九年级数学上垂径定理练习题
- 格式:doc
- 大小:523.50 KB
- 文档页数:6
专题08垂径定理、圆心角、圆周角之六大题型利用垂径定理求值【答案】2【分析】根据垂径定理和勾股定理列方程求解即可.【详解】解:设OC=△中,由勾股定理得,在Rt COE【变式训练】【答案】45cm/4【分析】连接BO,延长22=,即可求解.BC OB OC-【详解】解:如图,连接=,由折叠得:CD CEQ D是OC的中点,\=,CD OD\==,CE CD OD2\==,4OC OE【答案】310【分析】由题意易得【详解】解:连接OD∵AB 是O e 的直径,AB ∴152OD OB AB ===,∵CD AB ^,6CD =,∴13,2DE CD DEO ==Ð∴22OE OD DE =-=垂径定理的实际应用【点睛】本题考查了勾股定理和垂径定理,灵活运用所学知识,掌握垂直于弦的直径平分弦,且平分弦所对的弧,是解决本题的关键.【变式训练】1.(2023上·福建龙岩·九年级统考期末)筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧.如图1,点M 表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O (O 在水面上方)为圆心的圆,且圆O 被水面截得的弦AB 长为8米.若筒车工作时,盛水桶在水面以下的最大深度为2米,则这个圆的半径为( )A .2米B .3米C .4米D .5米【答案】D 【分析】过圆O 作OD AB ^于E ,如图所示,由垂径定理可知4AE BE ==,设圆的半径为r ,再利用勾股定理列方程求解即可得到答案.【详解】解:过圆O 作OD AB ^于E ,如图所示:Q 弦AB 长为8米,\4AE BE ==,Q 盛水桶在水面以下的最大深度为2米,设圆的半径为r ,在Rt AOE △中,90AEO Ð=°,OA r =,4AE =,2OE OD ED r =-=-,则由勾【答案】26【分析】连接AO ,依题意,得出222AO AC CO =+,解方程即可求解.【详解】解:如图所示,连接∵1CD =,10AB =,AB ∴5AC =,设半径为r ,则AO r =在Rt AOC V 中,2AO =利用弧、弦、圆心角的关系求解A.AB OC=C.12ABC BOC Ð+Ð=【答案】D 【变式训练】【答案】80°/80度【分析】利用等腰三角形的性质和三角形内角和计算出即可求出答案.Ð【详解】解:∵OBC半圆(直径)所对的圆周角是直角A.43【答案】B【分析】如图:连接AQ QB=,最后根据勾股定理即可解答.【点睛】本题主要考查了圆周角定理、等腰三角形的判定与性质、勾股定理等知识点,灵活运用勾股定理成为解答本题的关键.【变式训练】【答案】13【分析】连接BD ,先由三角形内角和定理求出求出30ABD Ð=°,即有【详解】解:连接BD∵在ABC V 中,55B Ð=∴60A Ð=°,∵AB 为O e 的直径,∴90ADB CDB Ð=Ð=°Ð的度数;(1)求BAC(2)若点E为OB中点,CE 【答案】(1)45°(2)3590°的圆周角所对的弦是直径例题:(2023上·广东汕头DA DC =,2AB BC ==【答案】32【分析】连接AC ,过点角三角形,勾股定理求得∵90ADC Ð=°,∴AC 是直径,∴90ABC Ð=°【变式训练】1.(2023上·山东济南·九年级统考期末)如图,正方形ABCD 中,4AB =,E 点沿线段AD 由A 向D【答案】2p【分析】连接BD 交EF 于点1222OB OD BD ===,再由∵四边形ABCD 是正方形,∴4BC AB AD ===,EDO Ð∴242BD AB ==,【答案】90°Ð【分析】(1)由ABP (2)首先证明点P理求出OC即可得到则OP OA OB ==,\点P 在以AB 为直径的O e 在Rt BCO V 中,90OBC Ð=225OC BO BC \=+=,532PC OC OP =-=-=,已知圆内接四边形求角度【答案】102°【分析】根据圆内接四边形的性质得出【详解】解:∵四边形∴180A DCB Ð+Ð=°,又180DCE DCB Ð+Ð=°,∴102DCE A ÐÐ==°,故答案为102°.【点睛】本题主要考查了圆内接四边形的性质,熟知圆内接四边形的对角互补是解决此题的关键.【变式训练】【答案】40【分析】根据已知可得»»BCBD =56DAC BAC BAD Ð=Ð+Ð=°,再利用圆内接四边形对角互补以及平角的定义可得56DBE DAC Ð=Ð=°,继而利用角平分线定义及三角形内角和定理即可求解.(1)求证:A AEBÐ=Ð(2)若90Ð=°,点CEDC【答案】(1)见解析e的半径为25 (2)O一、单选题1.(2023上·河北张家口·九年级统考期末)O e 中的一段劣弧»AB 的度数为80o ,则AOB Ð=( )A .10oB .80oC .170oD .180o【答案】B 【分析】根据圆心角、弧、弦之间的关系得出答案即可.【详解】解:Q O e 中的一段劣弧»AB 的度数为80°,80AOB \Ð=°,故选:B .A .32°B .42【答案】A 【分析】先根据同弧所对的圆周角相等得到小即可.【详解】解:∵50A Ð=°,∴50D A Ð=Ð=°,A .10【答案】D∴12AH BH AB===在Rt BOHV中,OH∴线段OP长的最小值为A.105°B.110【答案】D【分析】先根据圆内接四边形的性质和平角的定义求出求解.A .1米B .()35+米C .3米【答案】D 【分析】连接OC 交AB 于D ,根据圆的性质和垂径定理可知理求得OD 的长,由CD OC OD =-即可求解.则OC AB ^,12AD BD AB ==在Rt OAD △中,3OA =,AD ∴225OD AO AD =-=,【点睛】本题考查圆的性质、垂径定理、勾股定理,熟练掌握垂径定理是解答的关键.【答案】120【分析】过O 点作OD AC ^AD CD =,根据三角形中位线定理可得由折叠可得:12OD OE ==∵AB 是直径,∴90ACB Ð=°,12OD BC =【答案】64°/64度【分析】根据在同圆中,Ð=Ð可推出AOC BOD【详解】解:Q»AE=【答案】3【分析】由圆的性质可得OA后根据中位线的性质即可解答.【答案】45【分析】连接AC ,如图所示,由直径所对的圆周角为直角可知及勾股定理求出AC 【详解】解:连接Q OC AB ^,AB =12AD BD AB \==在Rt AOD V 中,OA 420r \=,解得r【答案】4【分析】如图,连接CD直角三角形斜边上的中线等于斜边的一半可得【点睛】本题考查直径所对的圆周角为直角,直角三角形斜边上的中线等于斜边的一半,勾股定理.掌握直径所对的圆周角为直角是解题的关键.三、解答题e的直径AB垂直于弦CD,垂足为E,11.(2023上·安徽合肥·九年级统考期末)如图,O,.==28AE CD(1)求O e 的半径长;(2)连接 BC ,作OF BC ^【答案】(1)5(2)5在Rt OCE V 中,2OE ∴()22224R R -+=,解得5R =,∴O e 的半径长为5;(1)若这个输水管道有水部分的水面宽半径;OE AB ^Q ,11168cm 22BD AB \==´=(1)连接AD,求证:(2)若52,==CD AB 【答案】(1)详见解析;(2)6Ð相等吗?为什么?(1)BAFÐ和CAD^,垂足为(2)过圆心O作OH AB【答案】(1)相等,理由见解析(2)10【详解】(1)解:连接BF ,Q AF 是O e 的直径,90F BAF \Ð+Ð=°Q AC BD ^,\90CAD BDA Ð+Ð=°,Q F BDA Ð=Ð,\BAF CAD Ð=Ð.(2)解:OH AB ^Q ,AH BH \=,OA OF =Q ,210BF OH \==,BAF CAD Ð=ÐQ ,10CD BF \==.【点睛】本题考查的是圆周角定理,等角的余角相等,圆心角、弦的关系,三角形的中位线性质,垂径定理,掌握圆心角、弦的关系,三角形的中位线性质以及垂径定理是解题的关键.15.(2023上·山东威海·九年级统考期末)【初识模型】如图1,在ABC V 中,,90AB AC BAC =Ð=°.点D 为BC 边上一点,以AD 为边作ADE V ,使=90DAE а,AE AD =,连接CE ,则CE 与BD 的数量关系是__________;【构建模型】如图2,ABC V 内接于,O BC e 为O e 的直径,AB AC =,点E 为弧AC 上一点,连接,,AE BE CE .若3,9CE BE ==,求AE 的长;【运用模型】如图3,等边ABC V 内接于O e ,点E 为弧AC 上一点,连接,,AE BE CE .若6,10CE BE ==,求AE 的长.【答案】(1)BD CE =;(2)32;(3)4【分析】(1)只需要利用SAS 证明BAD CAE V V ≌,即可证明BD CE =(2)如图所示,过点A 作AD AE ^交BE 于D ,由BC 是直径,得到明BAD CAE Ð=Ð,再证明45ADE AED Ð=Ð=°,得到AD AE =,即可证明2(3)如图所示,在BE 上取一点∵ABC V 是等边三角形,∴60AB AC ACB ==°,∠,∴60AEB ACB Ð=Ð=°,∴ADE V 是等边三角形,∴60AE DE DAE ==°=,∠∠∴BAC CAD DAE Ð-Ð=Ð-Ð【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,圆周角定理,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.。
2020 九级数学上册圆圆的基本性质-垂径定理课堂测试卷一、选择题:1、如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8B.4C.10D.52、如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DMB.CB=DBC.∠ACD=∠ADCD.OM=MD3、如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为C,如果OC=3,那么弦AB的长为()A.4B.6C.8D.104、下列判断正确的是( )A.平分弦的直径垂直于弦B.平分弦的直径必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦5、如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2B.4C.4D.86、一个隧道的横截面如图所示,它的形状是以点O为圆心,5为半径的圆的一部分,M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E.若CD=6,则隧道的高(ME的长)为()A.4B.6C.8D.97、如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是()A.(0,0)B.(﹣2,1)C.(﹣2,﹣1)D.(0,﹣1)8、如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<59、如图,⊙O的半径为2,弦AB=,点C在弦AB上,AC=AB,则OC的长为()A. B. C. D.10、如图,AB是⊙O的直径,半径OC⊥AB,点D是弧ACB上的动点(不与A、B、C重合),DE⊥OC,DF⊥AB,垂足分别是E、F,则EF长度()A. 变大B. 变小C. 不变D. 无法确定二、填空题:11、如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8cm,DC=2cm,则OC= cm.12、如图,C是以AB为直径的⊙O上一点,已知AB=5,BC=3,则圆心O到弦BC的距离是.13、如图,AB为⊙O的直径,CD⊥AB,若AB=10,CD=8,则圆心O到弦CD的距离为.14、如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已知CD=4,OD=3,求AB长是.15、一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的半径是米.16、如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是 .三、解答题:17、如图,⊙O的半径为5,AB为弦,OC⊥AB,交AB于点D,交⊙O于点C,CD=2,求弦AB的长.18、如图,在以点O为圆心的两个圆中,大圆的弦AB交小圆于点C、D,求证:AC=BD.19、如图,已知AB是⊙O的弦,点C在线段AB上,OC=AC=4,CB=8.求⊙O的半径.20、每位同学都能感受到日出时美丽的景色.右图是一位同学从照片上剪切下来的画面,“图上”太阳与海平线交于A﹑B两点,他测得“图上”圆的半径为5厘米,AB=8厘米,若从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,求“图上”太阳升起的速度.参考答案1、D2、D3、C4、C5、C6、D.7、C8、A9、D10、C11、512、213、答案为:3;14、答案为:10.15、答案为:0.516、答案为:5.17、解:∵OC是⊙O的半径,OC⊥AB于点D,∴AD=BD=AB.∵OC=5,CD=2,∴OD=OC-CD=3.在Rt△AOD中,OA=5,OD=3,∴AD===4,∴AB=2AD=8.18、证明:过圆心O作OE⊥AB于点E,在大圆O中,OE⊥AB,∴AE=BE.在小圆O中,OE⊥CD,∴CE=DE.∴AE﹣CE=BE﹣DE.∴AC=BD.19、连接OA,过点O作OD⊥AB于点D.∵AC=4,CB=8,∴AB=12.∵OD⊥AB,∴AD=DB=6,∴CD=2.在Rt△CDO中,∠CDO=90°,∴OD=2.在Rt△ADO中,∠ADO=90°,由勾股定理,得OA=4,即⊙O的半径是4.20、解:连接OA,过点O作OD⊥AB,∵AB=8厘米,∴AD=AB=4厘米,∵OA=5厘米,∴OD==3厘米,∴海平线以下部分的高度=OA+OD=5+3=8(厘米),∵太阳从所处位置到完全跳出海平面的时间为16分钟,∴“图上”太阳升起的速度==0.5厘米/分钟.。
精品字里行间精品文档成功是必须的垂径定理练习题一一.选择题1、如图2,AB 是⊙O 的直径,弦CD ⊥AB,垂足为E,如果AB=20,CD=16, 那么线段OE 的长为( ) A 、10 B 、8 C 、6 D 、42.如图,已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是( )A .2.5B .3.5C .4.5D .5.53.高速公路的隧道和桥梁最多.图3是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10米,净高CD =7米,则此圆的半径OA =( )A .5B .7C .375D .3774.如图,圆弧形桥拱的跨度AB =12米,拱高CD =4米,则拱桥的半径为( )A .6.5米C .13米D .15米二.填空题1.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小孔的直径AB是 mm .2.如图,⊙O 的半径OA =10cm ,弦AB=16cm ,P 为AB 上一动点,则点P 到圆心O 的最短距离为 cm . 3.如图,⊙O 的半径为5,弦8AB =,OC AB ⊥于C ,则OC 的长等于 .4.如图,某花园小区一圆形管道破裂,修理工准备更换一段新管道,现在量得污水水面宽度为80cm ,水面到管道顶部距离为20cm ,则修理工应准备内直径是 cm 的管道.5.如图5,点A B ,是⊙O 上两点,10AB =,点P 是⊙O 上的动点(P 与A B ,不重合)连结AP PB ,,过点O分别作OE AP ⊥于点E ,OF PB ⊥于点F ,则EF = .三.解答题已知:如图1,30PAC ∠=︒,在射线AC 上顺次截取AD =3cm ,DB =10cm ,以DB 为直径作⊙O 交射线AP 于E 、F 两点,求圆心O 到AP 的距离及EF 的长.垂径定理练习题二1、已知:AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD =10cm ,AP:PB =1:5,则⊙O 的半径为_______。
专题24.2 垂径定理的应用【典例1】如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.(1)求拱桥的半径;(2)有一艘宽为5m的货船,船舱顶部为长方形,并高出水面3.4m,则此货船是否能顺利通过此圆弧形拱桥,并说明理由.(1)根据垂径定理和勾股定理求解;(2)连接ON,OB,根据勾股定理即可得到结论.解:(1)如图,连接ON,OB.∵OC⊥AB,∴D为AB中点,∵AB=12m,∴BD=12AB=6m.又∵CD=4m,设OB=OC=ON=r,则OD=(r﹣4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣4)2+62,解得r=6.5.∴拱桥的半径为6.5m.(2)∵CD=4m,船舱顶部为长方形并高出水面3.4m,∴CE=4﹣3.4=0.6(m),∴OE=r﹣CE=6.5﹣0.6=5.9(m),在Rt△OEN中,EN2=ON2﹣OE2=6.52﹣5.92=7.44,∴EN m).∴MN=2EN=2×≈5.4m>5m.∴此货船能顺利通过这座拱桥.1.(2022•南海区校级一模)如图,武汉晴川桥可以近似地看作半径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为300m,那么这些钢索中最长的一根为( )A.50m B.45m C.40m D.60m【思路点拨】设圆弧的圆心为O,过O作OC⊥AB于C,交AB于D,连接OA,先由垂径定理得AC=BC=12AB=150,再由勾股定理求出OC=200,然后求出CD的长即可.【解题过程】解:设圆弧的圆心为O,过O作OC⊥AB于C,交AB于D,连接OA,如图所示:则OA=OD=250,AC=BC=12AB=150,∴OC=200,∴CD=OD﹣OC=250﹣200=50(m),即这些钢索中最长的一根为50m ,故选:A .2.(2022•旌阳区二模)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O 为圆心的圆,如图2,已知圆心O 在水面上方,且⊙O 被水面截得弦AB 长为4米,⊙O 半径长为3米.若点C 为运行轨道的最低点,则点C 到弦AB 所在直线的距离是( )A .1米B .2米C .米D .(3+米【思路点拨】连接OC ,OC 交AB 于D ,由垂径定理得AD =BD =12AB =2(米),再由勾股定理得OD 后求出CD 的长即可.【解题过程】解:连接OC ,OC 交AB 于D ,由题意得:OA =OC =3米,OC ⊥AB ,∴AD =BD =12AB =2(米),∠ADO =90°,∴OD ==∴CD=OC﹣OD=(3即点C到弦AB所在直线的距离是(3故选:C.3.(2022•宣州区二模)如图所示的是一圆弧形拱门,其中路面AB=2m,拱高CD=3m,则该拱门的半径为( )A.53m B.2m C.83m D.3m【思路点拨】取圆心为O,连接OA,由垂径定理设⊙O的半径为rm,则OC=OA=rm,由拱高CD=3m,OD=(3﹣r)m,OD⊥AB,由垂径定理得出AD=1m,由勾股定理得出方程r2=12+(3﹣r)2,解得:r=53,得出该拱门的半径为53m,即可得出答案.【解题过程】解:如图,取圆心为O,连接OA,设⊙O的半径为rm,则OC=OA=rm,∵拱高CD=3m,∴OD=(3﹣r)m,OD⊥AB,∵AB=2m,∴AD=BD=12AB=1m,∵OA2=AD2+OD2,∴r2=12+(3﹣r)2,解得:r=5 3,∴该拱门的半径为53 m,故选:A.4.(2021秋•海淀区校级期中)数学活动课上,同学们想测出一个残损轮子的半径,小的解决方案如下:如图,在轮子圆弧上任取两点A,B,连接AB,再作出AB的垂直平分线,交AB于点C,交AB于点D,测出AB,CD的长度,即可计算得出轮子的半径.现测出AB=40cm,CD=10cm,则轮子的半径为( )A.50cm B.35cm C.25cm D.20cm【思路点拨】由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径,即可得出轮子的直径长.【解题过程】解:设圆心为O,连接OB.Rt△OBC中,BC=12AB=20cm,根据勾股定理得:OC2+BC2=OB2,即:(OB﹣10)2+202=OB2,解得:OB=25;故轮子的半径为25cm.故选:C.5.(2021秋•曾都区期中)在圆柱形油槽内装有一些油,油槽直径MN为10分米.截面如图,油面宽AB 为6分米,如果再注入一些油后,当油面宽变为8分米,油面AB上升( )A.1分米B.4分米C.3分米D.1分米或7分米【思路点拨】实质是求两条平行弦之间的距离.根据勾股定理求弦心距,作和或差分别求解.【解题过程】解:连接OA.作OG⊥AB于G,则在直角△OAG中,AG=3分米,因为OA=5cm,根据勾股定理得到:OG=4分米,即弦AB的弦心距是4分米,同理当油面宽AB为8分米时,弦心距是3分米,当油面没超过圆心O时,油上升了1分米;当油面超过圆心O时,油上升了7分米.因而油上升了1分米或7分米.故选:D.6.(2021秋•宁波期末)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=6cm,则球的半径为( )A.3cm B.134cm C.154cm D.174cm【思路点拨】设球的平面投影圆心为O,过点O作ON⊥AD于点N,延长NO交BC于点M,连接OF,由垂径定理得:NF=EN=12EF=3(cm),设OF=xcm,则OM=(4﹣x)cm,再在Rt△MOF中由勾股定理求得OF的长即可.【解题过程】解:设球的平面投影圆心为O,过点O作ON⊥AD于点N,延长NO交BC于点M,连接OF,如图所示:则NF=EN=12EF=3(cm),∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDNM是矩形,∴MN=CD=6cm,设OF=xcm,则OM=OF,∴ON=MN﹣OM=(6﹣x)cm,在Rt△ONF中,由勾股定理得:ON2+NF2=OF2,即:(6﹣x)2+32=x2,解得:x=15 4,即球的半径长是154cm,故选:C.7.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为( )A .10cmB .15cmC .20cmD .24cm【思路点拨】连接OE ,交AB 于点F ,连接OA ,∵AC ⊥CD 、BD ⊥CD ,由矩形的判断方法得出四边形ACDB 是矩形,得出AB ∥CD ,AB =CD =16cm ,由切线的性质得出OE ⊥CD ,得出OE ⊥AB ,得出四边形EFBD 是矩形,AF =12AB =12×16=8(cm ),进而得出EF =BD =4cm ,设⊙O 的半径为rcm ,则OA =rcm ,OF =OE ﹣EF =(r ﹣4)cm ,由勾股定理得出方程r 2=82+(r ﹣4)2,解方程即可求出半径,继而求出这种铁球的直径.【解题过程】解:如图,连接OE ,交AB 于点F ,连接OA ,∵AC ⊥CD 、BD ⊥CD ,∴AC ∥BD ,∵AC =BD =4cm ,∴四边形ACDB 是平行四边形,∴四边形ACDB 是矩形,∴AB ∥CD ,AB =CD =16cm ,∵CD 切⊙O 于点E ,∴OE ⊥CD ,∴OE ⊥AB ,∴四边形EFBD 是矩形,AF =12AB =12×16=8(cm ),∴EF =BD =4cm ,设⊙O 的半径为rcm ,则OA =rcm ,OF =OE ﹣EF =(r ﹣4)cm ,在Rt△AOF中,OA2=AF2+OF2,∴r2=82+(r﹣4)2,解得:r=10,∴这种铁球的直径为20cm,故选:C.8.(2022•上海)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为 400π .(结果保留π)【思路点拨】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解题过程】解:如图,连接OB,过点O作OD⊥AB于D,∵OD⊥AB,OD过圆心,AB是弦,∴AD=BD=12AB=12(AC+BC)=12×(11+21)=16,∴CD=BC﹣BD=21﹣16=5,在Rt△COD中,OD2=OC2﹣CD2=132﹣52=144,在Rt△BOD中,OB2=OD2+BD2=144+256=400,∴S⊙O=π×OB2=400π,故答案为:400π.9.(2021秋•溧水区期末)在一个残缺的圆形工件上量得弦BC=8cm,BC的中点D到弦BC的距离DE=2cm,则这个圆形工件的半径是 5 cm.【思路点拨】由垂径定理的推论得圆心在直线DE上,设圆心为0,连接OB,半径为R,再由垂径定理得BE=CE=12 BC=4(cm),然后由勾股定理得出方程,解方程即可.【解题过程】解:∵DE⊥BC,DE平分弧BC,∴圆心在直线DE上,设圆心为O,半径为Rcm,如图,连接OB,则OD⊥BC,OE=R﹣DE=(R﹣2)cm,∴BE=CE=12BC=4(cm),在Rt△OEB中,OB2=BE2+OE2,即R2=42+(R﹣2)2,解得:R=5,即这个圆形工件的半径是5cm,故答案为:5.10.(2022•柯桥区一模)《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其意思是:如图,AB为⊙O的直径,弦CD⊥AB于点E,BE=1寸,CD=1尺,那么直径AB的长为多少寸?(注:1尺=10寸)根据题意,该圆的直径为 26 寸.【思路点拨】连接OC,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD的长求出DE的长,设OC =OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得出方程,解方程求出半径,即可得出直径AB 的长.【解题过程】解:连接OC,∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=12CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得:OE2+CE2=OC2,即(x﹣1)2+52=x2,解得x=13,∴AB=26寸,即直径AB的长为26寸,故答案为:26.11.(2021秋•瑞安市期末)某公路上有一隧道,顶部是圆弧形拱顶,圆心为O,隧道的水平宽AB为24m,AB离地面的高度AE=10 m,拱顶最高处C离地面的高度CD为18m,在拱顶的M,N处安装照明灯,且M,N离地面的高度相等都等于17m,则MN= 10 m.【思路点拨】根据题意和垂径定理得到CG=8m,AG=12m,CH=1m,根据勾股定理求得半径,进而利用勾股定理求得MH,即可求得MN.【解题过程】解:设CD于AB交于G,与MN交于H,∵CD=18m,AE=10m,AB=24m,HD=17m,∴CG=8m,AG=12m,CH=1m,设圆拱的半径为r,在Rt△AOG中,OA2=OG2+AG2,∴r2=(r﹣8)2+122,解得r=13,∴OC=13m,∴OH=13﹣1=12m,在Rt△MOH中,OM2=OH2+MH2,∴132=122+MH2,解得MH2=25,∴MH=5m,∴MN=10m,故答案为10.12.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为 7.5 cm(玻璃瓶厚度忽略不计).【思路点拨】设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由垂径定理得AM=DM=12AD=6(cm)然后在Rt△OAM中,由勾股定理得出方程,解方程即可.【解题过程】解:如图,设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由题意得:AD=12cm,OM=32﹣20﹣r=(12﹣r)(cm),由垂径定理得:AM=DM=12AD=6(cm),在Rt△OAM中,由勾股定理得:AM2+OM2=OA2,即62+(12﹣r)2=r2,解得:r=7.5,即球的半径为7.5cm,故答案为:7.5.13.(2021秋•温州校级月考)如图是郑州圆形“戒指桥”,其数学模型为如图所示.已知桥面跨径AB=20米,D为圆上一点,DC⊥AB于点C,且CD=BC=14米,则该圆的半径长为 26 米.【思路点拨】过O作ON⊥AB于N,过D作DM⊥ON于M,由垂径定理得AN=BN=12AB=10(米),再证四边形DCNM是矩形,则MN=CD=14米,DM=CN=BC+BN=24(米),设该圆的半径长为r米,然后由题意列出方程组,解方程组即可.【解题过程】解:过O作ON⊥AB于N,过D作DM⊥ON于M,如图所示:则AN=BN=12AB=10(米),∠ONC=∠DMN=90°,∵DC⊥AB,∴∠DCN=90°,∴四边形DCNM是矩形,∴MN=CD=14米,DM=CN=BC+BN=24(米),设该圆的半径长为r米,由题意得:ON2=r2−102 OM2=r2−242 OM=ON−14,解得:r=26ON=24 OM=10,即该圆的半径长为26米,故答案为:26.14.(2021秋•金安区校级期末)往直径为680mm的圆柱形油槽内装入一些油以后,截面如图所示,若油面宽AB=600mm,求油的最大深度.【思路点拨】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD 的长,进而可得出CD的长.【解题过程】解:过点O作OC⊥AB于点D,交弧AB于点C.∵OC⊥AB于点D∴BD=12AB=12×600=300mm,∵⊙O的直径为680mm∴OB=340mm…(5分)∵在Rt△ODB中,OD=160(mm),∴DC=OC﹣OD=340﹣160=180(mm);答:油的最大深度为180mm.15.(2021秋•惠城区校级期中)如图,⊙O为水管横截面,水面宽AB=24cm,水的最大深度为18cm,求⊙O的半径.【思路点拨】由垂径定理可知AD=12cm,设⊙O的半径为rcm,则OD=(18﹣r)cm,在Rt△AOd中,再利用勾股定理即可求出r的值.【解题过程】解:作OD⊥AB于D,交⊙O于E,连接OA,∴AD=12AB=12×24=12cm,设⊙O的半径为rcm,则OD=ED﹣OE=(18﹣r)cm,在Rt△AOD中,由勾股定理得:OA2=OD2+AD2,即r2=(18﹣r)2+122,解得:r=13,即⊙O的半径为13cm.16.(2021秋•奈曼旗期中)如图所示,测得AB是8mm,测得钢珠顶端离零件表面的距离为8mm,求这个圆的直径.【思路点拨】过O作OC⊥AB于C,交优弧AB于D,连接AO,由垂径定理得AC=BC=12AB=4(mm),设⊙O的半径为rmm,则OC=CD﹣OD=(8﹣r)mm,然后在Rt△AOC中,由勾股定理得出方程,解方程即可.【解题过程】解:如图,过O作OC⊥AB于C,交优弧AB于D,连接AO,则AC=BC=12AB=4(mm),CD=8mm,设⊙O的半径为rmm,则OC=CD﹣OD=(8﹣r)mm,在Rt△AOC中,由勾股定理得:42+(8﹣r)2=r2,解得:r=5,即⊙O的半径为5mm,∴⊙O的直径为10mm.17.(2021秋•阜阳月考)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就,它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸).问这块圆形木材的直径(AC)是多少?”如图所示,请根据所学的知识解答上述问题.【思路点拨】设⊙O的半径为x寸.在Rt△ADO中,AD=5寸,OD=(x﹣1)寸,OA=x寸,则有x2=(x﹣1)2+52,解方程即可.【解题过程】解:设⊙O的半径为x寸,∵OE⊥AB,AB=10寸,∴AD=BD=12AB=5寸,在Rt△AOD中,OA=x,OD=x﹣1,由勾股定理得x2=(x﹣1)2+52,解得x=13,∴⊙O的直径AC=2x=26(寸),答:这块圆形木材的直径(AC)是26寸.18.(2021秋•高新区期中)某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面图;(要求尺规作图,保留作图痕迹,不写作法)(2)若这个输水管道有水部分的水面宽AB=32cm,水最深处的地方高度为8cm,求这个圆形截面的半径.【思路点拨】(1)根据尺规作图的步骤和方法做出图即可;(2)先过圆心O作半径OD⊥AB,交AB于点D,设半径为r,得出AD、OD的长,在Rt△AOD中,根据勾股定理求出这个圆形截面的半径.【解题过程】解:(1)如图所示;(2)作OD⊥AB于D,并延长交⊙O于C,则D为AB的中点,∵AB=32cm,∴AD=12AB=16.设这个圆形截面的半径为xcm,又∵CD=8cm,∴OC=x﹣8,在Rt△OAD中,∵OD2+AD2=OA2,即(x﹣8)2+162=x2,解得,x=20.∴圆形截面的半径为20cm.19.(2021秋•黔西南州期末)如图,在一座圆弧形拱桥,它的跨度AB为60m,拱高PM为18m,当洪水泛滥到跨度只有30m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m,即PN=4m时,试通过计算说明是否需要采取紧急措施.【思路点拨】由垂径定理可知AM=BM、A′N=B′N,利用AB=60,PM=18,可先求得圆弧所在圆的半径,再计算当PN =4时A′B′的长度,与30米进行比较大小即可.【解题过程】解:设圆弧所在圆的圆心为O,连接OA、OA′,设半径为x米,则OA=OA′=OP,由垂径定理可知AM=BM,A′N=B′N,∵AB=60米,∴AM=30米,且OM=OP﹣PM=(x﹣18)米,在Rt△AOM中,由勾股定理可得AO2=OM2+AM2,即x2=(x﹣18)2+302,解得x=34,∴ON=OP﹣PN=34﹣4=30(米),在Rt△A′ON中,由勾股定理可得A′N=16(米),∴A′B′=32米>30米,∴不需要采取紧急措施.20.(2021秋•余干县期中)如图是某蔬菜基地搭建一座圆弧型蔬菜棚,跨度AB=3.2米,拱高CD=0.8米(C为AB的中点,D为弧AB的中点).(1)求该圆弧所在圆的半径;(2)在距蔬菜棚的一端0.4米处竖立支撑杆EF,求支撑杆EF的高度.【思路点拨】(1)设弧AB所在的圆心为O,D为弧AB的中点,CD⊥AB于C,延长DC至O点,设⊙O的半径为R,利用勾股定理求出即可;(2)利用垂径定理以及勾股定理得出HF的长,再求出EF的长即可.【解题过程】解:(1)设弧AB所在的圆心为O,D为弧AB的中点,CD⊥AB于C,延长DC经过O点,则BC=12AB=1.6(米),设⊙O的半径为R,在Rt△OBC中,OB2=OC2+CB2,∴R2=(R﹣0.8)2+1.62,解得R=2,即该圆弧所在圆的半径为2米;(2)过O作OH⊥FE于H,则OH=CE=1.6﹣0.4=1.2=65(米),OF=2米,在Rt△OHF中,HF== 1.6(米),∵HE=OC=OD﹣CD=2﹣0.8=1.2(米),∴EF=HF﹣HE=1.6﹣1.2=0.4(米),即支撑杆EF的高度为0.4米.21.如图①,圆形拱门屏风是中国古代家庭中常见的装饰隔断,既美观又实用,彰显出中国元素的韵味.图②是一款拱门的示意图,其中C为AB中点,D为拱门最高点,线段CD经过圆心,已知拱门的半径为1.5m,拱门最下端AB=1.8m.(1)求拱门最高点D到地面的距离;(2)现需要给房间内搬进一个长和宽为2m,高为1.2m的桌子,已知搬桌子的两名工人在搬运时所抬高度相同,且高度为0.5m 2.236)【思路点拨】(1)如图②中,连接AO.利用勾股定理求出OC即可;(2)如图②﹣1,弦EF=2m,且EF⊥CD,连接OE.求出CJ即可.【解题过程】解:(1)如图②中,连接AO.∵CD⊥AB,CD经过圆心O,∴AC=CB=0.9m,∴OC= 1.2(m),∴CD=OD+PC=1.5+1.2=2.7(m),∴拱门最高点D到地面的距离为2.7m;(2)如图②﹣1,弦EF=2m,且EF⊥CD,连接OE.∵CD⊥EF,CD经过圆心,∴EJ=JF=1m,≈1.118,∴OJ=2∴CJ=1.2﹣1.118=0.082(m),∵0.5>0.082,∴搬运该桌子时能够通过拱门.22.(2021秋•姑苏区校级月考)诗句“君到姑苏见,人家尽枕河”所描绘的就是有东方威尼斯之称的水城苏州.小勇要帮忙船夫计算一艘货船是否能够安全通过一座圆弧形的拱桥,现测得桥下水面AB宽度16m时,拱顶高出水平面4m,货船宽12m,船舱顶部为矩形并高出水面3m.(1)请你帮助小勇求此圆弧形拱桥的半径;(2)小勇在解决这个问题时遇到困难,请你判断一下,此货船能顺利通过这座拱桥吗?说说你的理由.【思路点拨】(1)根据垂径定理和勾股定理求解;(2)连接ON,利用勾股定理求出EN,得出MN的长,即可得到结论.【解题过程】解:(1)如图,连接OB.∵OC⊥AB,∴D为AB中点,∵AB=16m,∴BD=12AB=8(m),又∵CD=4m,设OB=OC=r,则OD=(r﹣4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣4)2+82,解得r=10.答:此圆弧形拱桥的半径为10m.(2)此货船不能顺利通过这座拱桥,理由如下:连接ON,∵CD=4m,船舱顶部为长方形并高出水面3m,∴CE=4﹣3=1(m),∴OE=r﹣CE=10﹣1=9(m),在Rt△OEN中,由勾股定理得:EN∴MN=2EN=<12m.∴此货船B不能顺利通过这座拱桥.。
3.3 垂径定理同步训练2024-2025学年浙教版数学九年级上册一、单选题1.下列说法正确的是()A.长度相等的弧叫等弧B.平分弦的直径一定垂直于该弦C.三角形的外心是三条角平分线的交点D.不在同一直线上的三个点确定一个圆2.点P是⊙O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为()A.7cm B.5cm C.4cm D.3.5cm3.点P为⊙O内一点,且OP=4,若⊙O的半径为6,则过点P的弦长不可能为().A.12B.2√30C.8D.10.54.如图,这是一种用于液体蒸馏或分馏物质的玻璃容器——蒸馏瓶,其底部是圆球形.球的半径为5cm,瓶内液体的最大深度CD=3cm,则截面圆中弦AB的长为()A.√34cm B.8cm C.√21cm D.2√21cm 5.下列说法正确的数量为()(1)三角形的外心到三角形三顶点距离相等(2)一组对边平行的四边形是梯形(3)垂直平分弦的直径垂直平分弦所对的弧A.0B.1C.2D.36.⊙O的直径是15cm,CD经过圆心O,与⊙O交于C、D两点,垂直弦AB于M,且OM:OC=3 :5,则AB=()A.24cm B.12cm C.6cm D.3cm7.已知⊙O的半径为2cm,弦AB长为2cm,则这条弦的中点到弦所对优弧中点的距离为()A.2cm B.√3cm C.(2-√3)cm D.(2+√3)cm 8.如图,在⊙O中,直径CD垂直弦AB,连接OA,CB,已知⊙O的半径为2√3,AB=2,则⊙BCD等于A.20°B.30°C.60°D.70°二、填空题9.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.10.一圆柱形排水管的截面如图所示,已知排水管的半径为1m,水面宽AB为1.6m.由于天气干燥,水管水面下降,此时排水管水面宽变为1.2m,则水面下降了m.第1页共6页◎第2页共6页11.如图,AB是⊙O的弦,半径OC⊙AB,AC⊙OB,则⊙BOC的度数为.12.如图,AB为⊙O的弦,半径OC⊥AB,垂足为点D.如果AB=10cm,CD=3cm,那么⊙O的半径是cm.13.如图,C、D是以AB为直径的⊙O上的两个动点(点C、D不与A、B重合),在运动过程中,弦CD的长度始终保持不变,点M是弦CD的中点,过点C作CP⊥AB于点P.若CD=3,AB=5,则PM的最大值是 .三、解答题14.估计如图中三段弧的半径的大小关系,再用圆规检验你的结论.15.如图,是一个高速公路的隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=12米,拱高CD=9米,求圆的半径.16.如图,某储藏室入口的截面是一个半径为1.2米的半圆形,一个长、宽、高分别是1.2m,1m,0.8m的箱子能放进储藏室吗?请说明理由.17.如图,在△ABC中,已知⊙ACB=130°,⊙BAC=20°,BC=2,以点C为圆心,CB 为半径的圆交AB于点D,求弦BD的长18.如图,要把破残的圆片复制完整,已知弧上的三点A、B、C.(1)用尺规作图法,找出弧BC所在圆的圆心O(保留作图痕迹,不写作法);第3页共6页◎第4页共6页(2)设△ABC是等腰三角形,底边BC=24cm,腰AB=13cm,求圆片的半径R.第5页共6页◎第6页共6页。
九年级数学:垂径定理练习(第2课时)(含答案)1.平分弦(____________)的直径垂直于弦,并且平分弦所对的弧.2.平分弧的直径垂直平分弧所对的弦.3.垂径定理解读:(1)过圆心;(2)平分弦(不是直径);(3)垂直于弦;(4)平分弦所对的优弧;(5)平分弦所对的劣弧.若一条直线具备这五项中任意两项,则必具备另外三项.A组基础训练1.下列命题正确的有( )①垂直于弦的直径平分弦②平分弦的直径必垂直于弦,并且平分弦所对的两条弧③平分弦的直线必过圆心④弦所对的两条弧的中点连线垂直平分弦A.1个 B.2个 C.3个 D.4个2.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于( )A.8 B.2 C.10 D.5第2题图3.如图,已知⊙O的半径为2cm,弦AB长23cm,则这条弦的中点C到弦所对劣弧的中点D 的距离为( )第3题图A .1cmB .2cm C.2cm D.3cm4.如图,一条公路弯道处是一段圆弧AB ︵,点O 是这条弧所在圆的圆心,C 是AB ︵的中点,OC 与AB 相交于点D.已知AB =120m ,CD =20m ,那么这段弯道的半径为( )第4题图A .200mB .2003mC .100mD .1003m5.如图,AB 为⊙O 的直径,CD 是弦,AB 与CD 相交于点E.若要得到结论AB⊥CD ,还需添加的条件是________________________________.(不添加其他辅助线)第5题图6.如图,AB ,CD 是⊙O 的直径,D 是AE ︵的中点,AE 与CD 交于点F ,若OF =3,则BE 的长为________.第6题图7.如图所示,AB 是半圆的直径,O 是圆心,C 是半圆上一点,E 是AC ︵的中点,OE 交弦AC 于点D.若AC =8cm ,DE =2cm ,则OD 的长为________.第7题图8.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,则点C 的坐标为________.第8题图9.如图,⊙O是△ABC的外接圆,且AB=AC=13,BC=24,求⊙O的半径.第9题图10.(绍兴中考)如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40cm,脸盆的最低点C到AB的距离为10cm,求该脸盆的半径.第10题图B组自主提高11.如图所示,某游乐场的摩天轮⊙P的最高处A到地面l的距离是23m,最低处B到地面l的距离是3m,从B处乘摩天轮绕一周需3分钟,小明从B处乘摩天轮一周的过程中,当他到地面l的距离恰好是18m的时候应为第________分钟.第11题图11.如图,AB ,CD 是半径为5的⊙O 的两条弦,AB =8,CD =6,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则PA +PC 的最小值为________.第12题图13.已知:如图,A 、B 、C 为⊙O 上三点,点D 、E 分别为AB ︵、AC ︵的中点,连结DE ,分别交AB 、AC 于点F 、G ,求证:AF =AG.第13题图C 组 综合运用14.如图,隧道的截面由圆弧AED 和矩形ABCD 构成,矩形的长BC 为12m ,宽AB 为3m ,隧道的顶端E (圆弧AED 的中点)高出道路(BC )7m.(1)求圆弧AED 所在圆的半径;(2)如果该隧道内设双行道,现有一辆超高货运卡车高6.5m ,宽2.3m ,问这辆货运卡车能否通过该隧道.第14题图3.3 垂径定理(第2课时)【课堂笔记】1.不是直径【课时训练】1-4.BDAC5.CE =DE 或AC ︵=AD ︵或BC ︵=BD ︵6.67.3cm8.(1,3)9.连结OA 交BC 于点D,连结OC,OB,∵AB =AC =13,∴AB ︵=AC ︵,∴∠AOB =∠AOC ,∵OB =OC,∴AO ⊥BC,CD =12BC =12.在Rt △ACD 中,AC =13,CD =12,所以AD =132-122=5,设⊙O 的半径为r,则在Rt △OCD 中,OD =r -5,CD =12,OC =r,所以(r -5)2+122=r 2,计算得出r =16.9.答:⊙O 的半径为16.9.第10题图10.如图,设圆的圆心为O,连结OA,OC,OC 与AB 交于点D,设⊙O 半径为R,∵OC ⊥AB,∴AD =DB =12AB =20,∠ADO =90°,在Rt △AOD 中,∵OA 2=OD 2+AD 2,∴R 2=202+(R -10)2,∴R =25,即该脸盆的半径为25cm.11.1或212.7 2第13题图13.连OD、OE,交AB、AC于M、N,∵OD=OE=r,∴∠ODE=∠OED,而D,E分别为弧AB,弧AC的中点,∴OD、OE分别垂直于AB、AC,则有∠DFB=∠EGC,∴∠AFG=∠AGF,∴AF=AG.14.(1)设圆心为点O,半径为R,连结OE交AD于F点,连结OA,OD,由垂径定理,得OF垂直平分AD,AF=6,OF=R-(7-3)=R-4,由勾股定理,得AF2+OF2=OA2,即:62+(R-4)2=R2,解得R=6.5米;(2)能通过,但要小心.车宽GH=2.3,圆的半径OH=6.5,由勾股定理,得OG= 6.52-2.32≈6.08,G点与BC的距离为7-6.5+6.08=6.58>6.5;能通过.第14题图。
专题24.1 垂径定理【典例1】如图,在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点.(1)求证:AC=BD;(2)连接OA、OC,若OA=6,OC=4,∠OCD=60°,求AC的长.(1)过O作OH⊥CD于H,根据垂径定理得到CH=DH,AH=BH,即可得出结论;(2)过O作OH⊥CD于H,连接OD,由垂径定理得CH=DH=12CD,再证△OCD是等边三角形,得CD=OC=4,则CH=2,然后由勾股定理即可解决问题.(1)证明:过O作OH⊥CD于H,如图1所示:∵OH⊥CD,∴CH=DH,AH=BH,∴AH﹣CH=BH﹣DH,∴AC=BD;(2)解:过O作OH⊥CD于H,连接OD,如图2所示:则CH=DH=12 CD,∵OC=OD,∠OCD=60°,∴△OCD是等边三角形,∴CD=OC=4,∴CH=2,∴OH=∴AH∴AC=AH﹣CH=2.1.(2022•芜湖一模)已知⊙O的直径CD=10,AB是⊙O的弦,AB=8,且AB⊥CD,垂足为M,则AC 的长为( )A.B.C.D.【思路点拨】连接OA,由AB⊥CD,根据垂径定理得到AM=4,再根据勾股定理计算出OM=3,然后分类讨论:当如图1时,CM=8;当如图2时,CM=2,再利用勾股定理分别计算即可.【解题过程】解:连接OA,∵AB⊥CD,∴AM=BM=12AB=12×8=4,在Rt△OAM中,OA=5,∴OM=3,当如图1时,CM=OC+OM=5+3=8,在Rt△ACM中,AC=当如图2时,CM=OC﹣OM=5﹣3=2,在Rt△ACM中,AC=故选:C.2.(2022春•江夏区校级月考)如图,在⊙O中,弦AB=5,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为( )A.5B.2.5C.3D.2【思路点拨】连接OD,如图,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,再求出CD即可.【解题过程】解:连接OD,如图,∵CD⊥OC,∴∠DCO=90°,∴CD=当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=12AB=12×5=2.5,即CD的最大值为2.5,故选:B.3.(2022•山海关区一模)已知⊙O的直径CD=10,CD与⊙O的弦AB垂直,垂足为M,且AM=4.8,则直径CD上的点(包含端点)与A点的距离为整数的点有( )A.1个B.3个C.6个D.7个【思路点拨】利用勾股定理得出线段AD和AC的长,根据垂线段的性质结合图形判断即可.【解题过程】解:∵CD是直径,∴OC=OD=12CD=12×10=5,∵AB⊥CD,∴∠AMC=∠AMD=90°,∵AM=4.8,∴OM==1.4,∴CM=5+1.4=6.4,MD=5﹣1.4=3.6,∴AC=8,AD=6,∵AM=4.8,∴A点到线段MD的最小距离为4.8,最大距离为6,则A点到线段MD的整数距离有5,6,A点到线段MC的最小距离为4.8,最大距离为8,则A点到线段MC的整数距离有5,6,7,8,直径CD上的点(包含端点)与A点的距离为整数的点有6个,故选:C.4.(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B(0,4),与x轴交于C,D,则点D的坐标为( )A.0)B.(−4+0)C.(−40)D.0)【思路点拨】过O点作EH⊥AB于H,EF⊥CD于F,连接ED,如图,根据垂径定理得到CF=DF,AH=BH=3,所以OH=1,再利用勾股定理计算出EH=4,则EF=1,OF=4,接着利用勾股定理计算出FD,然后计算出OD,从而得到D点坐标.【解题过程】解:过O点作EH⊥AB于H,EF⊥CD于F,连接ED,如图,则CF=DF,AH=BH∵A(0,﹣2),B(0,4),∴AB=6,∴BH=3,∴OH=1,在Rt△BHE中,EH4,∵四边形EHOF为矩形,∴EF=OH=1,OF=EH=4,在Rt△OEF中,FD==∴OD=FD﹣OF=4,∴D(4,0).故选:B .5.(2022•新洲区模拟)如图,点A ,C ,D 均在⊙O 上,点B 在⊙O 内,且AB ⊥BC 于点B ,BC ⊥CD 于点C ,若AB =4,BC =8,CD =2,则⊙O 的面积为( )A .125π4B .275π4C .125π9D .275π9【思路点拨】利用垂径定理和勾股定理建立方程求出ON ,再求出半径后,根据圆面积的计算方法进行计算即可.【解题过程】解:如图,连接OA 、OC ,过点O 作OM ⊥CD 于M ,MO 的延长线于AB 延长线交于N ,则四边形BCMN 是矩形,∵OM ⊥CD ,CD 是弦,∴CM =DM =12CD =1=BN ,∴AN =AB +BN =4+1=5,设ON =x ,则OM =8﹣x ,在Rt △AON 、Rt △COM 中,由勾股定理得,OA 2=AN 2+ON 2,OC 2=OM 2+CM 2,∵OA =OC ,∴AN 2+ON 2=OM 2+CM 2,即52+x 2=(8﹣x )2+12,解得x =52,即ON =52,∴OA 2=52+(52)2=1254,∴S⊙O=π×OA2=1254π,故选:A.6.(2021秋•延平区校级期末)在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为( )A.910B.65C.85D.125【思路点拨】由题意可知,C、O、G三点在一条直线上OG最小,MN最大,再由勾股定理求得AB,然后由三角形面积求得CF,最后由垂径定理和勾股定理即可求得MN的最大值.【解题过程】解:过O作OG⊥AB于G,连接OC、OM,∵DE=3,∠ACB=90°,OD=OE,∴OC=12DE=32,只有C、O、G三点在一条直线上OG最小,∵OM=3 2,∴只有OG最小,GM才能最大,从而MN有最大值,过C作CF⊥AB于F,∴G和F重合时,MN有最大值,∵∠ACB=90°,BC=3,AC=4,∴AB==5,∵12AC•BC=12AB•CF,∴CF=AC×BCAB=4×35=125,∴OG=CF﹣OC=125−32=910,∴MG===6 5,∴MN=2MG=12 5,故选:D.7.(2022•吴忠模拟)如图,AB是⊙O的直径,且CD⊥AB于E,若AE=1,∠D=30°,则AB= 4 .【思路点拨】根据含30度角的直角三角形的性质求出AD,根据垂径定理求出AC=AD,求出AC=AD=2,根据圆周角定理求出∠ACB=90°,∠B=∠D=30°,再根据含30度角的直角三角形的性质得出AB=2AC即可.【解题过程】解:∵CD⊥AB,∴∠AED=90°,∵AE=1,∠D=30°,∴AD=2AE=2,∠ABC=∠D=30°,∵AB⊥CD,AB过圆心O,∴AC=AD,∴AC=AD=2,∵AB是⊙O的直径,∴∠ACB=90°,∴AB=2AC=2×2=4,故答案为:4.8.(2022•烟台模拟)如图,AB是⊙O的直径,弦CD交AB于点P,AP=4,BP=12,∠APC=30°,则CD的长为【思路点拨】过O作OI⊥CD于I,连接OD,求出半径OD=OA=8,求出OP,根据含30度角的直角三角形的性质求出OI,根据勾股定理求出DI,根据垂径定理求出DI=CI,再求出CD即可.【解题过程】解:过O作OI⊥CD于I,连接OD,则∠OID=∠OIP=90°,∵AP=4,BP=12,∴直径AB=4+12=16,即半径OD=OA=8,∴OP=OA﹣AP=8﹣4=4,∵∠IPO=∠APC=30°,∴OI=12OP=12×4=2,由勾股定理得:DI==∵OI⊥CD,OI过圆心O,∴DI=CI=即CD=DI+CI=故答案为:9.(2022•桥西区校级模拟)如图,AB是⊙C的弦,直径MN⊥AB于点O,MN=10,AB=8,如图以O为原点建立坐标系.我们把横纵坐标都是整数的点叫做整数点,则线段OC长是 3 ,⊙C上的整数点有 12 个.【思路点拨】过C作直径UL∥x轴,连接AC,根据垂径定理求出AO=BO=4,根据勾股定理求出OC,再得出答案即可.【解题过程】解:过C作直径UL∥x轴,连接CA,则AC=12×10=5,∵MN过圆心C,MN⊥AB,AB=8,∴AO=BO=4,∠AOC=90°,由勾股定理得:CO3,∴ON=5﹣3=2,OM=5+3=8,即A(﹣4,0),B(4,0),M(0,8),N(0,﹣2),同理还有弦QR=AB=8,弦WE=TS=6,且WE、TS、QR都平行于x轴,Q(﹣4,6),R(4,6),W(﹣3,7),E(3,7),T(﹣3,﹣1),S(3,﹣1),U(﹣5,3),L (5,3),即共12个点,故答案为:3;12.10.(2022•商城县三模)如图所示的网格中,每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上,点C 同时也在AB 上,若点P 是BC 的一个动点,则△ABP 面积的最大值是 −8 .【思路点拨】作AB 的垂直平分线交AB 于D ,交AB 于E ,圆心为0,则点O 在DE 上,连接AE 、BE ,CF ⊥OE 于F ,如图,设⊙O 的半径为r ,OD =x ,利用勾股定理得到r 2=x 2+42①,r 2=(x +2)2+22②,则利用②﹣①可求出得x =2,所以r =DE =2,然后根据三角形面积公式,点P 点与点E 重合时,△ABP 面积的最大值.【解题过程】解:作AB 的垂直平分线交AB 于D ,交AB 于E ,圆心为0,则点O 在DE 上,连接AE 、BE ,CF ⊥OE 于F ,如图,设⊙O 的半径为r ,OD =x ,在Rt △BOD 中,r 2=x 2+42①,在Rt △OCF 中,r 2=(x +2)2+22②,②﹣①得4+4x +4﹣16=0,解得x =2,∴OD =2,∴r =∴DE =OE ﹣OD =2,∵点P 是BC 的一个动点,∴点P 点与点E 重合时,△ABP 面积的最大值,最大值为12×8×(2)=8.故答案为:8.11.(2022春•徐汇区校级期中)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,且CE=CB,若BE=2AE,CD=5,那么⊙O的半径为【思路点拨】先证明△AFO和△BCE是等边三角形,设DE=x,根据CD=5列方程,求出x得到AD【解题过程】解:如图,记DC与⊙O交于点F,连接AF、OF、OB,过点C作CT⊥AB于点T,连接OE,OT.∵D为半径OA的中点,CD⊥OA,∴FD垂直平分AO,∴FA=FO,又∵OA=OF,∴△AOF是等边三角形,∴∠OAF=∠AOF=∠AFO=60°,∵CE=CB,CT⊥EB,∴ET=TB,∵BE=2AE,∴AE=ET=BT,∵AD=OD,∴DE∥OT,∴∠AOT=∠ADE=90°,∴OE=AE=ET,∵OA=OB,∴∠OAE=∠OBT,∵AO=BO,AE=BT,∴△AOE≌△BOT(SAS),∴OE=OT,∴OE=OT=ET,∴∠ETO=60°,∴∠OAB=∠OBA=30°,∠AED=∠CEB=60°,∴△CEB是等边三角形,∴CE=CB=BE,设DE=x,∴AE=2x,BE=CE=4x,∴CD=5x=5,∴x=1,∴AD∴AO=故答案为:12.(2022•盐城)证明:垂直于弦AB的直径CD平分弦以及弦所对的两条弧.【思路点拨】先根据已知画图,然后写出已知和求证,再进行证明即可.【解题过程】如图,CD为⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为M.求证:AM=BM,AC=BC,AD=BD.证明:连接OA、OB,∵OA=OB,∴△OAB是等腰三角形,∵AB⊥CD,∴AM=BM,∠AOC=∠BOC,∴AC=BC,AD=BD.13.(2021秋•鼓楼区校级期末)如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,CD=6,求AE 的长.【思路点拨】根据垂径定理和勾股定理求出圆的半径,进而求出AE的长即可.【解题过程】解:如图,连接OC,∵CD⊥AB,AB是直径,∴CE=DE=12CD=3,在Rt△COE中,设半径为r,则OE=5﹣r,OC=r,由勾股定理得,OE2+CE2=OC2,即(5﹣r)2+32=r2,解得r =3.4,∴AE =AB ﹣BE =3.4×2﹣5=1.8,答:AE 的长为1.8.14.(2021秋•芜湖月考)如图,在△ABC 中AB =5,AC =4,BC =2,以A 为圆心,AB 为半径作⊙A ,延长BC 交⊙A 于点D ,试求CD 的长.【思路点拨】过点A 作AE ⊥BD 于点E ,如图,则DE =BE ,利用双勾股得到AC 2﹣CE 2=AB 2﹣BE 2,即42﹣(BE ﹣2)2=52﹣BE 2,解方程得到BE =134,然后计算BD ﹣BC 即可.【解题过程】解:过点A 作AE ⊥BD 于点E ,连接AD ,如图,则DE =BE ,在Rt △ACE 中,AE 2=AC 2﹣CE 2,在Rt △ABE 中,AE 2=AB 2﹣BE 2,∴AC 2﹣CE 2=AB 2﹣BE 2,即42﹣(BE ﹣2)2=52﹣BE 2,解得BE =134,∴CD =BD ﹣BC =2BE ﹣2=2×134−2=92.答:CD 的长为92.15.(2022•江西开学)如图,在⊙O 中,弦AB ∥CD ,AB =8,CD =6,AB ,CD 之间的距离为1.(1)求圆的半径.(2)将弦AB 绕着圆心O 旋转一周,求弦AB 扫过的面积.【思路点拨】(1)过点O作OF⊥CD于点F,交AB于点E,连接OA、OD,即可得出DF=CF=3,再因为AB∥CD,则可得到OE⊥AB,进而得到AE=BE=4,最后根据勾股定理计算即可;(2)先判断出将弦AB绕着圆心O旋转一周,得到的图形,再根据圆面积公式计算即可.【解题过程】解:(1)如图,过点O作OF⊥CD于点F,交AB于点E,连接OA、OD,则DF=CF=3,∵AB∥CD,∴OE⊥AB,∴AE=BE=4,设OE=x,则OF=x+1,根据题意可得:x2+42=(x+1)2+32,∴x=3,∴=5;(2)将弦AB绕着圆心O旋转一周,得到的图形是以点O为圆心,以3为半径的圆与以5为半径的圆所围成的环形,故弦AB扫过的面积为π×52﹣π×32=16π.16.(2021秋•玄武区校级月考)如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB的垂线,交AB 的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=EG=8,求⊙O的半径.【思路点拨】(1)利用等角的余角证明∠D=∠G,再根据圆周角定理得到∠A=∠D,所以∠A=∠G,从而得到结论;(2)连接OC,如图,设⊙O的半径为r,根据等腰三角形的性质和垂径定理得到AE=EG=8,EC=ED=4,则OE=8﹣r,利用勾股定理得r2=(8﹣r)2+42,然后解方程即可.【解题过程】(1)证明:∵DF⊥CG,CD⊥AB,∴∠DEB=∠BFG=90°,∵∠DBE=∠GBF,∴∠D=∠G,∵∠A=∠D,∴∠A=∠G,∴AC=CG;(2)解:连接OC,如图,设⊙O的半径为r.∵CA=CG,CD⊥AB,∴AE=EG=8,EC=ED=4,∴OE=AE﹣OA=8﹣r,在Rt△OEC中,∵OC2=OE2+EC2,∴r2=(8﹣r)2+42,解得r=5,∴⊙O的半径为5.17.(2022•白云区二模)已知:如图,A,B是半圆O上的两点,CD是⊙O的直径,∠AOD=80°,B是AD 的中点.(1)在CD上求作一点P,使得AP+PB最短;(2)若CD=4cm,求AP+PB的最小值.【思路点拨】(1)作出B关于CD的对称点B′,连接AB′,交CD于P点,P就是所求的点;(2)延长AO交圆与E,连接OB′,B′E,可以根据圆周角定理求得∠AOB′的度数,根据等腰三角形的性质求得∠A的度数,然后在直角△AEB′中,解直角三角形即可求解.【解题过程】解:(1)作BB′⊥CD,交圆于B′,然后连接AB′,交CD于P点,P就是所求的点;(2)延长AO交圆于E,连接OB′,B′E.∵BB′⊥CD∴BD=B′D,∵∠AOD=80°,B是AD的中点,∴∠DOB′=12∠AOD=40°.∴∠AOB′=∠AOD+∠DOB′=120°,又∵OA=OB′,∴∠A=180°−∠AOB′2=30°.∵AE是圆的直径,∴∠AB′E=90°,∴直角△AEB′中,B′E=12AE=12×4=2,∴AB′=.18.(2022•中山市模拟)已知:如图,在⊙O中,AB、AC为互相垂直的两条弦,OD⊥AB,OE⊥AC,D、E 为垂足.(1)若AB=AC,求证:四边形ADOE为正方形.(2)若AB>AC,判断OD与OE的大小关系,并证明你的结论.【思路点拨】(1)连接OA,根据垂径定理得出AE=CE,AD=BD,根据AB=AC求出AE=AD,再根据矩形的判定和正方形的判定推出即可;(2)根据勾股定理得出OE2=OA2﹣AE2,OD2=OA2﹣AD2,根据AB>AC求出AD>AE,再得出答案即可.【解题过程】(1)证明:连接OA,∵OD⊥AB,OE⊥AC,OD和OE都过圆心O,∴∠OEA=∠ODA=90°,AE=CE,AD=BD,∵AC=AB,∴AE=AD,∵AB、AC为互相垂直的两条弦,∴∠EAD=90°,即∠OEA=∠EAD=∠ODA=90°,∴四边形EADO是正方形(有一组邻边相等的矩形是正方形);(2)解:OD<OE,证明:∵AB>AC,AE=CE,AD=BD,∴AD>AE,在Rt△ODA和Rt△OEA中,由勾股定理得:OE2=OA2﹣AE2,OD2=OA2﹣AD2,∴OD2<OE2,即OD<OE.19.(2022•全椒县一模)如图,⊙O中两条互相垂直的弦AB,CD交于点E.(1)OM⊥CD于点M,CD=24,⊙O的半径长为OM的长.(2)点G在BD上,且AG⊥BD交CD于点F,求证:CE=EF.【思路点拨】(1)连接OD,由垂径定理和勾股定理可得答案;(2)连接AC,由垂直的定义及等腰三角形的性质可得结论.【解题过程】(1)解:如图,连接OD,∵OM⊥CD,OM过圆心,CD=24,∴DM=CM=12CD=12,∠OMD=90°,由勾股定理得,OM=4,即OM的长为4;(2)证明:如图,连接AC,∵AG⊥BD,∴∠DGF=90°,∴∠DFG+∠D=90°,∵AB⊥CD,∴∠CEA=90°,∴∠C+∠EAC=90°,∵∠EAC=∠D,∠DFG=∠AFC,∴∠C=∠AFC,∴AF=AC,∵AB⊥CD,∴CE=EF.20.(2022•合肥模拟)如图,在⊙O中,AB,AC为弦,CD为直径,AB⊥CD于E,BF⊥AC于F,BF与CD相交于G.(1)求证:ED=EG;(2)若AB=8,OG=1,求⊙O的半径.【思路点拨】(1)连接BD,容易得到∠GBE和∠DBE相等,利用ASA证明△BGE和△BDE全等即可;(2)连接OA,设OA=r,则DG=r+1,根据ED=EG容易求出OE=r−12,再根据垂径定理求出AE的值,最后在Rt△OAE中根据勾股定理求出r的值即可.【解题过程】(1)证明:如图:连接BD,∵AB⊥CD于E,BF⊥AC于F,∴∠CFG=∠GEB,∵∠CGF=∠BGE,∴∠C=∠GBE,∵∠C=∠DBE,∴∠GBE=∠DBE,∵AB⊥CD于E,∴∠GEB=∠DEB,在△GBE和△DBE中,∠GEB=∠DEBBE=BE∠GBE=∠DBE,∴△BGE≌△BDE(ASA),∴ED=EG.(2)解:如图:连接OA,设OA=r,则DG=r+1,由(1)可知ED=EG,∴OE=r−1 2,∵AB⊥CD于E,AB=8,∴AE=BE=4,∴在Rt△OAE中,根据勾股定理得:OE2+AE2=OA2,即(r−12)2+42=r2,解得:r=13 3,即⊙O的半径为13 3.21.(2021•遵义一模)在《折叠圆形纸片》综合实践课上,小东同学展示了如下的操作及问题:(1)如图1,⊙O1的半径为4cm,通过折叠圆形纸片,使得劣弧AB沿弦AB折叠后恰好过圆心O1,求,AB长;(2)如图2,O2C⊥弦AB,垂足为点C,劣弧AB沿弦AB折叠后经过O2C的中点D,AB=10cm,求⊙O 的半径.【思路点拨】(1)过点O1作O1F⊥AB于F,得出O1F=12O1F,再根据勾股定理,即可得出结论;(2)同(1)的方法先判断出O2C=2rcm,再根据勾股定理建立方程求解,即可得出结论.【解题过程】解:(1)如图1,过点O1作O1F⊥AB于F,并延长O1F交虚线劣弧AB于E,∴AB=2AF,由折叠知,EF=O1F=12O1E=12×4=2(cm),连接O1A,在Rt△O1FA中,O1A=4,根据勾股定理得,AF cm),∴AB=2AF=;(2)如图2,延长O2C交虚线劣弧AB于G,由折叠知,CG=CD,∵D是O2C的中点,∴CD=O2D,∴CG=CD=O2D,设⊙O2的半径为3rcm,则O2C=2r(cm),∵O2C⊥弦AB,∴AC=12AB=5(cm),连接O2A,在Rt△ACO2中,根据勾股定理得,(3r)2﹣(2r)2=25,∴r∴O2A=3r=cm),即⊙O2的半径为.22.(2021•浙江自主招生)以O为圆心,1为半径的圆内有一定点A,过A引互相垂直的弦PQ,RS.求PQ+RS的最大值和最小值.【思路点拨】设OA=a(定值),过O作OB⊥PQ,OC⊥RS,B、C为垂足,设OB=x,OC=y,0≤x≤a,(0≤y≤a),由勾股定理得出x,y,a的关系,再由垂径定理PQ和RS,最后由完全平方公式求得最大值和最小值.【解题过程】解:如图,设OA=a(定值),过O作OB⊥PQ,OC⊥RS,B、C为垂足,设OB=x,OC=y,0≤x≤a,(0≤y≤a),且x2+y2=a2.所以PQ=2PB=RS=所以PQ+RS=2∴(PQ+RS)2=4(2﹣a2而x2y2=x2(a2﹣x2)=﹣(x2−a22)2+a44.当x2=a22时,(x2y2)最大值=a4 4.此时PQ+RS=当x2=0或x2=a2时,(x2y2)最小值=0,=2(1+此时(PQ+RS)最小值。
专题24.3 垂径定理【十大题型】【人教版】【题型1 利用垂径定理求线段长度】 (1)【题型2 利用垂径定理求角度】 (2)【题型3 利用垂径定理求最值】 (3)【题型4 利用垂径定理求取值范围】 (4)【题型5 利用垂径定理求整点】 (6)【题型6 利用垂径定理求面积】 (7)【题型7 垂径定理在格点中的运用】 (8)【题型9 垂径定理与分类讨论中的综合运用】 (10)【题型10 垂径定理的应用】 (11)【题型1 利用垂径定理求线段长度】【例1】(2022•雨花区校级开学)如图,⊙O的半径OD⊥弦AB交AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,EC=2√13,则CD的长为()A.1B.3C.2D.4【变式1-1】(2022•宁津县二模)如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6B.6√2C.8D.8√2【变式1-2】(2022•建华区二模)如图,⊙O的直径AB与弦CD相交于点E,若AE=5,EB=1,∠AEC =30°,则CD的长为()A.5B.2√3C.4√2D.2√2+√3+1【变式1-3】(2022春•徐汇区校级期中)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,且CE=CB,若BE=2AE,CD=5,那么⊙O的半径为.【题型2 利用垂径定理求角度】【例2】(2022•泰安模拟)如图,⊙O的半径OA,OB,且OA⊥OB,连接AB.现在⊙O上找一点C,使OA2+AB2=BC2,则∠OAC的度数为()A.15°或75°B.20°或70°C.20°D.30°̂上的【变式2-1】(2022秋•天心区期中)如图,已知⊙O半径OA=4,点B为圆上的一点,点C为劣弧AB一动点,CD⊥OA,CE⊥OB,连接DE,要使DE取得最大值,则∠AOB等于()A.60°B.90°C.120°D.135°【变式2-2】(2022秋•青田县期末)如图,在⊙O中,半径OC过弦AB的中点E,OC=2,OE=√2.(1)求弦AB的长;(2)求∠CAB的度数.【变式2-3】(2022秋•开州区期末)如图,在⊙O中,弦BC与半径OA垂直于点D,连接AB、AC.点E为AC的中点,连接DE.(1)若AB=6,求DE的长;(2)若∠BAC=100°,求∠CDE的度数.【题型3 利用垂径定理求最值】【例3】(2022•威海模拟)⊙O中,点C为弦AB上一点,AB=1,CD⊥OC交⊙O于点D,则线段CD的最大值是()A.12B.1C.32D.2【变式3-1】(2022•河北模拟)如图所示,在⊙O中,AB为弦,OC⊥AB交AB于点D.且OD=DC.P为⊙O上任意一点,连接P A,PB,若⊙O的半径为1,则S△P AB的最大值为()A.1B.2√33C.3√34D.3√32【变式3-2】(2022秋•龙凤区校级期末)如图,矩形ABCD中,AB=20,AD=15,P,Q分别是AB,AD 边上的动点,PQ=16,以PQ为直径的⊙O与BD交于点M,N,则MN的最大值为.【变式3-3】(2022秋•延平区校级期末)在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A.910B.65C.85D.125【题型4 利用垂径定理求取值范围】【例4】(2022•包河区校级二模)如图,在⊙O中,直径AB=10,CD⊥AB于点E,CD=8.点F是弧BC上动点,且与点B、C不重合,P是直径AB上的动点,设m=PC+PF,则m的取值范围是()A.8<m≤4√5B.4√5<m≤10C.8<m≤10D.6<m<10【变式4-1】(2022•佛山)如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.【变式4-2】(2022秋•盐都区校级月考)如图,点P是⊙O内一定点.(1)过点P作弦AB,使点P是AB的中点(不写作法,保留作图痕迹);(2)若⊙O的半径为13,OP=5,①求过点P的弦的长度m范围;②过点P的弦中,长度为整数的弦有条.【变式4-3】(2022秋•天河区校级期中)已知⊙O的半径为5,点O到弦AB的距离OH=3,点P是圆上一动点,设过点P且与AB平行的直线为l,记直线AB到直线l的距离为d.(1)求AB的长;(2)如果点P只有两个时,求d的取值范围;(3)如果点P有且只有三个时,求连接这三个点所得到的三角形的面积.【题型5 利用垂径定理求整点】【例5】(2022•山海关区一模)已知⊙O的直径CD=10,CD与⊙O的弦AB垂直,垂足为M,且AM=4.8,则直径CD上的点(包含端点)与A点的距离为整数的点有()A.1个B.3个C.6个D.7个【变式5-1】(2022秋•新昌县期末)如图,AB是⊙O的弦,OC⊥AB于点C,连接OB,点P是半径OB上任意一点,连接AP,若OB=5,OC=3,则AP的长不可能是()A.6B.7C.8D.9【变式5-2】(2022•桥西区校级模拟)如图,AB是⊙C的弦,直径MN⊥AB于点O,MN=10,AB=8,如图以O为原点建立坐标系.我们把横纵坐标都是整数的点叫做整数点,则线段OC长是3,⊙C上的整数点有个.【变式5-3】(2022秋•肇东市期末)已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有()A.4个B.3个C.2个D.1个【题型6 利用垂径定理求面积】【例6】(2022•武汉模拟)如图,在半径为1的⊙O中有三条弦,它们所对的圆心角分别为60°,90°,120°,那么以这三条弦长为边长的三角形的面积是()A.√2B.1C.√32D.√22【变式6-1】(2022秋•黄州区校级月考)如图,矩形MNGH的四个顶点都在⊙O上,顺次连接矩形各边的中点,得到菱形ABCD,若BD=12,DF=4,则菱形ABCD的面积为.【变式6-2】(2022秋•西城区校级期中)如图,AB为⊙O直径,过点O作OD⊥BC于点E,交⊙O于点D,CD∥AB.(1)求证:E为OD的中点;(2)若CB=6,求四边形CAOD的面积.【变式6-3】(2022•新洲区模拟)如图,点A,C,D均在⊙O上,点B在⊙O内,且AB⊥BC于点B,BC ⊥CD于点C,若AB=4,BC=8,CD=2,则⊙O的面积为()A.125π4B.275π4C.125π9D.275π9【题型7 垂径定理在格点中的运用】【例7】(2022秋•襄都区校级期末)如图所示,一圆弧过方格的格点AB,试在方格中建立平面直角坐标系,使点A的坐标为(0,4),则该圆弧所在圆的圆心坐标是()A.(﹣1,2)B.(1,﹣1)C.(﹣1,1)D.(2,1)【变式7-1】(2022春•海门市期中)如图所示,⊙P过B、C两点,写出⊙P上的格点坐标.【变式7-2】(2022•商城县三模)如图所示的网格中,每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上,点C同时也在AB̂上,若点P是BĈ的一个动点,则△ABP面积的最大值是.【变式7-3】(2017秋•靖江市校级月考)如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格图中进行下列操作(以下结果保留根号):(1)利用网格作出该圆弧所在圆的圆心D点的位置,并写出D点的坐标为;(2)连接AD、CD,则⊙D的半径为,∠ADC的度数.【题型8 垂径定理在坐标系中的运用】【例8】(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B (0,4),与x轴交于C,D,则点D的坐标为()A.(4−2√6,0)B.(−4+2√6,0)C.(−4+√26,0)D.(4−√26,0)【变式8-1】(2022秋•西林县期末)如图,⊙P与y轴交于点M(0,﹣4),N(0,﹣10),圆心P的横坐标为﹣4.则⊙P的半径为()A.3B.4C.5D.6【变式8-2】(2022•印江县三模)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;…,按此作法进行下去,则点A2022的坐标为.【变式8-3】(2015•宜春模拟)如图,半径为5的⊙P与y轴交于点M(0,﹣4),N(0,﹣10),函数y =﹣2x+m图象过点P,则m=.【题型9 垂径定理与分类讨论中的综合运用】【例9】(2022秋•化德县校级期末)⊙O的半径为10cm,弦AB∥CD,且AB=12cm,CD=16cm,则AB 和CD的距离为()A.2cm B.14cm C.2cm或14cm D.10cm或20cm【变式9-1】(2022•包河区二模)已知圆O的半径为5,弦AB=8,D为弦AB上一点,且AD=1,过点D 作CD⊥AB,交圆O于C,则CD长为()A.1B.7C.8或1D.7或1【变式9-2】(2022秋•方正县期末)如图,⊙O的弦AB与半径OC垂直,点D为垂足,OD=DC,AB=2√3,点E在⊙O上,∠EOA=30°,则△EOC的面积为.【变式9-3】(2022秋•淮南月考)如图,已知⊙O的半径为2.弦AB的长度为2,点C是⊙O上一动点,若△ABC为等腰三角形,则BC2的长为.【题型10 垂径定理的应用】【例10】(2022秋•武昌区校级期末)某地有一座圆弧形拱桥,它的跨度(弧所对的弦的长)24m,拱高(弧的中点到弦的距离)4米,则求拱桥的半径为()A.16m B.20m C.24m D.28m【变式10-1】(2022•望城区模拟)《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13寸B.6.5寸C.26寸D.20寸【变式10-2】(2022秋•西城区校级期中)京西某游乐园的摩天轮采用了国内首创的横梁结构,风格更加简约.如图,摩天轮直径88米,最高点A距离地面100米,匀速运行一圈的时间是18分钟.由于受到周边建筑物的影响,乘客与地面的距离超过34米时,可视为最佳观赏位置,在运行的一圈里最佳观赏时长为分钟.【变式10-3】(2022•浙江)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,̂,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通∠AOB=120°,从A到B只有路AB过计算可知,这些市民其实仅仅少走了步(假设1步为0.5米,结果保留整数).(参考数据:√3≈1.732,π取3.142)。
九年级上册数学垂径定理专项训练一、填空题(共5小题;共25分)1. 如图,AB,AC是⊙O的弦,∠BAC=90∘,点D,E分别是弦AB,AC的中点,连接OD,OE.若BD=3,CE=4,则四边形ADOE的面积为.2. 刻度尺与⊙O按如图所示的方式摆放时,有刻度的一边与⊙O的两个交点处的读数如图所示(单位:cm),已知⊙O的半径是5cm,则圆心O到刻度尺的最小距离为.⏜),O是这段弧的圆心,C是AB⏜的中点,连接AB,3. 如图,一条公路的转弯处是一段圆弧(ABOC交于点D.若AB=30m,OA=25m,则CD=m.4. 如图,在⊙O中,点D既是OC的中点,也是弦AB的中点,若AD=√3,则⊙O的半径为.5. 如图,在△ABC中,点O在边AC上,⊙O与△ABC的边BC,AB分别相切于C,D两点,与边AC交于点E点,弦CF与AB平行,与DO的延长线交于点M.若点E是DF⏜的中点,BC= 2,则OC的长为.二、选择题(共25小题;共125分)1. 如图,在⊙O中,半径OC⊥AB于点D,AD=4,则下列说法正确的是( )A. OC=4B. AB=8C. OD=3D. AB垂直平分OC2. 已知圆的半径为R,这个圆的内接正六边形的面积为( )A. 3√34R2 B. 3√32R2 C. 6R2 D. 32R23. 下列判断中正确的是( )A. 弦的垂直平分线必平分弦所对的两条弧B. 平分弦的直线也必平分弦所对的两条弧C. 平分弦的直线垂直于弦D. 平分一条弧的直线必平分这条弧所对的弦4. 如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是( )A. B.C. D.5. 如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB=16厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为( )A. 1.0厘米/分B. 0.8厘米/分C. 1.2厘米/分D. 1.4厘米/分6. 下列命题中,正确的是( )A. 平分一条直径的弦必垂直于这条直径B. 平分一条弧的直线垂直于这条弧所对的弦C. 弦的垂线必经过这条弦所在圆的圆心D. 在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心7. 如图,⊙O的半径为10,圆心O到弦AB的距离为6,则AB的长为( )A. 8B. 10C. 12D. 16⏜=AD⏜;②8. 如图,CD是⊙O的弦,AB是⊙O的直径,AB⊥CD于点E,下列结论:①AC⏜;③EO=EB;④EC=ED,其中一定成立的是( )BC⏜=BDA. ①③B. ①④C. ①②④D. ①②③④9. 下列命题中,真命题是( )A. 平分弦的直径垂直于弦B. 垂直平分弦的直线平分这条弦所对的弧C. 在同圆中,相等的弦所对的弧也相等D. 经过半径一端且垂直于这条半径的直线是圆的切线10. 已知⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则OM的长的最小值为( )A. 2B. 3C. 4D. 511. 如图,⊙O的直径CD=8,AB是⊙O的弦,AB⊥CD,垂足为点M,OM=2,则AB的长为( )A. 2B. 2√3C. 4D. 4√312. 如图,在 ⊙O 中,弦 AB =6 cm ,圆心 O 到 AB 的距离 OC =3 cm ,则 OA 的长度是 ( )A. 3 cmB. 3√2 cmC. 4 cmD. 3√3 cm 13. 如图,⊙O 的直径 CD =20,AB 是 ⊙O 的弦,AB ⊥CD ,垂足为 M ,OM:MC =3:2,则 AB的长为 ( )A. 8B. 12C. 16D. 2√91 14. 如图,AB 为 ⊙O 的直径,AB ,CD 相交于点 E ,且点 E 是弦 CD 的中点,则下列结论中错误的是 ( )A. AB ⊥CDB. BC ⏜=BD ⏜C. AC ⏜=AD ⏜D. OE =BE15. 如图,如果 AB 为 ⊙O 的直径,弦 CD ⊥AB ,垂足为点 E ,那么下面结论中,错误的是 ( )A. CE =DEB. BC ⏜=BD ⏜C. ∠BAC =∠BADD. AC >AD16. 下列命题中,正确的是 ( )A. 圆是轴对称图形,对称轴只有一条B. 在同圆中,互相垂直的两弦不能互相平分C. 直径一定平分弦D. 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧17. 给出下列命题:①垂直于弦的直线平分弦;②平分弦的直径必垂直于弦,并且平分弦所对应的两条弧;③平分弦的直线必过圆心;④弦所对应的两条弧的中点连线垂直平分弦. 其中正确的命题有 ( )A. 1 个B. 2 个C. 3 个D. 4 个 18. 如图,AB ,AC 是圆的两条弦,AD 是圆的一条直径,且 AD 平分 ∠BAC ,下列结论中不一定正确的是 ( )A. AB ⏜=DB ⏜B. BD ⏜=CD ⏜C. BC ⊥ADD. ∠B =∠C19. 如图,CD 是 ⊙O 的直径,CD ⊥AB 于点 E ,则下列结论不一定成立的是 ( )A. EA =EBB. DA ⏜=DB ⏜C. EO =EDD. CA ⏜=CB ⏜ 20. 下列说法:①平分弧的直径垂直平分弧所对的弦;②平分弦的直径平分弦所对的弧;③垂直于弦的直线必过圆心;④垂直于弦的直径平分弦所对的弧. 其中正确的是 ( )A. ②③B. ①③C. ②④D. ①④21. 如图,AB为⊙O的直径,点P在AB的延长线上,PC,PD与⊙O相切,切点分别为C,D.若AB=6,PC=4,则sin∠CAD等于( )A. 35B. 23C. 34D. 4522. 如图,△ABC内接于⊙O,∠BAC=120∘,AB=AC,BD是⊙O的直径,若AD=3,则BC=( )A. 2√3B. 3√3C. 3D. 423. 如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F,若⊙O的半径为4√3,∠CDF=15∘,则阴影部分的面积为( )A. 16π−12√3B. 16π−24√3C. 20π−12√3D. 20π−24√324. 正六边形的周长为12,则该正六边形的内切圆的半径为( )A. 1B. √3C. 2D. 325. 一个等腰三角形的底边长是6,腰长是一元二次方程(x−3)(x−5)=0的一根,则此三角形的外接圆的半径是( )A. 3.2B. 258C. 3.5D. 4三、解答题(共6小题;共78分)1. 如图,已知⊙O的半径为10,AB⊥CD,垂足为点P,且AB=CD=16,求OP的长.2. 如图,AB是⊙O的一条弦,CD经过圆心O且与AB交于点E,若AE=BE,AB=2√7,ED=1,求CD的长.⏜的中点,OE交BC于点D.连接AC,若BC=6,3. 如图,AB是⊙O的直径,BC是弦,E是BCDE=1,求AC的长.⏜的中点,AB,OC相交于点M.试4. 如图,在⊙O中,弦AB的长是半径OA的√3倍,C为AB判断四边形OACB的形状,并说明理由.5. 如图,在⊙O中,OC与AB交于点D,D是弦AB的中点,∠CBA=30∘.求证:OA∥BC.。
圆期末复习题垂径定理:1.下列命题中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心2.如图,CD是⊙O的一条弦,作直径AB,使AB⊥CD,垂足为E,若AB=10,CD=6,则BE的长是()A.1或9B.9C.1D.4第2题图第3题图第4题图3.如图,圆O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是()A.23cmB.32cmC.42cmD.43cm4.如图,已知⊙O中弧AB的度数是弧CD度数的2倍,则AB与2CD的关系是( )A.AB=2CDB.AB>2CDC.AB<2CDD.无法确定5.下列说法中,正确的有________.(填序号)①弦是直径;②半圆是弧,但弧不一定是半圆;③半径相等的两个半圆是等弧;④直径是圆中最长的弦.6.如图,已知⊙O的半径是6cm,弦CB=63cm,OD⊥BC,垂足为D,则∠COB=第6题图第7题图第8题图7.如图,直线l与⊙O有两个公共点A,B,O到直线l的距离为5cm,AB=24cm,则⊙O的半径是 cm.8.如图,⊙O的半径是5cm,P是⊙O外一点,PO=8cm,∠P=30º,则AB= cm9.如图,AB是⊙O的直径,且AD∥OC,若弧AD的度数为800.求CD的度数.10.如图,已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,求BC边上的高.11.如图,O的直径AB=4,半径OC AB⊥,D为BC上一点,,⊥⊥ ,垂足分别为E,F,求DE OC DF ABEF的长.12.如图,AD是△ABC的高,AE是△ABC的外接圆的直径.试说明弧BE=弧CF.13.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=300,求弦CD长.14.如图,⊙O为四边形ABCD的外接圆,圆心O在AD上,OC∥AB.(1)求证:AC平分∠DAB;(2)若AC=8,弧AC:弧CD=2:1,试求圆O的半径;(3)若点B为AC的中点,试判断四边形ABCD的形状.15.O是∠MPN的平分线上一点,以O为圆心的圆和PM,PN别交于A、B、C、D四点.求证:∠OBA=∠OCD.16.如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=2,⊙O的半径为3,求BC的长.圆心角、圆周角1.如图,等边△ABC的三个顶点都在⊙O上,D是AC上任一点(不与A、C重合),则∠ADC度数是______.第1题图第2题图第3题图2.已知,如图,∠BAC的对角∠BAD=1000,则∠BOC=_______度.3.如图,A、B、C为⊙O上三点,若∠OAB=480,则∠ACB=_______度.4.如图,AB是⊙O的直径, BC BD,∠A=250,则∠BOD的度数为________.第4题图第5题图第6题图第7题图5.如图,已知圆心角∠BOC=1100,则圆周角∠BAC的度数是6.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为7.如图,A、B、C三点都在⊙O上,点D是AB延长线上一点,∠AOC=1420, ∠CBD 的度数是8.如图,⊙O的直径AB=8cm,∠CBD=300,求弦DC的长.9.如图,AB, AC 是⊙O 的两条弦,且AB=AC.延长CA 到点D .使AD=AC,连结DB 并延长,交⊙O 于点E.求证:CE 是⊙O 的直径.10.在⊙O 中,弦AB 与DC 相交于E,且AE=EC,求证:AD=BC.11.如图,AB 是⊙O 直径,CD 是⊙O 弦,AB 、CD 的延长线交于E,AB=2DE,∠E=180,求∠C 及∠AOC 的度数.12.已知:如图,AB 为O ⊙的直径,AB=AC,BC 交O ⊙于点D ,AC 交O ⊙于点E,∠BAC=450. (1)求∠EBC 的度数;(2)求证:BD=CD .13.如图,A 、B 、C 、D 四点都在⊙O 上,AD 是⊙O 的直径,且AD=8cm,若∠ABC=∠CAD,求弦AC 的长.14.如图,在Rt△ABC中,∠ACB=900,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB 交于点E,连接DE.(1)求证:AC=AE;(2)求△ACD外接圆的半径.15.如图,已知O的半径为R,C,D是直径AB同侧圆周上的两点,AC的度数为960,BD的度数为360,动点P在AB上,求PC+PD的最小.数学期末复习题测试题01满分:100分时间:25分钟姓名:得分:1.下列命题中,正确的是()①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③900的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等A.①②③B.③④⑤C.①②⑤D.②④⑤2.如图,AB是半圆直径,∠BAC=200,D是AC的中点,则∠DAC的度数是()A.30°B.35°C.45°D.70°3.下列说法中正确的是________.(填序号)①圆是轴对称图形,每一条直径都是它的对称轴;②在同圆或等圆中,如果两条弦相等,那么它所对的两条弧也相等;③平分弦的直径垂直于这条弦;④垂直于弦的直径平分这条弦.4.过⊙O内一点M的最长的弦长为6cm,最短的弦长为4cm,则OM的长等于cm.5.如图,⊙O中OA⊥BC,∠CDA=24o,则∠AOB的度数为_______.第5题图第6题图第7题图6.如图,AB为⊙O的直径,点C、D在⊙O上,∠BAC=46 o,则∠ADC=_______.7.如图,点A、B、C都在⊙O上,连结AB、BC、AC、OA、OB,且∠BAO=250,则∠ACB的大小为________8.如图,⊙O的直径AB垂直于弦CD,垂足为E,若∠COD=1200,OE=3厘米,则CD= 厘米.O图 4E DCB A第8题图 第9题图 第10题图 9.如图,已知AB 是⊙O 的直径,弦CD ⊥AB,E 为垂足,CD=8,OE=1,则AB=_________10.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D,交⊙O 于点C,且CD=l,则弦AB 的长是11.如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个隧道所在圆的半径OA 是___________米第11题图 第12题图 第13题图 第14题图 12.如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D.若AC=8cm, DE=2cm,则OD 的长为 cm.13.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,AB=16m,OA=10m,则中间柱CD 高度为 m. 14.如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于A 、B 两点,已知P(3,2)和A(1,0),则点B 的坐标是 ,圆P 的半径为 .15,如图,在△ABC 中,∠ACB=900,以C 为圆心、CB 为半径的圆交AB 于点D. (1)若∠A=400;求∠ACD 的度数;(2)若AC=8,BC=6,求弦BD 长度.B A POyx17.如图,⊙O是△ABC的外接圆,圆心O在这个三角形的高AD上,AB=10,BC=12.求⊙O的半径.18.已知:如图,点P是⊙O外的一点,PB与⊙O相交于点A、B,PD与⊙O相交于C、D,AB=CD.求证:(1)PO平分∠BPD;(2)PA=PC.。
初三数学圆垂径定理的练习题初三数学-圆垂径定理的练习题题一:在平面直角坐标系中,已知圆C的圆心坐标为O(0, 0),半径为r,点A(a, 0)和点B(0, b)分别是圆上的两个点。
证明:OA⊥OB(即向量OA与向量OB垂直)。
解题思路:要证明向量OA与向量OB垂直,可以利用向量的数量积来进行推导。
首先,根据向量的定义和坐标表示,得到向量OA为OA(a, 0)和向量OB为OB(0, b)。
然后,根据向量的数量积公式有向量OA·向量OB= a·0 + 0·b = 0。
当两个向量的数量积等于0时,可判定这两个向量垂直。
因此,OA⊥OB。
题二:在平面直角坐标系中,已知圆C的直径AB的端点分别为A(3, 4)和B(-5, -12)。
求证:直径AB的中点O在圆C上。
解题思路:根据圆的直径定义,直径AB的中点O为AB的中点。
假设O的坐标为(x₀, y₀),则中点O的横坐标为(x₁+x₂)/2,纵坐标为(y₁+y₂)/2。
代入A(3, 4)和B(-5, -12)的坐标可得:(x₀, y₀) = ((3-5)/2, (4-12)/2)简化可得,(x₀, y₀) = (-1, -4)。
对比圆心O的坐标和中点O的坐标,可发现它们是相等的,即坐标值完全相同。
所以,可以证明直径AB的中点O在圆C上。
题三:在平面直角坐标系中,已知圆C的圆心坐标为O(2, 3),点A(6, 1)是圆上的一个点。
设点B(x, y)是圆C上一点,且OA⊥OB。
求点B的坐标。
解题思路:根据题意,需要找到一个点B(x, y)在圆C上,并满足OA⊥OB。
根据圆垂径定理,垂直于直径的线段必然经过圆心。
首先,根据圆心坐标O(2, 3)和点A(6, 1),可以求得向量OA的坐标差为(6-2, 1-3) = (4, -2)。
根据OA⊥OB,可知向量OA和向量OB的数量积为0,即(4, -2)·(x-2, y-3) = 4(x-2) - 2(y-3) = 0。
浙教新版数学九年级上册:3.3垂径定理同步练习题一.选择题(共7小题)1.过⊙O内一点N的最长弦为6,最短的弦长为4,那么ON的长为()A.B.2C.D.2.圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB,CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm3.如图,已知⊙O的半径为5,弦AB=7,M是AB上任意一点,则线段OM的长不可能是()A.3.5B.4.5C.4D.54.在圆柱形油槽内装有一些油,截面如图,油面宽AB为6dm,如果再注入一些油后,油面AB上升ldm,油面宽为8dm,圆柱形油槽直径MN为()A.6dm B.8dm C.10dm D.12dm5.若P为半径长是6cm的⊙O内一点,OP=2cm,则过P点的最短的弦长为()A.12cm B.cm C.cm D.cm6.下列命题中,正确的是()A.平分弦的直线必垂直于这条弦B.垂直于弦的直线必过圆心C.平分弦的直径必垂直于这条弦,并且平分这条弦所对的两条弧D.垂直平分弦的直线必平分这条弦所对的弧7.如图所示,⊙O的弦AB、AC的夹角为50°,MN分别为弧AB和弧AC的中点,OM、ON分别交AB、AC于点E、F,则∠MON的度数为()A.110°B.120°C.130°D.100°二.填空题(共10小题)8.秋千长度的长度为3m,秋千向两边摆动时,最大摆角为60度,且两边的摆动角度相同,则它摆置最高处与最低处的高度差为.9.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为,最大值为.10.如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(10,5),点A的坐标为(6,0),则点B的坐标为.11.如图,已知在⊙O中,直径MN=10,四边形ABCD是正方形,并且∠POM=45°,则AB的长为.12.已知如图,⊙O中直径AB交CD于E,点B是弧CD的中点,CD=8cm,AE=8cm,则⊙O的半径为.13.如图,⊙O的弦AB的垂直平分半径OC,⊙O的半径等于8cm,则四边形OACB的面积等于cm2.14.垂直于弦的直径平分这条弦,并且平弦所对的弧.即:如图,若AB⊥CD,则有AP PB,,AD=.如图,若CD=10,AB=8,求PC的长?15.如图,在⊙O中,直径AB⊥CD,若AB=10cm,OE=4cm,则CD=cm.16.如图AB是⊙O的直径CD是弦,且CD⊥AB于点E,BC=6,AC=8,则DE=.17.如图,在⊙O中,AB是弦,∠AOB=120°,OA=5cm,那么圆心O到AB的距离是cm,弦AB的长是cm.三.解答题(共8小题)18.直径为80cm的油桶水平放置于地面上,截面图如图所示,油面MN与直径AB交于点C,且最大深度BC为直径的时.(1)求油面的宽度MN(结果保留根号);(2)若油桶的高为120cm,求油桶中存贮油的体积(结果保留根号).19.如图,一圆弧形拱桥,跨度AB=16m,拱高为4m,求半径OA的长.20.如图,已知AB和CD是⊙O的两条弦,且AB⊥CD,连接OC,作∠OCD的平分线交⊙O于P,连接P A、PB,求证:P A=PB.21.已知:如图,⊙O中,AB=AC,OD⊥AB于D,OE⊥AC于E.求证:∠ODE=∠OED.22.如图,有一拱桥为圆弧形,跨度AB=60米,拱高PM=18米,当洪水泛滥时,跨度只有30米时要采取紧急措施,测量人员测得水面A1B1到拱顶距离只有4米时,是否采取紧急措施?23.如图所示,AB是⊙O的一条弦(不是直径),点C,D是直线AB上的两点,且AC=BD.(1)判断△OCD的形状,并说明理由.(2)当图中的点C与点D在线段AB上时(即C,D在A,B两点之间),(1)题的结论还存在吗?24.(综合题)如图所示,⊙O中的弦AB,CD互相垂直于E,AE=5cm,BE=13cm,O到AB的距离为2cm,求⊙O的半径及O到CD的距离.25.在直径为1米的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=0.6米,求油的最大深度.浙教新版数学九年级上册:3.3垂径定理同步练习题参考答案一.选择题(共7小题)1.过⊙O内一点N的最长弦为6,最短的弦长为4,那么ON的长为()A.B.2C.D.【解答】解:如图所示,则直径AB是过点N的最长的弦.过N点作弦CD⊥AB,则CD是过N的最短的弦.连接OC.∵ON⊥CD,∴CN=CD=2,又OC=3,∴ON=.故选:C.2.圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB,CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm【解答】解:作OE⊥CD,∵AB∥CD,∴OE⊥AB,当两弦在圆心的同侧时,已知CD=10cm,∴由垂径定理得DE=5.∵OD=13,∴利用勾股定理可得:OE=12.同理可求OF=5,∴EF=7.当两弦在圆心的两侧时,EF=OE+OF=17.故选:D.3.如图,已知⊙O的半径为5,弦AB=7,M是AB上任意一点,则线段OM的长不可能是()A.3.5B.4.5C.4D.5【解答】解:连接OA,过点O作OD⊥AB于点D,当点M与点A重合时OM最长,当点M于点D重合时OM最短,∵OD⊥AB,AB=7,∴AD=AB=,∴OD===,∴≤OM≤5.∵>=3.5,∴A不合题意.故选:A.4.在圆柱形油槽内装有一些油,截面如图,油面宽AB为6dm,如果再注入一些油后,油面AB上升ldm,油面宽为8dm,圆柱形油槽直径MN为()A.6dm B.8dm C.10dm D.12dm【解答】解:根据题意画出图形,如图所示,EF=1dm,AB=6dm,CD=8dm,设圆的半径为r,∵OE⊥CD,OF⊥AB,∴CE=DE=4dm,AF=BF=3dm,在Rt△OCE和△OAF中,根据勾股定理得:OE==,OF==,∴OE﹣OF=1,即﹣=1,=+1,两边平方得,r2﹣9=r2﹣16+2+1,=3,两边平方得,r2﹣16=9,r2=25,解得:r=5,则圆柱形油槽直径MN为10dm.故选:C.5.若P为半径长是6cm的⊙O内一点,OP=2cm,则过P点的最短的弦长为()A.12cm B.cm C.cm D.cm【解答】解:如图,∵OA=6cm,OP=2cm,∴AP===4cm,∴AB=8cm,∴过P的最短的弦长等于8cm,故选:D.6.下列命题中,正确的是()A.平分弦的直线必垂直于这条弦B.垂直于弦的直线必过圆心C.平分弦的直径必垂直于这条弦,并且平分这条弦所对的两条弧D.垂直平分弦的直线必平分这条弦所对的弧【解答】解:A、过弦的中点的直线都是平分线的直线,有无数条,所以平分弦的直线不一定垂直于这条弦;故A 错误.B、垂直于弦的直线有无数条,所以垂直于弦的直线不一定过圆心,垂直平分弦的直线过圆心;故B错误.C、根据垂径定理的推论,平分弦(不是直径)的直径必垂直于这条弦,因为任意两条直径互相平分,但不一定垂直;故C错误.D、垂直平分弦的直线必过圆心,并且平分这条弦所对的弧;故D正确.故选:D.7.如图所示,⊙O的弦AB、AC的夹角为50°,MN分别为弧AB和弧AC的中点,OM、ON分别交AB、AC于点E、F,则∠MON的度数为()A.110°B.120°C.130°D.100°【解答】解:∵M、N分别为弧AB和弧AC的中点,∴OF⊥AC,OE⊥AB,∴∠OF A=∠OEA=90°,∴在四边形OEAF中,∠MON=360°﹣∠OF A﹣∠OEA﹣∠A=360°﹣90°﹣90°﹣50°=130°.故选:C.二.填空题(共10小题)8.秋千长度的长度为3m,秋千向两边摆动时,最大摆角为60度,且两边的摆动角度相同,则它摆置最高处与最低处的高度差为(3﹣)米.【解答】解:∵最大摆角为60度,∴∠BOD=60°,∴∠BOA=∠DOA=30°.∵OB=OD=3米,∴BC=OB=米,∴OC===(米),∴AC=OA﹣AC=(3﹣)米.故答案为:(3﹣)米.9.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为3,最大值为5.【解答】解:如图所示,过O作OM′⊥AB,连接OA,∵过直线外一点与直线上的所有连线中垂线段最短,∴当OM于OM′重合时OM最短,∵AB=8,OA=5,∴AM′=×8=4,∴在Rt△OAM′中,OM′===3,∴线段OM长的最小值为3,最大值为5.故答案为:3,5.10.如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(10,5),点A的坐标为(6,0),则点B的坐标为(14,0).【解答】解:过点P作PM⊥AB于M,则M的坐标是(10,0).又∵A的坐标为(6,0),∴OA=6,AM=OM﹣OA=10﹣6=4,∵A,B两点一定关于PM对称.∴MB=AM=4,∴OB=OM+MB=10+4=14,∴点B的坐标是(14,0).故答案为:(14,0).11.如图,已知在⊙O中,直径MN=10,四边形ABCD是正方形,并且∠POM=45°,则AB的长为.【解答】解:∵∠POM=45°,∠DCO=90°,∴∠DOC=∠CDO=45°,∴△CDO为等腰直角三角形,∴CO=CD.连接OA,则△OAB是直角三角形,∵四边形ABCD是正方形,∴AB=BC=CD=CO,BO=BC+CO=BC+CD=2AB,∴AB2+OB2=52,即AB2+(2AB)2=52,∴AB的长为.故答案为:.12.已知如图,⊙O中直径AB交CD于E,点B是弧CD的中点,CD=8cm,AE=8cm,则⊙O的半径为5.【解答】解:设⊙O的半径为rcm,∵点B是弧CD的中点,CD=8cm,AB是直径,∴AB⊥CD,CE=ED=CD=4cm,在Rt△COE中,由勾股定理得:OC2=CE2+OE2,r2=42+(8﹣r)2,解得r=5.故答案为:5.13.如图,⊙O的弦AB的垂直平分半径OC,⊙O的半径等于8cm,则四边形OACB的面积等于cm2.【解答】解:∵AB垂直平分OC,∴OA=AC,又半径OA=OC,∴△OAC为等边三角形,四边形OACB为菱形,∵OA=OC=8,∴AB=8,S四边形OACB=×OC×AB=×8×8=32.故答案为:32.14.垂直于弦的直径平分这条弦,并且平弦所对的弧.即:如图,若AB⊥CD,则有AP=PB,=,AD=BD.如图,若CD=10,AB=8,求PC的长?【解答】解:∵AB⊥CD,∴由垂径定理,可得AP=BP,=,AD=BD,连接OA,∵AB⊥CD,CD=10,AB=8,∴AP=4,OA=5,∴由勾股定理得,OP=3,∴PC=OC﹣OP=5﹣3=2.15.如图,在⊙O中,直径AB⊥CD,若AB=10cm,OE=4cm,则CD=6cm.【解答】解:由题意得:OC=5,OE=4∴Rt△OCE中可求得CE==3cm根据垂径定理可得:CD=2CE=6cm.16.如图AB是⊙O的直径CD是弦,且CD⊥AB于点E,BC=6,AC=8,则DE=.【解答】解:∵AB是⊙O的直径CD是弦,且CD⊥AB于点E∴CE=DE,AC⊥BC∵BC=6,AC=8∴AB=10∵S△ABC=×AC×BC=×CE×AB∴AC×BC=CE×AB∴CE==∴DE=CE=故此题应该填.17.如图,在⊙O中,AB是弦,∠AOB=120°,OA=5cm,那么圆心O到AB的距离是cm,弦AB的长是5 cm.【解答】解:过O作OC⊥AB交AB于C点,如右图所示:由垂径定理可知,OC垂直平分AB,∵OA=OB,∠AOB=120°∴∠OAB=30°∴OC=OA=cm∴由勾股定理可得:AC=cm∴AB=5cm故此题应该填,5.三.解答题(共8小题)18.直径为80cm的油桶水平放置于地面上,截面图如图所示,油面MN与直径AB交于点C,且最大深度BC为直径的时.(1)求油面的宽度MN(结果保留根号);(2)若油桶的高为120cm,求油桶中存贮油的体积(结果保留根号).【解答】解:(1)如图,连接OM,∵AB=80cm,BC为直径的,∴OM=OB=40cm,BC=20cm,∴OC=20cm,∴MC=cm,∴MN=2CM=40cm;(2)∵OC=20cm,OM=40cm,∴sin∠OMC=,∴∠OMC=30°,∴∠MOC=60°,∴∠MON=120°,∴阴影部分的面积是:=,∵油桶的高为120cm,∴油桶中存贮油的体积是:()×120=64000π﹣48000,即油桶中存贮油的体积是(64000π﹣48000)cm3.19.如图,一圆弧形拱桥,跨度AB=16m,拱高为4m,求半径OA的长.【解答】解:∵AB=16m,OC⊥AB,∴AD=AB=8m,设OA=r,则OD=r﹣4,在Rt△AOD中,OA2=AD2+OD2,即r2=82+(r﹣4)2,解得r=10m,即半径OA的长是10m.20.如图,已知AB和CD是⊙O的两条弦,且AB⊥CD,连接OC,作∠OCD的平分线交⊙O于P,连接P A、PB,求证:P A=PB.【解答】证明:∵OC=OP,∴∠1=∠2.∵CP平分∠OCD,∴∠2=∠3,∴∠3=∠1,∴CD∥OP,∵CD⊥AB,∴OP⊥AB.∴=,∴P A=PB.21.已知:如图,⊙O中,AB=AC,OD⊥AB于D,OE⊥AC于E.求证:∠ODE=∠OED.【解答】解:连接OA并延长交BC于点F,∵⊙O是△ABC的外接圆,∴点O是△ABC的外心,∵AB=AC,∴AF是BC的垂直平分线,∴∠BAF=∠CAF,∵OD⊥AB,OE⊥AC,∴OD、OE分别是AB、AC的垂直平分线,∵AB=AC,∴AD=AE,在Rt△AOD与Rt△AOE中,,∴Rt△AOD≌Rt△AOE,∴OD=OE,∴△ODE是等腰三角形,∴∠ODE=∠OED.22.如图,有一拱桥为圆弧形,跨度AB=60米,拱高PM=18米,当洪水泛滥时,跨度只有30米时要采取紧急措施,测量人员测得水面A1B1到拱顶距离只有4米时,是否采取紧急措施?【解答】解:连接OA、OA1,如下图所示:由题可得:AB=60m,PM=18m,PN=4m,OA=OA1=OP=ROP⊥AB,OP⊥A1B1由垂径定理可得:AM=MB=30m在Rt△AMO中,由勾股定理可得:AO2=AM2+MO2即R2=302+(R﹣18)2解得R=34m∵PN=4m,OP=R=34m∴ON=30m在Rt△ONA1中,由勾股定理可得:A1N2=A1O2﹣ON2可得A1N=16m故A1B1=32m>30m故不用采取紧急措施.23.如图所示,AB是⊙O的一条弦(不是直径),点C,D是直线AB上的两点,且AC=BD.(1)判断△OCD的形状,并说明理由.(2)当图中的点C与点D在线段AB上时(即C,D在A,B两点之间),(1)题的结论还存在吗?【解答】解:(1)△OCD是等腰三角形如左图所示,过点O作OM⊥AB,垂足为M,则有MA=MB又AC=BD∴AC+MA=BD+MB即CM=DM又OM⊥CD,即OM是CD的垂直平分线∴OC=OD∴△OCD为等腰三角形(2)当点C,D在线段AB上时,如右图所示同(1)题作OM⊥AB,垂足为M由垂径定理,得AM=BM又AC=BD∴CM=AM﹣AC=BM﹣BD=MD∴OC=OD∴△OCD为等腰三角形.24.(综合题)如图所示,⊙O中的弦AB,CD互相垂直于E,AE=5cm,BE=13cm,O到AB的距离为2cm,求⊙O的半径及O到CD的距离.【解答】解:AB=AE+BE=5+13=18(cm),连接OB,过O作OM⊥AB,∴AM=AB=9(cm),又∵OM=2(cm),∴在Rt△OBM中,BO====11cm,ON=EM=AM﹣AE=9﹣5=4(cm).25.在直径为1米的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=0.6米,求油的最大深度.【解答】解:连接OA.∵OA=OD=0.5米,AC=AB=0.3米∴OC2=OA2﹣AC2∴OC==0.4米∴CD=OD﹣OC=0.5﹣0.4=0.1米故油的最大深度是0.1米.。
3.3 垂径定理第2课时 垂径定理的逆定理基础过关全练知识点1 垂径定理的逆定理11.如图,☉O的直径CD过弦AB的中点E,且CE=2,DE=8,则AB的长为( )A.9B.8C.6D.42.如图,☉O的半径为5,弦AB的长为8,半径OD过弦AB的中点C,则CD的长为 .知识点2 垂径定理的逆定理23.如图,☉O的直径AB与弦CD交于点E,若B为CD的中点,则下列说法错误的是( )A.CB=BDB.OE=BEC.CE=DED.AB⊥CD4.【新独家原创】如图,AB是☉O的直径,点P是BD的中点,若BD=8,BP=25,则AD的长为 .5.如图所示,D、E分别是AB、AC的中点,DE交AB于M,交AC于N,求证:AM=AN.知识点3 垂径定理的逆定理的应用6.【新情境·中国元素】圆形拱门屏风是中国古代家庭中常见的装饰隔断,既美观又实用,彰显出中国元素的韵味.如图所示的是一款拱门的示意图,其中拱门最下端AB=18分米,C为AB的中点,D为拱门最高点,圆心O在线段CD上,CD=27分米,求拱门所在圆的半径.能力提升全练7.下列命题中,正确的个数是( )①平分弧的直径垂直平分弧所对的弦;②平分弦的直径平分弦所对的弧;③垂直于弦的直线必过圆心;④垂直于弦的直径平分弦所对的弧. A.1 B.2 C.3 D.48.【新考法】如图,AB为☉O的直径,AE为☉O的弦,C为优弧ABE的中点,CD⊥AB,垂足为D.若AE=8,DB=2,则☉O的半径为 .9.【教材变式·P79例3】如图所示的是某蔬菜基地搭建的一座蔬菜棚的截面,其为圆弧形,跨度AB(弧所对的弦)为3.2米,拱高(弧的中点到弦的距离)为0.8米.(1)求该圆弧所在圆的半径;(2)在距蔬菜棚的一端(点B)0.4米处竖立支撑杆EF,求支撑杆EF的长度.10.如图,AB是☉O的直径,AB⊥CD于点E,连结CO并延长交AD于点F,且F恰为AD的中点.求证:E是OB的中点.素养探究全练11.【运算能力】木工师傅经常要测量圆木截面的直径,实际上不易操作,为解决这一难题,小颖设计了一个测圆工具,如图所示,在长为h的木条AB的中点钉另一根木条MN,MN⊥AB,在木条MN上自MN上某一点向N标注刻度,使用时,将A、B置于圆上,读出MN与圆的交点C处的刻度,就可以知道圆的直径,设MC=d d≥(1)用含h,d的式子表示该圆的直径;(2)若h=2,圆木截面的直径为5.2,则MC的长度为多少?答案全解全析基础过关全练1.B ∵CE=2,DE=8,∴CD=10,∴OB=OC=5,∴OE=5-2=3.∵☉O的直径CD过弦AB的中点E,∴CD⊥AB,AE=BE,在Rt△OBE中,∵OE=3,OB=5,∴BE=OB2―OE2=4,∴AB=2BE=8.故选B.2.答案 2解析 连结OA(图略),∵半径OD过弦AB的中点C,∴OD⊥AB,AC=BC,∴∠OCA=90°,∵弦AB的长为8,∴AC=BC=4,∵AO=5,∴由勾股定理得OC=52―42=3,∴CD=OD-OC=5-3=2.3.B ∵B为CD的中点,∴CB=BD,故A选项说法正确,不符合题意;∵AB是☉O的直径,CB=BD,∴CE=DE,AB⊥CD,故C、D选项说法正确,不符合题意;根据题中条件不能证明OE=BE,故B选项说法错误,符合题意.故选B.4.答案 6解析 如图,连结OP交BD于点G,BD=4,∵P是BD的中点,∴OP⊥BD,DG=BG=12在Rt△BPG中,PG=BP2―BG2=(25)2―42=2,设☉O的半径为r,在Rt△OBG中,OB2=OG2+BG2,即r2=(r-2)2+42,解得r=5,∴OG=3,∵OA=OB,DG=BG,∴OG为△ABD的中位线,∴AD=2OG=6.5.证明 如图,连结DO,EO,∵D是AB的中点,E是AC的中点,∴OD⊥AB,OE⊥AC.∵OD=OE,∴∠EDO=∠DEO,∴∠DMB=180°-90°-∠EDO,∠ENC=180°-90°-∠DEO,∴∠DMB=∠ENC.∵∠AMN=∠DMB,∠ANM=∠ENC,∴∠AMN=∠ANM,∴AM=AN.6.解析 如图,连结AO,∵CD过圆心,C为AB的中点,∴CD⊥AB,∵AB=18分米,C为AB的中点,∴AC=BC=9分米,设圆的半径为x分米,则OA=OD=x分米,∵CD=27分米,∴OC=(27-x)分米,在Rt△OAC中,AC2+OC2=OA2,∴92+(27-x)2=x2,∴x=15.答:拱门所在圆的半径是15分米.能力提升全练7.B 平分弧的直径垂直平分弧所对的弦,所以①正确;平分弦(非直径)的直径平分弦所对的弧,所以②错误;垂直平分弦的直线必过圆心,所以③错误;垂直于弦的直径平分弦所对的弧,所以④正确.故选B.8.答案 5解析 如图,连结CO并延长,交AE于点T.∵C为优弧ABE的中点,∴AC=CE,AE=4,∴CT⊥AE,AT=TE=12∵∠ATO=∠CDO=90°,∠AOT=∠COD,AO=CO,∴△AOT≌△COD(AAS),∴CD=AT=4,设☉O的半径为r.在Rt△COD中,OC2=CD2+OD2,∴r2=42+(r-2)2,∴r=5,∴☉O的半径为5.9.解析 (1)如图,设AB所在圆的圆心为O,D为AB的中点,连结OB,OD,OD交AB于点C,∴OD垂直平分AB,由题可知AB=3.2米,CD=0.8米,AB=1.6米,∴BC=12设☉O的半径为R米,则OC=OD-CD=(R-0.8)米,在Rt△OBC中,由勾股定理得OB2=OC2+CB2,即R2=(R-0.8)2+1.62,解得R=2,即该圆弧所在圆的半径为2米.(2)如图,过O作OH⊥EF,交EF的延长线于点H,连结OE,则四边形OHFC是矩形,∴OH=CF=1.6-0.4=1.2(米),∵OE=2米,∴在Rt△OHE中,HE=OE2―OH2=22―1.22=1.6(米),∵HF=OC=OD-CD=2-0.8=1.2(米),∴EF=HE-HF=1.6-1.2=0.4(米),即支撑杆EF的长度为0.4米.10.证明 如图,连结AC,BC,∵AB⊥CD,AB为☉O的直径,∴CE=DE,∴AB垂直平分CD,∴AC=AD,∵F为AD的中点,CF过圆心,∴CF⊥AD,∴CF垂直平分AD,∴AC=CD,∴AC=AD=CD,∴△ACD是等边三角形,∴∠ACD=60°,∵F为AD的中点,∴∠FCD=30°,∴∠COE=60°,∵OC=OB,∴△OCB为等边三角形,∵CE⊥OB,∴OE=BE,即E是OB的中点.素养探究全练11.解析 (1)∵MN⊥AB,M为AB的中点,∴MN 过圆心,设圆心为O ,连结AO ,如图:设AO =x ,在Rt △AOM 中,AO 2=MO 2+AM 2,∴x 2=(d -x )2,∴x 2=d 2-2dx +x 2+ℎ24,∴2dx =d 2+ℎ24,∴2x =d +ℎ24d ,即该圆的直径为d +ℎ24d .(2)当h =2,圆木截面的直径为5.2时,d +224d =5.2,∴d +1d =5.2,∴d 2-5.2d +1=0,解得d =5或d =0.2,∵d ≥ℎ2,∴d ≥1,∴d =0.2不符合题意,舍去,∴d =5,∴MC 的长度为5.。
专题24.4 圆的对称性-垂径定理(基础篇)(专项练习)一、单选题1.AB为⊙O的直径,弦CD⊥AB于点E,已知CD=16,OE=6,则⊙O的直径为( )A.8B.10C.16D.202.如图,⊙O的直径AB垂直于弦CD,垂足为点E,连接AC,∠CAB=22.5°,AB=12,则CD的长为( )A.B.6C.D.3.如图以CD为直径的⊙O中,弦AB⊥CD于M.AB=16,CM=16.则MD的长为()A.2B.4C.6D.84.如图,CD是⊙O的直径,弦AB⊥CD于点E,则下列结论不一定成立的是()A .AE =BEB .OE =DEC .»»AC BC =D .»»AD BD=5.如图,点A ,B ,C ,D 在圆上,弦AB 和CD 交于点E ,则下列说法正确的是( )A .若CD 平分AB ,则CD AB ^B .若CD AB ^,则CD 平分ABC .若CD 垂直平分AB ,则圆心在CD 上D .若圆心在CD 上,则CD 垂直平分AB 6.如图,CD 是O e 的直径,弦AB CD ^于点E ,连接BC 、BD ,下列结论中不一定正确的是( )A .AE BE =B .»»AD BD =C .OE DE =D .»»AC BC=7.下列命题中假命题是( )A .平分弦的半径垂直于弦B .垂直平分弦的直线必经过圆心C .垂直于弦的直径平分这条弦所对的弧D .平分弧的直径垂直平分这条弧所对的弦8.如图,在⊙O 中,半径OC ⊥AB 于点E ,AE =2,则下列结论正确的是( )EC=A.2OE=B.2C.AB垂直平分OC D.OC垂直平分AB9.如图,⊙O的半径为5,弦AB=8,点C是AB的中点,连接OC,则OC的长为( )A.1B.2C.3D.410.如图,在⊙O中,弦AB的长是半径OA C为»AB中点,AB、OC交于点P,则四边形OACB是()A.平行四边形B.矩形C.菱形D.正方形11.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4),(5,4),(1,0),则以A、B、C为顶点的三角形外接圆的圆心坐标是()A .(3,2)B .(2,3)C .(1,3)D .(3,1)12.我国古代数学名著《九章算术》中有一个经典的“圆材埋壁”问题: “今有圆材埋壁中,以锯锯之,深一寸,锯道长一尺,问径几何? "意思是: 如图,CD 是⊙O 的直径, 弦 AB ⊥CD 于P ,CP =1寸,AB =10寸,则直径CD 的长是 ( )寸A .20B .23C .26D .30二、填空题13.圆的半径为5cm ,圆心到弦AB 的距离为4cm ,则AB =_______cm .14.如图,OE ⊥AB 于E ,若⊙O 的半径为10,OE =6,则AB =_______.15.如图,O e 的半径为4,AB ,CD 是O e 的弦,且//AB CD ,4AB =,CD =则AB 和CD 之间的距离为______.16.某隧道口横截面如图所示,上部分是圆弧形,下部分是矩形、已知隧道口最高点E与DC的距离EF为4米,且弧DC所在圆的半径为10米,则路面AB的宽度为_____米.17.如图,CD是⊙O的直径,弦AB⊥CD于点H,若∠D=30°,AD=,则AB=________cm.Ð的度数为18.如图,在⊙O中,弦AB的长为4,圆心O到弦AB的距离为2,则AOC______.19.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,4),(5,4),(1,﹣2),则△ABC外接圆的圆心坐标是_________.20.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(0,3),则该圆弧所在圆的圆心坐标是______.21.在进行垂径定理的证明教学中,老师设计了如下活动:先让同学们在圆中作了一条直径MN,然后任意作了一条弦(非直径).如图1,接下来老师提出问题:在保证弦AB长度不变的情况下,如何能找到它的中点?在同学们思考作图验证后,小华说了自己的一种想法:只要将弦AB与直径MN保持垂直关系,如图2,它们的交点就是弦AB的中点,请你说出小华此想法的依据是__.22.如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是______度.23.如图,某小区的一个圆形管道破裂,修理工人准备更换一段新管道,现在量得污水水面宽度为80cm,水面到管道顶部的距离为20cm,则修理工人应准备的新管道的内直径是______cm.24.已知O e 的半径为2,弦BC =,A 是O e 上一点,且»»AB AC =,直线AO 与BC 交于点D ,则AD 的长为________.三、解答题25.如图,在⊙O 中,直径AB =10,弦AC =8,连接BC .(1)尺规作图:作半径OD 交AC 于E ,使得点E 为AC 中点;(2)连接AD ,求三角形OAD 的面积.26.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就,它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(1ED =寸),锯道长1尺(AB =1尺=10寸).问这块圆形木材的直径(AC )是多少?”如图所示,请根据所学的知识解答上述问题.27.已知:如图,在O e 中,AB AC 、为互相垂直的两条弦,,OD AB OE AC ^^,D 、E 为垂足.(1)若AB AC =,求证:四边形ADOE 为正方形.(2)若AB AC >,判断OD 与OE 的大小关系,并证明你的结论.28.如图,AB 为⊙O 的直径,弦CD AB ^于点F ,OE AC ^于点E ,若3OE =,OB=,求OF的长.5参考答案1.D【分析】连接OC ,由垂径定理可知,点E 为CD 的中点,且OE ⊥CD ,在Rt △OEC 中,根据勾股定理,即可得出OC ,从而得出直径.解:连接OC ,∵AB 为⊙O 的直径,弦CD ⊥AB 于点E∴CE=12CD=8,∵OE=6.在Rt △OEC 中,由勾股定理得:OC 2=OE 2+EC 2,即OC 2=62+82解得:OC=10∴直径AB=2OC=20.故选D .【点拨】本题考查垂径定理,勾股定理.熟练掌握定理是解答关键.2.C【分析】连接OC ,求出∠COB =45°,根据垂径定理求出CD =2CE ,根据勾股定理求出CE 即可.解:连接OC ,则OC =12AB =12×12=6, ∵OA =OC ,∠CAB =22.5°,∴∠CAB =∠ACO =22.5°,∴∠COB=∠CAB+∠ACO=45°,∵AB⊥CD,AB为直径,∴CD=2CE,∠CEO=90°,∴∠OCE=∠COB=45°,∴OE=CE,∵CE2+OE2=OC2,∴2CE2=62,解得:CE,即CD=2CE,故选:C.【点拨】本题考查了等腰三角形的性质,勾股定理,三角形的外角性质,垂径定理等知识点,能求出CE=OE是解此题的关键.3.B【分析】连接OA,如图,设⊙O的半径为r,则OA=r,OM=16-r,根据垂径定理得到AM=BM=8,再根据勾股定理得到82+(16-r)2=r2,解方程求出r=10,然后计算CD-CM即可.解:连接OA,如图,设⊙O的半径为r,则OA=r,OM=16-r,∵AB⊥CD,∴AM=BM=12AB=8,在Rt△AOM中,82+(16-r)2=r2,解得r=10,∴MD=CD-CM=20-16=4.故选:B.【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.4.B【分析】根据垂径定理即可判断.解:CD Q 是O e 的直径,弦AB CD ^于点E ,AE EB \=,»»AC BC =, »»AD BD=.故选:B .【点拨】本题主要考查垂径定理,掌握垂径定理是解题的关键.5.C【分析】根据垂径定理的内容和垂径定理的推论的内容进行判断.解:A 、平分弦(不是直径)的直径垂直于弦,原说法错误,不符合题意;B 、垂直于弦的直径平分弦,原说法错误,不符合题意;C 、弦的垂直平分线必经过圆心,原说法正确,符合题意;D 、AB 若也是直径,则原说法不符合题意;故选:C .【点拨】本题考查了垂径定理以及推论,解答时熟悉垂径定理的内容以及推论的内容是关键.6.C【分析】根据垂径定理判断即可;解:∵直径CD 垂直于弦AB 于点E ,则由垂径定理可得,AE BE =,»»AD BD=,»»AC BC=,故选项A ,B ,D 正确;OE DE =无法得出,故C 错误.故选C .【点拨】本题主要考查了垂径定理的应用,准确分析判断是解题的关键.7.A【分析】根据垂径定理及其推论分别进行判断.解:A、平分弦(非直径)的半径垂直于弦,所以A为假命题;B、垂直平分弦的直线必经过圆心,所以B选项为真命题;C、垂直于弦的直径平分这条弦所对的弧,所以C选项为真命题;D、平分弧的直径垂直平分这条弧所对的弦,所以D选项为真命题.故选:A.【点拨】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理,也考查了垂径定理的性质.8.D【分析】由垂径定理和勾股定理分别对各个选项进行判断即可.解:连接OA,条件不足,不能求出OE和EC的长,故选项A、B不符合题意;∵OC⊥AB于点E,∴OC是线段AB的垂直平分线,故选项D正确,符合题意;选项C不符合题意,故选:D.【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.9.C【分析】根据垂径定理的推论,勾股定理即可求得OC的长解:OA OBQ点C是AB的中点,=Q ⊙O 的半径为5,弦AB =8,1,42OC AB AC BC AB \^===在Rt AOC △中3OC ==故选C【点拨】本题考查了垂径定理,勾股定理,掌握垂径定理是解题的关键.10.C【分析】根据弦AB 的长是半径OA C 为»AB 的中点,判定出四边形OACB 是平行四边形,再由AB OC ^,即可判定四边形OACB 是菱形.解:∵弦AB 的长是半径OA C 为»AB 的中点,OC 为半径,∴12AP AB AO AB OC ==^,,∴1122OP OA OC ===,∴12PC OC =,即OP PC =,∴四边形OACB 是平行四边形,又∵AB OC ^,∴四边形OACB 是菱形.【点拨】本题主要考查了勾股定理,菱形的判定,以及垂径定理的推论,读懂题意是解题的关键.11.A【分析】根据垂径定理的推论“弦的垂直平分线必过圆心”作两条弦的垂直平分线,交点即为圆心.解:如图,作弦AB 、AC 的垂直平分线,∵点A 、B 、C 的坐标分别为(1,4),(5,4),(1,0),所以弦514AB =-=,弦404AC =-=,∴弦AB 的垂直平分线与x 轴相交于点(30),,弦AC 的垂直平分线与y 轴相交于点(0)2,,∴两条垂直平分线的交点1O即为三角形外接圆的圆心,且1O点的坐标是(3,2).故选:A.【点拨】本题考查了垂径定理,三角形的外接圆与圆心,熟知垂径定理是解题的关键.12.C【分析】连接OA构成直角三角形,先根据垂径定理,由DP垂直AB得到点P为AB的中点,由AB=6可求出AP的长,再设出圆的半径OA为x,表示出OP,根据勾股定理建立关于x 的方程,解方程直接可得2x的值,即为圆的直径.解:连接OA,∵AB⊥CD,且AB=10寸,∴AP=BP=5寸,设圆O的半径OA的长为x,则OC=OD=x,∵CP=1,∴OP=x-1,在直角三角形AOP中,根据勾股定理得:x2-(x-1)2=52,化简得:x2-x2+2x-1=25,即2x=26,∴CD =26(寸).故选:C .【点拨】本题考查了垂径定理和勾股定理,正确作出辅助线构造直角三角形是关键.13.6【分析】根据题意,画出图形,利用垂径定理,可得2AB AC = ,然后利用勾股定理求出3AC cm =,即可求解.解:根据题意画出如下图形,半径5OA cm = ,OC AB ^ ,则4OC cm = ,∵半径5OA cm = ,OC AB ^ ,∴2AB AC = ,在Rt AOC △ 中,由勾股定理得:3A C cm === ,∴26A B A C cm == .故答案为:6 .【点拨】本意主要考查了垂径定理,勾股定理,利用垂径定理,得到2AB AC =是解题的关键.14.16【分析】连接OA ,由垂径定理可得2AB AE =,在Rt AOE D 中利用勾股定理即可求得AE 的长,进而求得AB .解:连接OA ,∵OE ⊥AB 于E ,∴2AB AE =,在Rt AOE D 中,10OA =,OE =6,∴8AE ==,∴216AB AE ==,故答案为:16【点拨】本题考查了垂径定理和勾股定理,构造直角三角形是解题的关键.15.±【分析】作OE AB ^于E ,交CD 于F ,连结OA ,OC ,根据平行线的性质等到OF CD ^,再利用垂径定理得到1122AE AB CF CD ==,,再由勾股定理解得OE ,OF 的长,继而分类讨论解题即可.解:作OE AB ^于E ,交CD 于F ,连结OA ,OC ,如图,//AB CDQ OF CD\^11222AE BE AB CF DF CD \======,在Rt OAE △中,42OA AE ==Q ,\==OEV中,在Rt OCFQ,C F4OC==\==OF当圆心O在AB与CD之间时,=+=EF OF OE当圆心O不在AB与CD之间时,=-=-EF OF OE即AB和CD之间的距离为故答案为:【点拨】本题考查勾股定理、垂径定理、分类讨论等知识,是重要考点,难度较易,掌握相关知识是解题关键.16.16【分析】先根据勾股定理CF8=米,根据垂径定理求出DF=CF=8米,然后根据四边形ABCD为矩形,得出AB=DC=16米即可.解:∵EF=4米,OC=OE=10米,∴OF=OE-EF=6米,在Rt△OEC中,CF8=米,∵OF⊥DC,DC为弦,∴DF=CF=8米,∴DC=2×8=16米,∴四边形ABCD为矩形,∴AB=DC=16米,故答案为:16.【点拨】本题考查勾股定理,垂径定理,矩形性质,掌握勾股定理,垂径定理,矩形性质是解题关键.17.【分析】根据∠D =30°,直角三角形中30°角对应的直角边等于斜边的一半计算出AH ,再根据垂直于弦的直径平分弦得到AB =2AH 计算出AB .解:在Rt AHD V 中,∠D =30°∴2AD AH=∴AH =cm∵弦AB ⊥CD∴2==AB AH故答案为:【点拨】本题考查直角三角形和圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.18.45°【分析】先根据垂径定理可得122AC AB ==,再根据等腰直角三角形的判定与性质即可得.解:由题意得:OC AB ^,4AB =,122AC AB \==,2OC =Q ,AC OC \=,Rt AOC \V 是等腰直角三角形,45AOC =\а,故答案为:45°.【点拨】本题考查了垂径定理、等腰直角三角形的判定与性质,熟练掌握垂径定理是解题关键.19.(3,1)【分析】根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点D即为圆心,且坐标是(3,1).故答案为:(3,1).【点拨】此题考查了垂径定理的推论,能够准确确定一个圆的圆心.20.(1,0).【分析】直接利用垂径定理推论得出圆心位置,进而利用A点坐标得出原点位置即可得出答案.解:如图示,∵点A的坐标为(0,3),据此建立平面直角坐标系如下图所示,连接AB,AC,作AB,AC的中垂线,交点是点D则,该圆弧所在圆的圆心坐标是:(1,0).故答案是:(1,0).【点拨】本题主要考查了垂径定理以及坐标与图形的性质,正确得出圆心位置是解题关键.21.等腰三角形三线合一的性质【分析】连接OA、OB,则△OAB是等腰三角形,依据等腰三角形的性质判断.解:连接OA、OB,则△OAB是等腰三角形,当MN⊥AB时,一定有MB过AB的中点,依据三线合一的性质可得.故答案是:等腰三角形三线合一的性质.【点拨】本题考查了垂径定理,正确转化为等腰三角形的性质解决问题是关键.22.48【分析】根据点D是弦AC的中点,得到OD⊥AC,然后根据∠DOC=∠DOA即可求得答案:解:∵AB是⊙O的直径,∴OA=OC.∵∠A=42°,∴∠ACO=∠A=42°.∵D为AC的中点,∴OD⊥AC.∴∠DOC=90°﹣∠DCO=90°﹣42°=48°.故答案为:48.23.100【分析】由垂径定理和勾股定理计算即可.解:如图所示,作管道圆心O,管道顶部为A点,污水水面为BD,连接AO,AO与BD垂直相交于点C.设AO=OB=r则OC=r-20,BC=140 2BD=有222 OB OC BC=+222(20)40r r =-+化简得r =50故新管道直径为100cm .故答案为:100.【点拨】本题为垂径定理的实际应用题,主要是通过圆心距,圆的半径及弦长的一半构成直角三角形,并应用勾股定理,来解决问题.24.1或3【分析】根据垂径定理建立直角三角形,再运用勾股定理求得OD ,进而分两种情况讨论即可.解:如图,连接OB ,»»AB AC =Q ,\由垂径定理可知,OA BC ^,BD CD ==则在Rt OBD △中,1OD ==,211AD r OD \=-=-=或213AD r OD =+=+=,故答案为:1或3.【点拨】本题考查了垂径定理,勾股定理计算圆周上点到弦得距离,熟练掌握基本定理,准确分类讨论是解题关键.25.(1)见分析(2)10【分析】(1)过点O 作OD ⊥AC ,交AC 于点E ,交⊙O 于点D ;(2)由题意可得OD =5,由(1)得:OE ⊥AC ,点E 为AC 中点,继而可得118422AE AC ==´=,然后根据三角形的面积公式即可求得答案.(1)解:如图,点E 即为所求;(2)解:如图,连接AD ,∵⊙O 的直径是10,∴OD =5,由(1)得:OE ⊥AC ,点E 为AC 中点,∴118422AE AC ==´=,∴11541022OAD S OD AE =×=´´=V .【点拨】本题主要考查了垂径定理、三角形的面积公式,熟练掌握垂径定理是解题的关键.26.这块圆形木材的直径(AC )是26寸【分析】设O e 的半径为x 寸,根据题意可得AD BD =,在Rt AOD △中,OA x =,1OD x =-,勾股定理求解即可.解:设O e 的半径为x 寸,∵OE AB ^,10AB =寸,∴152AD BD AB ===寸,在Rt AOD △中,OA x =,1OD x =-,由勾股定理得()22215x x =-+,解得13x =.∴O e 的直径226AC x ==(寸).答:这块圆形木材的直径(AC )是26寸.【点拨】本题考查了垂径定理的应用,掌握垂径定理是解题的关键.27.(1)见分析(2)OD <OE【分析】(1)先根据垂径定理,由OD ⊥AB ,OE ⊥AC 得到AD =12AB ,AE =12AC ,且∠ADO =∠AEO =90°,加上∠DAE =90°,则可判断四边形ADOE 是矩形,由于AB =AC ,所以AD =AE ,于是可判断四边形ADOE 是正方形;(2)由(1)得四边形ADOE 是矩形,可得OE =AD =12AB ,OD =AE =12AC ,又AB >AC ,即可得出OE 和OD 的大小关系.(1)证明:∵OD ⊥AB ,OE ⊥AC ,AB ⊥AC ,∴四边形ADOE 为矩形,且OD 平分AB ,OE 平分AC ,∴BD =AD =12AB ,AE =EC =12AC ,∵AB =AC ,∴AD =AE ,∴四边形ADOE 为正方形.(2)解:OD <OE ,理由如下:由(1)得四边形ADOE 是矩形,∴OE =AD ,OD =AE ,∵AD =12AB ,AE =12AC ,∴OE =12AB ,OD =12AC ,又∵AB >AC ,∴OD <OE .【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧、也考查了正方形的判定.28.1.4【分析】根据垂径定理得到AE EC =,CF FD =,根据勾股定理求出AE .设OF x =,再次根据勾股定理得到等式2222AC AF OC OF -=-,代入求值即可解答.解:连接OC ,∵AB CD ^,OE AC ^,∴AE EC =,CF FD =,∵3OE =,5OB =,∴5OB OC OA ===,∴在Rt OAE △中,4AE ===,∴4AE EC ==,∴8AC =,设OF x =,∵在Rt CAF V 中,222CF AC AF =-,在Rt OFC V 中,222CF OC OF =-,∴2222AC AF OC OF -=-,∴()2222855x x -+=-,解得: 1.4x =,即 1.4OF =.【点拨】本题考查了垂径定理、勾股定理知识,关键在于合理运用垂径定理和勾股定理求出边的长度.。
2022-2023学年浙教版九年级数学上册《3.3垂径定理》同步练习题(附答案)一.选择题1.如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC =4,DE=4,则BC的长是()A.1B.C.2D.42.过⊙O内一点M的最长弦为20cm,最短弦为16cm,那么OM的长为()A.3cm B.6cm C.8cm D.9cm3.如图,CD是圆O的弦,直径AB⊥CD,垂足为E,若AB=12,BE=3,则四边形ACBD 的面积为()A.36B.24C.18D.724.工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC ⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为()A.10cm B.15cm C.20cm D.24cm5.如图,在⊙O中,直径AB=8,弦DE⊥AB于点C,若AD=DE,则BC的长为()A.B.C.1D.26.如图,在⊙O中,直径CD垂直弦AB于点E,且OE=DE.点P为上一点(点P不与点B,C重合),连接AP,BP,CP,AC,BC.过点C作CF⊥BP于点F.给出下列结论:①△ABC是等边三角形;②在点P从B→C的运动过程中,的值始终等于.则下列说法正确的是()A.①,②都对B.①对,②错C.①错,②对D.①,②都错二.填空题7.如图,AB是半圆O的直径,四边形CDMN和DEFG都是正方形,其中C,D,E在AB 上,F、N在半圆上.若则正方形CDMN的面积与正方形DEFG的面积之和是16,则AB 的长为.8.如图,以AB为直径的⨀O中,点C为⨀O上一点,且AC=BC=,过点O作OD⊥AC,垂足为D,点P为直线OD上一个动点,则弧BC,PB,PC构成的封闭图形周长最小值为.9.如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分,如果C是⊙O中弦AB的中点,CD经过圆心O交⊙O于点D,并且AB=4m,CD=6m,则⊙O的半径长为m.10.如图,在⊙O中,AD⊥BC,连接AB、CD,当AB=2,CD=6时,则⊙O半径长为.11.平面直角坐标系xOy如图所示,以原点O为圆心,以2为半径的⊙O中,弦AB=,点C是弦AB中点,P(+1,﹣1),连接PC,当弦AB在⊙O上滑动,线段PC扫过的面积为.12.如图,AB是⊙O的直径,弦CD交AB于点P,AP=4,BP=12,∠APC=30°,则CD的长为.13.如图,圆O的半径为4,点P是直径AB上定点,AP=1,过P的直线与圆O交于C,D两点,则△COD面积的最大值为;作弦DE∥AB,CH⊥DE于H,则CH的最大值为.三.解答题14.如图,在⊙O中,AB,AC为弦,CD为直径,AB⊥CD于E,BF⊥AC于F,BF与CD 相交于G.(1)求证:ED=EG;(2)若AB=8,OG=1,求⊙O的半径.15.石拱桥是我国古代入民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长)AB=26m,设所在圆的圆心为O,半径OC⊥AB,垂足为D.拱高(弧的中点到弦的距离)CD=5m.连接OB.(1)直接判断AD与BD的数量关系;(2)求这座石拱桥主桥拱的半径(精确到1m).16.如图,⊙O中两条互相垂直的弦AB,CD交于点E.(1)OM⊥CD于点M,CD=24,⊙O的半径长为4,求OM的长.(2)点G在BD上,且AG⊥BD交CD于点F,求证:CE=EF.17.如图,在⊙O中,AB、AC是互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D、E.(1)求证:四边形ADOE是正方形;(2)若AC=2cm,求⊙O的半径.18.如图,线段AB=10,AC=8,点D,E在以AB为直径的半圆O上,且四边形ACDE 是平行四边形,过点O作OF⊥DE于点F,求AE的长.19.如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm.若水面上升2cm (EG=2cm),则此时水面宽AB为多少?20.某隧道的截面是由如图所示的图形构成,图形下面是长方形ABCD,上面是半圆形,其中AB=10米,BC=2.5米,隧道设双向通车道,中间有宽度为2米的隔离墩,一辆满载家具的卡车,宽度为3米,高度为4.9米,请计算说明这辆卡车是否能安全通过这个隧道?参考答案一.选择题1.解:∵AB是⊙O的直径,∴∠C=90°,∵OD⊥AC,∴点D是AC的中点,∴OD是△ABC的中位线,∴OD∥BC,且OD=BC,设OD=x,则BC=2x,∵DE=4,∴OE=4﹣x,∴AB=2OE=8﹣2x,在Rt△ABC中,由勾股定理可得,AB2=AC2+BC2,∴(8﹣2x)2=(4)2+(2x)2,解得x=1.∴BC=2x=2.故选:C.2.解:由题意知,最长的弦为直径,最短的弦为垂直于直径的弦,如图所示.直径ED⊥AB于点M,则ED=20cm,AB=16cm,由垂径定理知:点M为AB中点,∴AM=8cm,∵半径OA=10cm,∴OM2=OA2﹣AM2=100﹣64=36,∴OM=6cm.故选:B.3.解:如图,连接OC,∵AB=12,BE=3,∴OB=OC=6,OE=3,∵AB⊥CD,在Rt△COE中,EC=,∴CD=2CE=6,∴四边形ACBD的面积=.故选:A.4.解:如图,连接OE,交AB于点F,连接OA,∵AC⊥CD、BD⊥CD,∴AC∥BD,∵AC=BD=4cm,∴四边形ACDB是平行四边形,∴四边形ACDB是矩形,∴AB∥CD,AB=CD=16cm,∵CD切⊙O于点E,∴OE⊥CD,∴OE⊥AB,∴四边形EFBD是矩形,AF=AB=×16=8(cm),∴EF=BD=4cm,设⊙O的半径为rcm,则OA=rcm,OF=OE﹣EF=(r﹣4)cm,在Rt△AOF中,OA2=AF2+OF2,∴r2=82+(r﹣4)2,解得:r=10,∴这种铁球的直径为20cm,故选:C.5.解:∵DE⊥AB,AB过圆心O,∴DC=CE=DE,∠ACD=∠BCD=90°,∵AD=DE,∴DC=AD,∴∠DAC=30°,∵AB是⊙O的直径,∴∠ADB=90°,∴BD=AB==4,∵∠ADB=90°,∠DAB=30°,∴∠ABD=60°,∵∠DCB=90°,∴∠CDB=30°,∴BC=BD=,故选:D.6.解:如图,作CM⊥AP于M,连接AD.∵AE⊥OD,OE=DE,∴AO=AD,∵OA=OD,∴AO=AD=OD,∴△AOD是等边三角形,∴∠D=∠ABC=60°,∵CD⊥AB,∴AE=EB,∴CA=CB,∴△ABC是等边三角形,故①正确,∵∠CP A=∠ABC=60°,∠APB=∠ACB=60°,∴∠CPF=180°﹣60°﹣60°=60°,∵∠CPM=∠CPF=60°,CF⊥PF,CM⊥P A,∴CF=CM,∵PC=PC,∠CFP=∠CMP,∴Rt△CPF≌Rt△CPM(HL),∴PF=PM,∵AC=BC,CM=CF,∠AMC=∠CFB=90°,∴Rt△AMC≌Rt△BFC(HL),∴AM=BF,∴AP﹣PB=PM+AM﹣(BF﹣PF)=2PM=2PF,∴=,在Rt△CPF中,∵∠CPF=60°,∠CFP=90°,∴CF=PF,∴PF=CF,∴=,故②正确,故选:A.二.填空题7.解:连接ON,OF,设正方形CDMN的边长为a,正方形DEFG边长为b,OD=c,则CN=CD=a,DE=EF=b,∵四边形CDMN和DEFG都是正方形,∴∠NCD=90°,∠FED=90°,设OA=ON=OF=OB=r,由勾股定理得:NC2+CO2=ON2,OE2+EF2=OF2,∴a2+(a+c)2=r2①,b2+(b﹣c)2=r2②,①﹣②,得a2+(a+c)2﹣b2﹣(b﹣c)2=0,(a2﹣b2)+[(a+c)2﹣(b﹣c)2)]=0,(a+b)(a﹣b)+(a+c+b﹣c)(a+c﹣b+c)=0,(a+b)(a﹣b)+(a+b)(a﹣b+2c)=0,(a+b)(a﹣b+a﹣b+2c)=0,2(a+b)(a﹣b+c)=0,∵a+b≠0,∴a﹣b+c=0,即b=a+c,把b=a+c代入①,得a2+b2=r2,∵正方形CDMN的面积与正方形DEFG的面积之和是16,∴a2+b2=16,∴r2=16,解得r=4(负值舍去),∴AB=2r=8.故答案为:8.8.解:要使得弧BC,PB,PC构成的封闭图形周长最小,弧BC的值不变,则BP+PC最小即可,∵OD⊥AC,∴点C关于PD的对称点为点A,即当P点与O点重合时,BP+PC最小,即弧BC,PB,PC构成的封闭图形周长最小,连接OC,∵AC=BC=,∴∠BOC=90°,OB=OC=BC==1,∴弧BC的长为=,∴弧BC,PB,PC构成的封闭图形周长最小为:2+.故答案为:2.9.解:连接OA,如图,设⊙O的半径为rm,∵C是⊙O中弦AB的中点,CD过圆心,∴CD⊥AB,AC=BC=AB=2m,在Rt△AOC中,∵OA=rcm,OC=(6﹣r)m,∴22+(6﹣r)2=r2,解得r=,即⊙O的半径长为m.故答案为:.10.解:如图,连接CO,延长CO交⊙O于H,连接BH,DH,BD.∵CH是直径,∴∠CBH=∠CDH=90°,∴CB⊥BH,∵CB⊥AD,∴AD∥BH,∴∠CDB=∠DBH,∴=,∴DH=BA=2,而CD=6,根据勾股定理CH==2,故答案为2.11.解:连接OC,OA,如图,∵点C是弦AB中点,∴OC⊥AB,AC=BC=AB=,∴OC==.∵弦AB在⊙O上滑动,∴点C的轨迹为以点O为圆心,以为半径的圆,如图中的虚线⊙O,过点P作该圆的切线PD,PE,连接OD,OE,PO,如上图,则OD=OE=.利用勾股定理可求得PO=,∵PD,PE是虚线⊙O的切线,∴OD⊥PD,OE⊥PE,PD=PE,∠DPO=∠EPO.∴∠OPD=30°,∴∠OPE=30°,∴∠DOP=60°,∠EOP=60°,∴∠DOE=120°.∵线段PC扫过的面积为四边形DOEP的面积+大扇形ODE的面积,∴线段PC扫过的面积为2×PD•OD+=+π.故答案为:+π.12.解:过O作OI⊥CD于I,连接OD,则∠OID=∠OIP=90°,∵AP=4,BP=12,∴直径AB=4+12=16,即半径OD=OA=8,∴OP=OA﹣AP=8﹣4=4,∵∠IPO=∠APC=30°,∴OI=OP==2,由勾股定理得:DI===2,∵OI⊥CD,OI过圆心O,∴DI=CI=2,即CD=DI+CI=4,故答案为:4.13.解:如图1,∵OC•OD•sin∠COD,∴当∠COD=90°时,△COD面积有最大值,且最大值=×4×4×1=8;设△APO的PO边上的高为h1,△DPO的边PO上的高为h2,如图,∵S△CDO=S△PCO+S△DPO,∴当△COD面积有最大值时,PO×h1+PO×h2=8.∴×3×(h1+h2)=8,∴h1+h2=.∴CH的最大值为.故答案为:8;.三.解答题14.(1)证明:如图:连接BD,∵AB⊥CD于E,BF⊥AC于F,∴∠CFG=∠GEB,∵∠CGF=∠BGE,∴∠C=∠GBE,∵∠C=∠DBE,∴∠GBE=∠DBE,∵AB⊥CD于E,∴∠GEB=∠DEB,在△GBE和△DBE中,,∴△BGE≌△BDE(ASA),∴ED=EG.(2)解:如图:连接OA,设OA=r,则DG=r+1,由(1)可知ED=EG,∴OE=,∵AB⊥CD于E,AB=8,∴AE=BE=4,∴在Rt△OAE中,根据勾股定理得:OE2+AE2=OA2,即()2+42=r2,解得:r=,即⊙O的半径为.15.解:(1)∵OC⊥AB,∴AD=BD;(2)设主桥拱半径为R,由题意可知AB=26,CD=5,∴BD=AB=13,OD=OC﹣CD=R﹣5,∵∠ODB=90°,∴OD2+BD2=OB2,∴(R﹣5)2+132=R2,解得R=19.4≈19,答:这座石拱桥主桥拱的半径约为19m.16.(1)解:如图,连接OD,∵OM⊥CD,OM过圆心,CD=24,∴DM=CM=CD=12,∠OMD=90°,由勾股定理得,OM===4,即OM的长为4;(2)证明:如图,连接AC,∵AG⊥BD,∴∠DGF=90°,∴∠DFG+∠D=90°,∵AB⊥CD,∴∠CEA=90°,∴∠C+∠EAC=90°,∵∠EAC=∠D,∠DFG=∠AFC,∴∠C=∠AFC,∴AF=AC,∵AB⊥CD,∴CE=EF.17.(1)证明:∵OD⊥AB,OE⊥AC,∴AD=AB,AE=AC,∵AB=AC,∴AD=AE,∵∠ADO=∠A=∠AEO=90°,∴四边形ADOE是正方形;(2)解:连接OA,∵AC=2cm,∴AE=1cm,在Rt△AOE中,OA==(cm),答:⊙O的半径是cm.18.解:过点E作EG⊥AB于点G,连接OE,则OE=OA=,∠EGO=90°,∵四边形ACDE是平行四边形,∴DE=AC=8,DE∥AB,∵OF⊥DE,即∠OFE=90°,∴EF==4,∠FOG=∠OFE=90°,∴四边形OFEG是矩形,∴OG=EF=4,∴AG=5﹣4=1,在Rt△OEG中,EG=,在Rt△AGE中,AE=.19.解:连接OA、OC,∵由题意知:AB∥CD,OE⊥AB,OF⊥CD,CD=20cm,∴CG=CD=10cm,在Rt△OGC中,由勾股定理得:OC2=CG2+OG2,OC2=102+(OC﹣2)2,解得:OC=26(cm),则OE=26cm﹣2cm﹣2cm=22cm,∵在Rt△OEA中,由勾股定理得:OA2=OE2+AE2,∴262=222+AE2,∴AE=8,∵OE⊥AB,OE过圆心O,∴AB=2AE=16cm.20.解:如图,作OM⊥AB于M,交AB于M,图中KN=3,作KF⊥CD于H,交⊙O于F,连接OF.易知四边形OHKM是矩形,四边形ABCD是矩形,OH=KM=4,AB=CD=10,OF=OD=5,在Rt△OHF中,FH===3,∵HK=BC=2.5,∴FK=2.5+3=5.5,∵5.5>4.9,∴这辆卡车能安全通过这个隧道.。
B
F E O
D
C
A 垂径定理综合训练习题
一、垂径定理在证明上的应用
1、如图,AB 、CD 都是⊙O 的弦,且AB ∥CD ,求证: 弧AC = 弧BD 。
2.如图,CD 为⊙O 的弦,在CD 上截取CE=DF ,连结OE 、OF ,并且它们的延长⊙O 于点A 、
B 。
(1)试判断△OEF 的形状,并说明理由;(2)求证:⋂
AC =⋂
BD 。
3、如图,在⊙O 中,AB 为⊙O 的弦,C 、D 是直线AB 上两点,且AC =BD 求证:△OCD 为等腰三角形。
4、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是
的中点,
AD ⊥BC 于D ,求证:AD=2
1
BF.
二、垂径定理在计算上的应用(一)求半径,弦长,弦心距
1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深
度为16cm ,那么油面宽度AB 是________cm.
A
B
C
D
O
A B C D O O
A E F
变式 2.在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm
2:如图为一圆弧形拱桥,半径OA = 10m ,拱高为4m ,求拱桥跨度AB 的长。
3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F .
(1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离.
4、如图所示,在Rt △ABC 中,∠C =900,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 、BC 分别交于点D 、E ,求AB 和AD 的长。
(二)、度数问题
1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径。
.
A
C B
D O
C
A
D E
O D C B A A B C D O 2、已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2、3.求BAC ∠的度数。
(三)、相交问题
如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长.
(四)平行问题
(南京市)如图2,矩形ABCD 与圆心在AB 上的⊙O 交于点G 、B 、F 、E , GB =8cm ,AG =1cm ,DE =2cm ,则EF = cm .
AB 、CD ,其中AB =16cm ,CD =12cm ,圆的半径为10,求AB 、CD 间的距离。
2、 如图,圆柱形水管内原有积水的水平面宽CD=20cm ,水深GF=2cm .若水面上升2cm (EG=2cm )
,则此时水面宽AB 为多少?
N M O
G
F
E B
O A
C D
E
(五)同心圆问题
如图,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的半径分别为b a ,.求证:2
2
b a BD AD -=⋅.
3、(2009•龙岩)如图,AB 、CD 是半径为5的⊙O 的两条弦,AB=8,CD=6,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则PA+PC 的最小值为多少?
1、(2010•大田县)如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴相切于点Q ,与y 轴交于M (0,2),N (0,8)两点,则点P 的坐标是( )
A 、(5,3)
B 、(3,5)
C 、(5,4)
D 、(4,5) 2、(2010•潍坊)已知:如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB=8m ,OC=5m ,则DC 的长为( )
A 、3cm
B 、2.5cm
C 、2cm
D 、1cm
1.下列命题中错误的有()
(1)弦的垂直平分线经过圆心(2)平分弦的直径垂直于弦 (3)梯形的对角线互相平分(4)圆的对称轴是直径 A .1个 B .2个 C .3个 D .4个
2、⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( ) (A )5OM 3≤≤ (B )5OM 4≤≤ (C )5OM 3<< (D )5OM 4<< 3.如图,如果AB 为⊙O 直径,弦AB CD ⊥,垂足为E ,那么下列结论中错误的 是( ) A .DE CE =
B .
C .BA
D BAC ∠=∠
D .AD AC >
4.如图,AB 是⊙O 直径,CD 是⊙O 的弦,CD AB ⊥于E ,则图中不大于半圆的相等弧有( )对。
A .1对 B .2对 C .3对 D .4对 二、垂径定理
1、过⊙O 内一点P 的最长弦为10cm ,最短的弦为6cm ,则OP 的长为 .
2.在⊙O 中,弦AB 长为cm 8,圆心到弦AB 的距离为cm 3,则⊙O 半径长为 cm 3.半径是5cm 的圆中,圆心到cm 8长的弦的距离是 cm
4.如图,有一圆弧形桥拱,拱形的半径m 10=OA ,桥拱的距度16=AB m ,则拱高
_____=CD m.
5.一水平放置的圆柱型水管的横截面如图所示,如果水管横截面的半径是13cm ,水面宽24=AB ,则水管中水深是_______cm.
6.如图,⊙O 的直径⊥CD AB ,垂足为点E ,若8,2==ED CE ,则=AB ( ) A .2 B .4 C .8 D .16
7.过⊙O 内一点M 的最长的弦长为4cm ,最短的弦长为2cm , 则OM 的长为( )
A .3cm
B .2cm
C .1
D .3cm
8.已知:如图,⊙O 中直径AB 垂直于弦CD ,垂足为E ,若6,10==CD AB ,则BE 的长是( )
A .1
B .2
C .3
D .4
9.已知⊙O 的弦AB 长8cm ,弦心距为3cm ,则⊙O 的直径是( )
A .5cm
B .10cm
C .55cm
D .73cm
10.已知⊙O 的半径为2cm ,弦AB 长32cm ,则这条弦的中点到弦所对劣弧的中点的距离为( )
A .1cm
B .2cm
C .2cm
D .3cm
11如图,已知⊙O 的半径为cm 6,两弦AB 与CD 垂直相交于E ,若cm CE 3=,cm DE 9=,则=AB ( )
A .cm 6
B .cm 33
C .cm 3
D .cm 36。