七年级(下)数学思维拓展训练试题附答案
- 格式:doc
- 大小:89.00 KB
- 文档页数:5
一、选择题1. 下列各数中,哪个数是正数?A. -3B. 0C. 3D. -5答案:C解析:正数是大于零的数,故选C。
2. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 圆形答案:A解析:轴对称图形是指通过一个轴将图形分成两个完全相同的部分,故选A。
3. 已知一个等边三角形的边长为6cm,求这个三角形的周长。
答案:18cm解析:等边三角形的三条边相等,故周长为3×6=18cm。
4. 下列哪个数是偶数?A. 3B. 4C. 5D. 6答案:B解析:偶数是能被2整除的数,故选B。
5. 已知一个长方形的长为8cm,宽为4cm,求这个长方形的面积。
答案:32cm²解析:长方形的面积等于长乘以宽,故面积为8×4=32cm²。
二、填空题1. 已知一个数的绝对值是5,那么这个数可以是______或______。
答案:5,-5解析:绝对值表示一个数与零的距离,故可以是正数或负数。
2. 下列哪个数是负数?A. -3B. 0C. 3D. -5答案:A解析:负数是小于零的数,故选A。
3. 一个等腰三角形的底边长为6cm,腰长为8cm,求这个三角形的面积。
答案:24cm²解析:等腰三角形的面积等于底边乘以高的一半,高可以用勾股定理求得。
设高为h,则有h²=8²-3²=64-9=55,所以h=√55。
故面积为6×√55/2=3√55≈24cm²。
4. 下列哪个数是奇数?A. 3B. 4C. 5D. 6答案:C解析:奇数是不能被2整除的数,故选C。
5. 已知一个长方形的长为10cm,宽为5cm,求这个长方形的周长。
答案:30cm解析:长方形的周长等于两倍的长加两倍的宽,故周长为2×10+2×5=30cm。
三、解答题1. 已知一个等腰直角三角形的直角边长为3cm,求这个三角形的面积。
答案:9cm²解析:等腰直角三角形的面积等于直角边长乘以直角边长的一半,故面积为3×3/2=9cm²。
1. 下列各数中,不是有理数的是()A. -2.5B. √2C. 0.1010010001…D. -1/3答案:B解析:有理数是可以表示为两个整数之比的数,包括整数、分数和小数。
选项B的√2是无理数,不能表示为两个整数之比。
2. 若a、b是实数,且a+b=0,则下列各式中,正确的是()A. a=0B. b=0C. a=-bD. ab=0答案:C解析:由题意知,a+b=0,则a=-b。
3. 下列各式中,正确的是()A. 3^2 = 9B. (-2)^3 = -8C. 2^0 = 1D. (-3)^2 = 9答案:B解析:A选项中的3^2=9是正确的,B选项中的(-2)^3=-8也是正确的,C选项中的2^0=1是正确的,D选项中的(-3)^2=9也是正确的。
但题目要求选择正确的式子,故选B。
4. 若a、b、c是三角形的三边长,则下列各式中,正确的是()A. a+b>cB. a-b>cC. a+b>cD. a-b>c答案:C解析:根据三角形的性质,任意两边之和大于第三边,故选C。
5. 下列各式中,正确的是()A. √9=±3B. √16=4C. √25=5D. √36=6答案:C解析:A选项中的√9=±3是错误的,因为√9=3;B选项中的√16=4是正确的;C 选项中的√25=5是正确的;D选项中的√36=6是正确的。
故选C。
1. 若x^2=9,则x=_________。
答案:±3解析:由平方根的定义可知,若x^2=9,则x=±3。
2. 若a=2,b=-3,则a^2+b^2=_________。
答案:13解析:将a、b的值代入公式,得a^2+b^2=2^2+(-3)^2=4+9=13。
3. 若x=5,则(x+2)^2=_________。
答案:49解析:将x的值代入公式,得(x+2)^2=5+2)^2=49。
4. 若x=3,则|x-2|=_________。
七年级下册数学思维专项训练题(共10套)思维训练题(一)班级______________ 姓名_____________ 一、选择题:1.a 为任意自然数,包括a 在内的三个连续的自然数,可以表示为 ( )A .a -2,a -1,aB .a -3,a -2,a -1C .a ,a +1,a +2D .不同于A 、B 、C 的形式二、计算题:(动动脑筋,可能会有简便的解题方法!)1.____________________56875=⨯2.____________2006200420022000...12108642=+-+-+-+-+- 3.__________________8567785667855678=+++4.()()__________888...6428002...888488868888=++++-++++5.______________125.01712517125625.05.0171251753=⨯-⨯+⨯+ 6.______________12346123451234512345=÷7._________________31313131=-+-8._______________99163135115131=++++ 9._____________20042004...200432004220041=++++10._____________90197218561742163015201412136121=++++++++三、应用与创新:1.有一高楼,每上一层需要3分钟,每下一层需要1分30秒。
小贤于下午6时15分开始从最底层不断地向上走,到了最顶层后便立即往下走,中途没有停留,他在7时36分返回最底层。
这座高楼共有多少层?2.回答下列各题:(1)用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数?(2)在15个连续自然数中最多有多少个质数?最少有多少个质数?(3)以下是一个数列,第一项是1,第二项是4,以后每一项是前两项相乘的积。
一、选择题(每题5分,共25分)1. 小明在计算一道题目时,错误地将一个数的个位和十位数字交换了位置,结果得到的差是18。
请问原来的数是多少?A. 58B. 63C. 78D. 842. 在等差数列1, 4, 7, 10, ...中,第100项是多少?A. 297B. 299C. 301D. 3033. 一个正方体的体积是64立方厘米,如果将其切割成8个相同的小正方体,每个小正方体的棱长是多少厘米?A. 2B. 4C. 6D. 84. 小华有5个连续的自然数,它们的和是45,请问这5个数分别是多少?A. 7, 8, 9, 10, 11B. 8, 9, 10, 11, 12C. 9, 10, 11, 12, 13D. 10, 11, 12, 13, 145. 小明有红球、蓝球和绿球共30个,其中红球和蓝球的总数是绿球的两倍,蓝球和绿球的总数是红球的三倍。
请问每种颜色的球各有多少个?A. 红球10个,蓝球8个,绿球12个B. 红球8个,蓝球10个,绿球12个C. 红球12个,蓝球8个,绿球10个D. 红球12个,蓝球10个,绿球8个二、填空题(每题5分,共25分)6. 一个长方形的长是10厘米,宽是5厘米,如果将其对角线上的点分割成两段,使得两段的比例是3:2,那么这两段对角线的长度分别是多少厘米?7. 在一个等腰三角形中,底边长为10厘米,腰长为8厘米,求这个三角形的面积。
8. 小明有若干个相同的正方体,他将这些正方体排成一排,使得排成的长方体的体积最大。
如果每个正方体的边长为1厘米,那么小明至少需要多少个正方体?9. 一个等差数列的前三项分别是2, 5, 8,求这个数列的第10项。
10. 小华在一条直线上从左到右每隔2米放置一个路灯,如果这条直线长100米,那么至少需要多少个路灯?三、解答题(每题10分,共30分)11. 小明在一条直线上从左到右每隔3米放置一个树,如果这条直线长120米,那么他至少需要多少棵树?请用方程表示并解答。
一、选择题(每题3分,共30分)1. 下列各组数中,互为相反数的是()A. 3和-5B. 4和-4C. -2和2D. 0和52. 若a > 0,则下列不等式中正确的是()A. a > 0B. -a < 0C. a < 0D. a² > 03. 下列代数式中,表示负数的是()A. 2xB. -3xC. 5xD. -2x + 54. 已知函数f(x) = 2x - 1,则f(-1)的值为()A. -3B. -1C. 1D. 35. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标为()A. (2, -3)B. (-2, 3)C. (2, -3)D. (-2, -3)6. 若a² = 16,则a的值为()A. ±4B. ±2C. ±8D. ±17. 下列方程中,解为整数的是()A. 2x + 3 = 7B. 3x - 4 = 5C. 4x + 2 = 9D. 5x - 3 = 68. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为()A. 75°B. 90°C. 105°D. 120°9. 下列数中,是质数的是()A. 15B. 16C. 17D. 1810. 若a、b是方程2x² - 5x + 3 = 0的两根,则a + b的值为()A. 5B. 3C. 2D. 4二、填空题(每题5分,共25分)11. 若x + 2 = 0,则x = _______。
12. 已知a² + 2a + 1 = 0,则a = _______。
13. 若函数f(x) = 3x - 4,则f(2) = _______。
14. 在△ABC中,若AB = 5,AC = 6,BC = 7,则△ABC是_______三角形。
15. 若a、b是方程2x² - 5x + 3 = 0的两根,则ab = _______。
七年级下册数学思维题(共10套)思维训练题(一)班级______________ 姓名_____________一、选择题:1.a 为任意自然数,包括a 在内的三个连续的自然数,可以表示为 ( )A .a -2,a -1,aB .a -3,a -2,a -1C .a ,a +1,a +2D .不同于A 、B 、C 的形式二、计算题:(动动脑筋,可能会有简便的解题方法!)1.____________________56875=⨯2.____________2006200420022000...12108642=+-+-+-+-+-3.__________________8567785667855678=+++4.()()__________888...6428002...888488868888=++++-++++5.______________125.01712517125625.05.0171251753=⨯-⨯+⨯+ 6.______________12346123451234512345=÷ 7._________________31313131=-+-8._______________99163135115131=++++9._____________20042004...200432004220041=++++10._____________90197218561742163015201412136121=++++++++三、应用与创新:1.有一高楼,每上一层需要3分钟,每下一层需要1分30秒。
小贤于下午6时15分开始从最底层不断地向上走,到了最顶层后便立即往下走,中途没有停留,他在7时36分返回最底层。
这座高楼共有多少层?2.回答下列各题:(1)用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数?(2)在15个连续自然数中最多有多少个质数?最少有多少个质数?(3)以下是一个数列,第一项是1,第二项是4,以后每一项是前两项相乘的积。
初中数学数学思维拓展练习题及参考答案一、选择题1. 已知正整数a、b满足a/b=2/3,且a的10倍比b的7倍小6,那么a/b等于:A. 2/9B. 4/21C. 8/21D. 6/92. 直角三角形的两条直角边分别是3cm和4cm,求斜边的长。
A. 5cmB. 7cmC. 9cmD. 12cm3. 若正方形的边长为x,则其对角线的长度是:A. xB. x√2C. 2xD. 2x√24. 一辆火车正常行驶时,从一个站到另一个站需要2小时,如果每小时增加10分钟的停站时间,则从一个站到另一个站需要2小时20分钟。
求每个站的停站时间。
A. 6分钟B. 8分钟C. 10分钟D. 12分钟5. 一辆车从A地到B地,全程120公里,前一半路程速度为60km/h,后一半路程速度为80km/h。
那么从A地到B地需要多长时间?A. 2小时B. 2.5小时C. 3小时D. 3.5小时二、填空题1. 已知a:b=5:3, b:c=4:7,求a:b:c的比值为______。
2. 一条铁路上,相邻两个车站的距离为10km,A、B两辆列车同时从两个车站出发,相对速度为30km/h,那么两辆列车相遇需要______分钟。
3. 甲车速率为60km/h,乙车速率为80km/h,两车同时从A地到B 地,甲车先出发,已知甲车比乙车晚1个小时到达B地,从A地到B 地的距离为______公里。
4. 若一个图形的内角和是900°,则这个图形是一个______。
5. 一块边长为12cm的正方形纸板,按照下图所示方式剪下4个边长为xcm的小正方形,则x的值为______。
(图形描述)三、计算题1. 甲乙两个数的和是25,差为3,求这两个数分别是多少。
2. 已知梯形的上底长度为6cm,下底长度为14cm,高度为8cm,求梯形的面积。
3. 如果一个数a加上它自己的2/5再减去它自己的1/2等于15,求这个数a是多少。
4. 一辆车以每小时60km的速度行驶,过了10分钟后又以每小时80km的速度行驶,那么这辆车行驶了多远?5. 甲、乙两位运动员进行百米赛跑,以秒为单位分别记作甲的成绩和乙的成绩,甲跑完全程的速度是乙的4倍,已知甲的成绩比乙的成绩多4秒,求甲、乙两位运动员的成绩。
图4 七(下)数学思维拓展训练时间:45分钟 分值:100分一、选择题(每小题5分,共25分)1.若n 为正整数,且x 2n =3,则(3x 3n )2-4(x 2)2n 的值为( ) (A )207 (B )36 (C )45 (D )217 2.一个长方形的长是2x 厘米,宽比长的一半少4厘米,若将长方形的长和宽都增加3厘米,则该长方形的面积增加为( )(A)9 (B )2x 2+x -3 (C )-7x -3 (D )9x -3 3.若(x-5)·A= x 2+x+B ,则( )(A )A=x+6,B=-30 (B )A=x -6,B=30 (C )A=x+4,B=-20 (D )A=x -4,B=204.已知6141319,27,81===c b a ,则a ,b ,c 大小关系是( )(A )a>c>b (B )a>b>c (C )a<b<c (D )b>c>a5.如图1,直线MN//PQ ,OA ⊥OB ,∠BOQ=30︒.若以点O 为旋转中心,将射线OA 顺时针旋转60︒后,这时图中30︒的角的个数是 ( )(A) 4个 (B) 3个 (C) 2个 (D) 1个二、填空题(每小题5分,共25分)6.用如图2所示的正方形和长方形卡片若干张,拼成一个边长为a+b 的正方形,需要B 类卡片_______张.7.如图3,AB ∥CD ,M 、N 分别在AB ,CD 上,P 为两平行线间一点,那么∠1+∠2+∠3= ︒.8.如图4,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若∠ADE =125︒, 则∠DBC= ︒.9.三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 . 10. 数学家发明了一个魔术盒,当任意数对()b a ,进入其中时,会得到一个新的数:图1O N M A B P Qa b图2 3 2 C P D 1B N A M 图3()()21--b a .现将数对()1,m 放入其中得到数n ,再将数对()m n ,放入其中后,如果最后得到的数是 .(结果要化简) 三、解答题(每小题10分,共50分)11.计算:(1+2+3+…+2013)(2+3+4+…+2012)-(1+2+3+…+2012) (2+3+4+…+2013).12.图5是按一定规律排列的方程组集合和它解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、……方程组n . (1)将方程组1的解填入图中;(2)请依据方程组和它的解变化的规律,将方程组n 和它的解直接填入集合图中; (3)若方程组⎩⎨⎧-=+1my x y x 的解是⎨⎧=10x ,求m 的值,并判断该方程组是否符合(2)中的规律?13.如图6,已知两组直线分别互相平行. (1)若∠1=115º,求∠2,∠3的度数;(2)题(1)中隐含着一个规律,请你根据(1)的结果进行归纳,试用文字表述出来; (3)利用(2)中的结论解答:如果两个角的两边分别平行,其中一个角是另一个角的2倍,求这两个角的大小.方程组图514.下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y.原式=(y+2) (y +6)+4 ①=y2+8y+16 ②=( y+4)2 ③=(x2-4x+4)2 ④回答下列问题:(1)该同学②到③运用了因式分解的_______.(A)提取公因式(B)平方差公式(C)两数和的完全平方公式(D)两数差的完全平方公式(2)该同学因式分解的结果是否彻底?________(填“彻底”或“不彻底”);若不彻底,请直接写出因式分解的最后结果_________.(3)请模仿以上方法对多项式(x2-2x)(x2-2x+2)+1进行因式分解.15.如下几个图形是五角星和它的变形.(1)图7中是一个五角星,则∠A+∠B+∠C+∠D+∠E= º.(2)图7中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?如图8,说明你的结论的正确性.(3)把图8中的点C向上移到BD上时,五个角的和(即∠CAD+∠B+∠ACE +∠D+∠E)有参考答案 1~5.ADABA6.27.3608.559. 510x y =⎧⎨=⎩ 10. -m 2+2m11.设1+2+3+…+2012=a ,2+3+4+…+2012=b ,则a= b+1.(1+2+3+…+2013)(2+3+4+…+2012)-(1+2+3+…+2012) (2+3+4+…+2013)= (a+2013)b -a(b+2013)=ab+2013b -ab -2013a=2013b -2013a=2013b -2013(b+1)= 2013b -2013 b -2013=-2013.12.(1)直接消元可求出⎩⎨⎧==01y x ;(2)观察第一个方程都是x+y=1,第二个方程x 前面的系数都是1,而y 前面的系数应是-n ,常数项应是n 2,这样第二个方程应是x -ny= n 2,所以第n 个方程组为⎩⎨⎧=-=+21n ny x y x .其解的规律是x 从1开始依次增1,y 从0开始依次减1,这样第n 个方程组的解为⎩⎨⎧-==n y n x 1;(3)把⎩⎨⎧-==9y 10x 代入方程x -my=16,得m=32.显然不符合(2)中的规律.13.(1)因为两组直线分别互相平行,所以由平行线的性质可得∠2=∠1=115º,∠3+∠2=180º,则∠3=180º-115º=65º;(2)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补;(3)设其中的一个角为xº,则另一个角为2xº.因为xº+2xº=180º,所以x=60º.故这两个角分别为60º和120º. 14.(1)C(2)不彻底,( x -2)4(3)设x 2-2x=y .原式=y (y +2)+1= y 2+2y+1=( y+1)2=(x 2-2x+1)2=( x -1)4 . 15.(1)180º.(2)无变化.因为∠BAC=∠C+∠E ,∠EAD=∠B+∠D ,所以∠CAD+∠B+∠C+∠D+∠E=∠BAC+∠CAD+∠EAD=180º.(3)无变化.因为∠ACB=∠CAD+∠D ,∠ECD=∠B+∠E ,所以∠CAD+∠B+∠ACE +∠D+∠E=∠ACB+∠ACE+∠ECD=180º.。
1. 计算:七年级思维训练80题(含答案),拔高数学思维能力111113355720212023________. 2. 已知20212021202120222022202220232023202320202020+2020202120212021202220222022a b c,,,则abc ________.3. 123499910001001(1)1(1)1(1)1(1) 的值是________.4. 设11112018201920202050M,则1M的整数部分是________. 5.计算:44444444441032422324343244632458324432416324283244032452324 =________.6.已知5555284110133144□,其中□里的数字是________.7.哪些连续正整数之和为1000?试求出所有的解.8.2023减去它的12,再减去余下的13,再减去余下的14,以此类推,一直到最后减去余下的11000,最后的结果为________.9.n个正数的乘积的n次方根称为这n个数的几何平均数.喜羊羊写了4个数,这4个数的几何平均数是2048;美羊羊也写了4个数,这4个数的几何平均数是8.那么,喜羊羊和美羊羊写的这8个数的几何平均数是________.10.有下列三个命题:(1)若α,β是不相等的无理数,则αβ + α – β是无理数;(2)若α,β是不相等的无理数,则是无理数;(3)若α,β是无理数.其中正确的命题个数是________.11. 如果a ,b ,c 是三个任意整数,那么2a b ,2a c ,2b c( ). A. 都不是整数B. 至少有两个整数C. 至少有一个整数D. 都是整数12. 有理数m ,n 在数轴上的位置如图所示,在m n ,m n ,n m ,m n 中正数的个数是________.13. 如果实数a ,b ,c 在数轴上的位置如图所示,那么代数式||||a b b c 可以化简为( ).A. 2c – aB. 2a – 2bC. –aD. a14. 把4个不同的整数两两相加得到6个和,并且这6个和是5个互不相同的数:23,26,29,32和35.那么这4个整数中最大的是________.15. 从1~26这26个整数中取出两个数,选出的两个数相乘所得的积正好是剩余的24个数之和.选出的两个数分别是________和________.16. 已知a – b = 4,ab + c 2 + 4 = 0,则a + b = ________.17. 已知a 、b 、c 是实数,且13ab a b ,17bc b c ,112ac a c ,则acbc ab abc=________.18. 已知 | x | + x + y =5,x + | y |-y = 10,则 x + y 的值是________.19.________.20. 222 − 4有________个不同的质因数.21. 已知x 是实数,则(x 2-4x +3)(x 2+4x +3)的最小值是________.22. 若实数a ,b ,c 满足等式36b ,96b c ,则c 可能取的最大值为________.23. 已知x ,y 是非负整数,且满足4(2)34x y ,那么满足条件的x + y 的最大值是________.24. 若正整数x ,y ,z 满足11145x y z ,则xyz 的最大值是________.25. 231x x x 的最小值是________.26. 满足24x y y 的整数对(x ,y )有________个.27. 设a 是整数,关于x 的方程12x a 只有三个不同的整数解,求这三个解.28. 若a 为整数,则关于x 的方程(a – 1) x = a + 1的所有整数解的和是________.29. 已知x 与y 使得x + y ,x – y ,xy ,x y四个数中的三个相等,则这样的数对(x ,y )有________对.30. 若关于x ,y 的二元一次方程组 132kx y bk x y 有无穷多组解,则22k b 的值为________.31. 若[x ]表示不超过x 的最大整数,且满足方程3x + 5[x ] – 49 = 0,则3x +1=________.32. 如果关于x 的不等式组9080x a x b 的整数解仅有1,2,3,那么整数a ,b 组成的有序数对(a ,b )共有________对.33. 如果关于x 的不等式组100x x a无解,则a 的取值范围是________.34. 在1~100的自然数中与10互质的自然数共有________个.35. 已知三个质数a ,b ,c 满足133a b c ab bc ac ,则abc =________.36.已知三位数abc能被5整除,但不能被6和7整除;三位数cba能被6整除,但不能被5和7整除;三位数cab能被7整除,但不能被5和6整除,则abc =________.37.九位数ABCABCBBB能被1~17中的任意整数整除,且A,B,C是不同的数字,则九位数ABCABCBBB是________.38.乘积376×733的个位数字是________.39.四位数aabb是一个整数的平方,aabb=________.p 的不同正因数的个数不超过10,则满足题意的p 40.已知p是质数,且271的个数是________.41.如图所示有4种类型的几何体,每个几何体都是由4个单位正方体组成.选出8个同类型的几何体,把它们组合成一个2×4×4的长方体.可以完成组合的几何体有________种类型.42.已知圆环内直径为a厘米,外直径为b厘米,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为________厘米.43.设有一个边长为1的正三角形,记作A1(如图1),将A1的每条边三等分,以中间的线段为一边向形外作正三角形,去掉中间的线段后所得到的图形记作A2(如图2);将A2的每条边三等分,并重复上述过程,所得到的图形记作A3(如图3);再将A3的每条边三等分,并重复上述过程,所得到的图形记作A4,那么A4的周长是________.图1 图2 图344. 如图所示,AOB 是一条直线,若1:2:3:41:2:4:5 ,则2 的余角是________度.45. 如图,AB //CD ,那么∠1 –∠2 +∠3 –∠4 +∠5 =________度.46. 如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( ).A .450°B .540°C .630°D .720°47.从一个凸n边形的纸板上剪下一个三角形,剩余的是一个内角和为2160°的多边形,则n最大是________.48.一个凸n边形的内角和小于1998°,那么n的最大值是________.49.如果一个凸多边形的内角和等于外角和的3倍,那么这个多边形的边数是().A.4B.6C.8D.10E.1250.如图所示,在△ABC中,AC=7,BC=4,D为AB中点,E为AC边上一点,且1902AED C,则CE =________.51.在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC的面积是________.52.△ABC中,∠A为最小角,∠B为最大角,且2∠B = 5∠A,若∠B的最大值为m°,∠B的最小值为n°,则m + n =________.53.如图,在锐角△ABC中,高线CD,BE相交于点F,若∠A=55°,则∠BFC的度数是________度.54.如图,PQ=PR=QS,线段PR与QS相互垂直,则∠PRQ与∠PSQ度数之和是________度.55.在平行四边形ABCD中,AD = 2AB,点M是AD的中点,CE⊥AB于E.如果∠CEM = 40°,那么∠DME的值是().A.150° B.140° C.135° D.130°56.若长方形内有一点P,点P到各边的距离从小到大依次为1,2,5,6则长方形面积最小为________.57.如图所示的4×5的方格图中,过格点P的直线与方格图上、下边界相交形成的直角梯形ABCD(其中AB<CD)的面积最大是________.58. 如图,CD 是Rt △ABC 斜边AB 上的高,∠BAC 的平分线AE 交CD 于H ,交∠BCD 的平分线CF 于G .求证:HF ∥BC .59. 由8个相同的小正方体搭成的一个几何体,俯视图如下,那么这个几何体的左视图一定不是( ).60. 若n 个人完成一项工程需要m 天,则(m +n )个人完成这项工程需要( )天. A.nm mnB.m nm nC.m nmnD.2mnm n61. 一个商人用m 元(m 为正整数)买来了n 台(n 为质数)电视机,其中有两台以成本的一半价钱卖给某个慈善机构,其余的电视机在商店出售,每台盈利500元,结果该商人获得利润为5500元,则n 的最小值是________.62. 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是________%. (注:100% 销售价进价利润率进价)63. 小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的最大值是________.64. 图书馆内,在标有号码1,2,3,4的书架上分别有书120,135,142,167本.若干天后,每个书架上都各被借出a 本书,又过了若干天,四个书架又分别被借出0,b ,c ,d 本书,并且四个书架上余下同样本数的书. 若b ,c ,d ≥1,b +c +d =a ,则两次借出书后,1号书架剩有________本书.65.五个不同的数,两两之和依次等于3,4,5,6,7,8,11,12,13,15 则这五个数的平均数是________.66.王明在早晨六点至七点之间外出晨练,锻炼时长不超过一小时,出门和回家的时候,时针与分针的夹角都是110°.则王明晨练的时间为________分钟.67.某人骑车沿直线旅行,先前进了a千米,休息了一段时间,又原路返回b千米(b﹤a),再前进c千米,则此人离起点的距离S与时间t的关系示意图是().68.某届运动会的十一天的比赛中,醒狮队拿了16块金牌,其中每天至少拿一枚金牌,则醒狮队拿金牌的不同的情况可能有________种.(假设金牌都是一样的)69.将正方形的每条边8等分,再以这些分点为顶点(不包括正方形的顶点),可以得到不同的三角形的个数是________.70.口袋中装有20个只有颜色不同其他都相同的球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么这样取法有________种.71.将若干红黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放________个球.72.在{1000,1001,1002,…,2000}中有________对相邻的数满足下列条件:每对中的两数相加时不需要进位.73.试求所有满足如下性质的四元实数组(a,b,c,d):组中的任一数都等于其余三个数中某两个数的乘积.(注:四元实数组中的数相同,顺序不同,算作同一组)74.将三位数A各个数位上的数字重新排列,得出的所有数的算术平均值等于A.这样的三位数A共有________个.75.如图,6个人围成一圈做传球游戏,每个人接到球后传给和他不相邻的某一人(如:A接到球后可以传给C、D或E),开始时,球在A的手中,若球被传递三次后又回到A,此种情况出现的概率是________.76.如图,△ABC中,D、E分别是边BC、AC的中点,从这8个图形△ABD、△ACD、△ABE、△BCE、△GAB、△GAE、△GBD、四边形CEGD中任取2个图形,取出的2个图形面积相等的概率是________.77.按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x的取值范围是________.78.如图是一个正方体的平面展开图,若该正方体相对的两个面上的代数式的值相等,则x – y – z的值是________.79. 设)(n f 为正整数n (十进制)的各数位上的数字的平方之和,如14321)123(222 f .记)()(1n f n f ,))(()(1n f f n f k k ,k =1,2,3……,则2016(2016)f 的值是________.80. 有16枚棋子,都是一面黑色,另一面白色,放在4×4的正方形网格里.最初,所有棋子都是黑面朝上.规定:每次操作,将一个2×2正方形中的4枚棋子都正反面翻转一次.那么,要得到如图所示的排列,至少需要经过________次操作.1.计算:7年级思维训练80题答案1111 13355720212023________.答案:1011 20232.已知202120212021202220222022202320232023 20202020+2020202120212021202220222022 a b c,,,则abc ________.答案:13.123499910001001(1)1(1)1(1)1(1)的值是________.答案:–14.设11112018201920202050M,则1M的整数部分是________.答案:615.计算:4444444444 1032422324343244632458324 432416324283244032452324=________.答案:3736.已知5555284110133144□,其中□里的数字是________.答案:77.哪些连续正整数之和为1000?试求出所有的解.答案:198+199+200+201+202;55+56+...+70;28+29+ (52)8. 2023减去它的12,再减去余下的13,再减去余下的14,以此类推,一直到最后减去余下的11000,最后的结果为________.答案:202310009. n 个正数的乘积的n 次方根称为这n 个数的几何平均数.喜羊羊写了4个数,这4个数的几何平均数是2048;美羊羊也写了4个数,这4个数的几何平均数是8.那么,喜羊羊和美羊羊写的这8个数的几何平均数是________. 答案:12810. 有下列三个命题:(1)若α,β是不相等的无理数,则αβ + α – β是无理数; (2)若α,β是不相等的无理数,则是无理数;(3)若α,β是无理数. 其中正确的命题个数是________. 答案:011. 如果a ,b ,c 是三个任意整数,那么2a b ,2a c ,2b c( ). A. 都不是整数B. 至少有两个整数C. 至少有一个整数D. 都是整数答案:C12. 有理数m ,n 在数轴上的位置如图所示,在m n ,m n ,n m ,m n 中正数的个数是________.答案:213. 如果实数a ,b ,c 在数轴上的位置如图所示,那么代数式||||a b b c 可以化简为( ).A. 2c – aB. 2a – 2bC. –aD. a答案:C14. 把4个不同的整数两两相加得到6个和,并且这6个和是5个互不相同的数:23,26,29,32和35.那么这4个整数中最大的是________. 答案:1915. 从1~26这26个整数中取出两个数,选出的两个数相乘所得的积正好是剩余的24个数之和.选出的两个数分别是________和________. 答案:15,2116. 已知a – b = 4,ab + c 2 + 4 = 0,则a + b = ________.答案:017. 已知a 、b 、c 是实数,且13ab a b ,17bc b c ,112ac a c ,则acbc ab abc=________.答案:11118. 已知 | x | + x + y =5,x + | y |-y = 10,则 x + y 的值是________.答案:119.________.答案:20. 222 − 4有________个不同的质因数.答案:621. 已知x 是实数,则(x 2-4x +3)(x 2+4x +3)的最小值是________.答案:–1622. 若实数a ,b ,c 满足等式36b ,96b c ,则c 可能取的最大值为________. 答案:223. 已知x ,y 是非负整数,且满足4(2)34x y ,那么满足条件的x + y 的最大值是________. 答案:424. 若正整数x ,y ,z 满足11145x y z,则xyz 的最大值是________. 答案:16025. 231x x x 的最小值是________.答案:526. 满足24x y y 的整数对(x ,y )有________个.答案:627. 设a 是整数,关于x 的方程12x a 只有三个不同的整数解,求这三个解.答案:–3,1,528. 若a 为整数,则关于x 的方程(a – 1) x = a + 1的所有整数解的和是________.答案:429. 已知x 与y 使得x + y ,x – y ,xy ,x y四个数中的三个相等,则这样的数对(x ,y )有________对. 答案:230. 若关于x ,y 的二元一次方程组 132kx y bk x y 有无穷多组解,则22k b 的值为________. 答案:531. 若[x ]表示不超过x 的最大整数,且满足方程3x + 5[x ] – 49 = 0,则3x +1=________. 答案:2032. 如果关于x 的不等式组9080x a x b的整数解仅有1,2,3,那么整数a ,b 组成的有序数对(a ,b )共有________对. 答案:7233. 如果关于x 的不等式组100x x a无解,则a 的取值范围是________.答案:1a34. 在1~100的自然数中与10互质的自然数共有________个.答案:4035. 已知三个质数a ,b ,c 满足133a b c ab bc ac ,则abc =________.答案:15436. 已知三位数abc 能被5整除,但不能被6和7整除;三位数cba 能被6整除,但不能被5和7整除;三位数cab 能被7整除,但不能被5和6整除,则abc =________. 答案:67537. 九位数ABCABCBBB 能被1~17中的任意整数整除,且A ,B ,C 是不同的数字,则九位数ABCABCBBB 是________. 答案:30630600038. 乘积376 ×733 的个位数字是________.答案:739. 四位数aabb 是一个整数的平方,aabb =________.答案:774440. 已知p 是质数,且271p 的不同正因数的个数不超过10,则满足题意的p的个数是________. 答案:241. 如图所示有4种类型的几何体,每个几何体都是由4个单位正方体组成.选出8个同类型的几何体,把它们组合成一个2×4×4的长方体.可以完成组合的几何体有________种类型.答案:442. 已知圆环内直径为a 厘米,外直径为b 厘米,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为________厘米. 答案:49a +b43. 设有一个边长为1的正三角形,记作A 1(如图1),将A 1的每条边三等分,以中间的线段为一边向形外作正三角形,去掉中间的线段后所得到的图形记作A 2(如图2);将A 2的每条边三等分,并重复上述过程,所得到的图形记作A 3(如图3);再将A 3的每条边三等分,并重复上述过程,所得到的图形记作A 4,那么A 4的周长是________.图1 图2 图3答案:64944. 如图所示,AOB 是一条直线,若1:2:3:41:2:4:5 ,则2 的余角是________度.答案:6045.如图,AB//CD,那么∠1 –∠2 +∠3 –∠4 +∠5 =________度.答案:046.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=().A.450° B.540° C.630° D.720°答案:B47.从一个凸n边形的纸板上剪下一个三角形,剩余的是一个内角和为2160°的多边形,则n最大是________.答案:1548.一个凸n边形的内角和小于1998°,那么n的最大值是________.答案:1349.如果一个凸多边形的内角和等于外角和的3倍,那么这个多边形的边数是().A.4B.6C.8D.10E.12答案:C50.如图所示,在△ABC中,AC=7,BC=4,D为AB中点,E为AC边上一点,且1902AED C,则CE =________.答案:5.551.在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC的面积是________.答案:1652.△ABC中,∠A为最小角,∠B为最大角,且2∠B = 5∠A,若∠B的最大值为m°,∠B的最小值为n°,则m + n =________.答案:17553.如图,在锐角△ABC中,高线CD,BE相交于点F,若∠A=55°,则∠BFC的度数是________度.答案:12554.如图,PQ=PR=QS,线段PR与QS相互垂直,则∠PRQ与∠PSQ度数之和是________度.答案:13555.在平行四边形ABCD中,AD = 2AB,点M是AD的中点,CE⊥AB于E.如果∠CEM = 40°,那么∠DME的值是().A.150° B.140° C.135° D.130°答案:A56.若长方形内有一点P,点P到各边的距离从小到大依次为1,2,5,6则长方形面积最小为________.答案:3357.如图所示的4×5的方格图中,过格点P的直线与方格图上、下边界相交形成的直角梯形ABCD(其中AB<CD)的面积最大是________.答案:1258. 如图,CD 是Rt △ABC 斜边AB 上的高,∠BAC 的平分线AE 交CD 于H ,交∠BCD 的平分线CF 于G .求证:HF ∥BC .答案:证明:由∠DCB =90°-∠B =∠BAC ,知∠HCG =12∠DCB =12∠BAC =∠HAD .而∠CHG =∠AHD ,从而∠CGH =180°-(∠HCG +∠CHG )=180°-(∠HAD +∠AHD )=90°,知AG ⊥CG ,即AG ⊥CF .此时,∠FCA =90°-∠GAC =90°-∠GAF =∠CF A ,故AC =AF ,即点A 在CF 的垂直平分线AG 上.又H 在AG 上,则HC =HF ,即知∠HFC =∠FCH =∠FCB ,故HF ∥BC .59. 由8个相同的小正方体搭成的一个几何体,俯视图如下,那么这个几何体的左视图一定不是( ).答案:C60. 若n 个人完成一项工程需要m 天,则(m +n )个人完成这项工程需要( )天. A.nm mnB.m nm nC.m nmnD.2mnm n答案:A61. 一个商人用m 元(m 为正整数)买来了n 台(n 为质数)电视机,其中有两台以成本的一半价钱卖给某个慈善机构,其余的电视机在商店出售,每台盈利500元,结果该商人获得利润为5500元,则n 的最小值是________. 答案:1762. 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是________%. (注:100% 销售价进价利润率进价)答案:1763. 小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱将是你的n倍”;小玲对小倩说:“你若给我n元,我的钱数将是你的2倍”,其中n为正整数,则n的最大值是________.答案:864.图书馆内,在标有号码1,2,3,4的书架上分别有书120,135,142,167本.若干天后,每个书架上都各被借出a本书,又过了若干天,四个书架又分别被借出0,b,c,d本书,并且四个书架上余下同样本数的书.若b,c,d≥1,b+c+d=a,则两次借出书后,1号书架剩有________本书.答案:3665.五个不同的数,两两之和依次等于3,4,5,6,7,8,11,12,13,15 则这五个数的平均数是________.答案:4.266.王明在早晨六点至七点之间外出晨练,锻炼时长不超过一小时,出门和回家的时候,时针与分针的夹角都是110°.则王明晨练的时间为________分钟.答案:4067.某人骑车沿直线旅行,先前进了a千米,休息了一段时间,又原路返回b千米(b﹤a),再前进c千米,则此人离起点的距离S与时间t的关系示意图是().答案:C68.某届运动会的十一天的比赛中,醒狮队拿了16块金牌,其中每天至少拿一枚金牌,则醒狮队拿金牌的不同的情况可能有________种.(假设金牌都是一样的)答案:300369.将正方形的每条边8等分,再以这些分点为顶点(不包括正方形的顶点),可以得到不同的三角形的个数是________.答案:313670.口袋中装有20个只有颜色不同其他都相同的球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么这样取法有________种.答案:1671.将若干红黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放________个球.答案:1572.在{1000,1001,1002,…,2000}中有________对相邻的数满足下列条件:每对中的两数相加时不需要进位.答案:15673.试求所有满足如下性质的四元实数组(a,b,c,d):组中的任一数都等于其余三个数中某两个数的乘积.(注:四元实数组中的数相同,顺序不同,算作同一组)答案:(0,0,0,0),(1,1,1,1),(-1,-1,1,1),(-1,-1,-1,1)74.将三位数A各个数位上的数字重新排列,得出的所有数的算术平均值等于A .这样的三位数A 共有________个. 答案:1575. 如图,6个人围成一圈做传球游戏,每个人接到球后传给和他不相邻的某一人(如:A 接到球后可以传给C 、D 或E ),开始时,球在A 的手中,若球被传递三次后又回到A ,此种情况出现的概率是________.答案:22776. 如图,△ABC 中,D 、E 分别是边BC 、AC 的中点,从这 8个图形△ABD 、△ACD 、△ABE 、△BCE 、△GAB 、△GAE 、△GBD 、四边形CEGD 中任取2个图形,取出的2个图形面积相等的概率是________.答案:2777. 按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x 的取值范围是________.答案:7<x ≤1978. 如图是一个正方体的平面展开图,若该正方体相对的两个面上的代数式的值相等,则x – y – z 的值是________.答案:379. 设)(n f 为正整数n (十进制)的各数位上的数字的平方之和,如14321)123(222 f .记)()(1n f n f ,))(()(1n f f n f k k ,k =1,2,3……,则2016(2016)f 的值是________. 答案:14580. 有16枚棋子,都是一面黑色,另一面白色,放在4×4的正方形网格里.最初,所有棋子都是黑面朝上.规定:每次操作,将一个2×2正方形中的4枚棋子都正反面翻转一次.那么,要得到如图所示的排列,至少需要经过________次操作.答案:6。
能力拓展题
1、 已知等式1)2()1(222=--+-+z k k y k x k 与k 值无关,求x ,y ,z 的值。
2、 计算:2(3+1)(32+1)(34+1)…(332+1)+1。
3、设a ,b ,c ,d 都是整数,且,,2222d c n b a m +=+=试将mn 表示成两个整数的平方和的形式。
4、平面内有10条直线,每两条直线交于一点,这10条直线最多有几个交点?
5、①现在有6个花盆,你能把它们排排队,使得每排都有3个花盆吗?右边的小圆点表示花盆,你动手排排看吧!
②英国一位数学家于1821年出了这样一道智趣题(九树十行):
春分艳阳暖,园中植树忙;
每行植三棵,九株栽十行;
种法有多样,请你试试看。
6、如图,∠1=∠2,∠D=90°,EF ⊥CD ,那么∠3=∠B 吗?
7、如图,在不等边三角形ABC 中,AQ=PQ ,PM ⊥AB ,
PN ⊥AC ,PM=PN 。
试说明:QP ∥AM 。
123A B C D E F A B C M N Q。
图4七(下)数学思维拓展训练时间:45分钟 分值:100分一、选择题(每小题5分,共25分)1.若n 为正整数,且x 2n =3,则(3x 3n )2-4(x 2)2n 的值为( )(A )207 (B )36 (C )45 (D )2172.一个长方形的长是2x 厘米,宽比长的一半少4厘米,若将长方形的长和宽都增加3厘米,则该长方形的面积增加为( )(A)9 (B )2x 2+x -3 (C )-7x -3 (D )9x -33.若(x-5)·A= x 2+x+B ,则( )(A )A=x+6,B=-30 (B )A=x -6,B=30(C )A=x+4,B=-20 (D )A=x -4,B=204.已知6141319,27,81===c b a ,则a ,b ,c 大小关系是( )(A )a>c>b (B )a>b>c (C )a<b<c (D )b>c>a5.如图1,直线MN//PQ ,OA ⊥OB ,∠BOQ=30︒.若以点O 为旋转中心,将射线OA 顺时针旋转60︒后,这时图中30︒的角的个数是 ( )(A) 4个 (B) 3个 (C) 2个 (D) 1个二、填空题(每小题5分,共25分)6.用如图2所示的正方形和长方形卡片若干张,拼成一个边长为a+b 的正方形,需要B 类卡片_______张.7.如图3,AB ∥CD ,M 、N 分别在AB ,CD 上,P 为两平行线间一点,那么∠1+∠2+∠3= ︒.8.如图4,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若∠ADE =125︒, 则∠DBC= ︒.9.三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 .10. 数学家发明了一个魔术盒,当任意数对()b a ,进入其中时,会得到一个新的数:图1 O N M A B P Q aa ab A 类 B 类 C 类 图2()()21--b a .现将数对()1,m 放入其中得到数n ,再将数对()m n ,放入其中后,如果最后得到的数是 .(结果要化简)三、解答题(每小题10分,共50分)11.计算:(1+2+3+…+2013)(2+3+4+…+2012)-(1+2+3+…+2012) (2+3+4+…+2013).12.图5是按一定规律排列的方程组集合和它解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、……方程组n .(1)将方程组1的解填入图中;(2)请依据方程组和它的解变化的规律,将方程组n 和它的解直接填入集合图中;(3)若方程组⎩⎨⎧-=+1my x y x 的解是⎨⎧=10x ,求m 的值,并判断该方程组是否符合(2)中的规律?13.如图6,已知两组直线分别互相平行.(1)若∠1=115º,求∠2,∠3的度数;(2)题(1)中隐含着一个规律,请你根据(1)的结果进行归纳,试用文字表述出来;(3)利用(2)中的结论解答:如果两个角的两边分别平行,其中一个角是另一个角的2倍,求这两个角的大小.方程组图514.下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y.原式=(y+2) (y +6)+4 ①=y2+8y+16 ②=( y+4)2 ③=(x2-4x+4)2 ④回答下列问题:(1)该同学②到③运用了因式分解的_______.(A)提取公因式(B)平方差公式(C)两数和的完全平方公式(D)两数差的完全平方公式(2)该同学因式分解的结果是否彻底?________(填“彻底”或“不彻底”);若不彻底,请直接写出因式分解的最后结果_________.(3)请模仿以上方法对多项式(x2-2x)(x2-2x+2)+1进行因式分解.15.如下几个图形是五角星和它的变形.(1)图7中是一个五角星,则∠A+∠B+∠C+∠D+∠E= º.(2)图7中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?如图8,说明你的结论的正确性.(3)把图8中的点C向上移到BD上时,五个角的和(即∠CAD+∠B+∠ACE +∠D+∠E)参考答案1~5.ADABA6.27.3608.559. 510x y =⎧⎨=⎩ 10. -m 2+2m 11.设1+2+3+…+2012=a ,2+3+4+…+2012=b ,则a= b+1.(1+2+3+…+2013)(2+3+4+…+2012)-(1+2+3+…+2012) (2+3+4+…+2013)= (a+2013)b -a(b+2013)=ab+2013b -ab -2013a=2013b -2013a=2013b -2013(b+1)= 2013b -2013 b -2013=-2013.12.(1)直接消元可求出⎩⎨⎧==01y x ;(2)观察第一个方程都是x+y=1,第二个方程x 前面的系数都是1,而y 前面的系数应是-n ,常数项应是n 2,这样第二个方程应是x -ny= n 2,所以第n 个方程组为⎩⎨⎧=-=+21n ny x y x .其解的规律是x 从1开始依次增1,y 从0开始依次减1,这样第n 个方程组的解为⎩⎨⎧-==n y n x 1;(3)把⎩⎨⎧-==9y 10x 代入方程x -my=16,得m=32.显然不符合(2)中的规律.13.(1)因为两组直线分别互相平行,所以由平行线的性质可得∠2=∠1=115º,∠3+∠2=180º,则∠3=180º-115º=65º;(2)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补;(3)设其中的一个角为xº,则另一个角为2xº.因为xº+2xº=180º,所以x=60º.故这两个角分别为60º和120º.14.(1)C(2)不彻底,( x -2)4(3)设x 2-2x=y .原式=y (y +2)+1= y 2+2y+1=( y+1)2=(x 2-2x+1)2=( x -1)4 .15.(1)180º.(2)无变化.因为∠BAC=∠C+∠E ,∠EAD=∠B+∠D ,所以∠CAD+∠B+∠C+∠D+∠E=∠BAC+∠CAD+∠EAD=180º.(3)无变化.因为∠ACB=∠CAD+∠D ,∠ECD=∠B+∠E ,所以∠CAD+∠B+∠ACE +∠D+∠E=∠ACB+∠ACE+∠ECD=180º.。
七下思维创新题4
1. 某村去年种植的油菜籽亩产量达150千克,含油率为40﹪。
今年改种新选育的油菜籽后亩产量提高了30千克,含油率提高了10百分点。
今年与去年相比,油菜的种植面积减少了40亩,而村榨油厂用本村所产油菜籽的产油量提高了20﹪。
(1)求今年油菜的种植面积。
设今年油菜的种植面积是x 亩。
完成下表后再列方程解答。
亩产量(千克/亩)
种植面积
(亩)
油菜籽总产量
(千克)
150
x
(2)已知油菜种植成本为200元/亩,菜油收购价为6元/千克。
试比较这个村去今两年种植油菜的纯收入。
2. 如图1,射线OC,OD在∠AOB的内部,且∠AOB=150°,∠COD=30°,射线OM,ON分别平分∠AOD,∠BOC.
(1)若∠AOC=60°,试通过计算比较∠NOD和∠MOC的大小;
(2)如图2,若将图1中∠COD在∠AOB内部绕点O顺时针旋转.
①旋转过程中∠MON的大小始终不变.求∠MON的值;
②如图3,若旋转后OC恰好为∠MOA的角平分线,试探究∠NOD与∠MOC的数量关系.
1。
初中数学数学思维拓展题练习及参考答案2023初中数学是培养学生数学思维的重要阶段。
在此过程中,需要适时进行一些数学思维拓展训练,让学生更好地掌握数学知识,提高数学思维能力。
为此,我们编制了一些初中数学思维拓展题及参考答案,以供学生参考。
一、综合运用1.设计一个图形,使其中既包含一个等边三角形,又包含一个等腰直角三角形。
2.某校运动会上,甲、乙两人比赛。
甲比乙多走50米,但用的时间比乙少5秒。
已知甲的速度是每秒6米,求乙的速度是多少?3.某校有一个1500元的集资活动,已经筹集到1000元,还差多少钱才能圆满完成?二、实际应用1.甲、乙两人在赛场上相距80米,它们同时起跑,甲的速度是每秒9米,乙的速度是每秒8米,那么它们第一次相遇在多少秒后?2.某超市进行特惠活动,原价15元的商品8折出售。
如果你有100元,可以买多少件该商品?3.某学生用40分钟完成一项作业,如果他有30分钟时间再做作业,那么他能提高多少完成度?若他能提高40%的完成度,还需要多长时间?三、数学证明1.如下图所示,AC ⊥ BD,且AC = BD。
证明:三角形ABC与三角形DCB全等。
2.已知a,b都是正整数,证明:若(a+b)是一个奇数,那么(a-b)一定是一个奇数。
3.如下图,AC = BC,角ACD = 60°,角DBC = 75°。
求角BDC的度数。
参考答案:一、综合运用1.如图所示,图形中ABC为等边三角形,ACD为等腰直角三角形。
2.设乙用时t秒,则甲用时t+5秒。
由v = s/t,得甲走的距离为6(t+5),乙走的距离为vt。
因为题目中已经提示甲比乙多走了50米,所以可以列出以下方程:6(t+5) = vt + 50将v = 8带入方程中,可以解得t = 20秒。
3.筹集到的资金已经是:(1000元 / 1500元) × 100 % = 66.67 %。
还差的资金是 33.33%,即未筹100 %的资金。
人教版七年级下册思维特训(二十)方案问题与二元一次方程(组)(355)1.某企业在“蜀南竹海”收购毛竹,如果直接销售,每吨可获利100元;如果进行粗加工,每天可加工8吨,每吨可获利800元;如果对毛竹进行精加工,每天可加工1吨,每吨可获利4000元.由于受条件限制,每天只能采用一种方式加工,要求在一月内(30天)将这批毛竹93吨全部销售完毕.为此企业厂长召集职工开会,让职工讨论如何加工销售更合算.甲说:将毛竹全部进行粗加工后销售;乙说:30天都进行精加工,未加工的毛竹直接销售.丙说:30天中可用几天进行粗加工,再用几天进行精加工后销售.那么厂长应按照哪位说的方案做,获利最大?2.某体育彩票经销商计划用45 000元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A、B、C三种不同价格的彩票,进价分别是A彩票每张 1.5元,B彩票每张2元,C彩票每张 2.5元.(1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;(2)若销售A型彩票一张获得手续费0.2元,B型彩票一张获得手续费0.3元,C型彩票一张获得手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A、B、C三种彩票20扎,请你设计进票方案.3.小明家需要用钢管做防盗窗,按设计要求,其中需要长为0.8m,2.5m且粗细相同的钢管分别为100根、32根,并要求这些用料不能是焊接而成的.现钢材市场的这种规格的钢管每根为6m.(1)那么一根6m长的钢管有哪些裁剪方法呢?请填写在下面(余料作废):方法①:当只裁剪长为0.8m的用料时,最多可剪根;方法②:当先剪下1根2.5m的用料时,余下部分最多能剪0.8m长的用料根;方法③:当先剪下2根2.5m的用料时,余下部分最多能剪0.8m长的用料根(2)分别用(1)中的方法②和方法③各裁剪多少根6m长的钢管,才能刚好得到所需要的相应数量的材料?(3)试探究:除(2)中的方案外,在(1)中还有哪两种方法联合,所需要6m长的钢管与(2)中的根数相同?4.某商场计划拨款9万元从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择哪种进货方案?(3)若商场准备用9万元同时购进三种不同型号的电视机共50台,请你设计进货方案5.某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,制成酸奶销售,每吨可获利润1200元,制成奶片销售,每吨可获利润2000元.该厂的生产能力如下:如制成酸奶,每天可加工3吨,制成奶片,每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温限制,这批牛奶需在4天内全部销售或加工完毕.由此该厂设计了两种方案:方案一:尽可能多的制成奶片,其余鲜奶直接销售;方案二:一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?6.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力如下:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受季节条件的限制,该公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此该公司研制了三种加工方案.方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,没有来得及加工的蔬菜在市场上全部直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成.你认为选择哪种方案获利最多,为什么?参考答案1.【答案】:解:①如果将毛竹全部进行粗加工后销售,那么可以获利93×800= 74400(元);②30天都进行精加工,可加工的数量为30吨,获利30×4000=120000(元),未加工的毛竹63吨直接销售可获利63×100=6300(元),因此共获利120000+6300=126300(元);③设x天粗加工,y天精加工,则{x+y=30,8x+y=93,解得{x=9,y=21,所以9天粗加工的数量为9×8=72(吨),可获利72×800=57600(元),21天精加工的数量为21吨,可获利21×4000=84000(元),因此共获利141600元,因为141600>126300>74400.所以采用丙的方案获利最大2(1)【答案】设经销商从体彩中心购进A种彩票x张,B种彩票y张,C种彩票z张,只购进A种彩票和B种彩票,依题意可列方程组\(\left\{ \begin{array}{l}{x+y=1000\times20 } \\ {1.5x+2y=45000} \end{array} \right.\).解得x<0,所以无解.只购进A种彩票和C种彩票,依题意可列方程组\(\left\{\begin{array}{l}{x+z=1000\times20 } \\ {1.5x+2.5z=45000} \end{array} \right.\).∴\(\left\{ \begin{array}{l}{x=5000 } \\ {z=15000} \end{array}\right.\).只购进B种彩票和C种彩票,依题意可列方程组\(\left\{ \begin{array}{l}{y+z=1000\times20 }\\{2y+2.5z=45000}\en d{array} \right.\).∴\(\left\{ \begin{array}{l}{y=10000 } \\ {z=10000} \end{array} \right.\).综上所述,若经销商同时购进不同型号的彩票,共有两种方案可行,即A种彩票5扎,C种彩票15扎或B种彩票与C种彩票各10扎.【解析】:分三种情况列方程组进行分析即可.(2)【答案】若购进A种彩票5扎,C种彩票15扎,销售完后获手续费为0.2×5000+0.5×15000=8500(元);若购进B种彩票与C种彩票各10扎,销售完后获手续费为0.3×10000+0.5×10000=8000(元).∴为使销售完时获得手续费最多选择的方案为A种彩票5扎,C种彩票15扎. 【解析】:根据上一问分别求出每一种情况的手续费,然后进行比较,可以得出结果.(3)【答案】若经销商准备用45000元同时购进A、B、C三种彩票20扎.设购进A种彩票x扎,B种彩票y扎,C种彩票z扎.则\(\left\{ \begin{array}{l}{x+y+z=20 } \\{1.5\times1000x+2\times1000y+2.5\times1000z=45000} \end{array}\right.\).∴\(\left\{ \begin{array}{l}{y=-2x+10 } \\ {z=x+10} \end{array}\right.\).∵x、y都是正数,∴1≤x<5.又∵x为整数,∴共有4种进票方案.A种1扎,B种8扎,C种11扎,或A种2扎,B种6扎,C种12扎,或A种3扎,B种4扎,C种13扎,或A种4扎,B种2扎,C种14扎.【解析】:根据题意列方程组,用含有同一个未知数的代数式去表示另外的两个未知数,然后根据三个未知数的实际意义得到取值范围,进而确定进票方案.3(1)【答案】7;4;1【解析】:①6÷0.8=712,因此当只裁剪长为0.8m的用料时,最多可剪7根.②(6−2.5)÷0.8=438,因此当先剪下1根2.5m的用料时,余下部分最多能剪0.8m长的用料4根.③(6−2.5×2)÷0.8=114,因此当先剪下2根2.5m的用料时,余下部分最多能剪0.8m 长的用料1根(2)【答案】设用方法②裁剪x根,用方法③裁剪y根6m长的钢管.由题意,得{x+2y=32,4x+y=100,解得{x=24,y=4.答:用方法②裁剪24根,用方法③裁剪4根6m长的钢管,才能刚好得到所需要的相应数量的材料(3)【答案】设用方法①裁剪m根,用方法③裁剪n根6m长的钢管.由题意,得{7m+n=100,2n=32,解得{m=12,n=16,∴m+n=28.∵(2)中x+y=24+4=28,∴m+n=x+y,符合题目要求.设用方法①裁剪a根,用方法②裁剪b根6m长的钢管.由题意,得{7a+4b=100,b=32,解得{a=−4,b=32,无意义.∴方法①与方法③联合,所需要6m长的钢管与(2)中的根数相同4(1)【答案】解:分以下三种情况:①若购进甲种电视机和乙种电视机,则{x+y=50,1500x+2100y=90000,解得{x=25,y=25.②若购进乙种电视机和丙种电视机,则{y+z=50,2100y+2500z=90000,解得{y=87.5,z=−37.5.(不合题意,舍去此方案) ③若购进甲种电视机和丙种电视机,则{x+z=50,1500x+2500z=90000,解得{x=35,z=15.综上所述,有以下两种方案成立:①甲、乙两种型号的电视机各购25台;②甲种型号的电视机购35台,丙种型号的电视机购15台(2)【答案】方案①获利:25×150+25×200=8750(元);方案②获利:35×150+15×250=9000(元).所以为使销售时获利最多,应选择第②种进货方案,即甲种型号的电视机购35台,丙种型号的电视机购15台(3)【答案】由题意,得z=50−x−y.则1500x+2100y+2500(50−x−y)=90000,化简整理,得5x+2y=175.又因为0<x<50,0<y<50,0<z<50,且x,y,z均为整数,所以上述二元一次方程只有四组解:{x=27,y=20,{x=29,y=15,{x=31,y=10,{x=33,y=5.对应的z值分别为3,6,9,12.因此,有四种进货方案:①购进甲种电视机27台,乙种电视机20台,丙种电视机3台;②购进甲种电视机29台,乙种电视机15台,丙种电视机6台;③购进甲种电视机31台,乙种电视机10台,丙种电视机9台;④购进甲种电视机33台,乙种电视机5台,丙种电视机12台5.【答案】:解:方案一获利:4×2000+5×500=10500(元). 方案二:设x 吨制成奶片,y 吨制成酸奶,则{x +y =9,x 1+y 3=4, 所以{x =1.5,y =7.5.利润为1.5×2000+7.5×1200=12000元>10500元. 所以选择方案二获利最多6.【答案】:解: 选择方案三获利最多. 理由如下:方案一获利为4500×140=630000(元).方案二获利为7500×(6×15)+1000×(140−6×15) =675000+50000=725000(元).方案三:设x 天进行粗加工,y 天进行精加工. 由题意,得{x +y =15,16x +6y =140, 解得{x =5,y =10.所以方案三获利为7500×6×10+4500×16×5=810000(元). 由于810000>725000>630000,所以选择方案三获利最多. 答:选择方案三获利最多。
最近新都区数学七思维训练试卷(含答案)第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.有理数6的相反数是( )A.-6B.6C.1/6D.-1/62.平方得16的数是()A.4B.-4C.4或-4D.163....x2.2xy3.y.1.( )A......B......C......D......4.两个三次多项式的和的次数是()A.六次B.三次C.不低于三次D.不高于三次5.下列判断错误的是()A、一个正数的绝对值一定是正数;B、一个负数的绝对值一定是正数;C、任何数的绝对值一定是正数;D、任何数的绝对值都不是负数;6.下列说法正确的是( ) A.过一点有且仅有一条直线与已知直线平行B.两点之间的所有连线中,线段最短C.相等的角是对顶角D.若AC=BC,则点C是线段AB的中点7.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于……………………………………………………………()A.3 cm B.6 cm C.11 cm D.14 cmA BCD(第7题)8...........( )A...............B...............C................D.............9.............................................................................................A...B...C...D...10.若有理数a、b、c在数轴上的位置如图所示,则将-a、-b、c按从小到大的顺序为( )c a 0 bA.-b<c<-a B.-b<-a<c C.-a<c<-b D.-a<-b<c第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11........................2013...+2013..........500............__________.12.绝对值小于8.9的所有整数的积是_________.13. 已知4x2m y m+n与-3x6y2是同类项,则m-n=.14.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则另一边长是(用含m 的代数式表示).15.跳格游戏:如图,人从格外只能进入第1格;在格中每次可向前跳1格或2格,那么人从格外跳到第6格,可以有________种不同的方法.(第15题)三、解答题 (本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16. (1) (-28)÷(―6+4)+(―1)×5 (2) -14-[2―(―3)2]+(-1)4(3)、 33+(-32)+7-(-3) (4)、-|-32|÷3×(-)-(-2)317.解方程(1) 3(x -4)=12; (2) x -x -12 =2-x +23.18.先化简,再求值5(3a 2b -ab 2)-4(-ab 2+3a 2b ),其中a =12、b =-13.19.阅读下面的文字,解答问题: 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用 −1来表示 的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(−2).请解答:(1)的整数部分是__________,小数部分是__________(2)如果的小数部分为a,的整数部分为b,求a+b−的值;20.....AB.CD.....BD=AB=CD...AB.CD...E.F......14cm..BD.AC...21........................“....”..........................................“....”.....................(a+b)n.n ............a..........................1..(a+b)0=1...(a+b)1 =a+b.......1.1.............(a+b)2 =a2+2ab+b2.......1.2.1.............(a+b)3 =a3+3a2b+3ab2+b3.......1.3.3.1.............(1)请认真观察此图,写出(a+b)4的展开式,(a+b)4= .(2)类似地,请你探索并画出(a-b) 0,、(a-b) 1 ,(a-b) 2 ,(a-b) 3 的展开式中按a次幂从大到小排列的项的系数..对应的三角形.(3)探究解决问题:已知a+b=3,a2+b2=5,求ab的值.22.A.B....1755.............A.B...........................9.....5......... 675....1......................2..5...............3.5.............5.5............................23.某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此旄工进度,能够比原来少用多少天完成任务?。
初一数学思维测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于它本身,那么这个数可能是:A. 1B. -1C. 0D. A和C3. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 非负数D. 非正数4. 以下哪个表达式的结果不是整数?A. \( \frac{7}{2} \)B. \( 5 - 3 \)C. \( 4 \div 2 \)D.\( 3 + 4 \)5. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 2二、填空题(每题2分,共10分)6. 一个数的平方是16,这个数可能是______。
7. 如果\( a \)和\( b \)互为相反数,那么\( a + b = _______ \)。
8. 一个数的绝对值等于4,这个数可能是______。
9. 一个数的立方等于它自身,这个数可能是______。
10. 如果\( x \)是最小的正整数,那么\( x + 1 \)是______。
三、解答题(每题5分,共20分)11. 已知一个数的立方是-27,求这个数。
12. 一个数的平方加上8等于这个数本身,求这个数。
13. 一个数的绝对值是它自己,这个数可能是哪些?14. 如果\( x \)是最小的正整数,\( y \)是最大的负整数,求\( x- y \)。
四、应用题(每题10分,共30分)15. 一个班级有40名学生,其中一半是男生。
如果班级平均成绩是85分,求男生的平均成绩。
16. 一个长方形的长是宽的两倍,面积是48平方厘米。
求长方形的长和宽。
17. 一个数列的前三项是1, 3, 6,每一项都是前一项的两倍。
求第10项的值。
五、结束语通过以上初一数学思维测试题的练习,同学们可以检验自己的数学基础知识和逻辑思维能力。
希望这些题目能够帮助大家更好地理解和掌握数学概念,提高解题技巧。
数学是一门需要不断练习和思考的学科,希望同学们能够保持好奇心和探索精神,不断挑战自己,享受数学带来的乐趣。
初中数学思维拓展题训练及答案一、选择题1、若一次函数y=kx+1与两坐标轴围成的三角形面积为3,则k 为(C ) A 、16 B 、-16 C 、±16 D 、±132、若11m n -=3,2322m mn nm mn n+---的值是(B ) A 、1.5 B 、35 C 、-2 D 、-753、判断下列真命题有(C )①任意两个全等三角形可拼成平行四边形②两条对角线垂直且相等的四边形是正方形③四边形ABCD ,AB=BC=CD ,∠A=90°,那么它是正方形④在同一平面内,两条线段不相交就会平行⑤有一条对角线平分一个内角的平行四边形是菱形 A 、②③ B 、①②④ C 、①⑤ D 、②③④4、如图,矩形ABCD 中,已知AB=5,AD=12,P 是AD 上的动点,PE ⊥AC ,E,PF ⊥BD 于F,则PE+PF=(B ) A 、5 B 、6013 C 、245 D 、55125、在直角坐标系中,已知两点A (-8,3)、B (-4,5)以及动点C (0,n )、D(m,0),则当四边形ABCD 的周长最小时,比值为 mn(B )A 、-23B 、-32C 、-34D 、34二、填空题6、当x= 负数 时,||3x x -与3x x-互为倒数。
9、已知x 2-3x+1=0,求(x-1x )2= 57、一个人要翻过两座山到另外一个村庄,途中的道路不是上山就是下山,已知他上山的速度为v ,下山的速度为v ′,单程的路程为s .则这个人往返这个村庄的平均速度为 (2vv v v '+')8、将点A (4,0)绕着原点O 顺时针方向旋转30°角到对应点A ',则点A '的坐标是 (23,2)9、菱形ABCD 的一条对角线长为6,边AB 的长是方程(X-3)(X-4)=0的解,则菱形ABCD 的周长为 1610、△ABC 中,∠A=90°,AB=AC ,BD 是△ABC 的中线,△CDB 内以CD 为边的等腰直角三角形周长是 (222AB +或122AB +)11235...11231511211321④③②①11. 如图,边长为6的菱形ABCD 中,∠DAB=60°,AE=BE ,F 是AC•上一动点,EF+BF 的最小值为 (33) 12、如图,边长为3的正方形ABCD 顺时针旋转30°,得上图,交DE 于D ’,阴影部分面积是 (933-)13、如图,已知四边形ABCD 中,AC 和BD 相交于点O , 且∠AOD =90°,若BC =2AD ,AB =12,CD =9,四边形ABCD 的周长是 (215+)14、有这样一组数:1,1,2,3,5…,现以这组数据的数作为正方形边长的长度构造如下正方形;再分别从左到右取2个、3个、4个、5个正方形拼成如下矩形记为①、②、③、④.第⑩个矩形周长是 46615、如图,在直线y=-33x+1与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角△ABC ,∠BAC=90°,第二象限内有一点P (a,12 ),且△ABP 的面积与△ABC 的面积相等,则a= (342-+) 三、解答题16、如图,已知矩形ABCD ,延长CB 到E ,使CE=CA ,连结AE 并取中点F ,连结AE 并取中点F ,连结BF 、DF ,求证BF ⊥DF 。
七年级(下)数学思维拓展训练试题附答案
七(下)数学思维拓展训练
时间:45分钟分值:100分
一、选择题(每小题5分,共25分)
1.若n为正整数,且x2n3,则3x3n2-4x22n的值为
(A)207 (B)36 (C)45 (D)217
2.一个长方形的长是2x厘米,宽比长的一半少4厘米,若将长方形的长和宽都增加3厘米,则该长方形的面积增加为()
A9 (B)2x2+x-3 (C)-7x-3 (D)9x-3
3.若x-5?A x2+x+B,则()
(A)Ax+6,B-30 (B)Ax-6,B30
(C)Ax+4,B-20 (D)Ax-4,B20
4.已知,则a,b,c大小关系是( )
(A)acb (B)abc (C)abc(D)bca
5.如图1,直线MN//PQ,OAOB,BOQ30.若以点O为旋转中心,将射线OA顺时针旋转60后,这时图中30的角的个数是 ( )
A 4个
B 3个
C 2个
D 1个
二、填空题(每小题5分,共25分)
6.用如图2所示的正方形和长方形卡片若干张,拼成一个边长为a+b的正方形,需要B类卡片_______张.
7.如图3,AB‖CD,M、N分别在AB,CD上,P为两平行线间一点,那么∠1+∠2+∠3
8.如图4,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125, 则∠DBC
9.三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 .
10. 数学家发明了一个魔术盒,当任意数对进入其中时,会得到一个新的数:.现将数对放入其中得到数,再将数对放入其中后,如果最后得到的数是 .(结果要化简)
三、解答题(每小题10分,共50分)
11.计算:1+2+3+...+20132+3+4+...+2012-1+2+3+...+2012 2+3+4+ (2013)
12.图5是按一定规律排列的方程组集合和它解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、……方程组n.
(1)将方程组1的解填入图中;
(2)请依据方程组和它的解变化的规律,将方程组n和它的解直接填入集合图中;
(3)若方程组的解是,求m的值,并判断该方程组是否符合(2)中的规律?
13.如图6,已知两组直线分别互相平行.
(1)若∠1115o,求∠2,∠3的度数;
(2)题(1)中隐含着一个规律,请你根据(1)的结果进行归纳,试用文字表述出来;
(3)利用(2)中的结论解答:如果两个角的两边分别平行,其中一个角是另一个角的2倍,求这两个角的大小.
14.下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.
解:设x2-4xy.
原式y+2 y +6+4 ①
y2+8y+16②
y+42③
x2-4x+42④
回答下列问题:
(1)该同学②到③运用了因式分解的_______.
(A)提取公因式 (B)平方差公式
(C)两数和的完全平方公式 (D)两数差的完全平方公式
(2)该同学因式分解的结果是否彻底?________(填“彻底”或“不彻底”);若不彻底,请直接写出因式分解的最后结果_________.
(3)请模仿以上方法对多项式(x2-2x)(x2-2x+2)+1进行因式分解.
15.如下几个图形是五角星和它的变形.
(1)图7中是一个五角星,则∠A+∠B+∠C+∠D+∠Eo.
(2)图7中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?如图8,说明你的结论的正确性.
(3)把图8中的点C向上移到BD上时,五个角的和(即∠CAD+∠B+∠ACE +∠D+∠E)有无变化?如图9,说明你的结论的正确性.
参考答案
1~5.ADABA
6.2
7.360
8.55 9 10. -m2+2m
11.设1+2+3+…+2012a,2+3+4+…+2012b,则a b+1.
1+2+3+…+20132+3+4+…+2012-1+2+3+…+2012 2+3+4+…+2013 a+2013b-ab+2013ab+2013b-ab-2013a2013b-2013a2013b-2013b+1 2013b-2013 b-2013-2013.
12.(1)直接消元可求出;(2)观察第一个方程都是x+y1,第二个方程x前面的系数都是1,而y前面的系数应是-n,常数项应是n2,这样第二个方程应是x-ny n2,所以第n个方程组为.其解的规律是x从1开始依次增1,y从0开始依次减1,这样第n个方程组的解为;(3)把代入方程x-my16,得m.显然不符合2中的规律.
13.(1)因为两组直线分别互相平行,所以由平行线的性质可得∠2∠1115o,∠3+∠2180o,则∠3180o-115o65o;
(2)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互
补;
(3)设其中的一个角为xo,则另一个角为2xo.因为xo+2xo180o,所以x60o.故这两个角分别为60o和120o.
14.(1)C
(2)不彻底, x-24
(3)设x2-2xy.原式y y +2+1 y2+2y+1 y+12x2-2x+12 x-14 .
15.(1)180o.
(2)无变化.因为∠BAC∠C+∠E,∠EAD∠B+∠D,所以∠CAD+∠B+∠C+∠D+∠E∠BAC+∠CAD+∠EAD180o.
(3)无变化.因为∠ACB∠CAD+∠D,∠ECD∠B+∠E,所以∠CAD+∠B+∠ACE +∠D+∠E∠ACB+∠ACE+∠ECD180o.。