二次函数复习题(提高题)
- 格式:docx
- 大小:697.23 KB
- 文档页数:8
中考数学复习《二次函数》专题训练-附带有参考答案一、选择题1.下列函数中,是二次函数的是()A.y=x2+1x B.y=12x(x-1) C.y=-2x-1 D.y=x(x2+1).2.抛物线y=(x−2)2−3的顶点坐标是()A.(2,−3)B.(−2,3)C.(2,3)D.(−2,−3)3.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x−2)2+3B.y=5(x+2)2−3C.y=5(x+2)2+3D.y=5(x−2)2−34.函数y=ax2与y=﹣ax+b的图象可能是()A. B. C. D.5.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3且k≠0 D.k≤36.若A(−5,y1),B(1,y2),C(2,y3)为二次函数y=x2+2x+m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①b>0;②当x>0,y随着x 的增大而增大;③(a+c)2﹣b2<0;④a+b≥m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元二、填空题9.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为10.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(-1,0),(3,0),则此抛物线的对称轴是直线.11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.12.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y=60t-65t2,从飞机着陆至停下来共滑行米.13.已知如图:抛物线y=ax2+bx+c与直线y=kx+n相交于点A(−52,74)、B(0,3)两点,则关于x的不等式ax2+bx+c<kx+n的解集是三、解答题14.如图,在平面直角坐标系中,一次函数y1=kx−7的图象与二次函数y2=2x2+bx+c的图象交于A(1,−5)、B(3,t)两点.(1)求y1与y2的函数关系式;(2)直接写出当y1<y2时,x的取值范围;(3)点C为一次函数y1图象上一点,点C的横坐标为n,若将点C向右平移2个单位,再向上平移4个单位后刚好落在二次函数y2的图象上,求n的值.15.某品牌服装公司新设计了一款服装,其成本价为60(元/件).在大规模上市前,为了摸清款式受欢迎状况以及日销售量y(件)与销售价格x(元/件)之间的关系,进行了市场调查,部分信息如表:销售价格x(元/件)80 90 100 110日销售量y(件)240 220 200 180(1)若y与x之间满足一次函数关系,请直接写出函数的解析式(不用写自变量x的取值范围);(2)若该公司想每天获利8000元,并尽可能让利给顾客,则应如何定价?(3)为了帮助贫困山区的小朋友,公司决定每卖出一件服装向希望小学捐款10元,该公司应该如何定价,才能使每天获利最大?(利润用w表示)16.如图,抛物线y=−x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线:l:y=−x−1与y轴交于点C,与抛物线y=−x2+bx+c的另一个交点为D(5,−6),已知P点为抛物线y=−x2+bx+c上一动.点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的动点,以NC为一边且顶点为N,C,M,P的四边形是平行四边形,直接写出所有符合条件的M点坐标.17.如图是北京冬奥会举办前张家口某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−18x2+32x+32近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−14x2+bx+c 运动.(1)当小张滑到离A处的水平距离为8米时,其滑行高度为10米,求出b,c的值;(2)在(1)的条件下,当小张滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为是5米?2(3)若小张滑行到坡顶正上方,且与坡顶距离不低于4米,求b的取值范围.18.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D 为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.参考答案 1.B 2.A 3.C 4.B 5.D 6.B 7.B 8.B9.y =(x −1)2−1 10.x =1 11.a <5 12.75013.x <−52或x >014.(1)解:把点A(1,−5)代入y 1=kx −7得−5=k −7 ∴y 1=2x −7;把点B(3,t)代入y 1=2x −7中,得t =−1 ∴A(1,−5)把点A 、B 分别代入y 2=2x 2+bx +c 中,得{−2=2+b +c−1=18+3b +c 解得{b =−6c =−1∴y 2=2x 2−6x −1; (2)x <1或x >3(3)解:∵点C 为一次函数y 1图象上一点,∴C(n ,2n −7)将点C 向右平移2个单位,再向上平移4个单位后得到点C ′(n +2,2n −3) 把C ′代入y 2=2x 2−6x −1,得2n −3=2(n +2)2−6(n +2)−1 解得n =±1 所以n 的值为1或-1 15.(1)y=-2x+400(2)解:由题意,得:(x −60)(−2x +400)=8000解得x 1=100,x 2=160 ∵公司尽可能多让利给顾客 ∴应定价100元(3)解:由题意,得w =(x −60−10)(−2x +400)=−2x 2+540x −28000 =−2(x −135)2+8450∵−2<0∴当x =135时,w 有最大值,最大值为8450. 答:当一件衣服定为135元时,才能使每天获利最大. 16.(1)解:∵直线l :y =−x −1过点A∴A(−1,0)又∵D(5,−6)将点A ,D 的坐标代入抛物线表达式可得:{−1−b +c =0−25+5b +c =−6 解得{b =3c =4.∴抛物线的解析式为:y =−x 2+3x +4. (2)解:如图设点P(x ,−x 2+3x +4) ∵PE ∥x 轴,PF ∥y 轴则E(x 2−3x −5,−x 2+3x +4),F(x ,−x −1) ∵点P 在直线l 上方的抛物线上∴−1<x <5∴PE =|x −(x 2−3x −5)|=−x 2+4x +5,PF =|−x 2+3x +4−(−x −1)|=−x 2+4x +5 ∴PE +PF =2(−x 2+4x +5)=−2(x −2)2+18. ∴当x =2时,PE +PF 取得最大值,最大值为18.(3)符合条件的M 点有三个:M 1(4,−5),M 2(2+√14,−3−√14), M 3(2−√14,−3+√14). 17.(1)解:由题意可知抛物线C 2:y=−14x 2+bx+c 过点(0, 4)和(8, 10) 将其代入得:{4=c10=−14×82+8b +c解得 ∴b=114,c=4(2)解:由(1)可得抛物线Cq 解析式为: y=−14x 2+114x+4设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为52米,依题意得: −14m 2+114m +4−(−18m 2+32m +32)=52解得: m 1=10,m 2=0(舍)故运动员运动的水平距离为10米时,运动员与小山坡的竖直距离为为52米. (3)解:∵抛物线C 2经过点(0, 4) ∴c=4抛物线C 1: y=−18x 2+32x +32=−18(x −6)2+6 当x=6时,运动员到达坡项 即−14×62+6b+4≥4+6. ∴b ≥15618.(1)解:把A(4,0)、B(−3,0)代入y =ax 2+bx −4中 得{16a +4b −4=09a −3b −4=0解得{a =13b =−13∴这条抛物线所对应的函数表达式为y =13x 2−13x −4. (2)解:当x =0时y =−4∴C(0,−4)当−3<m <0时S =S △ODC +S △OAC =12×4×(−m)+12×4×4=−2m +8当0<m <4时S =S △ODC +S △OAD =12×4×m +12×4×(−13m 2+13m +4)=−23m 2+83m +8. (3)解:n =52,n =2511,n =3011.。
二次函数经典复习习题练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s2、 下列函数:① y = ()21y x x x =-+;③ ()224y xx x =+-;④ 21y x x=+;⑤ ()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c =3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数4、当____m =时,函数()2221m m y m m x--=+是关于x 的二次函数5、当____m =时,函数()2564mm y m x -+=-+3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系 8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm , 那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式. 11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形. (1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; 2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 . 3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图象可能是( )A. B .C .D .6、已知函数24m m y m x --=的图象是开口向下的抛物线,求m 的值.7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系.9、已知函数()422-++=m m xm y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大; (3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小? 10、如果抛物线2y ax =与直线1y x =-交于点(),2b ,求这条抛物线对应的二次函数的关系式.ttt1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 . 3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中正确的是 . 4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 . 5、已知函数2)(22+-+=x m m mxy 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积. 6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到.5、 已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小 的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<1 7、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4) 求出该抛物线与x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的? 8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式; (5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________;7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( ) A 、6,4 B 、-8,14 C 、-6,6 D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22B 、23C 、32D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由. 12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标 13、已知一次函数的图象过抛物线223y x x =++的顶点和坐标原点 1) 求一次函数的关系式;2) 判断点()2,5-是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七 c bx ax y ++=2的性质1、函数2y x px q =++的图象是以()3,2为顶点的一条抛物线,这个二次函数的表达式为2、二次函数2224y m x x m m =++-的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线2y ax bx c =++与y 轴交于点A (0,2),它的对称轴是1x =-,那么ac b=4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______. 5、已知二次函数c bx ax y ++=2的图象如图所示, 则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限.7、已知二次函数2y ax bx c =++(0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x =和3x =时,函数值相同;3)40a b +=;4)当2y =-时,x 的值只能为0;其中正确的是8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m=9、二次函数2y x ax b =++中,若0a b +=,则它的图象必经过点( )A ()1,1--B ()1,1-C ()1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如图所示, 则下列选项中正确的是( )A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( ) A .4个 B .3个 C .2个 D .1个13、抛物线的图角如图,则下列结论: ①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2y ax bx c =++的最大值是3a -,且它的图象经过()1,2--,()1,6两点,求a 、b 、c15、试求抛物线2y ax bx c =++与x 轴两个交点间的距离(240b ac ->)练习八 二次函数解析式1、抛物线y=ax 2+bx+c 经过A(-1,0), B(3,0), C(0,1)三点,则a= , b= , c=2、把抛物线y=x 2+2x-3向左平移3个单位,然后向下平移2个单位,则所得抛物线的解析式为 . 3、 二次函数有最小值为1-,当0x =时,1y =,它的图象的对称轴为1x =,则函数的关系式为 4、根据条件求二次函数的解析式(1)抛物线过(-1,-6)、(1,-2)和(2,3)三点 (2)抛物线的顶点坐标为(-1,-1),且与y 轴交点的纵坐标为-3 (3)抛物线过(-1,0),(3,0),(1,-5)三点;(4)抛物线在x 轴上截得的线段长为4,且顶点坐标是(3,-2);5、已知二次函数的图象经过()1,1-、()2,1两点,且与x 轴仅有一个交点,求二次函数的解析式6、抛物线y=ax 2+bx+c 过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式. 7、已知二次函数的图象与x 轴交于A (-2,0)、B (3,0)两点,且函数有最大值是2. (1) 求二次函数的图象的解析式;(2) 设次二次函数的顶点为P ,求△ABP 的面积.8、以x 为自变量的函数)34()12(22-+-++-=m m x m x y 中,m 为不小于零的整数,它的图象与x 轴交于点A 和B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b 的图象经过点A ,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.练习九 二次函数与方程和不等式1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 .2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为( ) A 、0 B 、1 C 、2 D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是( ) A 、0,0>∆>a B 、0,0<∆>a C 、0,0>∆<a D 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为( ) A 、0 B 、-1 C 、2 D 、416、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( )A 、x =-3B 、x =-2C 、x =-1D 、x =17、已知二次函数2y x px q =++的图象与x 轴只有一个公共点,坐标为()1,0-,求,p q 的值 8、画出二次函数322--=x x y 的图象,并利用图象求方程0322=--x x 的解,说明x 在什么范围时0322≤--x x .9、 如图:(1)求该抛物线的解析式;(2) 根据图象回答:当x 为何范围时,该函数值大于0.10、二次函数c bx ax y ++=2的图象过A(-3,0),B(1,0),C(0,3),点D 在函数图象上,点C 、D 是二次函数图象上的一对对称点,一次函数图象过点B 、D ,求(1)一次函数和二次函数的解析式,(2)写出使一次函数值大于二次函数值的x 的取值范围. 11、已知抛物线22y x m x m =-+-.(1)、求证此抛物线与x 轴有两个不同的交点; (2)若m 是整数,抛物线22y x m x m =-+-与x 轴交于整数点,求m 的值;(3)在(2)的条件下,设抛物线顶点为A ,抛物线与x 轴的两个交点中右侧交点为B.若M 为坐标轴上一点,且MA=MB ,求点M 的坐标.练习十 二次函数解决实际问题1、某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年种 蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线表示这种蔬 菜销售价与月份之间的关系.观察图像,你能得到关于这种蔬菜销售情况的哪些信息?(至少写出四条)2、某企业投资100万元引进一条农产品生产线,预计投产后每年可创收33万元,设生产线投产后,从第一年到第 x 年维修、保养费累计..为 y (万元),且 y =ax 2+bx ,若第一年的维修、保养费为 2 万元,第二年的为 4 万元.求:y 的解析式.3、校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度 y (m) 与水平距离 x (m) 之间的函数关系式为 y =-112x 2+23x +53,求小明这次试掷的成绩及铅球的出手时的高度.4、用 6m 长的铝合金型材做一个形状如图所示的矩形窗框,应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少? 5、商场销售一批衬衫,每天可售出 20 件,每件盈利 40 元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价 1 元,每天可多售出 2 件. ① 设每件降价 x 元,每天盈利 y 元,列出 y 与 x 之间的函数关系式; ② 若商场每天要盈利 1200 元,每件应降价多少元? ③ 每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元? 6、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为 4m , 跨度为 10m ,如图所示,把它的图形放在直角坐标系中. ①求这条抛物线所对应的函数关系式.②如图,在对称轴右边 1m 处,桥洞离水面的高是多少?7、 有一座抛物线形拱桥,正常水位时桥下水面宽度为20m ,拱顶距离水面4m. (1)在如图所示的直角坐标系中,求出该抛物线的解析式.(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),试求出用d 表示h 的函数关系式; (3)设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水深超过多少米时就会影响过往船只在桥下顺利航行?8、某一隧道内设双行线公路,其截面由一长方形和一抛物线构成,如图所示,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5m ,若行车道总宽度AB 为6m ,请计算车辆经过隧道时的限制高度是多少米?(精确到0.1m ).参考答案1:1、22t s =;2、⑤,-1,1,0;3、≠2,3,1;6、(2,3);7、D ;8、),2150(2254S 2<<+-=x x 189;9、x x y 72+=,1;10、22-=x y ;11、,244S 2x x +-=当a<8时,无解,168<≤a 时,AB=4,BC=8,当16≥a 时,AB=4,BC=8或AB=2,BC=16.参考答案2:1、(1)x=0,y 轴,(0,0),>0,,<0,0,小,0; (2)x=0,y 轴,(0,0),<,>, 0,大,0;2、④;3、C ;4、A ;5、B ;6、-2;7、3-;8、021<<y y ;9、(1)2或-3,(2)m=2、y=0、x>0,(3)m=-3,y=0,x>0;10、292x y =参考答案3:1、下,x=0,(0,-3),<0,>0;2、2312-=x y ,1312+=x y ,(0,-2),(0,1);3、①②③;4、322+=x y ,0,小,3;5、1;6、c.参考答案4:1、(3,0),>3,大,y=0;2、2)2(3-=x y ,2)32(3-=x y ,2)3(3-=x y ;3、略;4、2)2(21-=x y ;5、(3,0),(0,27),40.5;6、2)4(21--=x y ,当x<4时,y 随x 的增大而增大,当x>4时,y 随x 的增大而减小;7、-8,-2,4.参考答案5:1、略;2、1;3、>1;4、左、下;5、342-+-=x x y ;6、C ;7、(1)下,x=2,(2,9),(2)2、大、9,(3)<2、>2,(4)( 32-,0)、( 32+,0)、 32,(5)(0,-3);(6)向右平移2个单位,再向上平移9个单位;8、(1)上、x=-1、(-1,-4);(2)(-3,0)、(1,0)、(0,-3)、6,(3)-4,当x>-1 时,y 随x 的增大而增大;当x<-1 时,y 随x 的增大而减小,(4)2)1(-=x y ;(5)向右平移1个单位,再向上平移4个单位或向上平移3个单位或向左平移1个单位;(6)x>1或x<-3、-3<x<1参考答案6:1、x=-2;2、上、(3,7);3、略;4、2)1(2+-x ;5、5)1(212+--=x y ;6、(-2,0)(8,0);7、大、81;8、C ;9、A ;10、(1)1)2(212--=x y 、上、x=2、(2,-1),(2)310)34(32+--=x y、下、34=x 、(310,34),(3)3)2(412---=x y 、下、x=2、(2,-3);11、有、y=6;12、(2,0)(-3,0)(0,6);13、y=-2x 、否;14、定价为3000元时,可获最大利润125000元参考答案7:1、1162+-=x x y ;2、(-4,-4);3、1;4、-3;5、>、<、>、>;6、二;7、②③;8、-7;9、C ;10、D ;11、B ;12、C ;13、B ;14、4422++-=x x y ;15、aac b 42-参考答案8:1、31-、32、1;2、1082++=x x y ;3、1422+-=x x y ;4、(1)522-+=x x y、(2)3422---=x x y 、(3)41525452--=x x y 、(4)253212+-=x x y ;5、9194942+-=x x y ;6、142-+-=x x y ;7、(1)25482582582++-=x x y 、5;8、322++-=x x y 、y=-x-1或y=5x+5 参考答案9:1、47-≥k 且0≠k ;2、一;3、C ;4、D ;5、C ;6、C ;7、2,1;8、31,3,121≤≤-=-=x x x ;9、(1)x x y 22-=、x<0或x>2;10、y=-x+1,322+--=x x y ,x<-2或x>1;11、(1)略,(2)m=2,(3)(1,0)或(0,1)参考答案10:1、①2月份每千克3.5元 ②7月份每千克0.5克 ③7月份的售价最低 ④2~7月份售价下跌;2、y =x 2+x ;3、成绩10米,出手高度35米;4、23)1(232+--=x S ,当x =1时,透光面积最大为23m 2;5、(1)y =(40-x) (20+2x)=-2x 2+60x +800,(2)1200=-2x 2+60x +800,x 1=20,x 2=10 ∵要扩大销售 ∴x 取20元,(3)y =-2 (x 2-30x)+800=-2 (x -15)2+1250 ∴当每件降价15元时,盈利最大为1250元;6、(1)设y =a (x -5)2+4,0=a (-5)2+4,a =-254,∴y =-254 (x -5)2+4,(2)当x =6时,y =-254+4=3.4(m);7、(1)2251x y -=,(2)h d -=410,(3)当水深超过2.76m 时;8、)64(6412≤≤-+-=x x y ,x =3,m y 75.3496=-=,m 2.325.35.075.3≈=-,货车限高为3.2m.。
中考数学总复习《二次函数》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知二次函数2281y x x =-+,当11x -≤≤时,函数y 的最小值是( )A .1B .5-C .6-D .7-2.把一抛物线向上平移3个单位,再向左平移1个单位得到的解析式为22y x =,则原抛物线的解析式为( ) A .()2213y x =-+B .()2213y x =++C .()2213y x =+-D .()2213y x =--3.新定义:若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:()1,3A 与()2,6B --,()0,0C 等都是“三倍点”.若二次函数2y x x c =--+的图像在31x -<<的范围内,至少存在一个“三倍点”,则c 的取值范围是( )A .45c -≤<B .43c -≤<-C .164c -≤<D .114c -≤< 4.如图为2y x bx c =++的图象,则( )A .0b > 0c <B .0b > 0c >C .0b < 0c >D .0b < 0c < 5.把抛物线22y x =-先向右平移6个单位长度,再向下平移2个单位长度后,所得函数的表达式为( )A .22(6)2y x =-++B .22(6)2y x =-+-C .22(6)2y x =--+D .22(6)2y x =---6.如图,抛物线2y ax c =-经过正方形OACB 的三个顶点A ,B ,C ,点C 在y 轴上,则ac 的值为( )A .1B .2C .3D .47.如图,菱形ABCD 的边长为3cm ,=60B ∠︒动点P 从点B 出发以3cm /s 的速度沿着边BC CD DA --运动,到达点A 后停止运动;同时动点Q 从点B 出发,以1cm/s 的速度沿着边BA 向A 点运动,到达点A 后停止运动.设点P 的运动时间为(s)x ,BPQ 的面积为()2cm y ,则y 关于x 的函数图象为( )A .B .B .C .D .8.已知在平面直角坐标系中,抛物线1C 的图象如图所示,对称轴为直线2x =-,将抛物线1C 向右平移2个单位长度得到抛物线2C :2y ax bx c =++ (a 、b 、c 为常数,且0a ≠),则代数式b c a +-与0的大小关系是( )A .0b c a +-<B .0b c a +-=C .0b c a +->D .不能确定二、填空题9.若关于x 的二次函数2321y x x m =-+-的值恒为正数,则m 的取值范围为 . 10.将抛物线2(1)2y x =++先向右平移3个单位,再向下平移4个单位,则所得抛物线的解析式为 .11.小华酷爱足球运动一次训练时,他将足球从地面向上踢出,足球距地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系为:2412h t t =-+,则足球距离地面的最大高度为 m .12.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降1m ,则水面宽度增加 m .(结果可保留根号)13.如图,抛物线()20y ax bx c a =++≠的对称轴是直线2x =-,且抛物线与x 轴交于A ,B两点,若5OA OB =,则下列结论中:①0abc >;①()220a c b +->;①50a c +=;①若m 为任意实数,则224am bm b a ++≥,正确的是 .(填序号)三、解答题 14.已知抛物线23y ax bx =++交x 轴于()()1030A B ,,,两点 (1)求抛物线的函数表达式;(2)当x 取何值时,y 随x 的增大而减小.15.如图,抛物线214y x bx c =++过点()0,0O ,()10,0E 矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上.设动点B 坐标为(),0t .(1)求抛物线的函数表达式及顶点坐标;(2)当t 为何值时矩形ABCD 的周长有最大值?最大值是多少?16.“潼南柠檬”获评国家地理标志商标,被认定为全国名特优新农产品,柠檬即食片是其加工产品中非常受欢迎的一款零食.一家超市销售了净重500g 一袋的柠檬即食片,进价为每袋10元.销售过程中发现,如果以单价14元销售,那么一个月内可售出200袋.根据销售经验,提高销售单价会导致销售量减少,即销售单价每提高1元,每月销售量相应减少20袋.根据物价部门规定,这种柠檬即食片的销售单价不得低于进价且不得高于18元.(1)求每月销售量y (件)与销售单价x (元)之间的函数关系式;(2)设超市每月销售柠檬即食片获得离利润为w (元),当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?(3)若超市想每月销售柠檬即食片所得利润w 稳定在900元,销售单价应定为多少元?17.如图,一名同学推铅球,铅球出手后行进过程中离地面的高度y (单位:m )与水平距离x (单位:m )近似满足函数关系212123y x x c =-++.已知铅球落地时的水平距离为10m .(1)求铅球出手后水平距离与这名同学相距多远时,铅球离地面最高?(2)在铅球出手后的行进过程中,当它离地面的高度为5m 3时,此时铅球的水平距离是多少?18.我市某企业安排20名工人生产甲、乙两种产品,根据生产经验,每人每天生产2件甲产品或1件乙产品(每人每天只能生产一种产品).甲产品生产成本为每件10元;若安排1人生产一件乙产品,则成本为38元,以后每增加1人,平均每件乙产品成本降低2元.规x x≥人生产乙产品.定甲产品每天至少生产20件.设每天安排()1(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品生产成本(元)甲10-乙x402x(2)为了增加利润,企业须降低成本,该企业如何安排工人生产才能使得每天的生产总成本最低?最低成本是多少?参考答案:1.B2.D3.A4.D5.D6.B7.D8.C9.43m > 10.2(2)2y x =--11.912.()264-13.③④/④③14.(1)243y x x =-+(2)当2x <,y 随x 的增大而减小15.(1)抛物线的函数表达式为21542y x x =-,顶点坐标为2554⎛⎫- ⎪⎝⎭,; (2)当1t =时,矩形ABCD 的周长有最大值,最大值为412.16.(1)()480201018y x x =-≤≤; (2)当销售单价定为17元时,每月可获得最大利润;每月获得最大利润为980元.(3)当销售单价定为15元时,每月获得利润可稳定在900元.17.(1)铅球出手后水平距离与这名同学相距3m 远时,铅球离地面最高为3m(2)此时铅球的水平距离为8m18.安排10名工人生产甲产品,10名工人生产乙产品才能使得每天的生产总成本最低,最低成本是400元。
二次函数复习题一、填空题1.已知函数y=(m+2)x m(m+1)是二次函数,则m=______________.2.二次函数y=-x2-2x的对称轴是x=_____________3.函数s=2t-t2,当t=___________时有最大值,最大值是__________.4.已知抛物线y=ax2+x+c与x轴交点的横坐标为-1,则a+c=__________.5.抛物线y=-3(x+2)2的顶点坐标是_____,若将它旋转180º后得新的抛物线,其解析式为_________.6.抛物线y=5x-5x2+m的顶点在x轴上,则m=_____________________.7.已知抛物线y=ax2+bx+c的图象与x轴有两个交点,那么一元二次方程ax2+bx+c=0的根的情况是___________________.8.已知二次函数y=x2-2x-3的图象与x轴交于A,B两点,在x轴上方的抛物线上有一点C,且△ABC的面积等于10,则点C的坐标为________.9.把抛物线y=2(x+1)2向下平移____单位后,所得抛物线在x轴上截得的线段长为5.10.如果二次函数y=x2-3x-2k,不论x取任何实数,都有y>0,则k的取值范围是________11.已知二次函数y=kx2+(2k-1)x-1与x轴交点的横坐标为x1,x2(x1<x2),则对于下列结论:(1) 当x= -2时,y=1;(2) 当x> x2时,y>0;(3)方程kx2+(2k-1)x-1=0有两个不相等的实数根x1,x2;(4) x1<-1,x2>-1;(5)x2 -x1 =k k241,其中正确的结论有__ __(只需填写序号)12.已知二次函数y=x2-2(m-1)x-1-m的图象与x轴交于A(x1,0),B(x2,0), x1<0<x2,与y轴交于点C, 且满足OC(OB-OA)=2OA·OB,则该二次函数的解析式为__________二.选择题13.抛物线y=(x-1)2+1的顶点坐标是( )(A) (1,1) (B) (-1,1) (C) (1,-1) (D) (-1,-1)14.抛物线y=-x2+x+7与坐标轴的交点个数为( )(A) 3个(B) 2个(C) 1个(D) 0个15.把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2-3x+5,则有( )(A) b=3,c=7 (B) b=-9,c=-15 (C) b=3,c=3 (D) b=-9,c=2116.若二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为17.当a,b为实数,二次函数y=a(x-1)2+b的最小值为-1时有( )(A) a<b (B) a=b (C) a>b (D) a≥b18.已知函数y=3x2-6x+k(k为常数)的图象经过点A(0.85,y1),B(1.1,y2),C(2,y3),则有( )(A) y1<y2<y3(B) y1>y2>y3(C) y3>y1>y2(D) y1>y3>y219如果二次函数y=ax2+bx+c的顶点在y=2x2-x-1的图象的对称轴上,那么一定有( )(A) a=2或-2 (B) a=2b (C) a=-2b (D) a=2,b= -1,c=-120抛物线y=ax2+bx+c(a<0)经过点(-1,0),且满足4a+2b+c>0.以下结论(1)a+b>0;(2)a+c>0;(3)-a+b+c>0;(4)b2-2ac>5a2其中正确的个数有( )(A) 1个(B) 2个(C) 3个(D) 4个三解答题:21.已知函数y=x2+bx-1的图象经过点(3,2)(1)求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x的取值范围。
2021年中考数学复习《二次函数的综合计算与证明》能力提升必刷经典题型专练一. 选择题.1.对于任意实数m,下列函数一定是二次函数的是( )A.y=mx2+3x-1B.y=(m-1)x2C.y=(m-1)2x2D.y=(-m2-1)x22.二次函数y=x2-3x+2的图象不经过第象限.A.一B.二C.三D.四3.已知二次函数y=1-11x-6x2,其二次项系数为a,一次项系数为b,常数项为c,则a+b+c= ( )A.+16B.6C.-6D.-164.二次函数2=-的图象是一条抛物线,下列关于该抛物线的说法,正确的23y x是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线1x=D.抛物线与x轴有两个交点5.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是( )6.如图,二次函数y=ax2+bx+c的图象过点(-1,0)和点(3,0),则下列说法正确的是( )A.bc<0B.a+b+c>0C.2a+b=0D.4ac>b27.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax 2+bx+c(a ≠0).如图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为 ( )A.10 mB.15 mC.20 mD.22.5 m8.如图,二次函数y=ax 2+bx+c 的图象过点(-1,0)和点(3,0),则下列说法正确的是( )A.bc<0B.a+b+c>0C.2a+b=0D.4ac>b 29.一位运动员在距篮下4 m 处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5 m 时,达到最大高度3.5 m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05 m,该运动员身高1.9 m,在这次跳投中,球在头顶上方0.25 m 处出手时,他跳离地面的高度是( )A.0.1 mB.0.2 mC.0.3 mD.0.4 m10.已知二次函数2y ax bx c =++满足:(1)a b c <<;(2)0a b c ++=;(3)图象与x 轴有2个交点,且两交点间的距离小于2;则以下结论中正确的有( ) ①0a <;②0a b c -+<;③0c >;④20a b ->;⑤124b a -<. A .1个 B .2个 C .3个 D .4个二.填空题.11.抛物线y=4(x-2)2+1的顶点坐标是 .12.已知(-1,y1),(-2,y2),(-4,y3)是抛物线y=-2x2-8x+m上的点,则y1,y2,y3的大小关系为.13.如图,抛物线y=ax2+bx+4(a≠0)经过点A(-3,0),点B在抛物线上,CB∥x轴,且AB平分∠CAO,则此抛物线的解析式是 .14.如图是某个二次函数的图象,根据图象可知,该二次函数的解析式是 .15.如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB间按相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长为米.16.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开始沿边AB 向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4 mm/s 的速度移动(不与点C重合).如果P,Q分别从A,B同时出发,那么经过s,四边形APQC的面积最小.17.某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件.经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件,为使每天所获销售利润最大,销售单价应定为元.18. 如图为函数y=ax2+bx+c与y=x的图象,下列结论:①b2-4ac>0;②3b+c+6=0;③当1<x<3时,x2+(b-1)x+c<0;④=3. 其中正确的有 .三.解答题.19. 在平面直角坐标系中,二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示.(1)求这个二次函数的解析式;(2)当-2≤x≤2时,求y的取值范围.20. 如图所示,甲、乙两船分别从A地和C地同时开出,各沿箭头所指方向航行,已知AC=10海里,甲、乙两船的速度分别是每小时16海里和每小时12海里,同时出发多长时间后,两船相距最近?最近距离是多少?21. 某公司从年初以来累计利润S(万元)与时间t(月)之间的关系(即前t个月的利润总和S和t之间的关系)为二次函数关系.试根据图象提供的信息,解答下列问题:(1)求累计利润S(万元)与时间t(月)之间的函数解析式;(2)截至几月末该公司累计利润可达16万元?(3)第10个月该公司所获利润是多少万元?。
二次函数总复习经典练习题1.抛物线y=-3x2+2x-1 的图象与坐标轴的交点情况是( )(A) 没有交点.(B) 只有一个交点.(C) 有且只有两个交点.(D) 有且只有三个交点.2.已知直线y=x 与二次函数y=ax2-2x- 1 图象的一个交点的横坐标为1,则 a 的值为( )(A)2 .(B)1 .(C)3 .(D)4 .3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y 轴于点C,则△ ABC的面积为( ) (A)6 .(B)4 .(C)3 .(D)1 .24.函数y=ax 2+bx+ c 中,若a> 0,b< 0,c<0,则这个函数图象与x 轴的交点情况是( )(A) 没有交点.(B) 有两个交点,都在x 轴的正半轴.(C) 有两个交点,都在x 轴的负半轴.(D) 一个在x 轴的正半轴,另一个在x 轴的负半轴.5.已知(2 ,5) 、(4 ,5)是抛物线y=ax2+bx+c 上的两点,则这个抛物线的对称轴方程是( ) a(A) x= .(B) x=2.(C) x=4.(D) x=3.b6.已知函数y=ax2+bx+ c 的图象如图 1 所示,那么能正确反映函数y=ax+ b 图象的只可能是( )7.二次函数y=2x2-4x+5 的最小值是_____ .28.某二次函数的图象与x轴交于点( -1,0) ,(4 ,0) ,且它的形状与y=-x2形状相同.则这个二次函数的解析式为_____ .9.若函数y=-x2+4 的函数值y> 0,则自变量x 的取值范围是______ .10.某品牌电饭锅成本价为70 元,销售商对其销量与定价的关系进行了调查,结果如下:801001101008060为获得最大利润,销售商应将该品牌电饭锅定价为元.11.函数y=ax 2-(a-3)x+ 1 的图象与x 轴只有一个交点,那么 a 的值和交点坐标分别为12.某涵洞是一抛物线形, 它的截面如图3 所示, 现测得水面宽AB 1.6m, 涵洞顶点O 到水面的距离为2.4m, 在图中的直角坐标系内, 涵洞所在抛物线的解析式为13.(本题8 分)已知抛物线y=x2-2x-2 的顶点为A,与y 轴的交点为B,求过A、B 两点的直线的解析式.14.(本题8分)抛物线y=ax2+2ax+a2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.15.(本题8 分)如图4,已知抛物线y=ax2+bx+c(a> 0)的顶点是C(0,1),直线l :y=-ax+3 与这条抛物线交于P、Q两点,且点P 到x 轴的距离为2.(1)求抛物线和直线l 的解析式;(2)求点Q的坐标.16.(本题8 分)工艺商场以每件155 元购进一批工艺品.若按每件200 元销售,工艺商场每天可售出该工艺品100 件;若每件工艺品降价 1 元,则每天可多售出该工艺品 4 件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?17.(本题10 分))杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第 1个月到第x 个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元) ,g也是关于x 的二次函数.(1) 若维修保养费用第 1 个月为 2 万元,第 2 个月为 4 万元.求y 关于x 的解析式;(2) 求纯收益g 关于x 的解析式;(3) 问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?18(本题10分)如图所示,图4- ①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5 根支柱A1B1、A2B2、A3B3、A4B4、A5B5 之间的距离均为15m,B1B5∥ A1A5,将抛物线放在图4- ②所示的直角坐标系中.(1) 直接写出图4- ②中点B1、B3、B5的坐标;(2) 求图4- ②中抛物线的函数表达式;(3) 求图4- ①中支柱A2B2、A4B4 的长度.B319、如图5,已知A(2,2),B(3,0).动点P( m,0)在线段OB上移动,过点P作直线l 与x 轴垂直.(1) 设△ OAB中位于直线l 左侧部分的面积为S,写出S与m之间的函数关系式;(2) 试问是否存在点P,使直线l 平分△ OAB的面积?若有,求出点P 的坐标;若无,请说明理由.更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:答案:一、1.B 2 .D 3 .C 4 .D 5 .D 6.B二、 7.3 8 .y =- x +3x +4 9 .- 2< x <2 10 .1301 115 211. a =0, ( ,0);a =1,(-1,0);a =9,( ,0) 12 . y x 23 3 413.抛物线的顶点为 (1,- 3),点 B 的坐标为 (0,- 2).直线 AB 的解析式为 y =-x -2 14.依题意可知抛物线经过点 (1,0) .于是 a + 2a + a 2+ 2=0,解得 a 1=-1,a 2=-2.当 a = -1 或 a =-2 时,求得抛物线与 x 轴的另一交点坐标均为 ( -3,0)2 15. (1) 依题意可知 b =0,c =1,且当 y =2 时,ax 2+1=2①,- ax +3=2②.由①、②解得 a =1, x =1.故抛物线与直线的解析式分别为: y =x 2+ 1,y =- x +3;(2) Q ( -2,5)216.设降价 x 元时,获得的利润为 y 元.则依意可得 y =(45-x )(100 +4x )= -4x 2+80x +4500, 即 y =-4(x -10)2+4900.故当 x =10时, y 最大=4900(元)2217. (1) 将(1,2)和(2,6) 代入 y =ax 2+bx ,求得 a =b =1.故 y =x 2+x ;(2) g =33x -150-y , 22即 g =-x 2+32x -150;(3) 因 y =-(x -16) 2+106,所以设施开放后第 16 个月,纯收益最大.令 g =0,得- x 2+ 32 x - 150=0.解得 x =16± 106 ,x ≈16- 10.3=5.7( 舍去 26.3) .当 x =5 时, g <0, 当 x =6 时, g >0,故 6 个月后,能收回投资18.(1) B 1( 30,0), B 3 (0,30) , B 5 (30,0) ;(2)设抛物线的表达式为 y a (x 30)(x 30) ,把 B 3 (0,30) 代入得 y a(0 30)(0 30) 30.1∴ a .30∵所求抛物线的表达式为: y3)∵ B 4 点的横坐标为 15, 1 45∴B 4 的纵坐标 y 4 (15 30)(15 30) .4 30 2∵ A 3B 3 50 ,拱高为 30,1 (x 30)(x 30) . 30∴立柱A4B445 8520 (m) .22由对称性知:85A2B2 A4B4 (m) .2四、1 2 1 119.(1)当0≤m≤2时,S= m2;当2<m≤3时,S= ×3×2-(3 -m)(-2m+6)= -m22 2 2+6m-6.(2)若有这样的P点,使直线l 平分△ OAB的面积,很显然0<m<2.由于△ OAB3 1 3的面积等于3,故当l 平分△ OAB面积时,S= .∴ m2.解得m= 3 .故存在这样2 2 2的P点,使l 平分△ OAB的面积.且点P的坐标为(3 ,0).。
中考数学总复习之二次函数专题复习一.选择题(共8小题)1.二次函数y=2x2+8x+5的图象的顶点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.把二次函数y=x2+2x﹣6配方成顶点式为()A.y=(x﹣1)2﹣7B.y=(x+1)2﹣7C.y=(x+2)2﹣10D.y=(x﹣3)2+33.已知二次函数y=(a﹣2)x2,当x>0时,y随x的增大而减小,则实数a的取值范围是()A.a>0B.a>2C.a≠2D.a<24.关于抛物线y=(x﹣1)2﹣2,以下说法正确的是()A.抛物线在直线x=﹣1右侧的部分是上升的B.抛物线在直线x=﹣1右侧的部分是下降的C.抛物线在直线x=1右侧的部分是上升的D.抛物线在直线x=1右侧的部分是下降的5.2019年在武汉市举行了军运会,在军运会比赛中,某次羽毛球的运动路线可以看作是抛物线y=x2+x+的一部分(如图),其中出球点B离地面O点的距离是米,球落点的距离是()A.1米B.3米C.5米D.米6.二次函数y=x2﹣3x+1的图象大致是()A.B.C.D.7.无论k为何值,直线y=kx﹣2k+2与抛物线y=ax2﹣2ax﹣3a总有公共点,则a的取值范围是()A.a>0B.C.或a>0D.8.如图,已知开口向上的抛物线y=ax2+bx+c与x轴交于点(﹣1,0),对称轴为直线x=1.下列结论:①abc>0;②2a+b=0;③若关于x的方程ax2+bx+c+1=0一定有两个不相等的实数根;④a>.其中正确的个数有()A.1个B.2个C.3个D.4个二.填空题(共8小题)9.如图,某学校拟建一块矩形花圃,打算一边利用学校现有的墙(墙足够长),其余三边除门外用栅栏围成,栅栏总长度为38m,门宽为2m.这个矩形花圃的最大面积是.10.如图,同学们在操场上玩跳大绳游戏,绳甩到最高处时的形状是抛物线型,摇绳的甲、乙两名同学拿绳的手的间距为6米,到地面的距离AO与BD均为0.9米,绳子甩到最高点C处时,最高点距地面的垂直距离为1.8米.身高为1.4米的小吉站在距点O水平距离为m米处,若他能够正常跳大绳(绳子甩到最高时超过他的头顶),则m的取值范围是.11.二次函数y=2x2的图象如图所示,点O为坐标原点,点A在y轴的正半轴上,点B、C 在函数图象上,四边形OBAC为菱形,且∠AOB=30°,则点C的坐标为.12.二次函数的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2023在y轴的正半轴上,点B1,B2,B3,…,B2023在二次函数位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2022B2023A2023都为等边三角形,则△A2022B2023A2023的边长为.13.已知二次函数y=(x﹣3)2+3,当x=时,y取得最小值.14.已知抛物线y=x2+bx+c的部分图象如图所示,当y>0时,x的取值范围是.15.如图,二次函数y=﹣x2+mx的图象与x轴交于坐标原点和(6,0),若关于x的方程x2﹣mx+t=0(t为实数)在1≤x<5的范围内有解,则t的取值范围是.16.二次函数y=ax2+bx﹣3(a≠0)的图象经过点(1,4),则代数式a+b的值为.三.解答题(共4小题)17.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A(﹣1,0)和点B,点P是直线BC上方的抛物线上一动点.(1)求二次函数的表达式;(2)求BC所在直线的函数解析式;(3)过点P作PM∥y轴交直线BC于点M,求线段PM长度的最大值.18.如图,直线y=x+2与x轴交于点B,与y轴交于点D.抛物线y=ax2+bx﹣4与x轴交于点A(4,0)和点B,与y轴交于点C.(1)求该抛物线的解析式;(2)如图,点P为抛物线在直线AC下方的一动点,作PH∥y轴,PF⊥AC,分别交AC 于点H、F,求PH+PF的最大值和此时点P的坐标;(3)在(2)的条件下,将抛物线y=ax2+bx﹣4沿射线AC平移个单位长度,得到新抛物线,点R在新抛物线的对称轴上,点S在抛物线y=ax2+bx﹣4上.当以点D、P、R、S为顶点的四边形是平行四边形时,写出所有符合条件的点R的坐标,并写出求解点R的坐标的其中一种情况的过程.19.如图,已知抛物线y=﹣x2+mx+3与x轴交于A、B两点,与y轴交于点C,点B的坐标为(3,0).(1)求m的值及抛物线的顶点坐标;(2)求抛物线与坐标轴的交点所围成的三角形面积;(3)点P是抛物线对称轴l上的一个动点,当P A+PC的值最小时,求点P的坐标.。
九年级二次函数复习训练一、选择题1、二次函数y =(x -1)2+2的最小值是( ) A.-2 C.-12、已知抛物线的解析式为y =(x -2)2+1,则抛物线的顶点坐标是( ) A.(-2,1)B.(2,1)C.(2,-1)D.(1,2) 3、函数2+y ax b y ax bx c =+=+与在同一直角坐标系内的图象大致是 ( )4、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为 s =5t 2+2t ,则当t =4时,该物体所经过的路程为( ) 米 米 米 米5、已知二次函数y =ax 2+bx+c(a ≠0)的图象如图2所示,给出以下结论: ① a+b+c <0;② a -b+c <0;③ b+2a <0;④ abc >0 . 其中所有正确结论的序号是( ) A. ③④B. ②③C. ①④D. ①②③6、二次函数y =ax 2+bx+c 的图象如图3所示,若M =4a+2b+c ,N =a -b+c ,P =4a+2b ,则( ) >0,N >0,P >0 B. M >0,N <0,P >0C. M <0,N >0,P >0D. M <0,N >0,P <07、如果反比例函数y =k x的图象如图4所示,那么二次函数y =kx 2-k 2x -1的图象大致为( )8、用列表法画二次函数y =x 2+bx+c 的图象时先列一个表,当表中对自变量x 的值以相等间隔的值增加时,函数y 所对应的函数值依次为:20,56,110,182,274,380,506,650.其中有一个值不正确,这个不正确的值是()A. 5069、二次函数y =x 2的图象向上平移2个单位,得到新的图象的二次函数表达式是( ) A. y =x 2-2 B. y =(x -2)2C. y =x 2+2 D. y =(x+2)210、如图6,小敏在今年的校运动会跳远比赛中跳出了满意一跳, 函数h =-(t 的单位:s ,h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( )11.函数y=ax 2+bx+c 的图象如图7所示,那么关于一元二次方程 ax 2+bx+c-3=0的根的情况是( )A .有两个不相等的实数根B .有两个异号的实数根C .有两个相等的实数根D .没有实数根 12、当k 取任意实数时,抛物线 的顶点所在曲线是( ) A .y=x 2 B .y=-x 2 C .y=x 2(x>0) D .y= -x 2(x>0)13.已知a<-1,点(a -1,y 1),(a ,y 2),(a+1,y 3)都在函数y=x 2的图象上,则( ) A .y 1<y 2<y 3 B .y 1<y 3<y 2 C .y 3<y 2<y 1 D .y 2<y 1<y 3 14、把抛物线y=x 2+bx+c 的图象向右平移3个单位,再向下 平移2个单位,所得图象的解析式是y=x 2-3x+5,则有( ) A ,3=b ,7=c B ,9-=b ,15-=cC ,3=b ,3=cD ,9-=b ,21=c15、已知函数y=ax 2+bx+c 的图像如图所示,则下列关系成立且能最精确表述的是( )A .012b a <-<B .022b a <-<C .122b a <-<D .12b a-= 16.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论: ①a+b+c<0;②a -b+c<0;③b+2a<0;④abc>0,其中所有正确结论的序号是( ) A .③④ B .②③ C .①④ D .①②③ 二、填空题17,形如y =___ (其中a ___,b 、c 是_______ )的函数,叫做二次函数. 18,抛物线y =(x –1)2–7的对称轴是直线 .19,如果将二次函数y =2x 2的图象沿y 轴向上平移1个单位,那么所得图象的函数解析式是 . 20,平移抛物线y =x 2+2x -8,使它经过原点,写出平移后抛物线的一个解析式______ .x-11yO图2图6Oyx图7 22)(54k k x y +-=yxO图4yxOA . yxOB . yxOC . yxOD . 02xy15题16题图21,若二次函数y =x 2-4x +c 的图象与x 轴没有交点,其中c 为整数,则c =____(只要求写出一个). 22,现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x ,y ), 那么它们各掷一次所确定的点P 落在已知抛物线y =-x 2+4x 上的概率为___. 23,已知抛物线y =x 2-6x +5的部分图象如图8,则抛物线的对称轴为直线x = ,满足y <0的x 的取值范围是 .24,若二次函数c bx ax y ++=2的图象经过点(-2,10),且一元二次方程02=++c bx ax 的根为21-和2,则该二次函数的解析关系式为 。
年级数学中考专题复习二次函数一、选择题:1、将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2 B.y=(x﹣2)2+6 C.y=x2+6 D.y=x22、已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>33、已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=34、函数y=(x﹣1)2﹣k与y=(k≠0)在同一坐标系中的图象大致为()A. B. C. D.5、如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()A.5个 B.4个 C.3个 D.2个6、在同一平面直角坐标系中,函数y=mx+m和函数y=-mx2+2x+2(m是常数,且m≠0)图象可能是( )7、如图是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面下降1m时,水面的宽度为()A.3 B.2C.3D.28、生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=-n2+14n-24,则该企业一年中利润最高的月份是( )A.5月B.6月C.7月D.8月9、已知a<﹣1,点(a﹣1,y1)、(a,y2)、(a+1,y3)都在函数y=x2﹣2的图象上,则()A.y1<y2<y3 B.y1<y3<y2 C.y3<y2<y1 D.y2<y1<y310、在平面直角坐标系中,二次函数y=﹣x2+6x﹣9的图象顶点为A,与y轴交于点B.若在该二次函数图形上取一点C,在x轴上取一点D,使得四边形ABCD为平行四边形,则D点的坐标为()A.(﹣9,0) B.(﹣6,0) C.(6,0) D.(9,0)11、二次函数y=ax2+bx+c的图象如图所示,对称轴x=﹣1,下列五个代数式ab、ac、a﹣b+c、b2﹣4ac、2a+b 中,值大于0的个数为()A.5 B.4 C.3 D.212、根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是()A.3<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x<3.2613、如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于轴的直线从轴出发,沿轴正方向以每秒1个单位长度的速度向右平移,设直线与菱形OABC的两边分别交于点M、N(点M在点N 的上方),若△OMN的面积S,直线的运动时间为秒(),则能大致反映S与的函数关系的图像是( )14、如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3时,y<0;②3a+b<0;③-1≤a≤;④4ac-b2>8a.其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④15、已知二次函数y=x2-2x-3,点P在该函数的图象上,点P到x轴、y轴的距离分别为d1、d2.设d=d1+d2,下列结论中:①d没有最大值;②d没有最小值;③;-1<x<3时, d随x的增大而增大;④满足d=5的点P有四个.其中正确结论的个数有( )A.1个 B.2个 C.3个 D.4个二、填空题:16、如图,点E是抛物线y=a(x﹣2)2+k的顶点,抛物线与y轴交于点C,过点C作CD∥x轴,与抛物线交于点B,与对称轴交于点D.点A是对称轴上一点,连结AC、AB.若△ABC是等边三角形,则图中阴影部分图形的面积之和是.17、如图,一农户要建一个矩形猪舍,猪舍的一边利用住房墙,另外三边用25m长的建筑材料围成,为方便进出,在CD边上留一个1m宽的门,若设AB为y(m),BC为x(m),则y与x之间的函数关系式为.18、有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数的表达式:.(答案不惟一)19、二次函数y=x2-6x+n的部分图象如图所示,若关于x的一元二次方程x2-6x+n=0的一个解为x1=1,则另一个解x2= ___________.20、如图,Rt△OAB的顶点A(-2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为________.21、若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n=______.22、小明在某次投篮中,球的运动路线是抛物线y=﹣x2+3.5的一部分,如图所示,若球命中篮圈中心,则他与篮底的距离L是m.23、如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为米.24、已知抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,若D为AB中点,则CD长为.25、如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线y=于点B、C,则BC的长为.26、如图,在平面直角坐标系中,点A在抛物线y=x2-2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为.27、如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B,有人在直线AB上点C(靠点B一侧)竖直向上摆放若干个无盖的圆柱形桶.试图让网球落入桶内,已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).当竖直摆放圆柱形桶至少个时,网球可以落入桶内.28、如图,抛物线与交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,的值总是正数;②;③当x=0时,;④AB+AC=10;⑤,其中正确结论的个数是:.29、如图,平行于x轴的直线AC分别交函数y1=x2(x≥0)与y2=(x≥0)的图象于B、C两点,过点C作y轴的平行线交y1的图象于点D,直线DE∥AC,交y2的图象于点E,则= .30、如图,抛物线的对称轴是.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是.(填写正确结论的序号)三、简答题:31、如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,交y轴于点C.(1)求该抛物线的解析式与顶点D的坐标;(2)请判断以B、C、D为顶点的三角形的形状;(3)若点Q是y轴上的动点,在抛物线上是否存在点P使得以点A、B、P、Q为顶点的四边形为平行四边形?若存在,求出所有满足条件的点P坐标;若不存在,请说明理由.32、如图,抛物线的顶点D的坐标为(1,﹣4),与y轴交于点C(0,﹣3),与x轴交于A、B两点.(1)求该抛物线的函数关系式;(2)在抛物线上存在点P(不与点D重合),使得S△PAB=S△ABD,请求出P点的坐标.33、某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看做一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)每月的利润z(万元)与销售单价x(元)之间的函数关系式为;(2)当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?34、某水果店出售某种水果,已知该水果的进价为6元/千克,若以9元/千克的价格销售,则每天可售出200千克;若以11元/千克的价格销售,则每天可售出120千克.通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)当销售单价为何值时,该水果店销售这种水果每天获取的利润达到280元?(利润=销售量×(销售单价﹣进价))(3)该水果店在进货成本不超过720元时,销售单价定为多少元可获得最大利润?最大利润是多少?35、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.36、一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),其表达式是y=ax2+c的形式.请根据所给的数据求出a,c的值.(2)求支柱MN的长度.(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.37、某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?38、九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.39、已知:抛物线y=x2+bx+c经过点(2,﹣3)和(4,5).(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x轴翻折,得到图象G,求图象G的表达式;(3)在(2)的条件下,当﹣2<x<2时,直线y=m与该图象有一个公共点,求m的值或取值范围.40、如图,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x轴交于点A(1,0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H为顶点的三角形是否能够与△OBC 相似?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.参考答案1、D.2、B.3、B.4、C.5、B.6、D.7、B.8、C.9、C.10、D.11、C.12、C.13、C.14、D.15、B.16、答案为:2.17、答案为:y=13﹣x.18、答案为:y=x2﹣x+3.19、答案为:520、答案为:(,2) 21、答案是:9.22、答案为:4.5.23、答案为:2米.24、答案为:.25、答案为:6.26、答案为:_1 27、答案为:8. 28、答案为:4.29、答案为:3﹣.30、答案为:①③⑤.31【解答】解:(1)把A(﹣1,0)、B(3,0)两点代入y=x2+bx+c得:,解得:b=﹣2,c=﹣3,∴抛物线的解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,4);(2)如图1,连接BC、CD、BD,DM⊥x轴,DN⊥y轴,垂足分别为M、N,∵y=x2﹣2x﹣3与y轴的交点C(O,﹣3),A(﹣1,0)、B(3,0),D(1,4),∴BC==3,CD==,BD==2,∵(3)2+()2=(2)2∴BC2+CD2=BD2∴△BCD是直角三角形;(3)如图2,①当AB为边时,只要PQ∥AB,且PQ=AB=4即可,又知点Q在y轴上,所以点P的横坐标为﹣4或4,当x=﹣4时,y=21;当x=4时,y=5;所以此时点P1的坐标为(﹣4,21),P2的坐标为(4,5);②当AB为对角线时,只要线段PQ与线段AB互相平分即可,线段AB中点为G,PQ必过G点且与y轴交于Q 点,过点P3作x轴的垂线交于点H,可证得△P3HB≌△Q3OA,∴AO=BH,∴GO=GH,∵线段AB的中点G的横坐标为1,∴此时点P横坐标为2,由此当x=2时,y=﹣3,∴这是有符合条件的点P3(2,﹣3),∴所以符合条件的点为:P1的坐标为(﹣4,21),P2的坐标为(4,5);P3(2,﹣3).32、【解答】解:(1)∵抛物线的顶点D的坐标为(1,﹣4),∴设抛物线的函数关系式为y=a(x﹣1)2﹣4,又∵抛物线过点C(0,﹣3),∴﹣3=a(0﹣1)2﹣4,解得a=1,∴抛物线的函数关系式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(2)∵S△PAB=S△ABD,且点P在抛物线上,∴点P到线段AB的距离一定等于顶点D到AB的距离,∴点P的纵坐标一定为4.令y=4,则x2﹣2x﹣3=4,解得x1=1+2,x2=1﹣2.∴点P的坐标为(1+2,4)或(1﹣2,4).33、【解答】解:(1)由题意得,z=y(x﹣18)=(﹣2x+100)(x﹣18)=﹣2x2+136x﹣1800.故答案是:z=﹣2x2+136x﹣1800;(2)设月销售利润为w,则w=﹣2x2+140x﹣2000=﹣2(x﹣35)2+450,当x=35时,w取得最大,最大利润为450万元.答:当销售单价为35元时,厂商每月能获得最大利润,最大利润是450万元;(3)结合(2)及函数z=﹣2x2+136x﹣1800的图象(如图所示)可知,当25≤x≤43时z≥350,又由限价32元,得25≤x≤32,根据一次函数的性质,得y=﹣2x+100中y随x的增大而减小,故当x=32时,每月制造成本最低.最低成本是18×(﹣2×32+100)=648(万元),因此,所求每月最低制造成本为648万元.34、【解答】解:(1)设y(千克)与x(元)(x>0)的函数关系式为:y=kx+b,根据题意可得:,解得:.故y(千克)与x(元)(x>0)的函数关系式为:y=﹣40x+560;(2)∵W=280元,∴280=(﹣40x+560)×(x﹣6)解得:x1=7,x2=13.答:当销售单价为7元或13元时,每天可获得的利润达到W=280元;(3)∵利润=销售量×(销售单价﹣进价)∴W=(﹣40x+560)(x﹣6)=﹣40x2+800x﹣3360=﹣40(x﹣10)2+640,当售价为10元,则y=560﹣400=160,160×6=960(元)>720元,则当(﹣40x+560)×6=720,解得:x=11.即当销售单价为11元时,每天可获得的利润最大,最大利润是600元.35、【解答】方法一:解:(1)将A(﹣1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得:,解得:∴抛物线的解析式:y=﹣x2+2x+3.(2)连接BC,直线BC与直线l的交点为P;∵点A、B关于直线l对称,∴PA=PB,∴BC=PC+PB=PC+PA设直线BC的解析式为y=kx+b(k≠0),将B(3,0),C(0,3)代入上式,得:,解得:∴直线BC的函数关系式y=﹣x+3;当x=1时,y=2,即P的坐标(1,2).(3)抛物线的对称轴为:x=﹣=1,设M(1,m),已知A(﹣1,0)、C(0,3),则:MA2=m2+4,MC2=(3﹣m)2+1=m2﹣6m+10,AC2=10;①若MA=MC,则MA2=MC2,得:m2+4=m2﹣6m+10,得:m=1;②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±;③若MC=AC,则MC2=AC2,得:m2﹣6m+10=10,得:m1=0,m2=6;当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为 M(1,)(1,﹣)(1,1)(1,0).(2)连接BC,∵l为对称轴,∴PB=PA,∴C,B,P三点共线时,△PAC周长最小,把x=1代入l BC:y=﹣x+3,得P(1,2).(3)设M(1,t),A(﹣1,0),C(0,3),∵△MAC为等腰三角形,∴MA=MC,MA=AC,MC=AC,(1+1)2+(t﹣0)2=(1﹣0)2+(t﹣3)2,∴t=1,(1+1)2+(t﹣0)2=(﹣1﹣0)2+(0﹣3)2,∴t=±,(1﹣0)2+(t﹣3)2=(﹣1﹣0)2+(0﹣3)2,∴t1=6,t2=0,经检验,t=6时,M、A、C三点共线,故舍去,综上可知,符合条件的点有4个,M1(1,),M2(1,﹣),M3(1,1),M4(1,0).(4)作点O关于直线AC的对称点O交AC于H,作HG⊥AO,垂足为G,∴∠AHG+∠GHO=90°,∠AHG+∠GAH=90°,∴∠GHO=∠GAH,∴△GHO∽△GAH,∴HG2=GO•GA,∵A(﹣1,0),C(0,3),∴l AC:y=3x+3,H(﹣,),∵H为OO′的中点,∴O′(﹣,),∵D(1,4),∴l O′D:y=x+,l AC:y=3x+3,∴x=﹣,y=,∴Q(﹣,).36【解答】解:(1)根据题目条件,A、B、C的坐标分别是(﹣10,0)、(10,0)、(0,6).将B、C的坐标代入y=ax2+c,得解得.所以抛物线的表达式是;(2)可设N(5,y N),于是.从而支柱MN的长度是10﹣4.5=5.5米;(3)设DE是隔离带的宽,EG是三辆车的宽度和,则G点坐标是(7,0),(7=2÷2+2×3).过G点作GH垂直AB交抛物线于H,则yH=﹣×72+6=3+>3.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.37、【解答】解:(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则,解得:,故函数解析式为:y=﹣x+8;(2)根据题意得出:z=(x﹣20)y﹣40=(x﹣20)(﹣x+8)﹣40=﹣x2+10x﹣200,=﹣(x2﹣100x)﹣200=﹣[(x﹣50)2﹣2500]﹣200=﹣(x﹣50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50万元.(3)当公司要求净得利润为40万元时,即﹣(x﹣50)2+50=40,解得:x1=40,x2=60.如上图,通过观察函数y=﹣(x﹣50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y=﹣x+8,y随x的增大而减少,因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.38、【解答】解:(1)当1≤x<50时,y=(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,y=﹣2x2+180x+2000,y=﹣2(x﹣45)2+6050.∴a=﹣2<0,∴二次函数开口下,二次函数对称轴为x=45,当x=45时,y最大=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)①当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得:20≤x<70,因此利润不低于4800元的天数是20≤x<50,共30天;②当50≤x≤90时,y=﹣120x+12000≥4800,解得:x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在整个销售过程中,共41天每天销售利润不低于4800元.39、【解答】解:(1)根据题意得,解得,所以抛物线的解析式为y=x2﹣2x﹣3.∵抛物线的解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4).(2)根据题意,﹣y=x2﹣2x﹣3,所以y=﹣x2+2x+3.(3)∵抛物线y=x2﹣2x﹣3的顶点为(1,﹣4),当x=﹣2时,y=5,抛物线y=﹣x2+2x+3的顶点(1,4),当x=﹣2时,y=﹣5.∴当﹣2<x<2时,直线y=m与该图象有一个公共点,则4<m<5或﹣5<m<﹣4.40、解:(1)∵点A(1,0)在抛物线y=ax2﹣5ax+2(a≠0)上,∴a﹣5a+2=0,∴a=,∴抛物线的解析式为y=x2﹣x+2;(2)抛物线的对称轴为直线x=,∴点B(4,0),C(0,2),设直线BC的解析式为y=kx+b,∴把B、C两点坐标代入线BC的解析式为y=kx+b,得,解得k=﹣,b=2,∴直线BC的解析式y=﹣x+2;(3)设N(x,x2﹣x+2),分两种情况讨论:①当△OBC∽△HNB时,如图1,=,即=,解得x1=5,x2=4(不合题意,舍去),∴点N坐标(5,2);②当△OBC∽△HBN时,如图2,=,即=﹣,解得x1=2,x2=4(不合题意舍去),∴点N坐标(2,﹣1);综上所述点N坐标(5,2)或(2,﹣1).。
中考数学专项复习《二次函数》练习题(附答案)一、单选题1.周长是4m的矩形,它的面积S(m2)与一边长x(m)的函数图象大致是() A.B.C.D.2.边长为1的正方形OABC的顶点A在x轴正半轴上,点C在y轴正半轴上,将正方形OABC绕顶点O顺时针旋转75°,如图所示,点B恰好落在函数y=ax2(a< 0)的图象上,则a的值为()A.−√2B.-1C.−3√24D.−√233.图中是有相同最小值的两条抛物线,则下列关系中正确的是()A.k<n B.h=m C.k+n=0D.h<0,m>04.在平面直角坐标系中二次函数y1=﹣x2+4x 和一次函数y2=2x 的图象如图所示,那么不等式﹣x2+4x>2x 的解集是()A.x<0B.0<x<4C.0<x<2D.2<x<45.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1D.有最大值是26.已知抛物线y=x2+2x上三点A(﹣5,y1),B(2.5,y2),C(12,y3),则y1,y2,y3满足的关系式为()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2A.16B.15C.14D.13 8.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.9.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>0;④4a﹣2b+c>0.其中正确结论的个数是()A.1B.2C.3D.4 10.将抛物线y=x2向右平移1个单位长度,再向下平移3个单位长度,所得到的抛物线为()A.y=(x+1)2+3B.y=(x+1)2−3C.y=(x−1)2+3D.y=(x−1)2−311.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2;⑤2a﹣b<c.其中正确的结论有()A.1个B.2个C.3个D.4个12.已知抛物线y=x2﹣2bx+4的顶点在x轴上,则b的值一定是()A.1B.2C.﹣2D.2或﹣2二、填空题13.如图,甲,乙两个转盘分别被三等分、四等分,各转动一次,停止转动后,将指针指向的数字分别记为a,b,使抛物线y=ax2−2x+b与x轴有公共点的概率为.14.将抛物线y=﹣x2+1向右平移2个单位长度,再向上平移3个单位长度所得的抛物线解析式为.15.若抛物线y=2(x−3)2−8与x轴的两个交点分别为点A和点B,则线段AB的长为.16.已知抛物线y=x2﹣x﹣1与x轴的一个交点的横坐标为m,则代数式m2﹣m+2016的值为.17.将抛物线y=x2向右平移2个单位,再向上平移3个单位,所得抛物线的表达式为.18.一个二次函数的图象顶点坐标为(2,1),形状与抛物线y=﹣2x2相同,试写出这个函数解析式三、综合题19.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y 与x之间的函数关系式,并写出自变量x的取值范围.20.已知二次函数的图象以A(−1,4)为顶点,且过点B(2,−5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;21.已知拋物线y=x2+bx+c经过点(−1,8)和(2,−7).(1)试确定b,c的值.(2)直接写出x满足什么条件时y随x的增大而减小.22.已知抛物线y=ax2+bx+5(a为常数,a≠0)交x轴于点A(-1,0)和点B(5,0),交y轴于点C.(1)求点C的坐标和抛物线的解析式;(2)若点P是抛物线上一点,且PB=PC,求点P的坐标;(3)点Q是抛物线的对称轴l上一点,当QA+QC最小时求点Q的坐标.23.在平面直角坐标系xOy中抛物线y=x2﹣2mx+m2﹣1与y轴交于点C.(1)试用含m的代数式表示抛物线的顶点坐标;(2)将抛物线y=x2﹣2mx+m2﹣1沿直线y=﹣1翻折,得到的新抛物线与y轴交于点D,若m>0,CD=8,求m的值.(3)已知A(﹣k+4,1),B(1,k﹣2),在(2)的条件下,当线段AB与抛物线y=x2﹣2mx+m2﹣1只有一个公共点时请求出k的取值范围.24.如图,平面直角坐标系中以点C(2,√3)为圆心,以2为半径的圆与x轴交于A,B两点.(1)求A,B两点的坐标;(2)若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式.参考答案1.【答案】D2.【答案】D3.【答案】D4.【答案】C5.【答案】B6.【答案】C7.【答案】B8.【答案】C9.【答案】B10.【答案】D11.【答案】C12.【答案】D13.【答案】11214.【答案】y=﹣(x﹣2)2+415.【答案】416.【答案】201717.【答案】y=(x−2)2+318.【答案】y=﹣2(x﹣2)2+1或y=2(x﹣2)2+119.【答案】(1)证明:∵矩形MEFN与矩形EBCF面积相等∴ME=BE,MG=GN.∵四块矩形花圃的面积相等,即S矩形AMND=2S矩形MEFN∴AM=2ME∴AE=3BE;(2)解:∵篱笆总长为100m∴2AB+GH+3BC=100即2AB+12AB+3BC=100∴AB=40−65BC.设BC的长度为xm,矩形区域ABCD的面积为ym2则y=BC⋅AB=x(40−65x)=−65x2+40x∵AB =40−65BC∴B E =10﹣ 310x >0解得x < 1003∴y =65x 2+40x (0<x < 1003 ). 20.【答案】(1)解:由顶点A (−1,4),可设二次函数关系式为y =a (x +1)2+4(a≠0).∵二次函数的图象过点B (2,−5) ∴点B (2,−5)满足二次函数关系式 ∴−5=a (2+1)2+4 解得a =−1.∴二次函数的关系式是y =−(x +1)2+4; (2)解:令x =0,则y =−(0+1)2+4=3 ∴图象与y 轴的交点坐标为(0,3); 令y =0,则0=−(x +1)2+4 解得x 1=−3,x 2=1故图象与x 轴的交点坐标是(−3,0)、(1,0).答:图象与y 轴的交点坐标为(0,3),与x 轴的交点坐标是(−3,0)、(1,0).21.【答案】(1)解:∵抛物线y =x 2+bx +c 经过点(−1,8)和(2,−7)∴{1−b +c =84+2b +c =−7解得{b =−6c =1;(2)解:由(1)可知,抛物线y =x 2−6x −1开口向上,对称轴为直线x =−−62×1=3 故在对称轴左侧,即当x <3时y 随x 的增大而减小.22.【答案】(1)解:对于y =ax 2+bx +5,当x =0时y =5∴C(0,5)∵抛物线y =ax 2+bx +5(a 为常数,a ≠0)交x 轴于点A(−1,0)和点B(5,0)∴{a −b +5=025a +5b +5=0解得{a =−1b =4∴抛物线的解析式为y =−x 2+4x +5;(2)解:∵B(5,0) C(0,5)∴OB =OC连接BC ,设BC 的中点为D∴D(52,52)∴直线OD 的解析式为y =x∵PB =PC∴点P 在直线OD 上 设P(m ,m)∵点P 是抛物线上一点∴m =−m 2+4m +5解得m =3±√292∴点P 的坐标为(3+√292,3+√292)或(3−√292,3−√292);(3)解:由(1)知,抛物线的对称轴为直线x =2 ∵点A 与点B 关于l 对称,点Q 在直线l 上 ∴QA =QB QA +QC =QB +QC∴当B ,C ,Q 三点共线时QB +QC 最小,即QA +QC 最小 设直线BC 的解析式为y =kx +b∴{b =55k +b =5解得{k =−1b =5∴直线BC 的解析式为y =−x +5 把x =2代入y =−x +5得,y =3∴Q(2,3)∴当QA +QC 最小时求点Q 的坐标(2,3).23.【答案】(1)解:∵y =x 2﹣2mx+m 2﹣1=(x ﹣m )2﹣1∴抛物线的顶点坐标为(m ,﹣1)(2)解:由对称性可知,点C 到直线y =﹣1的距离为4 ∴OC =3 ∴m 2﹣1=3 ∵m >0 ∴m =2(3)解:∵m =2,∴抛物线为y =x 2﹣4x+3,当抛物线经过点A (﹣k+4,1)时k =2+ √2 或k =2﹣ √2 ;当抛物线经过点B (1,k ﹣2)时k =2;∵线段AB 与抛物线y =x 2﹣2mx+m 2﹣1只有一个公共点,则x 2-4x+3=x+k-3∴即x 2-5x+6-k=0的△=0∴25-4(6-k )=0k=-0.25∵线段AB 与抛物线y =x 2﹣2mx+m 2﹣1只有一个公共点∴2﹣ √2 <k <2或k≥2+ √2 或k=-0.25.24.【答案】(1)解:过点C 作CM△x 轴于点M ,则MA=MB ,连结AC ,如图∵点C 的坐标为(2, √3 ) ∴OM=2 CM= √3 在Rt△ACM 中CA=2 ∴AM= √AC 2−CM 2 =1∴OA=OM ﹣AM=1 OB=OM+BM=3 ∴A 点坐标为(1,0),B 点坐标为(3,0);(2)解:将A (1,0),B (3,0)代入y=x 2+bx+c 得 {1+b +c =09+3b +c =0解得 {b =−4c =3.所以二次函数的解析式为y=x 2﹣4x+3.。
二次函数综合能力提升 ——各类题型逐一突破一、【二次函数的定义】二次函数的定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数具备三个条件,缺一不可:(1)是整式;(2)是一个自变量的二次式;(3)二次项系数不为0(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 例1、下列函数中,是二次函数的是 . ①y=x 2-2x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ;⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =(4,x) ;⑧y=-∏x 。
2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2+2t ,则t =4秒时,该物体所经过的路程为 。
3、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。
4、若函数y=(m -2)x m2 -2+5x+1是关于x 的二次函数,则m 的值为 。
5、k 为何值时,y=(k +2)x 622--k k 是关于x 的二次函数?训练题:1.已知函数y=ax 2+bx +c (其中a ,b ,c 是常数),当a 时,是二次函数;当a ,b 时,是一次函数;当a ,b ,c 时,是正比例函数. 2.当m 时,y=(m -2)x22-m 是二次函数.3.已知菱形的一条对角线长为a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线a 的关系.4.在物理学内容中,如果某一物体质量为m ,它运动时的能量E 与它的运动速度v 之间的关系是E=21mv 2(m 为定值).v 1 2 3 4 5 6 7 8E(2)若物体的运动速度变为原来的2倍,则它运动时的能量E 扩大为原来的多少倍? 5、请你分别给a ,b ,c 一个值,让c bx ax y ++=2为二次函数,且让一次函数y=ax+b 的图像经过一、二、三象限6.下列不是二次函数的是( )A .y=3x 2+4 B .y=-31x 2C .y=52-xD .y=(x +1)(x -2)7.函数y=(m -n )x 2+mx +n 是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数8.如图,校园要建苗圃,其形状如直角梯形,有两边借用夹角为135°的两面墙,另外两边是总长为30米的铁栅栏.(1)求梯形的面积y 与高x 的表达式;(2)求x 的取值范围.9.如图,在矩形ABCD 中,AB=6cm ,BC=12cm .点P 从点A 开始沿AB 方向向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向C 以2cm/s 的速度移动.如果P 、Q 两点分别到达B 、C 两点停止移动,设运动开始后第t 秒钟时,五边形APQCD 的面积为Scm 2,写出S 与t 的函数表达式,并指出自变量t 的取值范围.10.已知:如图,在Rt △ABC 中,∠C=90°,BC=4,AC=8.点D 在斜边AB 上,分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,得四边形DECF .设DE=x ,DF=y .(1)AE 用含y 的代数式表示为:AE= ; (2)求y 与x 之间的函数表达式,并求出x 的 取值范围;(3)设四边形DECF 的面积为S ,求S 与x 之间的函数表达式.二、【二次函数y=ax 2+bx+c 的图象特征与a 、b 、c 的关系】* a 决定开口方向,a > 0,开口向上;a < 0,开口向下。
《二次函数》全章复习与巩固—巩固练习(提高)【巩固练习】 一、选择题1.已知抛物线2:310C y x x =+-,将抛物线C 平移得到抛物线C '.若两条抛物线C 、C '关于直线x =1对称.则下列平移方法中,正确的是( ). A .将抛物线C 向右平移52个单位 B .将抛物线C 向右平移3个单位 C .将抛的线C 向右平移5个单位 D .将抛物线C 向右平移6个单位2.已知二次函数2y ax bx c =++的图象如图所示,则下列5个代数式:ac ,a+b+c ,4a-2b+c ,2a+b ,2a-b 中,其值大于0的个数为( ).A .2B .3C .4D .53.二次函数2y ax bx c =++的图象如图所示,则下列关系式不正确的是( ). A .0a < B .abc >0 C .a+b+c >0 D .240b ac ->第2题 第3题4.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( )A .2(1)2y x =-++ B .2(1)4y x =--+ C .2(1)2y x =--+ D .2(1)4y x =-++ 5.二次函数y=ax 2+bx+c (a ≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )A .函数有最小值B .对称轴是直线x=12 C .当x <12,y 随x 的增大而减小 D .当-1<x <2时,y >06.(2016•梧州)如图所示,抛物线y=ax 2+bx +c (a ≠0)与x 轴交于点A (﹣2,0)、B (1,0),直线x=﹣0.5与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD=MC ,连接AC 、BC 、AD 、BD ,某同学根据图象写出下列结论: ①a ﹣b=0;②当﹣2<x <1时,y >0; ③四边形ACBD 是菱形; ④9a ﹣3b +c >0你认为其中正确的是( )A .②③④B .①②④C .①③④D .①②③7.已知一次函数y ax b =+的图象过点(-2,1),则关于抛物线23y ax bx =-+的三条叙述: ①过定点(2,1);②对称轴可以是直线x =l ;③当a <0时,其顶点的纵坐标的最小值为3. 其中所有正确叙述的有( ).A .0个B .1个C .2个D .3个8.已知二次函数24y x x a =-+,下列说法错误的是( ). A .当x <1时,y 随x 的增大而减小 B .若图象与x 轴有交点,则a ≤4C .当a =3时,不等式240x x a -+>的解集是1<x <3D .若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a =-3二、填空题9.由抛物线y =x 2先向左平移2个单位,再向下平移3个单位得到的抛物线的解析式为 . 10.已知一元二次方程230x bx +-=的一根为-3.在二次函数y=x 2+bx-3的图象上有三点14,5y ⎛⎫-⎪⎝⎭、25,4y ⎛⎫- ⎪⎝⎭、31,6y ⎛⎫⎪⎝⎭,y 1、y 2、y 3、的大小关系是 . 11.如图,一段抛物线y=-x (x-1)(0≤x ≤1)记为m 1,它与x 轴交点为O 、A 1,顶点为P 1;将m 1绕点A 1旋转180°得m 2,交x 轴于点A 2,顶点为P 2;将m 2绕点A 2旋转180°得m 3,交x 轴于点A 3,顶点为P 3,…,如此进行下去,直至得m 10,顶点为P 10,则P 10的坐标为( ).12.在平面直角坐标系中,如果抛物线y =3x 2不动,而把x 轴、y 轴分别向上,向右平移3个单位,那么在新坐标系下,此抛物线的解析式是 . 13.已知二次函数2y ax bx c =++(a ≠0)的图象如图所示,则下列结论:①a 、b 同号;②当x =1和x =3时,函数值相等;③4a+b =0;④当y =-2时,x 的值只能取0,其中正确的有 .(填序号)14.已知抛物线的顶点为125,24⎛⎫-⎪⎝⎭,与x 轴交于A 、B 两点,在x 轴下方与x 轴距离为4的点M 在抛物线上,且10AMB S =△,则点M 的坐标为 .15.(2015•繁昌县一模)如图,二次函数y=ax 2+bx+c (a ≠0)的图象经过点(1,2)且与x 轴交点的横坐标分别为x 1,x 2,其中﹣1<x 1<0,1<x 2<2.下列结论:①4a+2b+c <0;②a <﹣1;③b 2+8a >4ac ;④2a ﹣b <0.其中结论正确的有 .(把所有正确答案的序号都填写在横线上)16.如图所示,抛物线212y x =-+向右平移1个单位得到抛物线y 2.回答下列问题:(1)抛物线y 2的顶点坐标________.(2)阴影部分的面积S =________.(3)若再将抛物线y 2绕原点O 旋转180°得到抛物线y 3,则抛物线y 3的开口方向________, 顶点坐标________.三、解答题17.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨l元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?18.(2015•黔东南州)如图,已知二次函数y1=﹣x2+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b.(1)求二次函数y1的解析式及点B的坐标;(2)由图象写出满足y1<y2的自变量x的取值范围;(3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.19. 在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O 为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.20. (2016•菏泽)在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.【答案与解析】 一、选择题 1.【答案】C ;【解析】22349:31024C y x x x ⎛⎫=+-=+- ⎪⎝⎭,∴ 其顶点坐标为349,24⎛⎫-- ⎪⎝⎭,设C '顶点坐标为049,4x ⎛⎫- ⎪⎝⎭,由题意得03212x ⎛⎫+- ⎪⎝⎭=, ∴ 072x =,∴ C '的解析式为274924y x ⎛⎫=-- ⎪⎝⎭.由234924y x ⎛⎫=+= ⎪⎝⎭到274924y x ⎛⎫=-= ⎪⎝⎭需向右平移5个单位,因此选C .2.【答案】A ;【解析】由图象知,a <0,c <0,012ba<-<, ∴ b >0,ac >0,∴ 2a-b <0. 又对称轴12ba-<,即2a+b <0. 当x =1时,a+b+c >0;当x =-2时,4a-2b+c <0. 综上知选A . 3.【答案】C ;【解析】由抛物线开口向下知a <0,由图象知c >0,02ba-<,b <0,即abc >0,又抛物线与x 轴有两个交点,所以240b ac ->.4.【答案】B ;【解析】抛物线2223(1)2y x x x =++=++,其顶点(-1,2)绕点(0,3)旋转180°后坐标为(1,4),开口向下.∴ 旋转后的抛物线解析式为2(1)4y x =--+.5.【答案】D ;6.【答案】C ;【解析】①∵抛物线的开口方向向上,∴a >0,∵对称轴为x==2>0,又∵a >0,∴b <0,即a ,b 异号,①错误;②∵x=1和x=3关于x=2对称,∴当x=1和x=3时,函数值相等,②正确; ③∵x==2,∴b=﹣4a ,即4a+b=0,③正确;④∵y=﹣2正好为抛物线顶点坐标的纵坐标, ∴当y=﹣2时,x 的值只能取2,④正确; ⑤∵对称轴为x=2,∴x=﹣1和x=5关于x=2对称, 故当﹣1<x <5时,y <0.⑤正确. ∴②、③、④、⑤正确.故选C . 7.【答案】D .【解析】①∵抛物线y=ax 2+bx +c (a ≠0)与x 轴交于点A (﹣2,0)、B (1,0), ∴该抛物线的对称轴为x=﹣=﹣0.5,∴a=b ,a ﹣b=0,①正确;②∵抛物线开口向下,且抛物线与x 轴交于点A (﹣2,0)、B (1,0), ∴当﹣2<x <1时,y >0,②正确; ③∵点A 、B 关于x=0.5对称, ∴AM=BM ,又∵MC=MD ,且CD ⊥AB ,∴四边形ACBD 是菱形,③正确; ④当x=﹣3时,y <0,即y=9a ﹣3b +c <0,④错误.综上可知:正确的结论为①②③. 故选D . 8.【答案】C ;【解析】二次函数24y x x a =-+的对称轴为x =2,由于a =1>0,当x <2时,y 随x 增大而减小,因此A 是正确的;若图象与x 轴有交点,则△=16-4a ≥0,∴ a ≤4.当a =3时,不等式为x 2-4x+3>0,此时二次函数243y x x =-+,令y =0,得x 1=1,x 2=3,当x <1或x >3时,y >0,所以不等式2430x x -+>的解集为x <1或x >3.抛物线平移后得2(3)4(3)1y x x a =+-+++,即222y x x a =++-,将(1,-2)代入解得3a =-.二、填空题9.【答案】y =(x+2)2-3;【解析】y =x 2的顶点为(0,0),y =(x+2)2+3的顶点为(-2,-3),将(0,0)先向左平移2个单位,再向下平移3个单位可得(-2,-3),即将抛物线y =x 2先向左平移2个单位,再向下平移3个单位得到抛物线y =(x+2)2-3.10.【答案】y 1<y 2<y 3.【解析】设x 2+bx-3=0的另一根为x 2,则233cx a-==-,∴ x 2=1, ∴ 抛物线的对称轴为3112x -+==-,开口向上时,到对称轴的距离越大函数值越大, 所以y 1<y 3,y 1<y 2<y 3,也可求出b =2,分别求出y 1,y 2,y 3的值再比较大小.11.【答案】(9.5,-0.25); 【解析】解:y=-x (x-1)(0≤x ≤1),OA 1=A 1A 2=1,P 2P 4=P 1P 3=2, P 2(2.5,-0.25)P 10的横坐标是1.5+2×[(10-2)÷2]=9.5, p 10的纵坐标是-0.25, 故答案为(9.5,-0.25).12.【答案】y =3(x+3)2-3;【解析】抛物线y =3x 2的顶点为(0,0),将x 、y 轴分别向上,向右平移3个单位,逆向思考,即将(0,0)向下,向左平移3个单位,可得顶点为(-3,-3),因此,新坐标系下抛物线的解析式是y =3(x+3)2-3.13.【答案】②③; 【解析】由图象知,抛物线与x 轴交于点(-1,0),(5,0),于是可确定抛物线的对称轴为1522x -+==,则22ba-=,∴ 4a+b =0,故③是正确的; 又∵ 抛物线开口向上,∴ a >0,b =-4a <0, ∴ ①是错误的;又∵1322+=,即x =1和x =3关于对称轴x =2对称,其函数值相等, ∴ ②是正确的;根据抛物线的对称性知,当y =-2时,x 的值可取0或4. ∴ ④是错误的.14.【答案】(2,-4)或(-1,-4);【解析】∵ 1|||4|102AMB S AB =-=△,∴ |AB|=5. 又∵ 抛物线的对称轴为直线12x =,∴ A 、B 两点的坐标为(-2,0)和(3,0).设抛物线的解析式为2y ax bx c =++,则4209301125424a b c a b c a b c ⎧⎪-+=⎪++=⎨⎪⎪++=-⎩ 解得1,1,6.a b c =⎧⎪=-⎨⎪=-⎩∴ 抛物线的解析式为26y x x =--.当y =-4时,246x x -=--,∴ 220x x --=,∴ x 1=-2,x 2=-1. ∴ M 点坐标为(2,-4)或(-1,-4).15.【答案】①②③④;【解析】由二次函数的图象可得:当x=2时y <0,则有4a+2b+c <0(1),故①正确;∵二次函数的图象经过点(1,2),∴a+b+c=2(2),由二次函数的图象可得:当x=﹣1时,y<0,则有a﹣b+c<0(3),把(2)代入(1)得到2+3a+b<0,则有a<,把(2)代入(3)得到2﹣2b<0,则有b>1,则a<﹣1,故②正确;由二次函数的图象中顶点的位置,可得:>2(4),由抛物线开口向下,可得:a<0,则由(4)可得4ac﹣b2<8a,即b2+8a>4ac,故③正确;由抛物线的对称轴的位置,可得>0,则b>0,又由a<0,则有2a﹣b<0,故④正确;故答案为:①②③④.16.【答案】 (1)(1,2); (2)2; (3)向上; (-1,-2);【解析】抛物线212y x=-+向右平移1个单位,则顶点由(0,2)移到(1,2).利用割补法,阴影部分面积恰好为两个正方形的面积.若将抛物线y2绕原点O旋转180°,则抛物线y2的顶点与点(1,2)关于原点对称.三、解答题17.【答案与解析】(1)y=(210-10x)(50+x-40)=-10x2+110x+2100(0<x≤15且x为整数).(2)y=-10(x-5.5)2+2402.5,∵ a=-10<0,∴当x=5.5时,y有最大值2402.5.∵ 0<x≤15,且x为整数.当x=5时,50+x=55,y=-10(5-5.5)2+2402.5=2400(元);当x=6时,50+x=56,可求出y=2400(元).∴当售价定为每件55元或56元,每月利润最大,最大利润是2400元.(3)当y=2200时,-10x2+110x+2100=2200,解得x1=1,x2=10.∴当x=1时,50+x=51,当x=10时,50+x=60.∴当售价定为每件51元或60元时,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元.18.【答案与解析】解:(1)将A点坐标代入y1,得﹣16+13+c=0.解得c=3,二次函数y1的解析式为y=﹣x2+x+3,B点坐标为(0,3);(2)由图象得直线在抛物线上方的部分,是x<0或x>4,∴x<0或x>4时,y1<y2;(3)直线AB的解析式为y=﹣x+3,AB 的中点为(2,) AB 的垂直平分线为y=x ﹣ 当x=0时,y=﹣,P 1(0,﹣), 当y=0时,x=,P 2(,0),综上所述:P 1(0,﹣),P 2(,0),使得△ABP 是以AB 为底边的等腰三角形. 19.【答案与解析】(1)设抛物线的解析式为2y ax bx c =++(a ≠0).∵ 抛物线经过点A(-4,0)、B(0,-4)、C(2,0),∴ 1640,4,420,a b c c a b c -+=⎧⎪=-⎨⎪++=⎩ 解得1,21,4.a b c ⎧=⎪⎪=⎨⎪=-⎪⎩∴ 抛物线的解析式为2142y x x =+-. (2)过点M 作MD ⊥x 轴于点D . 设M 点的坐标为(m ,n),则AD =m+4, MD n =-,2142n m m =+-. ∴ AMD ABO DMBO S S S S =+-△△梯形111(4)()(4)()44222m n n m =+-+-+--⨯⨯ 228n m =---2124282m m m ⎛⎫=-+---⎪⎝⎭24(40)m m m =---<<. ∴ 当2m =-时,4S =最大值. (3)满足题意的Q 点的坐标有四个,分别是:(-4,4)、(4,-4)、(225,225)-+-、(225,225)--+.20.【答案与解析】 解:(1)由题意解得,∴抛物线解析式为y=x2﹣x+2.(2)∵y=x2﹣x+2=(x﹣1)2+.∴顶点坐标(1,),∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3),∴S△BDC=S△BDH+S△DHC=•3+•1=3.(3)由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.。
中考数学总复习《二次函数》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.要得到二次函数y=−x2图象,可将y=−(x−1)2+2的图象如何移动()A.向左移动1单位,向上移动2个单位B.向右移动1单位,向上移动2个单位C.向左移动1单位,向下移动2个单位D.向右移动1单位,向下移动2个单位2.若二次函数y=a x2+bx+c(a≠0)的图象的顶点在第二象限,且过点(0,1)和(1,0),则m=a-b+c的值的变化范围是()A.0<m<1B.0<m<2C.1<m<2D.-1<m<13.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1−(x−a)(x−b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b4.对于二次函数y=x2﹣2mx﹣3,有下列说法:①它的图象与x轴有两个公共点;②若当x≤1时y随x的增大而减小,则m=1;③若将它的图象向左平移3个单位后过原点,则m=﹣1;④若当x=4时的函数值与x=2时的函数值相等,则当x=6时的函数值为﹣3.其中正确的说法是()A.①②③B.①④C.②④D.①②④5.已知二次函数y=x2+2mx+m的图象与x轴交于A(a,0),B(b,0)两点,且满足,4≤a+b≤6.当1≤x≤3时,该函数的最大值H与m满足的关系式是()A.H=3m+1B.H=5m+4C.H=7m+9D.H=−m2+m6.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣1),且顶点在第三象限,则a的取值范围是()A.a>0B.0<a<1C.1<a<2D.﹣1<a<17.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是()A.B.C.D.8.正方形的边长为3,边长增加x,面积增加y,则y关于x的函数解析式为()A.y=(x+3)2B.y=x2+9C.y=x2+6x D.y=3x2+12x9.若将抛物线y=2x2+1先向右平移1个单位长度,再向下平移3个单位长度,则所得抛物线的表达式为()A.y=2(x−1)2−2B.y=2(x+1)2−2C.y=2(x−1)2+3D.y=2(x+1)2+310.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:①2a−b<0;②abc<0;③a+b+c<0;④a−b+c>0;⑤4a+2b+c>0.其中正确的个数有()A.1个B.2个C.3个D.4个11.如图,二次函数y=ax2+bx+c的图象如图所示,则关于x的一元二次方程ax2+bx+c=0的解为()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣312.已知某种礼炮的升空高度ℎ(m)与飞行时间t(s)的关系式是ℎ=−52t2+20t+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为()A.3 s B.4 s C.5 s D.6 s二、填空题13.若把函数y=x的图象用E(x,x)记,函数y=2x+1的图象用E(x,2x+1)记,……则E(x,x2−2x+3)图象上的最低点是.14.有一个角是60°的直角三角形,它的面积S与斜边长x之间的函数关系式是.15.如图,点P是双曲线C:y=4x(x>0)上的一点,过点P作x轴的垂线交直线AB:y=12x−2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△ POQ面积的最大值是.16.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如表:下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是(把所有正确结论的序号都填上)x﹣5﹣4﹣202y60﹣6﹣4617<3时,x的取值范围是.18.在平面直角坐标系中,抛物线y=-x2+2ax与直线y=x+2的图象在-1≤x≤1的范围有且只有一个公共点P,则a的取值范围是.三、综合题19.已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0).(1)求抛物线的解析式;(2)过点D(0,74)作x轴的平行线交抛物线于E,F两点,求EF的长;(3)当y≤ 74时,直接写出x的取值范围是.20.已知抛物线y=−12x2+bx+c经过点(1,0),(0,32).(1)求该抛物线的函数表达式;(2)将抛物线y=−12x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.21.如图,有一个长为24米的篱笆,一面有围墙(墙的最大长度为10米)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S米2.(1)求S与的函数关系式及x的取值范围.(2)如果要围成的花圃ABCD的面积是45平方米,则AB的长为多少米?22.如图,二次函数y=−x2+2x+3的图象与x轴交于A、B两点,与y轴交于点C,顶点为D(1)求点A,B,C的坐标.(2)求△BCD的面积23.给出两种上宽带网的收费方式:收费方式月使用费/元包月上网时间/h超时费/(元/ min)A30250.05B50500.0512(1)直接写出y1,y2与x之间的函数关系式;(2)x为何值时,两种收费方式一样?(3)某用户选择B方式宽带网开网店.若该用户上网时间x小时,产生y=−x2+ax+1950(元)(a>103)的经济收益.若某月该用户上网获得的利润最大值为5650元,直接写出a的值.(上网利润=上网经济收益-月宽带费)24.已知抛物线y=ax2−2ax+c(a<0)的图象过点A(3,m).(1)当a=-1,m=0时,求抛物线的顶点坐标;(2)若P(t,n)为该抛物线上一点,且n<m,求t的取值围;(3)如图,直线l:y=kx+c(k<0)交抛物线于B,C两点,点Q(x,y)是抛物线上点B,C之间的一个动点,作QD△x轴交直线l于点D,作QE△y轴于点E,连接DE.设△QED=b,当2≤x≤4时,b 恰好满足30°≤β≤60°,求a的值.参考答案1.【答案】C2.【答案】B3.【答案】A4.【答案】B5.【答案】A6.【答案】B7.【答案】A8.【答案】C9.【答案】A10.【答案】C11.【答案】C12.【答案】B13.【答案】(1,2)14.【答案】√38x 215.【答案】3 16.【答案】①③④ 17.【答案】-1<x <3 18.【答案】a≥0或a≤-119.【答案】(1)解:把A (﹣1,0),B (3,0)代入y =ax 2+bx+3解得:a =﹣1,b =2抛物线的解析式为y =﹣x 2+2x+3(2)解:把点D 的y 坐标y = 74,代入y =﹣x 2+2x+3解得:x = 12 或 32则EF 长 =32−(−12)=2 (3)x ≤12 或 x ≥32.20.【答案】解:把(1,0),(0,32)代入抛物线解析式得:{−12+b +c =0c =32,解得:{b =−1c =32,则抛物线解析式为y =−12x 2−x +32(2)将抛物线y =−12x 2+bx +c 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【答案】解:抛物线解析式为y =−12x 2−x +32=−12(x +1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y =−12x 2.(1)解:把(1,0),(0,32)代入抛物线解析式得:{−12+b +c =0c =32解得:{b =−1c =32则抛物线解析式为y =−12x 2−x +32(2)解:抛物线解析式为y=−12x2−x+32=−12(x+1)2+2将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=−12x2.21.【答案】解:AB为xm,则BC就为(24-3x)m,S=(24-3x)x=24x-3x2,∵x>0,且10≥24-3x>0,∴143≤x<8. (2)如果要围成的花圃ABCD的面积是45平方米,则AB的长为多少米?解:45=24x-3x2,解得x=5或x=3;故AB的长为5米.(1)解:AB为xm,则BC就为(24-3x)mS=(24-3x)x=24x-3x2∵x>0,且10≥24-3x>0∴143≤x<8.(2)解:45=24x-3x2解得x=5或x=3;故AB的长为5米.22.【答案】(1)解:令y=0,可得x=3或x=﹣1.令x=0,可得y=3.∴A(-1,0)B(3,0)C(0,3)(2)解:依题意,可得y=-x2+2x+3=-(x-1)2+4.∴顶点D(1,4).令y=0,可得x=3或x=-1.∴令x=0,可得y=3.∴C(0,3).∴OC=3,∴直线DC的解析式为y=x+3.设直线DE交x轴于E.∴BE=6.∴S△BCD=S△BED-S△BCE=3.∴△BCD的面积为3.23.【答案】(1)解:由题意可得:A、B两种收费超时收费都为0.05×60=3元/小时A种上网的月收费为y1=30+3(x−25)=3x−45;B种上网的月收费可分①当25≤x≤50时,y2=50,②当x>50时,y2=50+3(x−50)=3x−100综上所述:y2={50,25≤x≤503x−100,x>50.(2)解:由(1)可分:①当25≤x≤50时,两种收费一样,则有3x−45=50解得:x=953②当x>50时,两种收费一样,则有3x−45=3x−100,方程无解,故不成立∴综上所述:当上网时间为953小时,两种上网收费一样;答:当上网时间x为953小时,两种上网收费一样.(3)解:设上网利润为w元,则由题意得:①当上网时间25≤x≤50时,上网利润为w=−x2+ax+1950−50=−x2+ax+1900∵a>103∴x=a2>50∵该二次函数的图象开口向下,在25≤x≤50,y随x的增大而增大∴该用户上网获得的利润最大值为5650元,所以当x=50时,则有:−2500+50a+1900=5650,解得:a=125;②当x>50时,上网利润为w=−x2+ax+1950−3x+100=−x2+(a−3)x+2050∴该二次函数的图象向下,对称轴为直线x=a−3 2∵a>103∴x=a−32>50∴y随x的增大而减小∴当x=a−32时,y有最大值,即−(a−32)2+(a−3)(a−32)+2050=5650解得:a1=123,a2=−117(不符合题意,舍去)综上所述:当某月该用户上网获得的利润最大值为5650元,则a=125或123. 24.【答案】(1)解:当a=-1,m=0时,y=−x2+2x+c,A点的坐标为(3,0)∴-9+6+c=0.解得c=3∴抛物线的表达式为y=−x2+2x+3.即y=−(x−1)2+4.∴抛物线的顶点坐标为(1,4).(2)解:∵y=ax2−2ax+c的对称轴为直线x=−2a−2a=1∴点A关于对称轴的对称点为(-1,m).∵a<0∴当x<1,y随x的增大而增大;当x>1,y随x的增大而减小.又∵n <m∴当点P 在对称轴左边时,t <-1; 当点P 在对称轴右边时,t >3.综上所述:t 的取值范围为t <-1或t >3; (3)解:∵点Q (x ,y )在抛物线上 ∴y =ax 2−2ax +c .又∵QD△x 轴交直线 l :y =kx +c(k <0) 于点D ∴D 点的坐标为(x ,kx +c ).又∵点Q 是抛物线上点B ,C 之间的一个动点 ∴QD =ax 2−2ax +c −(kx +c)=ax 2−(2a +k)x . ∵QE =x∴在Rt△QED 中, tanβ=QD QE =ax 2−(2a+k)x x=ax −2a −k . ∴tanβ 是关于x 的一次函数 ∵a <0∴tanβ 随着x 的增大而减小.又∵当 2≤x ≤4 时, β 恰好满足 30°≤β≤60° ,且 tanβ 随着 β 的增大而增大 ∴当x =2时, β =60°;当x =4时, β =30°. ∴{2a −2a −k =√34a −2a −k =√33解得 {k =−√3a =−√33∴a =−√33.。
2 + + sP 1Q 2二次函数复习题(1)1.抛物线 y = x 2 先向右平移 1 个单位,再向上平移 3 个单位,得到新的抛物线解析式是()A . y = (x + 1)2 + 3B . y = (x + 1)2 - 3C . y = (x - 1)2 - 3D . y = (x - 1)2 + 32.如图,在同一直角坐标系中,一次函数 y =ax +c 和二次函数 y =ax 2+b x +c 的图象大致为()yyyyOxOxOxOxA BC D3.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量 y (升)与时间 x (分钟) 之间满足某种函数关系,其函数图象大致为 ( )A .B .C .D .4. 记抛物线 y = - x 2 + 2012 的图象与 y 正半轴的交点为 A ,将线段 OA 分成 2012 等份,设分点分别为 P 1, P 2,…,P 2011,过每个分点作 y 轴的垂线,分别与抛物线交于点 Q 1,Q 2,…,Q 2011 , 再 记 直 角 三 角 形 OP 1Q 1 , P 1P 2Q 2 , … 的 面 积 分 别 为 S 1 , S 2 , … , 这 样 就 记w = s 2 + s 12 2 ,W 2011 的值为( )A. 505766B. 505766.5C. 505765D. 505764yAP 2Q 1x(第 4 题图)y2-1 o1 x5.已知抛物线y=ax2+bx+c的图象如图所示,则下列结论:①a bc>0;②a+b+c=2;③a<12;④b>1.其中正确的结论是()A.①②B.②③C.③④D.②④6、产自庆元县百山祖山麓一带的“沁园春”茶叶是丽水市知名品牌.现该品牌旗下一茶厂有采茶工人30人,每人每天采鲜茶叶“炒青”20千克或鲜茶叶“毛尖”5千克.已知生产每千克成品茶叶所需鲜茶叶和销售每千克成品茶叶所获利润如下表:类别炒青毛尖生产1千克成品茶叶所需鲜茶叶(千克)45销售1千克成品茶叶所获利润(元)40120(1)若安排x人采“炒青”,则可采鲜茶叶“炒青”千克,采鲜茶叶“毛尖”千克.(2)若某天该茶厂工生产出成品茶叶102千克,则安排采鲜茶叶“炒青”与“毛尖”各几人?(3)根据市场销售行情,该茶厂的生产能力是每天生产成品茶叶不少于100千克且不超过110千克,如果每天生产的茶叶全部销售,如何分配采茶工人能使获利最大?最大利润是多少?7.(本题10分)我市某品牌服装公司生产的玩具4月份每件生产成本为50元,5、6月每件玩具生产成本平均降低的百分率为x.(1)用含x的代数式表示5月份每件玩具的生产成本;(2)如果6月份每件生产成本比4月份少9.5元,试求x的值;(3)该玩具5月份每件的销售价为60元,6月份每件的销售价比5月份有所下降,若下降的百分率与5、6月份每件玩具平均降低成本的百分率相同,且6月份每件玩具的销售价不低于48元,设6月份每件玩具获得的利润为y元,试求y与x的函数关系式,并确定单件利润y的最大值.(注:利润=销售价-生产成本)8、某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后市场销售情况进行了跟踪调查,调查结果如图所示:其中,图①中的折线表示的是市场日销售量与上市时间的关系,图②中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式,(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大日销售利润是多少万元?9、)随着我市近几年城市园林绿化建设的快速发展,对花木的需求量逐年提高。
某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资成本x成正比例关系,如图①所示;种植花卉的利润y2与投资成本x成二次函数关系,如图②所示(注:利润与投资成本的单位:万元)图①图②(1)分别求出利润y1与y2关于投资量x的函数关系式;(2)如果这位专业户计划以8万元资金投入种植花卉和树木,请求出他所获得的总利润Z与投入种植花卉的投资量x之间的函数关系式,并回答他至少获得多少利润?他能获取的最大利润是多少?10、已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点.(1)求C1的顶点坐标;(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(﹣3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;111、已知二次函数y=-x2+4x+5图像交x轴于点A、B,交y轴于点C,点D是该函数图像上一点,且点D的横坐标为4,连BD,点P是AB上一动点(不与点A重合),过P作PQ⊥AB交射线AD于点Q,以PQ为一边在PQ的右侧作正方形PQMN.设点P的坐标为(t,0).(1)求点B,C,D的坐标及射线AD的解析式;(2)在AB上是否存在点P,使⊿OCM为等腰三角形?若存在,求正方形PQMN的边长;若不存在,请说明理由;(3)设正方形PQMN与⊿ABD重叠部分面积为s,求s与t的函数关系式.12、如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴=15,抛物线的负半轴上.已知OA:OB=1:5,OB=OC,△ABC的面积S∆ABCy=ax2+bx+c(a≠0)经过A、B、C三点.(1)求此抛物线的函数表达式;(2)点P(2,-3)是抛物线对称轴上的一点,在线段OC上有一动点M,以每秒2个单位的速度从O向C运动,(不与点O,C重合),过点M作MH∥BC,交X轴于点H,设点M的运动时间为t秒,试把⊿PMH的面积S表示成t的函数,当t为何值时,S有最大值,并求出最大值;(3)设点E是抛物线上异于点A,B的一个动点,过点E作x轴的平行线交抛物线于另一点F.以EF为直径画⊙Q,则在点E的运动过程中,是否存在与x轴相切的⊙Q?若存在,求出此时点E的坐标;若不存在,请说明理由。
yxA O BC13、平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别为(0,3)、(-1,0),将此平行四边形绕点0顺时针旋转90°,得到平行四边形A'B'O C'。
(1)若抛物线过点C,A,A',求此抛物线的解析式;(2)求平行四边形ABOC和平行四边形A'B'O C'重叠部分△OC'D的周长;(3)点M是第一象限内抛物线上的一动点,间:点M在何处时△AMA'的面积最大?最大面积是多少?并求出此时点M的坐标。
14、如图,在平面直角坐标系中,将一块腰长为5的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(-1,0),点B在抛物线y=ax2+ax-2上.(1)点A的坐标为,点B的坐标为;(2)抛物线的解析式为;(3)设(2)中抛物线的顶点为△D,求DBC的面积;(4)在抛物线上是否还存在点P(点B除外),使ΔACP仍然是以AC为直角边的等腰直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由。
第24题图15、如图,抛物线y=-x2+bx+c与x轴交与A(1,0),B(-3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点△P,使PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.CB A16、如图:在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,与两坐标轴交点为点A和点C,与抛物线y=ax2+ax+b交于点B,其中点A(0,2),点B(–3,1),抛物线与y轴交点D(0,–2).(1)求抛物线的解析式;(2)求点C的坐标;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.17、(本题满分10分)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)点D的坐标为(-2,0).问:直线AC上是否存在点F,使得△ODF是等腰三角形?若存在,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.(3)如图②,若点E为第二象限抛物线上一动点,连接BE、△CE,求BCE面积的最大值,并求此时E点的坐标.18、如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(-1,0).将矩形OABC绕原点顺时针旋转90°,得到矩形OA'B'C'.设直线B B'与x轴交于点M、与y轴交于点N,抛物线y=ax2+2x+c的图象经过点C、M、N.解答下列问题:(1)分别求出直线BB'和抛物线所表示的函数解析式;(△2)将MON沿直线MN翻折,点O落在点P处,请你判断点P是否在抛物线上,说明理由.(3)将抛物线进行平移,使它经过点C',求此时抛物线的解析式.yB ANC'B'CO A'M x。