平面向量的内积
- 格式:doc
- 大小:124.00 KB
- 文档页数:7
平面向量的内积教案平面向量的内积【教学目标】知识目标:(1)了解平面向量内积的概念及其几何意义.(2)了解平面向量内积的计算公式.为利用向量的内积研究有关问题奠定基础.能力目标:通过实例引出向量内积的定义,培养学生观察和归纳的能力.【教学重点】平面向量数量积的概念及计算公式.【教学难点】数量积的概念及利用数量积来计算两个非零向量的夹角.【教学设计】教材从某人拉小车做功出发,引入两个向量内积的概念.需要强调力与位移都是向量,而功是数量.因此,向量的内积又叫做数量积.在讲述向量内积时要注意:(1)向量的数量积是一个数量,而不是向量,它的值为两向量的模与两向量的夹角余弦的乘积.其符号是由夹角决定;(2)向量数量积的正确书写方法是用实心圆点连接两个向量.教材中利用定义得到内积的性质后面的学习中会经常遇到,其中:(1)当<a ,b >=0时,a ·b =|a ||b |;当<a ,b >=180时,a ·b =-|a ||b |.可以记忆为:两个共线向量,方向相同时内积为这两个向量模的积;方向相反时内积为这两个向量模的积的相反数.(2)|a |算向量模的公式的基础;(3)cos<a ,b >=||||⋅a b a b ,是得到利用两个向量的坐标计算两个向量所成角的公式的基础;(4)“a ·b =0⇔a ⊥b ”经常用来研究向量垂直问题,是推出两个向量内积坐标表示的重要基础.【教学备品】教学课件.【课时安排】2课时.(80分钟)【教学过程】*揭示课题7.3 平面向量的内积*创设情境 兴趣导入如图7-21所示,水平地面上有一辆车,某人用100 N 的力,朝着与水平线成︒30角的方向拉小车,使小车前进了100 m .那么,这个人做了多少功? 动脑思考 探索新知【新知识】我们知道,这个人做功等于力与在力的方向上移动的距离的乘积.如图7-22所示,设水平方向的单位向量为i ,垂直方向的单位向量为j ,则F =x i + y j sin 30cos30F i F j =⋅+⋅,即力F 是水平方向的力与垂直方向的力的和,垂直方向上没有产生位移,没有做功,水平方向上产生的位移为s ,即W =|F |cos ︒30·|s |=100×23·10=5003 (J )图7—21这里,力F 与位移s都是向量,而功W 是一个数量,它等于由两个向量F ,s 的模及它们的夹角的余弦的乘积,W 叫做向量F 与向量s 的内积,它是一个数量,又叫做数量积.如图7-23,设有两个非零向量a , b ,作OA =a , OB =b ,由射线OA 与OB 所形成的角叫做向量a与向量b 的夹角,记作<a ,b>.两个向量a ,b 的模与它们的夹角的余弦之积叫做向量a 与向量b 的内积,记作a ·b , 即(7.10)上面的问题中,人所做的功可以记作W =F ·s.由内积的定义可知a ·0=0, 0·a =0.由内积的定义可以得到下面几个重要结果:(1) 当<a ,b >=0时,a ·b =|a ||b |;当<a ,b >=180时,a ·b =−|a ||b |.(2) cos<a ,b >=||||⋅a b a b . (3) 当b =a 时,有<a ,a >=0,所以a ·a =|a ||a |=|a |2,即|a |.(4) 当,90a b <>=时,a ⊥b ,因此,a ·b =cos900,a b ⋅=因此对非零向量a ,b ,有Ba ·b =0⇔a ⊥b.可以验证,向量的内积满足下面的运算律:(1) a ·b =b ·a .(2) (a λ)·b =λ(a ·b )=a ·(λb ).(3) (a +b )·c =a ·c +b ·c .注意:一般地,向量的内积不满足结合律,即a ·(b ·c )≠(a ·b )·c .请结合实例进行验证.*巩固知识 典型例题例1 已知|a |=3,|b |=2, <a ,b >=︒60,求a ·b .解 a ·b =|a ||b | cos<a ,b > =3×2×cos ︒60=3.例2 已知|a |=|b |=2,a ·b =2-,求<a ,b >.解 cos<a ,b >=||||⋅a b a b =222⋅-=−22. 由于 0≤<a ,b >≤︒180,所以 <a ,b >=135.*理论升华 整体建构思考并回答下面的问题:平面向量内积的概念、几何意义?结论:两个向量a ,b 的模与它们的夹角的余弦之积叫做向量a 与向量b 的内积,记作a ·b , 即a ·b 的几何意义就是向量a 的模与向量b 在向量a 上的投影的乘积. 知识 典型例题例3 求下列向量的内积:(1)a= (2,−3), b=(1,3);运用知识强化练习1. 已知|a|=7,|b|=4,a和b的夹角为︒60,求a·b.2. 已知a·a=9,求|a|.3. 已知|a|=2,|b|=3, <a,b>=︒30,求(2a+b)·b.动脑思考探索新知设平面向量a=(x1,y1),b=(x2,y2),i,j分别为x轴,y轴上的单位向量,由于i⊥j,故i·j=0,又| i |=|j|=1,所以a·b=(x1 i+y1j)· (x2 i+y2j)=x1x2i•i+x1y2i•j+x2y1 i•j+y1y2j•j=x1x2 |j|2+y1y2 |j|2=x1x2+y1y2.这就是说,两个向量的内积等于它们对应坐标乘积的和,即(7.11)利用公式(7.11)可以计算向量的模.设a=(x,y),则a==a=由平面向量内积的定义可以得到,当a、b是非零向量时,利用公式(7.13)可以方便地求出两个向量的夹角.由于a⊥b⇔a·b=0,由公式(7.11)可知a ·b =0⇔ x 1 x 2+ y 1 y 2=0.因此a ⊥b ⇔ x 1 x 2+ y 1 y 2=0. (7.14)利用公式(7.14)可以方便地利用向量的坐标来研究向量垂直的问题. *巩固知识 典型例题例3 求下列向量的内积:(2) a = (2,−3), b =(1,3);(3) a = (2, −1), b =(1,2);(4) a = (4,2), b =(−2, −3).解 (1) a ·b =2×1+(−3)×3=−7;(2) a ·b =2×1+(−1)×2=0;(3) a ·b =2×(−2)+2×(−3)=−14.例4 已知a =(−1,2),b =(−3,1).求a ·b , |a |,|b |, <a ,b >.解 a ·b =(−1)( −3)+2×1=5;|a |=;|b |=;cos<a ,b >=||||⋅a b a b =, 所以 <a ,b >=45.例5 判断下列各组向量是否互相垂直:(1) a =(−2, 3), b =(6, 4);(2) a =(0, −1), b =(1, −2).解 (1) 因为a ·b =(−2)×6+3×4=0,所以a ⊥b .(2) 因为a·b=0×1+(−1)×(−2)=2,所以a与b不垂直.运用知识强化练习1.已知a=(5, −4),b=(2,3),求a·b.2.已知a=(1,3),b=(0, 3),求<a,b>.3.已知a=(2, −3),b=(3,-4),c=(−1,3),求a·(b+c).4. 判断下列各组向量是否互相垂直:(1) a=(−2, −3),b=(3, −2); (2) a=(2,0),b=(0, −3); (3) a=(−2,1),b=(3,4).5. 求下列向量的模:a=(−2, −4),b=(3, −2); (2) a=(2,1),b=(4, −3);归纳小结强化思想本次课学了哪些内容?重点和难点各是什么?自我反思目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.已知a=(5, − 4),b=(2,3),求a·b.2.已知a=(2, −3),b=(3, −4),c=(−1,3),求a·(b+c).*继续探索活动探究(1)读书部分:阅读教材(2)书面作业:教材习题7.3 A组(必做);7.3 B组(选做)。
平面向量的内积平面向量的内积概念解释内积是向量的一种运算,也叫点积。
对于两个向量a和b,它们的内积可以表示为a·b,其中“·”表示内积符号。
在平面直角坐标系中,向量a和b的内积可以表示为a·b=|a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长,θ表示两个向量之间的夹角。
性质1. 内积具有交换律:a·b=b·a2. 内积具有分配律:(c+a)·b=c·b+a·b3. 内积具有结合律:k(a·b)=(ka)·b=a·(kb)4. 如果两个向量的夹角为90度,则它们的内积为0。
5. 如果两个向量不共线,则它们的内积不为0。
6. 如果一个向量与自身做内积,则结果为该向量模长的平方。
应用1. 向量投影通过计算一个向量在另一个向量上的投影长度,可以得到这两个向量之间夹角的余弦值。
这在计算机图形学中非常常见。
2. 判断两条直线是否垂直如果两条直线所对应的向量垂直,则它们的内积为0。
3. 计算向量的模长通过向量的内积公式,可以计算出一个向量的模长。
4. 计算两个向量之间的夹角通过向量的内积公式,可以计算出两个向量之间的夹角。
5. 判断两条直线是否平行如果两条直线所对应的向量平行,则它们的内积为两个向量模长之积乘以它们之间夹角的余弦值。
6. 判断三角形是否直角三角形如果一个三角形中有一条边与另一条边垂直,则这两条边所对应的向量垂直,它们的内积为0。
如果这个三角形中有两条边所对应的向量垂直,则这个三角形是直角三角形。
总结平面向量内积是一种非常重要且常用的运算,它不仅可以用于计算向量投影、判断两条直线是否垂直或平行、计算夹角等问题,还可以用于解决几何问题和物理问题。
因此,在学习数学和物理时,掌握平面向量内积是非常重要和必要的。
平面向量的内积教学眉批向量内积可用来计算物理学的“功”与解决一般几何、解析几何问题,未来学习的两个矩阵的乘积也蕴含向量的内积。
两向量夹角:(1) 两个非零向量始点重合所夹的角。
(2) 夹角介于0°至180°。
(3) 同向时夹角为0°,反向时夹角为180°。
向量在几何图形上的夹角宜注意是否起点重合。
补充演练如下图,试求下列两向量的夹角:(1) AB与AC。
(2) BA与AF。
(3) AD与EB。
解(1) 如图(一),AB与AC夹角为30°。
(2) 如图(二),BA与AF夹角为60°。
(3) 如图(三),AD与EB夹角为120°。
图(一)图(二)图(三)教学眉批向量内积:(1) 内积与系数积是不同的。
内积是两个向量的运算;系数积是一个向量的实数倍。
(2) 利用两非零向量的长度及其夹角余弦值的乘积来定义,结果为一实数。
(3) 若两向量中有一为零向量时,因零向量之长度为0,故规定其内积为0。
(4) 内积具交换性,即a‧b=b‧a=∣a∣∣b∣cos θ。
一些常用性质后面会再介绍。
(1) 给定长度与夹角求内积,直接由定义可得。
(2) 给定几何图形求内积,务必提醒学生起点重合,角度介于0°~180°才是两个向量的夹角。
补充演练(1) 如图(一),已知直线L垂直AB,C,D,E,F在直线L上,则AB‧AC,AB‧AD,AB‧AE,AB‧AF之大小关系为何?(2) 如图(二),ABCDEF为一正六边形。
那么下列向量内积中,何者最大?(A) AB‧AB(B) AB‧AC(C) AB‧AD(D) AB‧AE(E) AB‧AF。
图(一)图(二)证(1)AB‧AC=∣AB∣∣AC∣cos∠CAB=∣AB∣∣AF∣;AB‧AD=∣AB∣∣AD∣cos∠DAB=∣AB∣∣AF∣;AB‧AE=∣AB∣∣AE∣cos∠EAB=∣AB∣∣AF∣;AB‧AF=∣AB∣∣AF∣cos 0°=∣AB∣∣AF∣,故均相等。
平面向量内积推导
摘要:
一、平面向量内积的定义与意义
二、平面向量内积的性质与运算规律
三、平面向量内积的推导过程
四、平面向量内积在实际问题中的应用
正文:
一、平面向量内积的定义与意义
平面向量内积是一种度量向量之间相似度的方法,它反映了两个向量在方向和长度上的相似程度。
给定两个二维平面向量A=(a1, a2)和B=(b1, b2),它们的内积定义为:
A·B = a1*b1 + a2*b2
内积的值范围在-1到1之间,接近1表示两个向量高度相似,接近-1表示两个向量高度相反,等于0表示两个向量垂直。
二、平面向量内积的性质与运算规律
1.交换律:A·B = B·A
2.结合律:(A·B)·C = A·(B·C)
3.分配律:A·(B+C) = A·B + A·C
4.对称性:A·B = B·A
5.标量乘法的传递性:kA·kB = (k·k)·A·B
三、平面向量内积的推导过程
平面向量内积的推导过程主要包括以下几个步骤:
1.基于向量的点积定义,展开A·B的计算过程。
2.利用向量的坐标运算,将点积表达式转化为坐标形式。
3.化简坐标形式的点积表达式,得到内积的简化形式。
四、平面向量内积在实际问题中的应用
1.几何问题:求解向量的夹角、向量的模长、判断向量之间的共线关系等。
2.线性代数问题:求解矩阵的特征值、特征向量,以及矩阵的秩等。
3.机器学习问题:应用于文本相似度计算、图像特征提取、推荐系统等。
数学复习:平面向量数量积的计算一.基本原理(3)夹角:222221212121||||cos y x y x y y x x b a b a +⋅++=⋅⋅= θ投影也是一个数量,不是向量.当θ为锐角时投影为正值;当θ为钝角时投影为负值;当直角时投影为0;当0θ=时投影为||b;当180θ= 时投影为b - 5.极化恒等式人教版必修二第22页练习3设置了这样的问题:求证:22)()(4→→→→→→--+=⋅b a b a b a .若我们将这个结论进一步几何化,就可以得到一把处理数量积范围问题的利器:极化恒等式.下面我先给出这道习题的证明,再推出该恒等式.证明:由于→→→→→→++=+b a b a b a 2)(222,→→→→→→-+=-b a b a b a 2)(222两式相减可得:22)()(4→→→→→→--+=⋅b a b a b a .特别,在ABC ∆中,设→→→→==AC b AB a ,,点M 为BC 中点,再由三角形中线向量公式可得:2241→→→→-=⋅BC AM AC AB (极化恒等式).6.与外心有关的数量积计算结论:如图1,||||||cos ||OB OD OB AOB OA OB OA ⋅=⋅∠=⋅→→,特别地,若点A 在线段OB 的中垂线上时,2||21OB OB OA ⋅=⋅→→.如图1如图2进一步,外心性质:如图2,O 为ABC ∆的外心,可以证明:(1).2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.(2).)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.(3).)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:AO BC AD BC ⋅=⋅ ()()2222111()().222AB AC AC AB AC AB n m =+-=-=-二.典例分析1.定义法计算例1.已知向量a ,b 满足||5a = ,||6b = ,6a b ⋅=- ,则cos ,=a a b <+> ()A .3135-B .1935-C .1735D .19352.基底法计算例2-1.已知平面向量,a b 满足a =,)(21R e e b ∈+=λλ ,其中21,e e 为不共线的单位向量,若对符合上述条件的任意向量,a b ,恒有4a b +≥ ,则21,e e 夹角的最小值是()A .6πB .π4C .π3D .π2例2-2.已知菱形ABCD 的边长为2,120BAD ︒∠=,点E 在边BC 上,3BC BE =,若G 为线段DC 上的动点,则AG AE ⋅的最大值为()A .2B .83C .103D .43.坐标法例3.在ABC ∆中,3AC =,4BC =,90C ∠=︒.P 为ABC ∆所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5-,3]B .[3-,5]C .[6-,4]D .[4-,6]变式.在ABC ∆中,90A ∠=︒,2AB AC ==,点M 为边AB 的中点,点P 在边BC 上,则MP CP ⋅的最小值为.4.投影法计算例4.在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1、圆心在线段CD (含端点)上运动,点P 是圆Q 上及其内部的动点,则AP AB ⋅的取值范围是()A .[2,8]B .[4,8]C .[2,10]D .[4,10]5.极化恒等式例5-1.已知ABC ∆是长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B .32-C .43-D .1-例5-2.已知等边ABC ∆的三个顶点均在圆224x y +=上,点P,则PA PB PA PC ⋅+⋅的最小值为()6.外接圆性质例6-1.已知点O 是ABC ∆的外心,6AB =,8BC =,2π3B =,若BO xBA yBC =+ ,则34x y +=()A .5B .6C .7D .8例6-2.已知O 是ABC ∆的外心,4||=AB ,2AC =,则()AO AB AC ⋅+= ()A .10B .9C .8D .6平面向量数量积的计算答案一.基本原理(3)夹角:222221212121||||cos y x y x y y x x b a b a +⋅++=⋅⋅= θ投影也是一个数量,不是向量.当θ为锐角时投影为正值;当θ为钝角时投影为负值;当直角时投影为0;当0θ=时投影为||b;当180θ= 时投影为b - 5.极化恒等式人教版必修二第22页练习3设置了这样的问题:求证:22)()(4→→→→→→--+=⋅b a b a b a .若我们将这个结论进一步几何化,就可以得到一把处理数量积范围问题的利器:极化恒等式.下面我先给出这道习题的证明,再推出该恒等式.证明:由于→→→→→→++=+b a b a b a 2)(222,→→→→→→-+=-b a b a b a 2)(222两式相减可得:22)()(4→→→→→→--+=⋅b a b a b a .特别,在ABC ∆中,设→→→→==AC b AB a ,,点M 为BC 中点,再由三角形中线向量公式可得:2241→→→→-=⋅BC AM AC AB (极化恒等式).6.与外心有关的数量积计算结论:如图1,||||||cos ||OB OD OB AOB OA OB OA ⋅=⋅∠=⋅→→,特别地,若点A 在线段OB 的中垂线上时,2||21OB OB OA ⋅=⋅→→.如图1如图2进一步,外心性质:如图2,O 为ABC ∆的外心,可以证明:(1).2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.(2).)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.(3).)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:AO BC AD BC ⋅=⋅ ()()2222111()().222AB AC AC AB AC AB n m =+-=-=-二.典例分析1.定义法计算例1.已知向量a ,b 满足||5a = ,||6b = ,6a b ⋅=- ,则cos ,=a a b <+> ()A .3135-B .1935-C .1735D .1935【解析】5a = ,6b = ,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-= .7a b+=,因此,()1919cos,5735a a ba a ba a b⋅+<+>===⨯⋅+.2.基底法计算例2-1.已知平面向量,a b满足4a=,)(21Reeb∈+=λλ,其中21,ee为不共线的单位向量,若对符合上述条件的任意向量,a b,恒有4a b+≥,则21,ee夹角的最小值是()A.6πB.π4C.π3D.π2【解析】因a=221()||cos,0||cos,8a b a b b b a b b a b+⇔+≥⇔〈〉≥⇔≥〈〉,依题意,||2b≥恒成立,而21eebλ+=,21,ee为不共线的单位向量,即有2221,cos21be=++λλ,于是得21,cos221,cos21221221++⇔≥++λλλλeee恒成立,则02,cos4212≤-=∆ee,即有22,cos2221≤≤-e,又π≤≤21,0ee,解得43,421ππ≤≤ee,所以21,ee夹角的最小值是π4.例2-2.已知菱形ABCD的边长为2,120BAD︒∠=,点E在边BC上,3BC BE=,若G为线段DC上的动点,则AG AE⋅的最大值为()A.2B.83C.103D.4【答案】B【解析】由题意可知,如图所示因为菱形ABCD 的边长为2,120BAD ︒∠=,所以2AB AD == ,1cos1202222AB AD AB AD ︒⎛⎫⋅==⨯⨯-=- ⎪⎝⎭,设[],0,1DG DC λλ=∈ ,则AG AD DG AD DC AD AB λλ=+=+=+ ,因为3BC BE =,所以1133BE BC AD ==,13AE AB BE AB AD =+=+ ,()2211(1333AG AE AD AB AB AD AD AB AD ABλλλ⎛⎫⋅=+⋅+=+++⋅ ⎪⎝⎭ ()22110222123333λλλ⎛⎫=⨯+⨯++⨯-=- ⎪⎝⎭,当1λ=时,AG AE ⋅ 的最大值为83.3.坐标法例3.在ABC ∆中,3AC =,4BC =,90C ∠=︒.P 为ABC ∆所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5-,3]B .[3-,5]C .[6-,4]D .[4-,6]【答案】D【解析】在ABC ∆中,3AC =,4BC =,90C ∠=︒,以C 为坐标原点,CA ,CB 所在的直线为x 轴,y 轴建立平面直角坐标系,如图:则(3,0)A ,(0,4)B ,(0,0)C ,设(,)P x y ,因为1PC =,所以221x y +=,又(3,)PA x y =-- ,(,4)PB x y =--,所以22(3)(4)34341PA PB x x y y x y x y x y ⋅=----=+--=--+,设cos x θ=,sin y θ=,所以(3cos 4sin )15sin()1PA PB θθθϕ⋅=-++=-++ ,其中3tan 4ϕ=,当sin()1θϕ+=时,PA PB ⋅有最小值为4-,当sin()1θϕ+=-时,PA PB ⋅有最大值为6,所以[4PA PB ⋅∈- ,6].变式.在ABC ∆中,90A ∠=︒,2AB AC ==,点M 为边AB 的中点,点P 在边BC 上,则MP CP ⋅的最小值为.【答案】98-【解析】建立平面直角坐标系如下,则(2,0)B ,(0,2)C ,(1,0)M ,直线BC 的方程为122x y+=,即2x y +=,点P 在直线上,设(,2)P x x -,∴(1,2)MP x x =-- ,(,)CP x x =-,∴22399(1)(2)232()488MP CP x x x x x x x ⋅=---=-=--- ,∴MP CP ⋅ 的最小值为98-.4.投影法计算例4.在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1、圆心在线段CD (含端点)上运动,点P 是圆Q 上及其内部的动点,则AP AB ⋅的取值范围是()A .[2,8]B .[4,8]C .[2,10]D .[4,10]【解析】由cos ,AP AB AB AP AP AB ⋅=⋅ ,可得AP AB ⋅ 为AB 与AP 在AB方向上的投影之积.正六边形ABCDEF 中,以D 为圆心的圆Q 与DE 交于M ,过M 作MM AB '⊥于M ',设以C 为圆心的圆Q 与AB 垂直的,切线与圆Q 切于点N 与AB 延长线交点为N ',则AP 在AB方向上的投影最小值为AM ',最大值为AN ',又1AM '=,cos 6014AN AB BC '=++=,则248AP AB ⋅≤⨯= ,212AP AB ⋅≥⨯= ,则AP AB ⋅ 的取值范围是[2,8].5.极化恒等式例5-1.已知ABC ∆是长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B .32-C .43-D .1-【解析】(方法1.几何法)设点M 为BC 中点,可得→→→=+PM PC PB 2,再设AM 中点为N ,这样用极化恒等式可知:22212→→→→-=⋅AM PN PM P A ,在等边三角形ABC ∆中,3=AM ,故→→⋅PM P A 取最小值当且仅当2322-=⋅→→→PN PM P A 取最小,即0||=→PN ,故23)(min -=⋅→→PM P A .(方法2.坐标法)以BC 中点为坐标原点,由于(0A ,()10B -,,()10C ,.设()P x y ,,()PA x y =- ,()1PB x y =--- ,,()1PC x y =--,,故()2222PA PB PC x y ⋅+=-+ 2233224x y ⎡⎤⎛⎫⎢⎥=+-- ⎪ ⎪⎢⎥⎝⎭⎣⎦,则其最小值为33242⎛⎫⨯-=- ⎪⎝⎭,此时0x =,32y =.例5-2.已知等边ABC ∆的三个顶点均在圆224x y +=上,点P ,则PA PB PA PC ⋅+⋅ 的最小值为()A .14B .10C .8D .2【解析】(法1.极化恒等式)根据题干特征,共起点的数量积范围问题,我们尝试往恒等式方向走.记BC 中点为M ,AM 中点为N .由于→→→→→⋅=+⋅PM P A PC PB P A 2)(,而)41(2222→→→→-=⋅AM PN PM P A .由于ABC ∆为等边三角形,则M O A ,,三点共线,且由于O 是外心,也是重心,故32=⇒=AM OA .则→→→→⇔+⋅min min ||)]([PN PC PB P A ,显然,由P 在圆外,且N O ,共线(AM 中点为N ),则25||||||min =-=→→→ON OP PN .综上所述,8212)]([22min min =⋅-=+⋅→→→→→AM PN PC PB P A .(法2.基底法)()()()()PA PB PA PC PO OA PO OB PO OA PO OC ⋅+⋅=+++++ 22()()PO PO OA OB OA OB PO PO OA OC OA OC=+++⋅++++⋅ 22()PO PO OA OB OA OC OA OB OA OC =+++++⋅+⋅ ,因为等边ABC ∆的三个顶点均在圆224x y +=上,因此1cos 22()22OA OB OA OB AOB ⋅=⋅⋅∠=⨯⨯-=- ,3OP == ,因为等边ABC ∆的三个顶点均在圆224x y +=上,所以原点O 是等边ABC ∆的重心,因此0OA OB OC ++= ,所以有:18221414cos PA PB PA PC PO OA OP OA OP OA AOP⋅+⋅=+⋅--=-⋅=-⋅⋅∠ 146cos AOP =-∠,当0AOP ∠=时,即,OP OA 同向时,PA PB PA PC ⋅+⋅ 有最小值,最小值为1468-=.6.外接圆性质例6-1.已知点O 是ABC ∆的外心,6AB =,8BC =,2π3B =,若BO xBA yBC =+ ,则34x y +=()A .5B .6C .7D .8【解析】如图,点O 在AB 、AC 上的射影是点D 、E ,它们分别为AB 、AC 的中点.由数量积的几何意义,可得21182BO BA BA BD AB ⋅=⋅== ,23212BC BO BC BE BC ⋅=⋅== .又2π3B =,所以1cos 68242BA BC BA BC B ⎛⎫⋅=⋅=⨯⨯-=- ⎪⎝⎭,又BO xBA yBC =+ ,所以()2362418BO BA xBA yBC BA BA C x y BA x B y =+⋅⋅=+⋅=-= ,即1286x y -=.同理()2246432BO BC xBA yBC BC C y x B BC y BA x ⋅⋅=++⋅=+==- ,即384x y -+=,解得1091112x y ⎧=⎪⎪⎨⎪=⎪⎩.所以710113434912x y +=⨯+=⨯.例6-2.已知O 是ABC ∆的外心,4||=AB ,2AC = ,则()AO AB AC ⋅+= ()A .10B .9C .8D .6【解析】如图,O 为ABC ∆的外心,设,D E 为,AB AC 的中点,则,OD AB OE AC ⊥⊥,故()AO AB AC AO AB AO AC ⋅+=+⋅⋅ ||||cos |||co |s AO AB AO AC OAD OAE ⋅∠+=∠⋅⋅⋅ ||||||||AD AB AE AC +=⋅⋅ 2222111||41||2222210AB AC +=+⨯⋅== .。
平面向量内积的坐标表示教案章节一:向量内积的概念介绍教学目标:1. 了解向量内积的定义和几何意义。
2. 掌握向量内积的计算公式。
教学内容:1. 向量内积的定义:两个向量a和b的内积定义为a·b = |a||b|cosθ,其中θ为a和b之间的夹角。
2. 向量内积的几何意义:向量内积可以表示为两个向量的数量积,即向量a和b的模长的乘积与它们之间夹角的余弦值的乘积。
3. 向量内积的计算公式:在坐标系中,向量a和b可以表示为a = (a1, a2)和b = (b1, b2),则它们的内积为a·b = a1b1 + a2b2。
教学活动:1. 引入向量内积的概念,通过图形和实际例子解释向量内积的定义和几何意义。
2. 引导学生理解向量内积的计算公式,并给出具体的计算例子。
作业:1. 练习计算两个向量的内积,包括坐标表示和数量积的计算。
教案章节二:向量内积的性质教学目标:1. 掌握向量内积的基本性质。
2. 学会运用向量内积的性质解决问题。
教学内容:1. 向量内积的交换律:a·b = b·a。
2. 向量内积的分配律:a·(b+c) = a·b + a·c。
3. 向量内积的数乘性质:λa·b = (λa)·b = λ(a·b)。
4. 向量内积的非负性:a·b ≥0,且当a和b夹角为0度时,a·b取最大值|a||b|。
教学活动:1. 引导学生通过实例验证向量内积的交换律、分配律和数乘性质。
2. 讲解向量内积的非负性,并解释其几何意义。
作业:1. 运用向量内积的性质计算一些具体的向量内积。
教案章节三:向量内积的应用教学目标:1. 学会运用向量内积解决实际问题。
2. 掌握向量内积在几何和物理中的应用。
教学内容:1. 向量内积在几何中的应用:计算向量的夹角、判断平行或垂直关系等。
2. 向量内积在物理中的应用:力的合成与分解、动能和势能的计算等。
平面向量的内积【教学目标】知识目标:(1)了解平面向量内积的概念及其几何意义.(2)了解平面向量内积的计算公式.为利用向量的内积研究有关问题奠定基础.能力目标:通过实例引出向量内积的定义,培养学生观察和归纳的能力.【教学重点】平面向量数量积的概念及计算公式.【教学难点】数量积的概念及利用数量积来计算两个非零向量的夹角.【教学设计】教材从某人拉小车做功出发,引入两个向量内积的概念.需要强调力与位移都是向量,而功是数量.因此,向量的内积又叫做数量积.在讲述向量内积时要注意:(1)向量的数量积是一个数量,而不是向量,它的值为两向量的模与两向量的夹角余弦的乘积.其符号是由夹角决定;(2)向量数量积的正确书写方法是用实心圆点连接两个向量.教材中利用定义得到内积的性质后面的学习中会经常遇到,其中:(1)当<a ,b >=0时,a ·b =|a ||b |;当<a ,b >=180时,a ·b =-|a ||b |.可以记忆为:两个共线向量,方向相同时内积为这两个向量模的积;方向相反时内积为这两个向量模的积的相反数.(2)|a |公式的基础;(3)cos<a ,b >=||||⋅a b a b ,是得到利用两个向量的坐标计算两个向量所成角的公式的基础;(4)“a ·b =0⇔a ⊥b ”经常用来研究向量垂直问题,是推出两个向量内积坐标表示的重要基础. 【教学备品】教学课件.【课时安排】2课时.(80分钟)【教学过程】*揭示课题7.3 平面向量的内积*创设情境 兴趣导入如图7-21所示,水平地面上有一辆车,某人用100 N 的力,朝着与水平线成︒30角的方向拉小车,使小车前进了100 m .那么,这个人做了多少功?动脑思考 探索新知【新知识】我们知道,这个人做功等于力与在力的方向上移动的距离的乘积.如图7-22所示,设水平方向的单位向量为i ,垂直方向的单位向量为j ,则F =x i + y j sin30cos30F i F j =⋅+⋅,即力F 是水平方向的力与垂直方向的力的和,垂直方向上没有产生位移,没有做功,水平方向上产生的位移为s ,即W =|F |cos ︒30·|s |=100×23·10=5003 (J )这里,力F 与位移s 都是向量,而功W 是一个数量,它等于由两个向量F ,s 的模及它们的夹角的余弦的乘积,W 叫做向量F 与向量s 的内积,它是一个数量,又叫做数量积.如图7-23,设有两个非零向量a, b ,作OA =a , OB =b ,由射线OA 与OB 所形成的角叫做向量a 与向量b 的夹角,图7—21B记作<a ,b>.两个向量a ,b 的模与它们的夹角的余弦之积叫做向量a 与向量b 的内积,记作a ·b , 即(7.10)上面的问题中,人所做的功可以记作W =F ·s.由内积的定义可知a ·0=0, 0·a =0.由内积的定义可以得到下面几个重要结果:(1) 当<a ,b >=0时,a ·b =|a ||b |;当<a ,b >=180时,a ·b =−|a ||b |.(2) cos<a ,b >=||||⋅a b a b .(3) 当b =a 时,有<a ,a >=0,所以a ·a =|a ||a |=|a |2,即|a |(4) 当,90a b <>=时,a ⊥b ,因此,a ·b =cos900,a b ⋅=因此对非零向量a ,b ,有a ·b =0⇔a ⊥b.可以验证,向量的内积满足下面的运算律:(1) a ·b =b ·a .(2) (a λ)·b =λ(a ·b )=a ·(λb ).(3) (a +b )·c =a ·c +b ·c .注意:一般地,向量的内积不满足结合律,即a ·(b ·c )≠(a ·b )·c .请结合实例进行验证.*巩固知识 典型例题例1 已知|a |=3,|b |=2, <a ,b >=︒60,求a ·b .解 a ·b =|a ||b | cos<a ,b > =3×2×cos ︒60=3.例2 已知|a |=|b |=2,a ·b =2-,求<a ,b >.解 cos<a ,b >=||||⋅a b a b =222⋅-=−22. 由于 0≤<a ,b >≤︒180,所以 <a ,b >=135.*理论升华 整体建构思考并回答下面的问题:平面向量内积的概念、几何意义?结论:两个向量a ,b 的模与它们的夹角的余弦之积叫做向量a 与向量b 的内积,记作a ·b , 即(7.10)a ·b 的几何意义就是向量a 的模与向量b 在向量a 上的投影的乘积.知识 典型例题例3 求下列向量的内积:(1) a = (2,−3), b =(1,3);运用知识 强化练习1. 已知|a |=7,|b |=4,a 和b 的夹角为︒60,求a ·b .2. 已知a ·a =9,求|a |.3. 已知|a |=2,|b |=3, <a ,b >=︒30,求(2a +b )·b .动脑思考 探索新知设平面向量a =(x 1,y 1),b =(x 2,y 2),i ,j 分别为x 轴,y 轴上的单位向量,由于i ⊥j ,故i ·j =0,又| i |=|j |=1,所以a ·b =(x 1 i +y 1j )· (x 2 i +y 2j )= x 1 x 2 i •i + x 1 y 2 i •j + x 2 y 1 i •j + y 1 y 2 j •j= x 1 x 2 |j |2+ y 1 y 2 |j |2= x 1 x 2+ y 1 y 2.这就是说,两个向量的内积等于它们对应坐标乘积的和,即(7.11)利用公式(7.11)可以计算向量的模.设a =(x,y ),则a =a = (7.12)由平面向量内积的定义可以得到,当a 、b 是非零向量时,(7.13) 利用公式(7.13)可以方便地求出两个向量的夹角.由于a ⊥b ⇔a ·b =0,由公式(7.11)可知a ·b =0⇔ x 1 x 2+ y 1 y 2=0.因此a ⊥b ⇔ x 1 x 2+ y 1 y 2=0. (7.14)利用公式(7.14)可以方便地利用向量的坐标来研究向量垂直的问题.*巩固知识 典型例题例3 求下列向量的内积:(2) a = (2,−3), b =(1,3);(3) a = (2, −1), b =(1,2);(4) a = (4,2), b =(−2, −3).解 (1) a ·b =2×1+(−3)×3=−7;(2) a ·b =2×1+(−1)×2=0;(3) a ·b =2×(−2)+2×(−3)=−14.例4 已知a =(−1,2),b =(−3,1).求a ·b , |a |,|b |, <a ,b >.解 a ·b =(−1)( −3)+2×1=5;|a |=|b |;cos<a ,b >=||||⋅a b a b =, 所以 <a ,b >=45.例5 判断下列各组向量是否互相垂直:(1) a =(−2, 3), b =(6, 4);(2) a =(0, −1), b =(1, −2).解 (1) 因为a ·b =(−2)×6+3×4=0,所以a ⊥b .(2) 因为a ·b =0×1+(−1)×(−2)=2,所以a 与b 不垂直.运用知识 强化练习1. 已知a =(5, −4),b =(2,3),求a ·b .2. 已知a =(1,3),b =(0, 3),求<a ,b >.3. 已知a =(2, −3),b =(3,-4),c =(−1,3),求a ·(b +c ).4. 判断下列各组向量是否互相垂直:(1) a=(−2, −3),b=(3, −2);(2) a=(2,0),b=(0, −3);(3) a=(−2,1),b=(3,4).5. 求下列向量的模:a=(−2, −4),b=(3, −2);(2) a=(2,1),b=(4, −3);归纳小结强化思想本次课学了哪些内容?重点和难点各是什么?自我反思目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.已知a=(5, − 4),b=(2,3),求a·b.2.已知a=(2, −3),b=(3, −4),c=(−1,3),求a·(b+c).*继续探索活动探究(1)读书部分:阅读教材(2)书面作业:教材习题7.3 A组(必做);7.3 B组(选做)。
平面向量的内积【教学目标】知识目标:(1)了解平面向量内积的概念及其几何意义、(2)了解平面向量内积的计算公式、为利用向量的内积研究有关问题奠定基础、 能力目标:通过实例引出向量内积的定义,培养学生观察与归纳的能力.【教学重点】平面向量数量积的概念及计算公式、【教学难点】数量积的概念及利用数量积来计算两个非零向量的夹角.【教学设计】教材从某人拉小车做功出发,引入两个向量内积的概念.需要强调力与位移都就是向量,而功就是数量.因此,向量的内积又叫做数量积.在讲述向量内积时要注意:(1)向量的数量积就是一个数量,而不就是向量,它的值为两向量的模与两向量的夹角余弦的乘积、其符号就是由夹角决定;(2)向量数量积的正确书写方法就是用实心圆点连接两个向量、 教材中利用定义得到内积的性质后面的学习中会经常遇到,其中:(1)当<a ,b >=0时,a ·b =|a ||b |;当<a ,b >=180o时,a ·b =-|a ||b |.可以记忆为:两个共线向量,方向相同时内积为这两个向量模的积;方向相反时内积为这两个向量模的积的相反数.(2)|a |,就是得到利用向量的坐标计算向量模的公式的基础;(3)cos<a ,b >=||||⋅a ba b ,就是得到利用两个向量的坐标计算两个向量所成角的公式的基础; (4)“a ·b =0⇔a ⊥b ”经常用来研究向量垂直问题,就是推出两个向量内积坐标表示的重要基础.【教学备品】教学课件.【课时安排】2课时.(80分钟)【教学过程】*揭示课题7、3 平面向量的内积*创设情境 兴趣导入如图7-21所示,水平地面上有一辆车,某人用100 N 的力,朝着与水平线成︒30角的方向拉小车,使小车前进了100 m.那么,这个人做了多少功? 动脑思考 探索新知 【新知识】我们知道,这个人做功等于力与在力的方向上移动的距离的乘积.如图7-22所示,设水平方向的单位向量为i ,垂直方向的单位向量为j ,则F =x i + y j sin 30cos30F i F j =⋅+⋅o o ,即力F 就是水平方向的力与垂直方向的力的与,垂直方向上没有产生位移,没有做功,水平方向上产生的位移为s ,即W =|F |cos ︒30·|s |=100×23·10=5003 (J)这里,力F 与位移s 都就是向量,而功W 就是一个数量,它等于由两个向量F ,s 的模及它们的夹角的余弦的乘积,W 叫做向量F 与向量s 的内积,它就是一个数量,又叫做数量积.如图7-23,设有两个非零向量a ,b ,作OA u u u r =a , OB u u u r=b ,由射线OA 与OB 所形成的角叫做向量a 与向量b 的夹角,记作<a ,b>.两个向量a ,b 的模与它们的夹角的余弦之积叫做向量图7—21Ba 与向量b 的内积,记作a ·b , 即(7、10) 上面的问题中,人所做的功可以记作W =F ·s 、 由内积的定义可知 a ·0=0, 0·a =0.由内积的定义可以得到下面几个重要结果:(1) 当<a ,b >=0时,a ·b =|a ||b |;当<a ,b >=180o时,a ·b =−|a ||b |、 (2) cos<a ,b >=||||⋅a ba b 、(3) 当b =a 时,有<a ,a >=0,所以a ·a =|a ||a |=|a |2,即|a |=(4) 当,90a b <>=o 时,a ⊥b ,因此,a ·b =cos900,a b ⋅=o 因此对非零向量a ,b ,有a ·b =0⇔a ⊥b 、可以验证,向量的内积满足下面的运算律: (1) a ·b =b ·a .(2) (a λ)·b =λ(a ·b )=a ·(λb ). (3) (a +b )·c =a ·c +b ·c .注意:一般地,向量的内积不满足结合律,即a ·(b ·c )≠(a ·b )·c 、请结合实例进行验证、 *巩固知识 典型例题例1 已知|a |=3,|b |=2, <a ,b >=︒60,求a ·b . 解 a ·b =|a ||b | cos<a ,b > =3×2×cos ︒60=3. 例2 已知|a |=|b |=2,a ·b =2-,求<a ,b >.解 cos<a ,b >=||||⋅a ba b =222⋅-=−22、 由于 0≤<a ,b >≤︒180,所以 <a ,b >=135o .*理论升华 整体建构 思考并回答下面的问题:平面向量内积的概念、几何意义? 结论:两个向量a,b的模与它们的夹角的余弦之积叫做向量a与向量b的内积,记作a·b, 即(7、10)a·b的几何意义就就是向量a的模与向量b在向量a上的投影的乘积.知识典型例题例3 求下列向量的内积:(1)a=(2,−3), b=(1,3);运用知识强化练习1、已知|a|=7,|b|=4,a与b的夹角为︒60,求a·b.2、已知a·a=9,求|a|.3、已知|a|=2,|b|=3, <a,b>=︒30,求(2a+b)·b.动脑思考探索新知设平面向量a=(x1,y1),b=(x2,y2),i,j分别为x轴,y轴上的单位向量,由于i⊥j,故i·j=0,又| i |=|j|=1,所以a·b=(x1 i+y1j)·(x2 i+y2j)=x1x2i•i+x1y2i•j+x2y1 i•j+y1y2j•j=x1x2 |j|2+y1y2 |j|2=x1x2+y1y2.这就就是说,两个向量的内积等于它们对应坐标乘积的与,即(7、11)利用公式(7.11)可以计算向量的模.设a=(x,y),则a==即a=(7、12)由平面向量内积的定义可以得到,当a、b就是非零向量时,(7、13)利用公式(7、13)可以方便地求出两个向量的夹角、由于a⊥b⇔a·b=0,由公式(7、11)可知a·b=0⇔x1x2+y1y2=0. 因此a ⊥b ⇔ x 1 x 2+ y 1 y 2=0. (7、14)利用公式(7、14)可以方便地利用向量的坐标来研究向量垂直的问题. *巩固知识 典型例题例3 求下列向量的内积: (2) a = (2,−3), b =(1,3); (3) a = (2, −1), b =(1,2); (4) a = (4,2), b =(−2, −3). 解 (1) a ·b =2×1+(−3)×3=−7; (2) a ·b =2×1+(−1)×2=0; (3) a ·b =2×(−2)+2×(−3)=−14.例4 已知a =(−1,2),b =(−3,1)、求a ·b , |a |,|b |, <a ,b >. 解 a ·b =(−1)( −3)+2×1=5;|a |==|b |=;cos<a ,b >=||||⋅a ba b =, 所以 <a ,b >=45o . 例5 判断下列各组向量就是否互相垂直: (1) a =(−2, 3), b =(6, 4); (2) a =(0, −1), b =(1, −2).解 (1) 因为a ·b =(−2)×6+3×4=0,所以a ⊥b . (2) 因为a ·b =0×1+(−1)×(−2)=2,所以a 与b 不垂直. 运用知识 强化练习1. 已知a =(5, −4),b =(2,3),求a ·b . 2. 已知a =(1,3),b =(0,3),求<a ,b >.3. 已知a =(2, −3),b =(3,-4),c =(−1,3),求a ·(b +c ). 4、 判断下列各组向量就是否互相垂直:(1) a =(−2, −3),b =(3, −2); (2) a =(2,0),b =(0, −3); (3) a =(−2,1),b =(3,4).5、求下列向量的模:a=(−2, −4),b=(3, −2); (2) a=(2,1),b=(4, −3);归纳小结强化思想本次课学了哪些内容?重点与难点各就是什么?自我反思目标检测本次课采用了怎样的学习方法?您就是如何进行学习的?您的学习效果如何?1、已知a=(5, − 4),b=(2,3),求a·b.2、已知a=(2, −3),b=(3, −4),c=(−1,3),求a·(b+c).*继续探索活动探究(1)读书部分:阅读教材(2)书面作业:教材习题7、3 A组(必做);7、3 B组(选做)。
平面向量的内积本节将介绍向量的另一种运算—内积。
内积的应用非常广泛,它可以用来求两向量的夹角、求两直线的交角、求三角形的面积及求某些函数的极值等,是向量用来处理几何问题的主要工具。
1向量的夹角与内积向量的夹角对于非零向量a与b,若此两向量始点不在同一点,我们可以将其中一个向量平移,使两个向量的始点重合,如图30 所示,此时的夹角θ(0°≦θ≦180°),称为向量a与b的夹角。
当a与b方向相同时,夹角为0°;方向相反时,夹角为180°。
图30注意在求两向量夹角时,必须将两向量的始点重合后再行判断。
例如图31 所示,设△ABC为正三角形,则AB与AC的夹角为60°,但AB与BC的夹角为120°。
图31向量的内积图32向量的内积源于一力对物体所作的“功”。
如图32 所示,设对一物体施力f时,此物体的位移为s,其中f与s的夹角为θ。
那么,在物理学中,我们知道施力f对该物体所作的功为W=(沿位移方向的分力)‧(位移)=∣f∣cos θ‧∣s∣=∣f∣∣s∣cos θ。
在数学上,我们称功(W)为力(f)与位移(s)这两个向量的内积。
注意到功是一个纯量(只有大小,没有方向)。
底下我们以数学的方式介绍内积。
设a,b为平面上两个非零向量,其夹角为θ,如图33 所示,则a和b的内积a‧b定义为a‧b=∣a∣∣b∣cos θ,即两向量的长度与其夹角余弦值的乘积。
例题1-----------------------------------------------------------------------------------------------------------(1) 设AB与AC两向量的夹角为45°,且∣AB∣=4,∣AC∣试求AB‧AC之图33值。
(2) 如图34 所示,若∣a∣=2,∣b∣=3,试求a‧b之值。
图34------------------------------------------------------------------------------------------------------------------------ 解(1) 内积的定义可得AB AC⋅=cos45AB AC=4‧2‧1 2=4。
【课题】7.3 平面向量的内积
【教学目标】
知识目标:
(1)了解平面向量内积的概念及其几何意义.
(2)了解平面向量内积的计算公式.为利用向量的内积研究相关问题奠定基础. 水平目标:
通过实例引出向量内积的定义,培养学生观察和归纳的水平. 【教学重点】
平面向量数量积的概念及计算公式. 【教学难点】
数量积的概念及利用数量积来计算两个非零向量的夹角. 【教学设计】
教材从某人拉小车做功出发,引入两个向量内积的概念.需要强调力与位移都是向量,而功是数量.所以,向量的内积又叫做数量积.
在讲述向量内积时要注意:
(1)向量的数量积是一个数量,而不是向量,它的值为两向量的模与两向量的夹角余弦的乘积.其符号是由夹角决定;
(2)向量数量积的准确书写方法是用实心圆点连接两个向量. 教材中利用定义得到内积的性质后面的学习中会经常遇到,其中:
(1)当<a ,b >=0时,a ·b =|a ||b |;当<a ,b >=180时,a ·b =-|a ||b |.能够记忆为:两个共线向量,方向相同时内积为这两个向量模的积;方向相反时内积为这两个向量模的积的相反数.
(2)|a |显示出向量与向量的模的关系,是得到利用向量的坐标计算向量模的公式的基础;
(3)cos<a ,b >=||||
⋅a b
a b ,是得到利用两个向量的坐标计算两个向量所成角的公式的基础;
(4)“a ·b =0⇔a ⊥b ”经常用来研究向量垂直问题,是推出两个向量内积坐标表示的重要基础. 【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
+
F
cos30
是水平方向的力与垂直方向的力的和,垂直方向上没有
.两个向量
0,所以对非零向量·b=0⇔
x y
+
判断下列各组向量是否互相垂直:。