函数极限的求法
- 格式:doc
- 大小:365.00 KB
- 文档页数:8
- 1 -
一、函数极限的定义
定义一:若当x 无限变大时,恒有|f(x)-a|<ε,其中ε是可以任意小的正数,则称当x 趋向无穷大时,函数f (x )趋向于a ,记作+∞→x lim f(x)=a 或f(x )→a(x →+∞)。
定义二:若当x 无限接近0x 时,恒有|f(x)-a|<ε,其中ε是可以任意小的正数,则称当x 趋向0x 时,函数f (x )趋向于a ,记作0
x lim →x f(x)=a 或f(x) →a(x-0x )。 二、函数极限的求法
下面我们以相关的概念、定理及公式为依据,解决常见函数极限的求解方法:
1、直接代入法
适用于分子、分母的极限不同时为零或不同时为∞。
例1:求1
352lim 22+-+→x x x x 分析:由于
2lim
→x (22x +x-5)=22lim →x 2x +2lim →x x-2lim →x 5=2·22+2-5=5, 2lim →x (3x+1)=32lim →x x+2
lim →x 1=3·2+1=7 所以采用直接代入法。
解:原式=)13(lim 5x x 2lim 222
x +-+→→x x )
(=12352222+⋅-+⋅=7
5 2、利用极限的四则运算法则求极限
这是求极限的基本方法,主要应用函数的和、差、积、商的极限法则及若干基本函数的极限结果进行极限的计算,为此有事往往要对函数作一些变形。
定理 若0x lim →x f(x)=A 0x lim →x g (x )=B