化工原理流体流动概述
- 格式:pptx
- 大小:2.75 MB
- 文档页数:85
化工原理之流体流动概述引言流体流动是化工领域中至关重要的一部分,它涉及到许多的应用,比如管道输送、泵的设计、混合和分离等等。
在化工工程中,流体的流动特性对于工艺的操作和效率至关重要。
本文将简要介绍化工原理中流体流动的概念、分类、流动参数以及相关的实际应用。
流体的定义流体是指无固定形状和容积,可以流动的物质。
在化工领域中,常见的流体包括气体和液体。
与固体不同,流体具有较弱的分子间相互作用力,因此可以在容器内自由地流动。
流体流动的分类根据物质流动的性质,流体流动可以分为稳定流动和非稳定流动。
稳定流动是指流体在相同截面上的流速分布保持恒定,其特点是流速和流量均随位置不变。
非稳定流动则相反,流速和流量随位置而变化。
另外,流体流动还可以分为层流和湍流。
层流是指流体沿着平行层面流动,并且每一层内的流速分布保持均匀。
在层流中,不同层之间的流体不相互混合。
湍流则是指流体流动时出现的紊乱不规则的状态,流速分布不均匀且经常发生变化。
流体流动的参数对于流体流动的描述,常用的参数包括流速、流量、雷诺数和黏度等。
流速流速是指流体在单位时间内通过某一截面的体积。
流速可以通过体积流量和截面积之间的关系计算得出。
流量流量是指单位时间内通过某一截面的流体体积。
它可以通过以下公式计算:流量 = 流速 × 截面积雷诺数雷诺数是判断流体流动状态的重要参数,它描述了流体内部的分子相互作用和流体流动的惯性之间的比例关系。
当雷诺数小于临界值时,流体流动属于层流状态;当雷诺数大于临界值时,流体流动属于湍流状态。
黏度黏度是流体流动性质的重要指标,它表示流体内部分子之间黏附力的大小。
黏度越大,流体的粘稠度就越高,流动阻力也越大。
在化工工程中,黏度是设计和操作过程中需要考虑的一个重要参数。
流体流动的应用流体流动在化工工程中有广泛的应用。
以下是一些常见的应用场景:管道输送在化工领域中,流体常常需要从一个地方输送到另一个地方。
管道输送是一种常见的方法,通过合理地设计管道系统、选择适当的泵和控制流量,可以实现高效、稳定的流体输送。
化工原理流体流动知识点总结化工原理中的流体流动是指在化工过程中物质(气体、液体或固体颗粒)在管道、设备或反应器中的运动过程。
了解流体流动的知识对于化工工程师来说至关重要。
下面是关于流体流动的一些重要知识点的总结。
1.流体的物理性质:-流体可以是气体、液体或固体颗粒。
气体和液体的主要区别在于分子之间的相互作用力和分子间距。
-流体的物理性质包括密度、黏度、表面张力、压力和流速等。
2.流体的运动方式:- 流体的运动可以是层流(Laminar flow)或紊流(Turbulent flow)。
-在层流中,流体以平行且有序的方式流动,分子之间的相互作用力主导着流动。
-在紊流中,流体以非线性和混乱的方式运动,分子之间的相互作用力相对较小,惯性和湍流运动主导着流动。
3.流体的流动方程:-流体流动可以通过连续性方程、动量方程和能量方程来描述。
-连续性方程(质量守恒方程)描述了流体在空间和时间上的质量守恒关系。
-动量方程描述了流体中的力平衡关系,包括压力梯度、黏度和惯性力等因素。
-能量方程描述了流体中的能量守恒关系,包括热传导、辐射和机械能转化等因素。
4.管道流动:-管道中的流体流动可以是单相(单一组分)或多相(多个组分)。
-管道流动的主要参数包括流速、压力损失和摩阻系数等。
- 常用的管道流动方程包括Bernoulli方程、Navier-Stokes方程和Darcy-Weisbach方程等。
5.流体输送:-流体输送是指将流体从一个地点输送到另一个地点的过程。
-在流体输送中,常用的设备和装置包括泵、压缩机、阀门、流量计和管道系统等。
-输送过程中要考虑流体的性质、流速、压力损失以及设备的选型和操作条件等因素。
6.流体混合与分离:-流体混合和分离是化工过程中常见的操作。
-混合可以通过搅拌、喷淋、气体分散等方法实现。
-分离可以通过过滤、沉淀、蒸馏、萃取和膜分离等方法实现。
7.流体力学实验:-流体力学实验是研究流体流动和相应现象的方法之一-常用的流体力学实验包括流速测量、压力测量、流动可视化和摩擦系数测定等。
化工原理流体流动化工原理中的流体流动是一个非常重要的概念,它涉及到化工工艺中许多关键环节,如管道输送、反应器内流动、搅拌反应等。
流体流动的研究不仅可以帮助我们更好地理解化工过程中的现象,还可以指导工程实践,提高工艺效率,降低能耗成本。
本文将从流体流动的基本原理、流体力学方程、流体流动的类型以及流动特性等方面进行探讨。
首先,我们需要了解流体流动的基本原理。
流体力学是研究流体静力学和动力学规律的学科,其中流体流动是动力学的重要内容。
流体流动的基本原理包括质量守恒、动量守恒和能量守恒等。
质量守恒原理指出在流体流动过程中,单位时间内通过任意截面的流体质量不变;动量守恒原理指出在流体流动中,单位时间内通过任意截面的动量不变;能量守恒原理指出在流体流动中,单位时间内通过任意截面的能量不变。
这些基本原理为我们理解流体流动提供了重要的理论基础。
其次,我们需要了解流体力学方程。
流体力学方程是描述流体运动规律的基本方程,包括连续方程、动量方程和能量方程。
连续方程描述了流体的质量守恒规律,动量方程描述了流体的动量守恒规律,能量方程描述了流体的能量守恒规律。
通过这些方程,我们可以定量地分析流体流动的特性,为工程设计和优化提供依据。
接下来,我们需要了解流体流动的类型。
根据流体的性质和流动状态,流体流动可以分为层流和湍流两种类型。
层流是指流体在管道内沿着同一方向以相对较小的速度均匀流动的状态,流线呈直线状并且不会相互交叉。
湍流是指流体在管道内以不规则的、混乱的方式流动的状态,流线呈曲线状并且会相互交叉。
不同类型的流体流动具有不同的特性,需要采用不同的方法进行研究和控制。
最后,我们需要了解流体流动的特性。
流体流动的特性包括速度分布、流动阻力、流体混合等。
速度分布描述了流体在管道内的速度分布规律,可以通过实验和模拟计算进行研究。
流动阻力是指流体在管道内流动时受到的阻力,它与管道的几何形状、流体的黏度等因素有关。
流体混合是指不同流体在管道内的混合过程,它对于化工反应器内的反应效果具有重要影响。
化工原理流体流动
化工原理中的流体流动是一个重要的研究领域,它涉及到各种物质在化工过程中的传输、混合、分离等关键过程。
在化工流体流动中,流体的性质和流动行为对化工过程的效率和产品质量具有重要影响。
在流体流动的研究中,我们通常会涉及到不同的流动模式,如层流、湍流等。
层流是指流体在管道中以规则的、层次分明的方式流动,其粘滞作用较强,流速均匀。
湍流则是一种不规则的、紊乱的流动方式,其粘滞作用较弱,流速不均匀。
在化工过程中,通常会通过控制流体的流动模式来达到更好的传输效果。
另外,在化工流体流动中,物质的输送也是一个重要的问题。
液体在管道中的流动主要通过压力差和重力来实现,而气体的流动则主要受到压力差和浓度差的影响。
我们可以通过调节管道的形状和尺寸,以及控制流体的流速和粘度来实现物质的有效输送。
此外,在化工过程中,流体的混合和分离也是一个重要的问题。
混合是指将不同的物质进行均匀混合,以达到一定的反应效果或产品质量。
分离则是将混合物中的不同组分分离出来,以达到对应的目的。
在化工过程中,我们通常会使用各种设备和技术来实现流体的混合和分离,如搅拌器、离心机等。
总之,化工原理中的流体流动是一个复杂而重要的研究领域。
通过深入了解流体的性质和流动行为,我们可以更好地控制化
工过程中的传输、混合和分离等关键环节,以提高生产效率和产品质量。
化工原理流体流动总结1. 引言流体流动是化工过程中一个非常重要的基本行为,对于化工工程师来说,了解流体的流动规律和特性是非常关键的。
本文将对化工原理中流体流动的一些基本原理进行总结和概述。
2. 流体的基本性质在研究流体流动之前,我们首先需要了解流体的基本性质。
流体是一种物质状态,具有两个基本特征:能够流动和没有固定形状。
流体可以分为液体和气体两种,液体的分子之间存在着较强的分子间吸引力,而气体的分子间距离较大,分子间作用力相对较弱。
3. 流动的基本原理流动涉及到流体的质量守恒、动量守恒和能量守恒等基本原理。
3.1 流量和流速流量是指单位时间内流体通过某一横截面的体积或质量的多少,通常用符号Q表示。
流速是指单位时间内流体通过一个给定横截面的速度,通常用符号v表示。
流量和流速之间的关系可以用以下公式表示:Q = Av其中,A表示横截面积。
3.2 流体的连续性方程流体的连续性方程是质量守恒的基本原理,它表明流体在任意给定的流管截面上,流入该截面的质量等于流出该截面的质量。
连续性方程可以用以下公式表示:ρ1A1v1 = ρ2A2v2其中,ρ是流体的密度,A是截面积,v是流速。
3.3 流体的动量方程流体的动量方程描述了流体内部压力、速度和力的关系。
动量方程可以用以下公式表示:Δp + ρgΔh + 1/2ρv1^2 - 1/2ρv2^2 = ∑F其中,Δp是压力变化,ρ是流体的密度,g是重力加速度,Δh是高度变化,v1和v2是流体在不同位置的速度,∑F表示所有外力的合力。
3.4 流体的能量方程流体的能量方程描述了流体内部压力、速度和能量的关系。
能量方程可以用以下公式表示:Δp + ρgΔh + 1/2ρv1^2 + P1 - 1/2ρv2^2 - P2 = ∑H其中,P是流体单位体积的压力,Δp是压力变化,ρ是流体的密度,g是重力加速度,Δh是高度变化,v1和v2是流体在不同位置的速度,∑H表示所有外力对流体做的工作。
化工原理流体流动化工原理是化学工程领域的基础,其中包括了化工原理流体流动。
通过深入理解和掌握流体流动的原理,我们可以更好地设计、优化和控制化工流程的运行。
本文将介绍流体流动的基本概念、流体的运动方式、流场的描述和流体运动的控制等内容。
一、流体流动的基本概念流体是指能够流动的物质,包括了气体和液体。
流体流动是指流体在空间或管道中的运动过程。
在流体流动中,流体分子与周围分子不断碰撞,产生微小的能量转移和动量转移,从而引起流体的整体运动。
流体流动可分为定常流、非定常流和稳定流等几种类型。
其中,定常流指的是流动过程中各种物理量(如质量、能量、动量等)随时间不变的情况;非定常流则与定常流相反,各种物理量会随时间或空间变化;稳定流是指虽然物理量会随时间变化,但整个流动过程仍然是稳定的,即不出现突然的萎缩或涌流等现象。
流体流动过程中会出现速度、压力、密度等物理量的变化,这些变化可用流体力学方程式来描述和计算。
其中,质量守恒定律、动量守恒定律和能量守恒定律是描述流体流动的基本方程式。
二、流体的运动方式流体的运动方式包括了分子运动、分子间相互作用和运动量转移等几种。
在分子运动方面,气体分子之间距离较大,运动自由度高;而液体分子之间距离较近,分子运动更加有限。
流体的运动始终与分子相互作用有关。
在空气中,分子间间隔很大,因此分子之间的相互作用不太重要。
但在液体中,分子之间的相互作用较为紧密,从而导致液体的可压缩性低于气体。
在运动量转移方面,流体运动时会发生质量、能量和动量的转移。
其中,质量转移是指流体中的物质在空间中的传递过程,能量转移则是指流体在不同地点和不同形态之间转移热能,而动量转移则是指流体分子的运动量在不同地点之间的转移。
三、流场的描述流场是指流体的物理状态和运动状态。
在流动过程中,流体分子会产生不同的物理量变化,因此需要对流场进行描述。
在描述流场时,可使用不同的数学工具和方法。
其中,流线、等势线、流函数、速度势和压力势是比较常用的方法。
第一章流体流动一、流体静力学:压强,密度,静力学方程二、流体基本方程:流速流量,连续性方程,伯努利方程三、流体流动现象:牛顿粘性定律,雷诺数,速度分布四、摩擦阻力损失:直管,局部,总阻力,当量直径五、流量的测定:测速管,孔板流量计,文丘里流量计六、离心泵:概述,特性曲线,气蚀现象和安装高度8■绝对压力:以绝对真空为基准测得的压力。
■表压/真空度 :以大气压为基准测得的压力。
表 压 = 绝对压力 - 大气压力真空度 = 大气压力 - 绝对压力1.1流体静力学1.流体压力/压强表示方法绝对压力绝对压力绝对真空表压真空度1p 2p 大气压标准大气压:1atm = 1.013×105Pa =760mmHg =10.33m H 2O112.流体的密度Vm =ρ①单组分密度),(T p f =ρ■液体:密度仅随温度变化(极高压力除外),其变化关系可从手册中查得。
■气体:当压力不太高、温度不太低时,可按理想气体状态方程计算注意:手册中查得的气体密度均为一定压力与温度下之值,若条件不同,则需进行换算。
②混合物的密度■ 混合气体:各组分在混合前后质量不变,则有nn 2111m φρφρφρρ+++= RTpM m m=ρnn 2211m y M y M y M M +++= ■混合液体:假设各组分在混合前后体积不变,则有nmn12121w w w ρρρρ=+++①表达式—重力场中对液柱进行受力分析:液柱处于静止时,上述三力的合力为零:■下端面所受总压力 A p P 22=方向向上■上端面所受总压力 A p P 11=方向向下■液柱的重力)(21z z gA G -=ρ方向向下p 0p 2p 1z 1z 2G3.流体静力学基本方程式g z p g z p 2211+=+ρρ能量形式)(2112z z g p p -+=ρ压力形式②讨论:■适用范围:适用于重力场中静止、连续的同种不可压缩性流体;■物理意义:在同一静止流体中,处在不同位置流体的位能和静压能各不相同,但二者可以转换,其总和保持不变。
化工原理流体流动引言流体流动是化工工程中常见的一种现象,涉及到液体和气体在管道、设备以及反应器等中的运动和传递。
了解流体流动的原理对于化工工程的设计、操作和优化具有重要意义。
本文将介绍流体流动的基本概念、流体力学方程以及常见的流动行为。
流体流动的基本概念流体是指能够流动的物质,包括液体和气体。
流体流动是指流体在一定条件下的运动和传递过程,可以分为定常流动和非定常流动两种形式。
1.定常流动:在空间和时间上都保持不变的流动状态,如流体在平稳的管道中的流动。
2.非定常流动:在空间和时间上都发生变化的流动状态,如流体在加速或减速的管道中的流动。
流体流动还可以根据流动性质的不同进行分类,包括层流和湍流。
1.层流:指流体以层层平行的方式流动,流线清晰可见,流速分布均匀。
2.湍流:指流体以错综复杂的方式流动,流线扭曲,流速分布不均匀。
流体流动的力学方程流体流动的力学方程描述了流体在运动过程中所受到的各种力以及力与速度、压力等之间的关系。
常见的流体力学方程包括质量守恒方程、动量守恒方程和能量守恒方程。
1.质量守恒方程:描述了流体密度和流速之间的关系,可以表示为:$$\\frac{{\\partial \\rho}}{{\\partial t}} + \ abla \\cdot (\\rho \\mathbf{v}) = 0$$其中,$\\rho$表示流体密度,$\\mathbf{v}$表示流速。
2.动量守恒方程:描述了流体在外力作用下的运动规律,可以表示为:$$\\frac{{\\partial (\\rho\\mathbf{v})}}{{\\partial t}} + \ abla \\cdot (\\rho \\mathbf{v} \\otimes \\mathbf{v}) = -\ abla p + \ abla \\cdot \\mathbf{T} +\\mathbf{f}$$其中,p表示压力,$\\mathbf{T}$表示应力张量,$\\mathbf{f}$表示体积力。
化工原理–流体流动概述引言流体流动是化工领域中常见的一个研究领域,它在很多工艺过程中起着至关重要的作用。
流体流动的研究可以帮助我们了解流体在管道、设备和反应器中的行为,从而优化工艺过程,提高生产效率。
本文将从基本理论、流体流动模型和流动参数分析等方面对流体流动进行概述。
基本理论流体流动的基本理论是流体力学的一部分。
它研究流体在管道、设备和反应器中的运动规律。
在流体流动中,有两个重要的参数:流速和压力。
流速描述了流体在单位时间内通过某一截面的体积,通常以米/秒来表示。
压力则是单位面积上的力,通常以帕斯卡(Pa)来表示。
根据流速和压力的变化,可以描绘出流体的流动状态,理解流体在设备中的传输行为。
流体流动模型在化工过程中,流体流动的行为非常复杂,通常使用一些流体流动模型来描述。
常见的流体流动模型有层流流动和湍流流动。
层流流动层流流动是指流体在管道或设备中呈稳定的层流状态,流体在截面中的各个部分以均匀的速度运动。
在层流流动中,不同层之间的流速差很小,流体分子之间的相对位置一直保持不变。
层流流动通常发生在流速较低的条件下,管道的直径较小,并且流体的黏性较高。
层流流动可以用泊肃叶定律进行描述。
湍流流动湍流流动是指流体在管道或设备中呈不稳定的湍流状态,流体在截面中的各个部分以复杂而无规律的方式运动。
在湍流流动中,不同层之间的流速差很大,流体分子之间的相对位置不断变化。
湍流流动通常发生在流速较高的条件下,管道的直径较大,并且流体的黏性较低。
湍流流动的模型较为复杂,常用的描述方法有雷诺平均法和雷诺应力传递方程。
流动参数分析在对流体流动进行研究时,需要对一些流动参数进行分析。
这些参数可以帮助我们了解流体的流动特性和传输行为。
流量流量指的是单位时间内通过管道或设备截面的流体体积。
通常以单位时间内液体或气体通过单位面积的体积来表示,单位为立方米/秒。
流量是一个非常重要的参数,可以用来确定设备的尺寸和流程的设计。
压降压降指的是流体在通过管道或设备时由于阻力而导致的压力降低。
第一章流体流动1.1概述1.1.1 流体流动是各单元操作的基础化工生产中,经常应用流体流动的基本原理及其流动规律:流体的输送、压强、流速和流量的测定、为强化设备提供适宜的流动条件等。
流程分析:流体(水和煤气)在泵(或鼓风机)、流量计以及管道中流动等,是流体动力学问题。
流体在压差计,水封箱中的水处于静止状态,则是流体静力学问题。
为了确定流体输送管路的直径,需要计算流体流动过程产生的阻力和输送流体所需的动力。
根据阻力与流量等参数选择输送设备的类型和型号,以及测定流体的流量和压强等。
流体流动将影响系统中的传热、传质过程等,是其他单元操作的主要基础。
1.1.2 连续介质假定连续性假定:研究流体在静止和流动状态下的规律性时,常将流体视为由无数质点组成的连续介质。
所谓流体质点是指含有大量分子的极小单元或微团。
1.1.3 流体流动中的作用力在流体中任取一微元体积作为研究对象,进行受力分析,它受到的力有表面力和质量力两类。
表面力与作用的表面积成正比,单位面积上的表面力称之为应力。
通常可以将表面力分解为法向分力与切向分力,如图1.1.2所示。
法向应力总是垂直且指向流体微元之任一表面。
单位面积上的法向力又称之为压强。
单位面积上的切向力称之为剪切应力F c(N/m2)。
静止流体不能承受任何剪切力,所以,只有法向力。
1.1.4 流体的特征和密度及其压缩性流体:液体和气体统称为流体。
流体区别于固体的主要特征是具有流动性,其形状随容器形状而变化;受外力作用时内部产生相对运动。
密度是流体的物理性质。
液体的密度几乎不随压强而变化,但温度对液体密度有一定影响。
液体的密度可由实验测定或用查找手册计算的方法获取。
气体的密度随温度和压强而变化,而且比液体显著得多,因此要根据温度及压强条件来确定气体的密度。
1.2 流体静力学流体静力学主要研究流体在静止状态下所受的各种力之间的关系,实质上是讨论流体静止时其内部压强变化的规律。
1.2.1 流体的压强及其特性Array工程上,习惯上常常将压强称之为压力,流体的压力除了用不同的单位来计量外,还可以用如图所示的不同的计量基准来表示: 绝对压力、表压、真空度。
化工原理流体流动
化工原理流体流动在化工过程中占据着重要的地位。
流体流动的基本理论是通过质量守恒定律和牛顿运动定律得到的。
在化工过程中,流体流动的特性直接影响着反应器的混合程度、传质速度以及热交换效率等。
因此,研究流体流动的规律对于优化化工过程、提高工艺效率具有重要的意义。
流体的流动可以分为层流和湍流两种形式。
层流是指流体在平行于管道中心轴线方向上的速度分布呈现出均匀的特点,流动延伸线平行于管道中心轴线。
而湍流是指流体在管道中流动时形成的涡流和涡团,速度分布不均匀且随机,并且流动延伸线的方向和管道中心轴线的方向存在明显偏离。
在管道中的流体流动可以通过雷诺数来进行描述。
雷诺数是流体的惯性力和黏性力之比,可以用来判断流体的流动状态。
当雷诺数小于一定的临界值时,流体流动为层流;当雷诺数大于临界值时,流体流动为湍流。
流体流动中的一些重要参数包括流速、温度、密度、黏度等。
这些参数对于流体的流动特性以及传质、传热等过程都有着重要的影响。
在化工过程中,流体流动往往受到一些其他因素的影响,例如管道的几何形状、摩擦阻力、局部阻力以及流体本身的性质等。
对于这些影响因素的研究和分析,可以为化工过程提供可靠的理论基础,有助于优化设计和改进工艺。
总之,化工原理流体流动是化工过程中重要的研究内容之一。
深入理解和掌握流体流动的规律对于提高工艺效率、优化设计具有重要的意义。
化工原理–流体流动介绍引言流体流动是化工工程中一个非常重要的基础概念。
无论是在化工过程中的液体的传输,还是气体在设备中的流动,都需要对流体流动进行深入的了解和研究。
本文将介绍流体流动的基本定义、流动模型、流体力学方程以及常见的流动行为。
通过对流体流动的介绍,读者将能够更全面地了解化工原理中的流体流动问题。
流动的定义流动是指流体在空间中运动的过程。
在化工过程中,流动一般可以分为液体流动和气体流动。
液体流动是指液体在管道、槽道或容器中的流动,主要涉及到液体的运动、运动状态和运动参数。
气体流动是指气体在管道、设备中的流动,主要涉及到气体的流动速度、气体流量和气体压力等参数。
流动模型在化工工程中,流体流动可以分为层流和湍流两种模型。
层流层流是指流体在流动过程中,流线穿过流体时呈现分层状态,流体粒子之间的相对运动速度较小。
层流的特点是流速分布规则、流体速度均匀,流体粒子之间的作用力较小,流体流动状态相对稳定。
层流一般发生在低速流动和粘性较大的流体中。
湍流湍流是指流体在流动过程中,流线交织混乱,流体粒子之间的相对运动速度较大。
湍流的特点是流速分布不规律,流体速度颠簸不定,流体粒子之间的作用力较大,流体流动状态相对混乱。
湍流一般发生在高速流动和粘性较小的流体中。
流体力学方程流体力学方程是描述流体流动的基本方程,其中最基本的是连续性方程、动量方程和能量方程。
连续性方程连续性方程是描述流体中质点的守恒关系。
对于液体流动来说,连续性方程可以表示为质流速的守恒,即质流速的变化量等于流入和流出的质量之和。
对于气体流动来说,连续性方程可以表示为能量流速的守恒,即能量流速的变化量等于流入和流出的能量之和。
动量方程动量方程是描述流体中质点的动力学性质。
对于液体流动来说,动量方程可以表示为流体的加速度与外力之差等于质量流量产生的力。
对于气体流动来说,动量方程可以表示为流体的加速度与外力之差等于能量流量产生的力。
能量方程能量方程是描述流体中能量变化的方程。
化工原理第一章流体流动第一章 流体流动一、流体流动的数学描述在化工生产中,经常遇到流体通过管道流动这一最基本的流体流动现象。
当流体在管内作稳定流动时,遵循两个基本衡算关系式,即质量衡算方程式和机械能衡算方程式。
质量衡算方程式在稳定的流动系统中,对某一划定体积而言,进入该体积的流体的质量流量等于流出该体积的质量流量。
如图1—1所示,若取截面1—1′、2—2′及两截面间管壁所围成的体积为划定体积,则ρρρuA A u A u ==222111 (1-1a)对不可压缩、均质流体(密度ρ=常数)的圆管内流动,上式简化为2221211ud d u d u == (1-1b)机械能衡算方程式在没有外加功的情况下,流动系统中的流体总是从机械能较高处流向机械能较低处,两处机械能之差为流体克服流动阻力做功而消耗的机械能,以下简称为阻力损失。
如图1—1所示,截面1—1′与2—2′间单位质量流体的机械能衡算式为f 21w Et Et += (1-2)式中 221111u p gz Et ++=ρ,截面1—1′处单位质量流体的机械能,J /kg ;222222u p gz Et ++=ρ,截面2—2′处单位质量流体的机械能,J /kg ;∑⎥⎦⎤⎢⎣⎡∑+∑=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∑+=2)(222f u d l l u d l w e λζλ,单位质量流体在划定体积内流动时的总阻力损失,J /kg 。
其中,λ为雷诺数Re 和相对粗糙度ε / d 的函数,即⎪⎪⎭⎫ ⎝⎛=d du εμρφλ,。
上述方程式中,若将Et 1、Et 2、w f 、λ视为中间变量,则有z 1、z 2、p 1、p 2、u 1、u 2、d 1、d 2、d 、u 、l 、∑ζ(或∑l e )、ε、ρ、μ等15个变量,而独立方程仅有式(1-1)(含两个独立方程)、式(1-2)三个。
因此,当被输送流体的物性(ρ,μ)已知时,为使方程组有唯一解,还需确定另外的10个变量,其余3个变量才能确定。