直线与平面平行的判定定理教案设计
- 格式:doc
- 大小:201.00 KB
- 文档页数:11
直线与平面平行的判定定理教案在几何学中,判定直线与平面是否平行是非常重要的基础知识。
本教案将介绍直线与平面平行的判定定理,帮助学生更好地理解和掌握这一知识点。
一、直线与平面平行的判定定理1. 定理一:一条直线与平面平行的充分必要条件是,这条直线与平面内一条直线平行。
证明:设直线l与平面α平行,直线m与平面α内一条直线平行。
不妨设直线m与直线l相交于点A,过点A作平面α的一条平行直线n。
则直线l与平面α平行,直线m与平面α内一条直线平行,因此直线l与直线m平行,即得证。
2. 定理二:一条直线与平面平行的充分必要条件是,这条直线与平面内一条平行线的垂线平行。
证明:设直线l与平面α平行,直线m与平面α内一条平行线的垂线平行。
不妨设直线m与直线l相交于点A,过点A作平面α的一条平行线n。
则直线l与平面α平行,直线m与平面α内一条平行线的垂线平行,因此直线l与直线m平行,即得证。
二、教学重点与难点1. 教学重点:理解直线与平面平行的判定定理,掌握定理的证明方法。
2. 教学难点:理解平面内平行线的垂线平行的概念,掌握直线与平面平行的判定方法。
三、教学过程与方法1. 导入:通过提出问题引导学生思考直线与平面平行的概念,激发学生的学习兴趣。
2. 讲解:通过示意图和具体例题,讲解直线与平面平行的判定定理,引导学生理解定理的含义和应用方法。
3. 练习:让学生进行练习,通过多个例题加深对直线与平面平行的判定方法的理解,提高解题能力。
4. 总结:对直线与平面平行的判定定理进行总结,强调定理的重要性和应用范围。
四、教学反思与展望直线与平面平行的判定定理是几何学中的基础知识,理解和掌握这一定理对学生的几何学学习至关重要。
本教案通过系统的讲解和练习,帮助学生掌握直线与平面平行的判定方法,提高解题能力。
在未来的教学中,可以通过更多的实例和练习,进一步巩固学生的理解和应用能力,帮助他们更好地掌握直线与平面平行的判定定理。
直线与平面平行判定定理说课教案第一章:直线与平面平行的概念引入教学目标:1. 让学生理解直线与平面平行的基本概念。
2. 培养学生运用几何图形进行直观思考的能力。
教学内容:1. 直线与平面平行的定义。
2. 直线与平面平行的判定条件。
教学步骤:1. 引入直线与平面平行的概念,通过实物模型或图形进行展示,让学生感受直线与平面平行的直观形象。
3. 讲解直线与平面平行的判定条件,引导学生理解并掌握判定方法。
巩固练习:2. 利用直线与平面平行的判定条件,证明一条直线与一个平面平行。
第二章:直线与平面平行判定定理的证明教学目标:1. 使学生理解直线与平面平行判定定理的内容。
2. 培养学生运用逻辑推理和几何证明的能力。
教学内容:1. 直线与平面平行判定定理的表述。
2. 直线与平面平行判定定理的证明过程。
教学步骤:1. 引入直线与平面平行判定定理,让学生理解定理的含义。
2. 讲解直线与平面平行判定定理的证明过程,引导学生理解并掌握证明方法。
3. 通过图形示例,让学生运用直线与平面平行判定定理进行判断。
巩固练习:1. 证明一条直线与一个平面平行。
第三章:直线与平面平行判定定理的应用教学目标:1. 使学生掌握直线与平面平行判定定理的应用方法。
2. 培养学生运用定理解决实际问题的能力。
教学内容:1. 直线与平面平行判定定理在实际问题中的应用。
2. 直线与平面平行判定定理在其他几何问题中的应用。
教学步骤:1. 讲解直线与平面平行判定定理在实际问题中的应用,引导学生运用定理解决问题。
2. 引导学生思考直线与平面平行判定定理在其他几何问题中的应用,如证明定理、求解几何问题等。
巩固练习:第四章:直线与平面平行判定定理的综合训练教学目标:1. 使学生熟练掌握直线与平面平行判定定理。
2. 培养学生运用定理解决综合问题的能力。
教学内容:1. 直线与平面平行判定定理的综合应用。
2. 直线与平面平行判定定理与其他几何定理的关联。
教学步骤:1. 给出直线与平面平行判定定理的综合应用问题,引导学生运用定理解决问题。
直线与平面平行的判定定理教学设计(教案)一、教学目标1. 让学生理解直线与平面平行的概念。
2. 引导学生掌握直线与平面平行的判定定理。
3. 培养学生的空间想象能力和逻辑思维能力。
二、教学内容1. 直线与平面平行的定义。
2. 直线与平面平行的判定定理。
三、教学重点与难点1. 教学重点:直线与平面平行的判定定理及其证明。
2. 教学难点:直线与平面平行的判定定理的证明和应用。
四、教学方法1. 采用问题驱动法,引导学生探究直线与平面平行的判定定理。
2. 利用几何模型和动画,直观展示直线与平面平行的判定过程。
3. 设计典型例题,培养学生运用判定定理解决问题的能力。
五、教学过程1. 导入新课:通过生活中的实例,引导学生思考直线与平面之间的关系。
2. 讲解直线与平面平行的定义,让学生明确直线与平面平行的概念。
3. 引导学生探究直线与平面平行的判定定理,讲解定理的证明过程。
4. 利用几何模型和动画,直观展示直线与平面平行的判定过程,加深学生理解。
5. 设计典型例题,引导学生运用判定定理解决问题,巩固所学知识。
6. 课堂小结:总结本节课的主要内容和知识点。
7. 布置作业:布置一些有关直线与平面平行的判定定理的练习题,巩固所学知识。
这五个章节的内容是教案的核心部分,后续的章节可以根据这五个章节的内容进行扩展和延伸。
希望这个教案能对你有所帮助!六、教学评估1. 课堂提问:通过提问了解学生对直线与平面平行判定定理的理解程度。
2. 作业批改:检查学生作业,了解学生对直线与平面平行判定定理的掌握情况。
3. 课堂练习:设计一些有关直线与平面平行的判定定理的练习题,让学生当堂练习,及时了解学生学习效果。
七、教学策略的调整1. 根据学生掌握情况,对直线与平面平行判定定理的讲解进行调整,使之更易于学生理解。
2. 对于学习有困难的学生,提供个别辅导,帮助他们理解直线与平面平行的判定定理。
3. 对于理解较深刻的学生,提供一些拓展性的问题,激发他们的思维。
直线与平面平行的判定定理教学设计(教案)第一章:教学目标1.1 知识与技能让学生掌握直线与平面平行的判定定理,并能够运用该定理判断直线与平面的位置关系。
1.2 过程与方法通过观察实例,引导学生发现直线与平面平行的判定规律,培养学生运用几何推理解决问题的能力。
1.3 情感态度与价值观激发学生对几何学的兴趣,培养学生的逻辑思维能力和创新意识。
第二章:教学重难点2.1 教学重点直线与平面平行的判定定理的表述及证明。
2.2 教学难点如何引导学生理解并证明直线与平面平行的判定定理。
第三章:教学方法与手段3.1 教学方法采用问题驱动法、实例分析法、小组讨论法等。
3.2 教学手段多媒体课件、几何模型、黑板等。
第四章:教学过程4.1 导入新课通过展示生活中的实例,如墙角、桌面等,引导学生观察直线与平面的位置关系,激发学生的学习兴趣。
4.2 探究与讲解引导学生发现直线与平面平行的判定规律,讲解直线与平面平行的判定定理及证明过程。
4.3 巩固练习设计相关练习题,让学生运用所学知识判断直线与平面的位置关系。
4.4 拓展与应用引导学生思考直线与平面平行在现实生活中的应用,如建筑设计、机械制造等。
第五章:作业布置与课后反思5.1 作业布置布置一些有关直线与平面平行的判定定理的应用题,巩固所学知识。
5.2 课后反思教师应及时反思本节课的教学效果,针对学生的掌握情况,调整教学策略,为后续教学做好准备。
第六章:教学评价6.1 评价目标评价学生对直线与平面平行判定定理的理解程度及运用能力。
6.2 评价方法采用课堂问答、练习批改、小组讨论等方式进行评价。
6.3 评价内容重点评价学生对直线与平面平行判定定理的掌握情况,以及能够运用该定理解决实际问题的能力。
第七章:教学拓展7.1 拓展内容介绍直线与平面平行判定定理在现实生活中的应用,如建筑设计、计算机图形学等。
7.2 拓展方式邀请相关领域专家进行讲座,或组织学生进行实地考察。
7.3 拓展目标培养学生对几何学的兴趣,提高学生的实践能力。
《8.5.2 直线与平面平行》教案第1课时直线与平面平行的判定【教材分析】在直线与平面的位置关系中,平行是一种非常重要的关系,本节内容既是直线与直线平行关系延续和提高,也是后续研究平面与平面平行的基础,既巩固了前面所学的内容,又为后面内容的学习做了知识上和方法上的准备,在教材中起着承前启后的作用。
【教学目标与核心素养】课程目标1.理解直线和平面平行的判定定理并能运用其解决相关问题.2.通过对判定定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.数学学科素养1.逻辑推理:探究归纳直线和平面平行的判定定理,找平行关系;2.直观想象:题中几何体的点、线、面的位置关系.【教学重点和难点】重点:直线与平面平行的判定定理及其应用.难点:直线与平面平行的判定定理,找平行关系.【教学过程】一、情景导入问题1.观察开门与关门,门的两边是什么位置关系.当门绕着一边转动时,此时门转动的一边与门框所在的平面是什么位置关系?【答案】平行.问题2.请同学门将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l 与桌面所在的平面具有怎样的位置关系?桌面内有与l 平行的直线吗?【答案】平行,有.问题3.根据以上实例总结在什么条件下一条直线和一个平面平行? 要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探. 二、预习课本,引入新课阅读课本135-137页,思考并完成以下问题 1、直线与平面平行的判定定理是什么?2、怎样用符号语言表示直线与平面平行的判定定理?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1、直线与平面平行的判定定理四、典例分析、举一反三题型一直线与平面平行的判断定理的理解 例1 下列命题中正确的个数是( )①若直线a 不在α内,则a ∥α ②若直线l 上有无数个点不在平面α内,则l ∥α ③若直线l 与平面α平行,则l 与α内的任意一条直线都平行 ④若l 与平面α平行,则l 与α内任何一条直线都没有公共点 ⑤平行于同一平面的两直线可以相交A.1B.2C.3D.4【答案】B【解析】①a⊄α,则a∥α或a与α相交,故①不正确;②当l与α相交时,满足条件,但得不出l∥α,故②不正确;③若l∥α,则l与α内的无数条直线异面,并非都平行,故③错误;若l∥α,则l与α内的任何直线都没有公共点,故④正确;若a∥α,b∥α,则a与b可以相交,也可以平行或异面,故⑤正确.解题技巧(判定定理理解的注意事项)(1)明确判定定理的关键条件.(2)充分考虑各种可能的情况.(3)特殊的情况注意举反例来说明.跟踪训练一1.设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( )A.a∥b,b⊂α,则a∥αB.a⊂α,b⊂β,α∥β,则a∥bC.a⊂α,b⊂α,a∥β,b∥β,则α∥βD.α∥β,a⊂α,则a∥β【答案】D.【解析】A,B,C错;在D中,α∥β,a⊂α,则a与β无公共点,所以a∥β,故D正确.故选D.题型二直线与平面平行的判断定理的应用例2 在空间四边形ABCD中,E,F分别是AB,AD的中点,求证:EF∥平面BCD.【答案】证明见解析【解析】∵AE=EB,AF=FB,∴EF∥BD.EF⊄平面BCD,BD⊂平面BCD.∴ EF ∥平面BCD解题技巧: (判定定理应用的注意事项) (1)欲证线面平行可转化为线线平行解决.(2)判断定理中有三个条件,缺一不可,注意平行关系的寻求.常常利用平行四边形、三角形中位线、等比例线段、相似三角形.跟踪训练二1.如图,已知OA,OB,OC 交于点O,AD 12OB,E,F 分别为BC,OC 的中点.求证:DE∥平面AOC.【答案】证明见解析 【解析】 证明 在△OBC 中, 因为E,F 分别为BC,OC 的中点, 所以FE 12OB,又因为AD12OB,所以FE AD.所以四边形ADEF 是平行四边形. 所以DE ∥AF.又因为AF ⊂平面AOC,DE ⊄平面AOC. 所以DE ∥平面AOC. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本139页练习1、2、3题,143页习题8.5的4、5、6题.【教学反思】本节课,从内容上来说,学生基本掌握判定定理,但是在应用中,书写证明过程不太规范,需提高学生的逻辑思维能力.从方法上来说,通过本节课判定定理的学习,学生理解证明一条直线与一个平面平行,只要在这个平面内找出一条与此直线平行的直线就可以了,让学生初步感知空间问题可以转化为平面问题解决.《8.5.2 直线与平面平行》导学案第1课时直线与平面平行的判定【学习目标】知识目标1.理解直线和平面平行的判定定理并能运用其解决相关问题.2.通过对判定定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.核心素养1.逻辑推理:探究归纳直线和平面平行的判定定理,找平行关系;2.直观想象:题中几何体的点、线、面的位置关系.【学习重点】:直线与平面平行的判定定理及其应用.【学习难点】:直线与平面平行的判定定理,找平行关系.【学习过程】一、预习导入阅读课本135-137页,填写。
直线与平面平行的判定教案直线与平面平行的判定教案范文直线与平面平行的判定教案1一、教学目标1.借助对图片、实例的观察,抽象概括出直线与平面垂直的定义,并能正确理解直线与平面垂直的定义。
2.通过直观感知,操作确认,归纳直线与平面垂直判定的定理,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念。
3.让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
二、教学重点、难点1.教学重点:操作确认并概括出直线与平面垂直的定义和判定定理。
2.教学难点:操作确认并概括出直线与平面垂直的判定定理及初步运用。
三、课前准备1.教师准备:教学课件2.学生自备:三角形纸片、铁丝(代表直线)、纸板(代表平面)、三角板四、教学过程设计1.直线与平面垂直定义的建构(1)创设情境①请同学们观察图片,说出旗杆与地面、高楼的侧棱与地面的位置有什么关系?②请把自己的数学书打开直立在桌面上,观察书脊与桌面的位置有什么关系?③请将①中旗杆与地面的位置关系画出相应的几何图形。
(2)观察归纳①思考:一条直线与平面垂直时,这条直线与平面内的直线有什么样的位置关系?②多媒体演示:旗杆与它在地面上影子的位置变化。
③归纳出直线与平面垂直的定义及相关概念。
定义:如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直,记作:l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做垂足。
用符号语言表示为:(3)辨析(完成下列练习):①如果一条直线垂直于一个平面内的无数条直线,那么这条直线就与这个平面垂直。
②若a⊥α,bα,则a⊥b。
在创设情境中,学生练习本上画图,教师针对学生出现的问题,如不直观、不标字母等加以强调,并指出这就叫直线与平面垂直,引出课题。
在多媒体演示时,先展示动画1使学生感受到旗杆AB所在直线与过点B的直线都垂直。
再展示动画2使学生明确旗杆AB所在直线与地面内任意一条不过点B 的直线B1C1也垂直,进而引导学生归纳出直线与平面垂直的定义。
直线与平面平行的判定定理(一)教学设计(教案)1000字一、教学目标:1. 了解直线与平面平行的定义及判定方法;2. 能运用相关的知识解决几何问题;3. 培养学生的逻辑思维、分析问题的能力。
二、教学重点:1. 直线与平面平行的定义及判定方法;2. 运用相关的知识解决几何问题。
三、教学难点:1. 引导学生理解直线与平面平行的概念;2. 培养学生的分析推理能力。
四、教学方法:1. 演示法:通过图形演示、引导学生理解直线与平面平行的概念;2. 讨论法:通过讨论引导学生理解判定方法及其应用;3. 实践法:通过习题训练提高学生解决问题的能力。
五、教学过程:1. 导入环节:教师先提问:“直线与平面什么时候叫做平行?”引导学生基于实际生活中的经验进行回答,帮助学生由表及里地理解平行的概念。
2. 讲授环节:(1)直线与平面平行的定义教师通过图形演示,向学生讲解直线与平面平行的定义。
然后向学生介绍平行的概念及平行公理。
(2)平行公理教师通过展示平行公理,指导学生理解平行公理的内容。
(3)判定直线与平面平行的方法学生已经知道直线与平面平行的定义,那么如何判定一个直线与一个平面是否平行呢?教师可以通过讲授以下几点:①两点法:在这种情况下,绘制从平面内通过直线的两条不相交的直线。
然后,选择一个点,可以是直线与另一直线的交点或是单独的一个点,到其中一个直线,从而确定所需的指向平面的向量(请参见示例)。
然后,将向量应用到直线的另一个点上并绘制另一条直线。
如果第二条直线不与平面相交,则直线与平面平行。
②垂线法:从平面内通过直线绘制一条垂直于该直线的直线。
如果该直线与平面相交于一个点,则它与该平面垂直,与该平面平行。
③斜率法:对于平行的一段直线,它们的斜率是相等的。
(4)一些练习题在这部分,教师可以通过一些练习题,让学生掌握相关的知识点,同时还可以提高学生的分析推理能力。
3. 巩固练习环节:教师可以出几道题目,让学生在课堂上进行解答,并就解答过程进行引导。
直线与平面平行的判定优秀教案一、教学目标1. 知识与技能:使学生能够准确理解直线与平面平行的定义,掌握直线与平面平行的判定定理,并能灵活运用这些定理进行空间平行关系的判定。
2. 过程与方法:通过实例分析、动手实践、逻辑推理等方式,培养学生的空间想象能力和几何推理能力。
3. 情感态度与价值观:激发学生对空间几何的兴趣,培养学生严谨的科学态度和探索精神。
二、教学重难点重点:直线与平面平行的判定定理的理解和应用。
难点:对判定定理的深入理解和灵活运用。
三、教学准备教具:黑板、粉笔、直尺、模型(如门、书本等)四、教学过程(一)导入新课1. 复习提问:空间中直线与平面有几种位置关系?分别是什么?2. 引入课题:今天我们要来学习的是直线与平面平行的判定。
(二)新课展开1. 直线与平面的位置关系(1)通过实物模型(如门、书本等)展示直线与平面的三种位置关系:直线在平面内、直线与平面相交、直线与平面平行。
(2)引导学生理解直线与平面平行的定义:如果一条直线与一个平面没有公共点,那么这条直线与这个平面平行。
2. 直线与平面平行的判定定理(1)引导学生观察实物模型,发现直线与平面平行的判定条件:如果一条直线与一个平面内的两条相交直线都平行,那么这条直线与这个平面平行。
(2)通过实例分析,让学生理解判定定理的应用。
例如,门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行。
3. 判定定理的证明(1)引导学生根据判定定理的条件,利用反证法进行证明。
(2)通过证明过程,让学生理解判定定理的严谨性和正确性。
4. 判定定理的应用(1)通过例题讲解,让学生掌握利用判定定理证明直线与平面平行的方法。
(2)引导学生自主思考,尝试运用判定定理解决空间平行关系问题。
(三)课堂练习1. 判断题:判断下列说法是否正确,并说明理由。
(1)如果一条直线与一个平面内的无数条直线平行,那么这条直线与这个平面平行。
(2)如果一条直线与一个平面内的两条平行直线平行,那么这条直线与这个平面平行。
直线与平面平行的判定定理教学设计(教案)第一章:直线与平面平行的概念引入1.1 教学目标让学生了解直线与平面平行的概念。
学生能够通过实例判断直线与平面是否平行。
1.2 教学内容直线与平面平行的定义。
直线与平面平行的判定方法。
1.3 教学步骤1. 引入直线与平面平行的概念,展示实例图片,引导学生观察并描述直线与平面的关系。
2. 给出直线与平面平行的定义,解释其含义。
3. 引导学生通过实例判断直线与平面是否平行,引导学生运用定义进行判断。
1.4 教学评估通过课堂提问,检查学生对直线与平面平行概念的理解。
通过实例判断练习,检查学生能否运用定义判断直线与平面是否平行。
第二章:直线与平面平行的判定定理2.1 教学目标让学生了解直线与平面平行的判定定理。
学生能够运用判定定理判断直线与平面是否平行。
2.2 教学内容直线与平面平行的判定定理。
判定定理的证明。
2.3 教学步骤1. 引入直线与平面平行的判定定理,展示实例图片,引导学生观察并描述直线与平面的关系。
2. 给出判定定理,解释其含义。
3. 进行判定定理的证明,解释证明过程。
4. 引导学生通过实例判断直线与平面是否平行,引导学生运用判定定理进行判断。
2.4 教学评估通过课堂提问,检查学生对直线与平面平行判定定理的理解。
通过实例判断练习,检查学生能否运用判定定理判断直线与平面是否平行。
第三章:直线与平面平行的判定定理的应用3.1 教学目标让学生能够运用直线与平面平行的判定定理解决实际问题。
3.2 教学内容直线与平面平行的判定定理在实际问题中的应用。
3.3 教学步骤1. 引入实际问题,展示实例图片,引导学生观察并描述直线与平面的关系。
2. 引导学生运用判定定理解决实际问题,解释解题过程。
3. 提供练习题,让学生独立解决实际问题,并提供解答。
3.4 教学评估通过课堂提问,检查学生对直线与平面平行判定定理在实际问题中的应用的理解。
通过练习题,检查学生能否独立解决实际问题。
直线与平面平行的判定定理教学设计(教案)第一章:教学目标1.1 知识与技能目标1. 理解直线与平面平行的概念。
2. 掌握直线与平面平行的判定定理。
3. 能够运用判定定理判断直线与平面的平行关系。
1.2 过程与方法目标1. 通过观察实例,培养学生的空间想象能力。
2. 通过证明过程,培养学生的逻辑思维能力。
1.3 情感态度与价值观目标1. 激发学生对几何学的兴趣。
2. 培养学生的团队合作精神。
第二章:教学内容2.1 直线与平面平行的概念1. 直线与平面的位置关系:相交、平行、包含。
2. 直线与平面平行的定义:在同一平面内,直线与平面不相交。
2.2 直线与平面平行的判定定理1. 定理的表述。
2. 定理的证明过程。
2.3 判定定理的应用1. 判断直线与平面的平行关系。
2. 判断平面与平面的平行关系。
第三章:教学重点与难点3.1 教学重点1. 直线与平面平行的概念。
2. 直线与平面平行的判定定理。
3.2 教学难点1. 直线与平面平行的判定定理的证明过程。
2. 判断直线与平面的平行关系。
第四章:教学方法与手段4.1 教学方法1. 讲授法:讲解直线与平面平行的概念和判定定理。
2. 案例分析法:分析实例,引导学生理解判定定理的应用。
3. 小组讨论法:分组讨论,培养学生的团队合作精神。
4.2 教学手段1. 投影仪:展示实例和证明过程。
2. 几何模型:帮助学生直观地理解直线与平面平行的关系。
第五章:教学过程5.1 导入新课1. 利用实例引入直线与平面平行的概念。
2. 引导学生思考如何判断直线与平面的平行关系。
5.2 知识讲解1. 讲解直线与平面平行的概念。
2. 证明直线与平面平行的判定定理。
5.3 课堂练习1. 布置判断题:判断直线与平面的平行关系。
2. 学生互相讨论,教师指导。
5.4 课堂小结1. 总结直线与平面平行的判定定理。
2. 强调判定定理的应用。
5.5 课后作业1. 完成练习题:判断直线与平面的平行关系。
§2.2.1 直线与平面平行的判定(选自人教A版必修②第二章第二节第一课时)一、教材分析本节教材选自人教A版数学必修②第二章第二节第一课时,主要内容是直线与平面平行的判定定理的探究与发现、归纳概括、练习与应用。
它是在前面已学空间点、线、面的位置关系的基础上,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。
学线面平行判定是三大平行判定(线线平行、线面平行、面面平行)的核心,也是高考的高频考点之一,学好线面平行对后续学习面面平行及三大垂直的判定与性质等内容,具有良好的示范作用,同时,它在立体几何学习中起着承上启下的作用,具有重要的意义与地位。
本节课的学习对培养学生空间想象能力与逻辑推理能力起到重要作用。
线面平行的判定蕴含的数学思想方法主要有数形结合与化归与转化思想。
二、学情分析本节课的教学对象是高一的学生,他们具备一定的由形象思维转化为逻辑思维的能力。
学生在此前已经学习了直线与直线平行的性质及判定、直线与平面平行的定义,对直线与平面平行有了一定的认识,这些都为学生学习本节课做了准备。
同时,由于本节课与生活实际相结合,学生的学习兴趣、参与度会比较大。
但是由于学生处于学习空间立体几何的初始阶段,学习立体几何所具备的语言表达及空间感与空间想象能力不够,特别是对线面平行(空间立体)转化为线线平行(平面)的化归与转化思想,这是学生首次接触的思想方法,应加以必要的强化与引导。
三、教学目标(一)知识技能目标(1)理解直线与平面平行的判定定理并能进行简单应用;(2)培养学生观察、发现问题的能力和空间想象能力。
(二)过程方法目标(1)启发式:以实物(门、书、直角梯形卡纸)为媒介,启发、诱导学生逐步经历定理的直观感知过程;(2)指导学生进行合情推理。
对于立体几何的学习,学生已初步入门,让学生自己主动地去获取知识、发现问题,教师予以指导,帮助学生合情推理、澄清概念、加深认识。
《直线与平面平行的判定》教案一、教学内容分析本节选自教材《基础模块》下第九章,本节内容在立体几何学习中起着承上启下的作用,具有重要的意义与地位。
本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。
本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。
二、学生学习情况分析任教的学生在年级段属中上程度,学生学习兴趣较高,学生已经学习完空间直线与直线的位置关系以及直线与直线平行,并掌握直线与直线平行的判断方法.在日常生活中积累了许多线面平行的素材,和直观判断的方法,但对这些方法是否正确合理缺乏深入理性的分析.在空间想象和逻辑论证等方面的能力有待于再进一步学习中提高.学习立体几何所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。
三、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。
四、教学目标通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。
培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。
让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
五、教学重点与难点教学重点:直线与平面平行的判定定理.教学难点:直线与平面平行的判定定理验证和应用六、教学过程设计(一)知识准备、新课引入提问1:根据公共点的情况,空间中直线a和平面α有哪几种位置关系?并完成下表:我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为a⊄α提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。
直线与平面平行的性质教案一、教学目标:1. 让学生理解直线与平面平行的概念,掌握直线与平面平行的判定方法。
2. 培养学生运用直线与平面平行的性质解决几何问题的能力。
3. 提高学生的空间想象能力和逻辑思维能力。
二、教学内容:1. 直线与平面平行的定义。
2. 直线与平面平行的判定定理。
3. 直线与平面平行的性质定理。
4. 直线与平面平行在实际问题中的应用。
三、教学重点与难点:1. 教学重点:直线与平面平行的判定方法,直线与平面平行的性质定理。
2. 教学难点:直线与平面平行的性质定理在实际问题中的应用。
四、教学方法:1. 采用讲解法、演示法、讨论法、练习法等相结合的教学方法。
2. 通过实物模型、几何画板等工具,直观展示直线与平面平行的性质。
3. 组织学生进行小组讨论,培养学生的合作意识。
五、教学过程:1. 导入新课:通过展示生活中的实例,引出直线与平面平行的概念。
2. 讲解直线与平面平行的判定方法,引导学生理解并掌握判定定理。
3. 讲解直线与平面平行的性质定理,并通过实物模型、几何画板等进行展示。
4. 组织学生进行小组讨论,探索直线与平面平行的性质在实际问题中的应用。
5. 布置课堂练习,巩固所学知识。
6. 总结本节课的主要内容,强调直线与平面平行的性质在几何问题解决中的重要性。
7. 布置课后作业,鼓励学生深入研究直线与平面平行的性质。
六、教学评价:1. 通过课堂提问、作业批改等方式,评价学生对直线与平面平行概念的理解和判定方法的掌握。
2. 注重评价学生在实际问题中运用直线与平面平行性质的能力,以及空间想象能力和逻辑思维能力的提升。
3. 结合小组讨论情况,评价学生的合作意识和交流沟通能力。
七、教学反馈:1. 收集学生作业,分析掌握情况,针对普遍问题进行有针对性的辅导。
2. 听取学生对课堂教学的反馈意见,了解教学方法的适用性,及时调整教学策略。
3. 关注学生在小组讨论中的表现,鼓励表达自己的想法,提高自信心。
《直线与平面平行的判定》教学设计一、课题分析:本节内容选自《人民教育版》a版必修课第2节“直线与平面平行性的判断与性质”第一节。
在学习点、线、平面的位置关系后,进一步研究直线与平面的位置关系。
平行关系是本章的重要内容。
线平面平行是平行关系的初步判断,是判断平面平行的依据。
它还映射了线平面垂直的相关内容,起到了连接作用。
因此,本节内容具有承前启后的功能,其地位十分重要二、三维目标:(一)知识和技能1、通过直观感知.操作确认,理解直线与平面平行的判定定理并能进行简单应用;2、进一步培养学生观察、发现问题的能力和空间想像能力。
(二)过程与方法1.启发法。
以实物(门、书等)为媒介,启发和诱导学生逐步体验定理的直观感知过程;2、指导学生进行合情推理。
对于立体几何的学习,学生已初步入门,让学生自己主动地去获取知识、发现问题,教师予以指导、帮助学生合情推理、澄清概念、加深认识,正确运用。
(三)情感态度和价值观1、让学生亲身经历数学研究的过程,体验创造的激情,享受成功的喜悦,感受数学的魅力;2.在培养学生逻辑思维能力的同时,培养学生认真细致的做事习惯和理性推理的探索精神。
三、重点难点:教学重点:直线与平面平行关系判断的形成过程;(通过视觉类比、探索和发现突出重点)教学难点:直线与平面平行判定定理的理解和应用。
(通过分组讨论、设计练习等教学手段来突破难点)四、教学过程(一)回顾与介绍问题:回顾直线与平面的位置关系。
设计意图:通过师生互动,回忆旧知识,帮助学生巩固旧知识,让学生在体验学习数学成就感的同时学习新知识,营造轻松愉快的学习氛围。
(二)感知定理思考1:根据定义,如何确定直线平行于平面?直线L与图中平面α平行?lα思考2:若将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l与桌面所在的平面具有怎样的位置关系?思考3:有一块木头,如图所示。
P是平面BCEF中的一个点。
需要通过点P在平面BCEF中绘制一条直线,该点平行于平面ABCD。
直线与平面平行的判定【教学目标】1.理解并掌握直线与平面平行的判定定理;2.进一步培养学生观察、发现的能力和空间想象能力;【重点难点】重点:直线与平面平行的判定定理及应用。
难点:直线与平面平行的判定定理及应用。
【教学设想】【教学过程】备注一、复习回顾,引入课题1、复习:(提问)直线与平面的位置关系有哪些?分别用符号语言和图形语言来表示?(用课件展示图形,请学生根据图形用符号语言进行描述)(请学生演板)2、引入:在直线与平面的位置关系中,平行是一种非常重要的关系,它是空间线面位置关系的一种基本形态。
不仅应用较多,也是学习面面平行的基础,那么怎样判定直线与平面平行呢?(首先我们想到的是定义法,利用定义证明——即证明直线与平面没有公共点,但是直线是无限延伸的,平面是无限延展,如何保证直线与平面没有公共点呢?直接利用定义证明不方便,今天我们在定义的基础上来探讨判定直线与平面平行的方法,引出课题)二、观察实例,归纳结论设计三个活动活动1.观察1:生活中,我们注意到门扇的两边是平行的. 当门扇绕着一边转动时,观察门扇转动的一边l 与门框所在平面的位置关系如何?结论:平行活动2. 观察2:若将一本书平放在桌面上,封面的两边是平行的,翻动书的封面,观察封面边缘所在直线AB与桌面所在的平面具有怎样的位置关系?结论:平行活动3. 观察3:下面我们一起来做个游戏,拿两支笔(看成两条直线)使它们平行,一支不动,另一支沿一条直线平移得一平面,观察直线(不动的笔)与平面的位置关系。
结论:平行或直线在平面内(注意这种情况易忽略)(在三个实例的基础上,引导学生归纳结论)结论:如图,设直线b在平面α内,直线a在平面α外,在什么条件下直线a与平面α平行?结论:当a∥b,直线a与平面α平行(如果这个结论成立,我们就可以用线与线的平行关系来证明线与面的平行关系,下面我们一起来探索结论的证明方法。
三、推理论证,得到定理(为了减少证明的难度,证明过程分解成以下环节)思考1:如果平面α外的直线a与平面α内的一条直线b平行(1)直线a与直线b共面吗?若共面,则它们确定的平面与平面α位置关系(2) 直线a与平面α的位置关系有哪些?直线a与平面α能相交吗?5` 10`结论:(1)由于a∥b,故直线a与直线b确定一个平面β,且α∩β=b(2)由于a⊄α,故直线a与平面α相交或平行,所以不相交就平行(直接证明平行不方便,转换思路,我们只要能够否定直线与平面相交,不就肯定了直线与平面平行了吗?),(下一个问题:如何否定呢?我们常用反证法,假设直线与平面相交,推出矛盾,从而否定假设,肯定结论,这种方法叫做反证法)思考2:如果直线a与平面α相交,交点的位置能确定吗?由此你能得到什么结论?结论:如果直线a与平面α相交,交点就一定在直线b上,这与已知a∥b矛盾这是因为α∩β=b,(告诉学生,这种推理的方法叫做反证法)思考3:通过上述分析,我们可以得到判定直线与平面平行的一个定理,你能用文字语言表述出该定理的内容吗?(请学生根据探究的过程,自己归纳总结,教师适当的修正)定理: 若平面外一条直线与平面内的一条直线平行,则该直线与此平面平行.思考4:上述定理通常称为直线与平面平行的判定定理,该定理用符号语言可怎样表述?(大屏幕上给出图形,请学生结合图形用符号语言描述)思考5:直线与平面平行的判定定理的证明?证明:假设直线a与平面α有公共点P则点P∈b或点P∈b若点P∈b,则a∩b=P,这与a∥b矛盾.若点P∈b,又b⊂α,a∩α=P由于与平面相交的直线和这个平面内不过交点的直线是异面直线∴a、b异面,这与a∥b也矛盾综上所述,假设错误,故a∥α.(注:这种证明数学问题的方法叫做反证法,要求学生看懂即可,不要求学生自己证明)思考6:直线与平面平行的判定定理可简述“线线平行,则线面平行”,在实际应用中它有何理论作用?结论:把直线与平面的平行关系转化为直线与直线的平行关系,(师:这体现了我们解决立体几何问题的基本思想——空间问题平面化)定理的注解:注1:判定定理是证明直线与平面平行的重要方法;注2:能够运用定理的条件是要满足:面外、面内和平行注3:运用定理的关键是找平行线;找平行线又经常会用到三角形中位线定理或平行四边形的性质定理等证明线线平行的定理.四、应用定理,解决问题(典型例题)例1.在空间四边形ABCD中,E,F分别是AB,AD的中点,求证:EF//平面BCD.处理方法:由教师分析思路,学生在笔记本上整理过程,并用语言叙述(注意提醒学生应用定理的注意事项)15` 20` 25` 30`。
2.2.3 直线与平面平行的性质时间: 地点:高二( )班 授课人:一、教学目标 1.知识与技能通过教师的适当引导和学生的自主学习,使学生由直观感知获得猜想,经过逻辑论证,推导出直线与平面平行的性质定理,并掌握这一定理. 2.过程与方法(1)通过直观感知和操作确认的方法,发展几何直觉、运用图形语言进行交流的能力; (2)体会和感受通过自己的观察、操作等活动进行合情推理发现并获得数学结论的过程; (3)通过直线与平面平行的性质定理的实际应用,让学生体会定理的现实意义与重要性. 3.情感、态度与价值观通过主动参与、积极探究的学习过程,提高学生学习数学的自信心和积极性,培养合作意识和交流能力,领悟化归与转化的数学思想,提高学生分析、解决问题的能力. 二、教学重点与难点教学重点:直线与平面平行的性质定理.教学难点:综合应用线面平行的判定定理和性质定理. 三、授课类型:新授课 四、教学方法:师生合作探究 五、教具准备:三角板、小黑板 六、课时安排:1课时 七、教学过程教学内容师生互动 【回顾旧知】1.直线与平面的位置关系;线在面内;线面平行、线面相交(统称为“线在面外”) 2.直线与平面平行判定定理的内容.通过复习直线与平面平行的判定定理,温故而知新,为后面线线平行与线面平行的相互转化做铺垫.ααα////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄【新课引入】思考:1.如果一条直线a 与平面α平行,那么这条直线与这个平面内的直线有哪些位置关系?2.在平面α内,哪些直线与直线a 平行?3.在什么条件下,平面α内的直线与直线a 平行呢? 通过演示实验,让学生观察、发现规律,并对发现的结论进行归纳.引导学生结合直观感知,层层递进,逐步探索,体会数学结论的发现过程.学生根据问题进行直观感知,进而提出合理猜想.并逐步探索,认真思考,画出相应图形,进行观察、感知、猜想.发现:过直线a 的某一平面,若与平面α相交,则直线a 就平行于这条交线. 已知://a α,a β⊂,b αβ=.求证://a b .证明:因为 b αβ=,所以 b α⊂.又因为 //a α, 所以 a 与b 无公共点. 又因为ββ⊂⊂b a ,, 所以 b a //.引导学生得出猜想,形成经验性结论,体会与感受数学结论的发现与形成过程:直观感知→操作确认→逻辑证明→形成经验.要求学生用语言描述发现的结论,并给出证明.【直线与平面平行的性质定理】一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βαβα要求学生总结归纳,并能用文字语言、符号语言图形语言描述直线与平面平行的性质定理,为学生正确使用定理打下基础.【定理探微】1.定理可以作为直线与直线平行的判定方法;2.定理中三个条件缺一不可....; 3.提供了过已知平面内一点作与该平面的平行线相平行的直线的方法,即:辅助平面法.明确定理的条件和结论及定理的用途.【例题讲解】例1(教材P59例3) 如图所示的一块木料中,棱BC 平行于面''A C . (1)要经过面''A C 内的一点P 和棱BC 将木料锯开,应怎样画线?(2)所画的线与平面AC 是什么位置关系? ★思路点拔1.怎样确定截面?过点P 所画的线应怎样画? 2.“线面平行” 与“线线平行”之间有怎样的联系? ★解答过程 解:(1)在平面''A C 内,过点P 作直线EF ,使//''EF B C ,并分别交棱''A B ,''C D 于点E ,F .连接BE ,CF ,则EF ,BE ,CF 就是应画的线. (2)因为棱BC 平行于平面''A C ,平面'BC 与平面''A C 交于''B C ,所以//''BC B C ,由(1)知,//''EF B C ,所以,//EF BC ,因此引导学生分析画截面的关键是确定截面与上底面的交线,怎样过P 点作BC 的平行线是作图的难点.学生经过认真思考,运用所学知识找到作图方法,体会到解决问题后成功的喜悦,认识到数学来源于实践又反过来为实践服务,加强用数学的意识.////EF BCEF AC EF AC BC AC ⎫⎪⊄⇒⎬⎪⊂⎭平面平面平面BE ,CF 显然都与平面AC 相交.思想方法:例2(教材P59例4)已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面. ★思路点拔1.文字性命题的解题步骤是什么? 2.“线面平行”与“线线平行”之间有怎样的联系? ★解答过程已知:如图所示,已知直线a 、b ,平面α, 且//a b ,//a α,a α⊄,b α⊄. 求证://b α. 证明:过a 作平面β,使c αβ=.因为//a α,a β⊂,c αβ=,所以//a c .又因为//a b ,所以//b c .因为c α⊂,b α⊄,所以//b α.引导学生分析问题的条件与结论,并结合图形写出己知和求证.通过分析寻找解题途径.本题的解题关键是实现线线平行与线面平行的转化.通过教师的板书,规范解题步骤与格式. 【课堂练习】1.如图,α∩β=CD ,α∩γ=EF ,β∩γ=AB ,AB ∥α 求证:CD ∥EF .学生独立完成练习l ,检查学习效果,使学生掌握证明线面平行问题的方法、步骤与格式,提高综合运用所学知识的能力.。
直线和平面平行的判定定理应用教案一、教学目标1. 让学生掌握直线和平面平行的判定定理。
2. 培养学生运用判定定理解决实际问题的能力。
3. 提高学生的空间想象能力和思维能力。
二、教学内容1. 直线和平面平行的判定定理。
2. 判定定理的应用。
三、教学重点与难点1. 教学重点:直线和平面平行的判定定理及其应用。
2. 教学难点:判定定理在实际问题中的运用。
四、教学方法1. 采用讲解法,引导学生理解判定定理的内涵。
2. 利用几何模型,直观展示直线和平面的位置关系。
3. 设计练习题,培养学生的实际应用能力。
五、教学过程1. 导入:回顾直线和平面的位置关系,引导学生思考如何判断直线和平面的平行关系。
2. 新课讲解:介绍直线和平面平行的判定定理,结合几何模型展示,让学生理解判定定理的推导过程。
3. 例题讲解:分析典型例题,引导学生运用判定定理解决问题,巩固所学知识。
4. 课堂练习:设计相关练习题,让学生独立完成,检验对判定定理的掌握程度。
5. 总结与拓展:对本节课的内容进行总结,引导学生思考判定定理在实际问题中的应用,拓展思维。
6. 作业布置:布置适量作业,巩固所学知识。
六、教学评估1. 课堂练习的完成情况,观察学生对判定定理的理解和应用能力。
2. 学生对典型例题的分析和解答,评估其逻辑思维和解决问题的能力。
3. 作业的完成质量,了解学生对课堂所学知识的巩固程度。
七、教学反馈与调整1. 根据学生的课堂表现和作业完成情况,及时给予反馈,指出优点和不足。
2. 对学习有困难的学生,提供个别辅导,帮助其克服困难。
3. 根据学生的学习情况,调整教学进度和难度,确保教学内容适合学生的实际需求。
八、课后作业1. 复习本节课所学的直线和平面平行的判定定理。
2. 完成课后练习题,包括判断题和应用题,巩固所学知识。
3. 选择一道拓展题,提高自己的空间想象能力和思维能力。
九、课后反思1. 回顾本节课的教学内容,总结教学方法和策略。
2. 思考如何更好地引导学生理解和应用判定定理。
章节一:直线与平面平行的概念引入教学目标:使学生了解直线与平面平行的基本概念,理解直线与平面平行的直观含义。
教学内容:1. 直线与平面的基本概念复习2. 直线与平面平行的定义3. 直线与平面平行的实例解析教学方法:采用直观演示法,结合实例进行讲解。
教学活动:1. 复习直线与平面的基本概念2. 引入直线与平面平行的定义3. 通过实例解析直线与平面平行的特征章节二:直线与平面平行的判定定理教学目标:使学生理解直线与平面平行的判定定理,能够运用判定定理判断直线与平面的平行关系。
教学内容:1. 直线与平面平行的判定定理的表述2. 直线与平面平行的判定定理的证明3. 直线与平面平行的判定定理的应用教学方法:采用讲解法,结合图形进行说明。
教学活动:2. 讲解直线与平面平行的判定定理的证明3. 通过例题演示直线与平面平行的判定定理的应用章节三:直线与平面平行的判定定理的运用教学目标:使学生能够运用直线与平面平行的判定定理解决实际问题。
教学内容:1. 直线与平面平行的判定定理在实际问题中的应用2. 直线与平面平行关系的判断与证明教学方法:采用案例教学法,引导学生运用判定定理解决实际问题。
教学活动:1. 分析直线与平面平行的判定定理在实际问题中的应用2. 提供练习题,让学生运用判定定理判断直线与平面的平行关系章节四:直线与平面平行的判定定理的综合训练教学目标:使学生能够综合运用直线与平面平行的判定定理解决复杂问题。
教学内容:1. 直线与平面平行关系的复杂问题解析2. 综合运用直线与平面平行的判定定理进行判断与证明教学方法:采用问题解决法,引导学生进行综合训练。
教学活动:1. 提供直线与平面平行关系的复杂问题,让学生进行分析2. 引导学生综合运用判定定理进行判断与证明章节五:直线与平面平行的判定定理的复习与总结教学目标:使学生巩固直线与平面平行的判定定理,总结学习过程中的重点与难点。
教学内容:1. 直线与平面平行的判定定理的复习2. 学习过程中的重点与难点总结教学方法:采用问答法,引导学生进行复习与总结。
直线与平面平行的判定定理教案设计-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN§2.2.1 直线与平面平行的判定(选自人教A版必修②第二章第二节第一课时)一、教材分析本节教材选自人教A版数学必修②第二章第二节第一课时,主要内容是直线与平面平行的判定定理的探究与发现、归纳概括、练习与应用。
它是在前面已学空间点、线、面的位置关系的基础上,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。
学线面平行判定是三大平行判定(线线平行、线面平行、面面平行)的核心,也是高考的高频考点之一,学好线面平行对后续学习面面平行及三大垂直的判定与性质等内容,具有良好的示范作用,同时,它在立体几何学习中起着承上启下的作用,具有重要的意义与地位。
本节课的学习对培养学生空间想象能力与逻辑推理能力起到重要作用。
线面平行的判定蕴含的数学思想方法主要有数形结合与化归与转化思想。
二、学情分析本节课的教学对象是高一的学生,他们具备一定的由形象思维转化为逻辑思维的能力。
学生在此前已经学习了直线与直线平行的性质及判定、直线与平面平行的定义,对直线与平面平行有了一定的认识,这些都为学生学习本节课做了准备。
同时,由于本节课与生活实际相结合,学生的学习兴趣、参与度会比较大。
但是由于学生处于学习空间立体几何的初始阶段,学习立体几何所具备的语言表达及空间感与空间想象能力不够,特别是对线面平行(空间立体)转化为线线平行(平面)的化归与转化思想,这是学生首次接触的思想方法,应加以必要的强化与引导。
三、教学目标(一)知识技能目标(1)理解直线与平面平行的判定定理并能进行简单应用;(2)培养学生观察、发现问题的能力和空间想象能力。
(二)过程方法目标(1)启发式:以实物(门、书、直角梯形卡纸)为媒介,启发、诱导学生逐步经历定理的直观感知过程;(2)指导学生进行合情推理。
对于立体几何的学习,学生已初步入门,让学生自己主动地去获取知识、发现问题,教师予以指导,帮助学生合情推理、澄清概念、加深认识。
(三)情感态度价值观目标(1)让学生亲身经历数学研究的过程,体验创造的激情,享受成功的喜悦,感受数学的魅力;(2)在培养学生逻辑思维能力的同时,帮助学生养成办事认真仔细的习惯。
四、教学重点通过直观感知、操作确认,归纳出判定定理。
五、教学难点灵活运用判定定理解决问题。
六、教学方法与手段启发式与探究式教学相结合,多媒体投影、计算机、实物(门、书、直角梯形卡纸)辅助教学。
七、教学设计思想普通高中课程标准指出,培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学必修系列课程的基本要求。
在判定定理得出的过程中,注重对典型实例的观察,分析,给学生提供动手操作的机会,引导学生进行归纳概括活动。
另外,通过观察、思考、探究向学生提出问题,以问题引导学生的思维活动,经历从实际背景中抽象出数学模型,从现实生活空间抽象出几何图形和几何问题的过程。
八、教学过程(一)知识回顾(5min)师:在上节课我们学习了直线与平面的位置关系。
那么,直线与平面的位置关系有几种呢是以什么作为划分的标准的呢生:三种。
(学生回答完之后用多媒体幻灯片陆续出现如下表格的内容)(二)新课引入(20min)师:今天我们针对上节课直线与平面平行的位置关系进行探究。
那么怎么样判定直线与平面平行呢?从上节课我们学过的知识中,我们知道,根据定义,判定直线与平面是否平行,只需要判定直线与平面有没有公共点。
但是,直线无限延长,平面无限延展,怎么样才能保证直线与平面没有公共点呢(抛出疑问让学生思考,引起学生注意力。
)(1)实例感受师:生活中门的两边是平行的,现在我们把教室门打开,当门绕着一边转动时,门上靠近把手的边与门框所在的平面没有公共点,这时门扇转动的一边与门框所在的平面让大家觉得是平行的。
(教师一边解说,一边实践演示)师:现在大家动手操作,将课本平放在桌面上,慢慢地翻开课本的封面。
我们观察一下封面的上边缘与桌面的关系是怎么样的呢(学生亲自动手实践,增强学生动手能力。
)生:封面的上边缘与桌面也是平行的呢!师:好的,我们再来看看这个。
(取出预先准备好的直角梯形卡纸演示。
)老师把下底边放在桌面上并转动。
同学们,你们觉得上底边与桌面的位置关系是怎样的呀?生:也是平行的。
师:对,类似刚才书的那个例子,上底边与桌面的位置给人以平行的感觉。
那如果我们把直角腰放在桌面上并转动,这时这条腰还与桌面平行吗?(老师用手指着非直角腰问学生)生:不平行。
师:是的,这个时候这条腰与桌面给人的印象就不平行了。
(设计意图:设置这样动手实践的情境,通过对比让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。
)(2)探究思考师:好,现在大家思考一下,刚才演示的直线与平面位置关系为什么会有这么大的不同呢是什么关键因素起了作用呢?生1:平面内的一条直线。
生2:平面外的一条直线。
生3:这两条直线平行。
(3)得出结论师:根据上面的三个条件,我们能判断这个图中的直线a与平面α平行吗?生:不能。
师:如果平面内有直线b与直线a平行,直线a与平面α的位置关系又怎么样呢?可以保证直线a与平面α平行吗(给出教材图2.2-3,引导学生从生活的实例回到书本的实例,从而让学生根据平面外与平面内对应线段,直接判断出线面平行。
)师:再看这个图,(给出教材图2.2-4)如果平面α外的直线a 与平面α内的一条直线b 平行,那么,直线a 、b 共面吗?直线a 与平面α相交吗? (学生会发现a 、b 共面(共面直线包括相交直线和平行直线),直线a 与平面α不可能相交,亦即直线a 与平面α平行。
)于是我们可以得出 直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
用数学符号表示直线与平面平行的判定定理:ααα||||a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄ (三)巩固新知(10min ) (1)选择题(提问学生) 下列说法正确的是( )A.若直线a 在平面α外,则a//α;B.若直线a//b ,b ⊂α,则a//α;C.若直线a//b,a⊄α, b⊂α,则a//α;D.若直线a平行于平面α内的无数条直线,则a//α。
解析:A 直线与平面相交也属于在平面外,即不符合a//b;B少了条件a⊄α;C正确,三个条件都具备;D同B,当a在平面内时,也符合。
(2)典型例题(例1)求证:空间四边形相邻两边中点的连线,平行于经过另外两边的平面。
(先讲文字叙述转化成数学符号语言)已知:如图空间四边形ABCD中,E、F分别是AB、AD证明:连接BD,AE=EB⇒EF∥BDAF=FD EF ⊄平面BCD⇒EF∥平面BCDBD ⊂平面BCD师:要证EF∥平面BCD,关键是在平面BCD中找到和EF平行的直线,将证明线面平行的问题转化为证明线线平行的问题。
这就是转化的思想。
我们现在来复习一下可以判定线线平行的方法。
生:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
三角形中位线定理:三角形的中位线平行于第三边并且等于第三遍的一半。
梯形中位线定理;梯形的中位线平行于两底,并且等于两底和的一半。
公理4:平行于同一条直线的两直线平行。
(2)随堂练习①下列命题正确的是()。
A. 平行于同一平面的两条直线平行。
B. 若直线a∥α,则平面α内有且仅有一条直线与a平行。
C. 若直线a∥α,则平面α内任一条直线都与a平行。
D. 若直线a∥α,则平面α内有无数条直线与a平行。
答案:D。
②如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG 为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明。
解:SG∥平面DEF,证明如下:连接CG交DE于点H,如图所示。
∵DE是△ABC的中位线,∴DE∥AB。
在△ACG中,D是AC的中点,且DH∥AG,∴H为CG的中点,∴FH是△SCG的中位线,∴FH∥SG。
又SG⊄平面DEF,FH⊂平面DEF,∴SG∥平面DEF。
(四)课堂小结(5min)(1)直线与平面平行的判定方法 定义法:证明直线与平面无公共点;判定定理:证明平面外直线与平面内直线平行。
(2)直线与平面平行的判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
数学符号表示直线与平面平行判定:ααα||||a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄(三个条件缺一不可)(3)数学思想方法:空间问题转化成平面问题。
(五)课后作业 P55 1、 P56 2 (六)课后反思立体几何比较抽象,所以要尽可能找生活中的实例进行分析。
多媒体可以代替我们抄题,并且展示一些比较难想像的过程,节省教学的时间,所以在今后的教学中可以适当地运用多媒体进行辅助教学。
另外,要注意培养学生的动手能力,引导学生自主分析、找出规律。
同时,要注重对过去所学的知识进行及时的复习。
九、板书设计11一、 直线与平面平行的判定定理 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
数学符号:ααα||||a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄a例1 证明:连接BD , ∵AE=EB,AF=FB ∴EF ∥BD (三角形中位线定理) ∵EF ⊄平面BCD BD ⊂平面BCD ∴由直线与平面平行的判定定理得: EF ∥平面BCD 。
十、困难与问题(一)教师不了解学生整体水平,难以有针对性地进行教学设计; (二)难把握本节课的教学进程。
小组成员:黄琼芳,黄华坤,李慧玲,关莉翎。
bα。