长分别为5、a、10,则a的取值范围是;如果这个三角形中有两条边相等,那么它的周长为.10.等腰三角形的一个底角为50°,则该等腰三角形的顶角度数为度.11.如图,将一张长方形纸片ABCD沿EF折叠,使点D与点B重合,点C落在C′的位置上,若∠BFE=68°,则∠ABE的度数为.12.如图,在△ABC中,AB=AC,且AE=AD,∠EDC=α,则∠BAD=.13.如图,点P为∠AOB内一点,分别作出P点关于OA,OB的对称点P1,P2,连结P1P2交OA于M,交OB于N,若线段P1P2的长为12cm,则△PMN的周长为cm.14.如图,在直角三角形ABC中,∠C=90°,点D在AB上,点G在BC上,将△BDG 沿直线DG翻折后,点B落在点F处,联结DF,如果DF∥AC,那么∠B与∠BDG的数量关系是.15.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,则∠1+∠2=度.16.如图,在四边形ABCD中,∠BCD=50°,∠B=∠D=90°,在BC、CD上分别取一点M、N,使△AMN的周长最小,则∠MAN=°.三.解答题(共7小题,满分48分)17.如图,∠AOB=40°,点D在OA边上,点C,E在OB边上,连接CD,DE.若OC =OD=DE,求∠CDE的度数.18.如图,已知M、N分别是∠AOB的边OA上任意两点.(1)尺规作图:作∠AOB的平分线OC;(2)在∠AOB的平分线OC上求作一点P,使PM+PN的值最小.(保留作图痕迹,不写画法)19.如图,在△ABC中,∠ABC=20°,∠ACB=65°,DE,FG分别为AB,AC的垂直平分线,E,G分别为垂足.(1)求∠DAF的度数.(2)若BC的长为50,求△DAF的周长.20.在8×6的网格中,A,B,C是格点,D是AB与网格线的交点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示:(1)在线段AC上取点E,使DE=CD;(2)画格点F,使EF∥AB;(3)画点E关于AB的对称点G;(4)在射线AG上画点P,使∠PDE与∠GAE互补.21.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将△ACB沿CD折叠,使点A 恰好落在BC边上的点E处.(1)求△BDE的周长;(2)若∠B=37°,求∠CDE的度数.22.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.(1)若∠B=70°,求∠BAC的大小.(2)连接MB,若AB=8cm,△MBC的周长是14cm.①求BC的长;②在直线MN上是否存在点P,使PB+CP的值最小,若存在,标出点P的位置并求PB+CP的最小值,若不存在,说明理由.23.如图,点D在等边△ABC的外部,E为BC边上的一点,AD=CD,DE交AC于点F,AB∥DE.(1)判断△CEF的形状,并说明理由;(2)若BC=10,CF=4,求DE的长.参考答案一.选择题(共8小题,满分32分)1.解:A.风,不是轴对称图形,故此选项不合题意;B.和,不是轴对称图形,故此选项不合题意;C.日,是轴对称图形,故此选项符合题意;D.丽,不是轴对称图形,故此选项不合题意;故选:C.2.解:∵AB=AC,∠ABC=72°,∴∠ACB=∠ABC=72°,∵CD∥AB,∴∠BCD=180°﹣∠ABC=108°,∴∠ACD=∠BCD﹣∠ACB=36°,∵CE=DE,∴∠D=∠ACD=36°,故选:A.3.解:过P作PD⊥AB于D,∵∠C=90°,∴PC⊥AC,∴AP平分∠CAB,∴PD=PC,∵PC=2,∴PD=2,∴点P到边AB的距离是2,故选:B.4.解:当等腰三角形的腰为3时,三边为3,3,6,3+3=6,三边关系不成立,当等腰三角形的腰为6时,三边为3,6,6,三边关系成立,周长为3+6+6=15.故选:B.5.解:根据题意,得AD=AE,∴∠ADE=∠AED,∵∠ABC=40°,∠BAD=25°,∴∠ADE=40°+25°=65°,∴∠AED=65°,∴∠DAE=180°﹣65°﹣65°=50°,故选:B.6.解:连接AP,延长BP交AC于D,∴∠BPC=∠PDA+∠ACP=∠BAC+∠ABP+∠ACP,∵点P是AB,AC的垂直平分线的交点,∴P A=PB=PC,∴∠ABP=∠BAP,∠ACP=∠CAP,∴∠BPC=∠BAC+∠BAP+∠CAP=∠BAC+∠BAC=2∠BAC=2×50°=100°,故选B.7.解:∵AD∥BC,∴∠DEG=α,∠AFH=β,∴∠DEG+∠AFH=α+β=118°,由折叠得:∠DEM=2∠DEG,∠AFM=2∠AFH,∴∠DEM+∠AFM=2×118°=236°,∴∠FEM+∠EFM=360°﹣236°=124°,在△EFM中,∠EMF=180°﹣(∠FEM+∠EFM)=180°﹣124°=56°,故选:A.8.解:∵BE是△ABC的角平分线,ED⊥BC,∠A=90°,∴AE=DE,∵△CDE的周长为12,CD=4,∴DE+EC=8,∴AC=AE+EC=8,故选:B.二.填空题(共8小题,满分40分)9.解:根据三角形的三边关系可得:10﹣5<a<10+5,即5<a<15,∵这个三角形中有两条边相等,∴a=10或a=5(不符合三角形的三边关系,不合题意,舍去)∴周长为5+10+10=25,故答案为:5<a<15;25.10.解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故答案为:80.11.解:∵AD∥BC,∴∠DEF=∠BFE=68°,根据折叠的性质得,∠BEF=∠DEF=68°,∴∠AEB=180°﹣∠BEF﹣∠DEF=180°﹣68°﹣68°=44°,∵∠A=90°,∴∠ABE=90°﹣44°=46°,故答案为:46°.12.解:∵∠AED=∠C+∠EDC=∠C+α,AE=AD,∴∠ADE=∠AED=∠C+α,∴∠ADC=∠C+2α,∵AB=AC,∴∠B=∠C,∴∠BAD=∠ADC﹣∠B=∠ADC﹣∠C=∠ADC﹣(∠C+2α)=2α.故答案为:2α.13.解:∵P点关于OA、OB的对称点P1,P2,∴NP=NP2,MP=MP1,∴△PMN的周长=PN+MN+MP=P2N+NM+MP1=P1P2=12cm,故答案为:12.14.解:∠B与∠BDG的数量关系是:∠B+2∠BDG=90°,∵AC∥DF,∴∠DEB=∠C=90°,∴∠B+∠FDB=90°,由翻折可得:∠BDG=∠FDG,∴∠B+2∠BDG=90°,故答案为:∠B+2∠BDG=90°.15.解:延长AF、BE交于点D,∵∠A=65°,∠B=75°,∴∠D=180°﹣∠A﹣∠B=40°,∴∠DFE+∠DEF=180°﹣∠D=140°,∵将纸片的一角折叠,使点C落在△ABC内,∴∠CFE=∠DFE,∠CEF=∠DEF,∴∠DFC+∠DEC=2(∠DFE+∠DEF)=280°,∴∠1+∠2=(180°﹣∠DFC)+(180°﹣∠DEC)=360°﹣(∠DFC+∠DEC)=360°﹣280°=80°,故答案为:80.16.解:如图,作点A关于BC、CD的对称点A1、A2,连接A1、A2分别交BC、DC于点M、N,连接AM、AN,则此时△AMN的周长最小,∵∠BCD=50°,∠B=∠D=90°,∴∠BAD=360°﹣90°﹣90°﹣50°=130°,∴∠A1+∠A2=180°﹣130°=50°,∵点A关于BC、CD的对称点为A1、A2,∴NA=NA2,MA=MA1,∴∠A2=∠NAD,∠A1=∠MAB,∴∠NAD+∠MAB=∠A1+∠A2=50°,∴∠MAN=∠BAD﹣(∠NAD+∠MAB)=130°﹣50°=80°,故答案为:80°.三.解答题(共7小题,满分48分)17.解:∵OC=OD,∴∠OCD=∠ODC,∵∠AOB=40°,∴∠ODC=(180°﹣∠AOB)÷2=(180°﹣40°)÷2=70°,∵OD=DE,∴∠OED=∠AOB=40°,∴∠ODE=180°﹣40°×2=100°,∴∠CDE=∠ODE﹣∠ODC=100°﹣70°=30°.18.解:(1)如图1所示,OC即为所求作的∠AOB的平分线.(2)如图2,作点M关于OC的对称点M′,连接M′N交OC于点P,则点P即为所求.19.解:(1)∵∠ABC=20°,∠ACB=65°,∴∠BAC=180°﹣∠ABC﹣∠ACB=95°,∵DE,FG分别为AB,AC的垂直平分线,∴DA=DB,F A=FC,∴∠DAB=∠ABC=20°,∠F AC=∠ACB=65°,∴∠DAF=∠BAC﹣∠DAB﹣∠F AC=10°;(2)由(1)可知,DA=DB,F A=FC,∴△DAF的周长=DA+DF+F A=DB+DF+FC=BC=50.20.解:(1)如图,点E即为所求;(2)如图,线段EF即为所求;(3)如图,点G即为所求;(4)如图,点P即为所求.21.解:(1)由折叠可得,AC=CE,DE=AD,∵AC=6,BC=8,∴CE=6,AB=10,∵BC=8,∴BE=2,∴△BDE的周长=DE+EB+BD=AD+BD+EB=AB+EB,∵AB=10,∴△BDE的周长=10+2=12;(2)∵∠B=37°,∴∠CED=37°+∠BDE,∵∠A=∠CED,∴∠CED=37°+∠BDE,∵∠ACB=90°,∴37°+∠BDE+37°=90°,∴∠BDE=16°,∴∠ADE=180°﹣16°=164°,∴∠CDE=∠ADE=82°.22.解:(1)∵AB=AC,∠B=70°,∴∠BAC=180°﹣70°×2=40°;(2)∵MN垂直平分AB.∴MB=MA,又∵△MBC的周长是14cm,∴AC+BC=14cm,∴BC=6cm.(3)当点P与点M重合时,PB+CP的值最小,为AC长,最小值是8cm.23.解:(1)△CEF是等边三角形,理由:∵△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC,∵AB∥DE,∴∠CEF=∠ABC,∠CFE=∠CAB,∴∠CEF=∠CFE=∠ECF∴△CEF是等边三角形;(2)连接BD,∵△ABC是等边三角形,∴AB=BC=AC,∵AD=CD,∴BD是线段AC的垂直平分线,∴BD平分∠ABC,∴∠ABD=∠CBD,∵AB∥DE∴∠ABD=∠BDE,∴∠BDE=∠CBD,∴BE=DE,∴BC=BE+EC=DE+CF∴DE=BC﹣CF=10﹣4=6.。
八年级数学
(测试内容:第一章轴对称图形)
班别座号姓名成绩
说明:1.可以使用计算器,但未注明精确度的计算问题不得米取近似计算,建议根据题型特点把握好
使用计算器的时机.
2 .本试卷满分100分,在90分钟内完成.相信你一定会有出色的表现!
、填空题:本大题共10小题;每小题3分,共30分•请将答案填写在题中的横线上.
3 •到线段的两个端点的距离相等的点有__________ 个,一条线段的垂直平分线有 ___________ 条. 4•如果一个等腰三角形的一个外角等于40°,则该等腰三角形的底角的度数是________________ 5. 在等边三角形ABC中,AD是BC上的高,则/ BAD = _________________
A
6. ______________________________________________________ 等边三
角形的两条高线相交所成的钝角的度数是 ________________________ .
7•在镜中看到的一串数字是“780903”,则这串数字是___________
8. _______________________________________________________ 如
图,AB = AC,/ 1=Z 2, BD = 3cm,那么BC 的长为 ________________ c m.
9. 如图,等边三角形ABC的三条中线交于点O.则图中除厶ABC还
有________________________________________________ 是等腰三角形.
10. 如图,在等腰梯形ABCD中,对角线AC与BD交于点O,图中全
15. 16. (A ) 6
(B )
已知等腰三角形的一边等于
(A ) 12
(B ) 已知等腰三角形的周长为
(A ) x > 12
(B )
(C ) 10
3,一边等于6,那么它的周长等
12 或 15
(C ) 15
24,腰长为X ,则x 的取值范围是
(C ) 6v x v 12
17.如图,等边三角形 ABC 中,AD 是BC 上的高,取 AC 的中点
连结DE ,则图中与DE 相等的线段有 (A ) 1 条
(B ) 2 条
(D ) 12
(D ) 15 或 18
(D ) 0 v x v 12 ).
).
(C )
3 条 (D )
4 条
18.如图,在△ ABC 中,点0是/ ABC 的平分线与线段 BC 的垂直 平分
线的交点,则下列结论不一定 成立的是 (A ) OB = OC
(B ) OD = OF
(C ) OA = OB = OC (D ) BD = DC
12. 下列图形不一定是轴对称图形的是
13.正五角星的对称轴有
已知△ ABC 的周长为 24, AB = AC , AD 丄BC 于。
,若厶ABD 的周长为 20,则AD 的长
).
二、选择题:本大题共8小题;每小题3分,共24分. 项是正确的,请将正确答案前的字母填入题后的括号内. 选或多选均得零分.
在每小题给出的四个选项中,只有一 每
小题选对得
3分,选错,不
11. 下列是我国四大银行的商标,其中不是轴对称图形的是
).
(B )
(D )
).
(A )线段
(B )正方形
(C )半圆
(D )三角形
).
(A ) 1 条
(B ) 2 条 (C ) 5 条 (D ) 10 条
14.
).
).
平分线,并说明它们的交点与斜边
AB 的关系.
三、解答题:本大题共4小题,共46分•解答应写出文字说明或演算步骤.
佃.(10分)(1)请仔细观察图形(阴影部分),指出所给虚线中哪些是图形的对称轴?
(2)下列图形是轴对称图形吗?如果是,分别画出它们的对称轴
20 •( 12分)(1)在数学课上,老师提出了一个问题: “角是轴对称图形吗?如果是,那么它 的对称轴是什么?” 小明同学马上举手回答:“角是轴对称图形,角平分线就是它的对称轴. 同学们,小明同学的回答有正确吗?为什么?
(2)如图,在△ ABC 中,/ C = 90°,用刻度尺及量角器分别作出
AC 、
BC 边的垂直
21. (12分)(1)如图,已知AD是线段BC的垂直平分线,且BD = 3cm,A ABC的周长为
20cm,求AC的长.
(2)如图,在△ ABC 中,AB= AC, AD 丄BC, / BAD = 40°, AD = AE .求/ CDE 的度数.
22. (12分)已知:如图,在等腰梯形ABCD中,AD // BC, AC丄BD,垂足为O, AC = 8cm.
求梯形ABCD的面积.A
八年级数学参考答案
一、填空题:(每小题3分,共30分)
1 对称轴;2. B、C、E, CE = DE , CF = DF, AC= BD, AF = BF ; 3.无数,且只有1; 4. 20°;
5. 30 ° ;
6. 120°;
7. 309087;
8. 6;
9.A AOB、△ AOC>△BOC ; 10.A ABC◎△ DCB、
△ ABD也厶DCA、△ ABODCO .
三、解答题:
佃.解:(1)d; (2)都是轴对称图形,作图略 .
20. 解:(1)有错误的地方,错误出现在“角平分线就是角的对称轴”因为对称轴是一条直
线,而角平分线是一条射线•对称轴应该说是角平分线所在的直线;
(2)作图略,AC、BC边的垂直平分线的交点恰好是斜边AB的中点.
21. 解:(1) 7cm; ( 2) 20°.
2
22 .解:32cm •
提示:梯形ABCD的面积=△ ACD和面积+△ ACB的面积
1 1
=-X AC X OD + —X AC X OB
2 2
1
=1X AC X( OD + OB)
2
1 2
=-X AC X DB = 32cm2;
2
或将对角线AC平移到DE,交BC的延长线于E,于是得厶DCE BAD,所以△ BDE的
面积等于梯形ABCD的面积.。