用递归和非递归算法实现二叉树的三种遍历
- 格式:docx
- 大小:107.51 KB
- 文档页数:13
实验5:二叉树的建立及遍历(第十三周星期三7、8节)一、实验目的1.学会实现二叉树结点结构和对二叉树的基本操作。
2.掌握对二叉树每种操作的具体实现,学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法。
二、实验要求1.认真阅读和掌握和本实验相关的教材内容。
2.编写完整程序完成下面的实验内容并上机运行。
3.整理并上交实验报告。
三、实验内容1.编写程序任意输入二叉树的结点个数和结点值,构造一棵二叉树,采用三种递归遍历算法(前序、中序、后序)对这棵二叉树进行遍历并计算出二叉树的高度。
2 .编写程序生成下面所示的二叉树,并采用中序遍历的非递归算法对此二叉树进行遍历。
四、思考与提高1.如何计算二叉链表存储的二叉树中度数为1的结点数?2.已知有—棵以二叉链表存储的二叉树,root指向根结点,p指向二叉树中任一结点,如何求从根结点到p所指结点之间的路径?/*----------------------------------------* 05-1_递归遍历二叉树.cpp -- 递归遍历二叉树的相关操作* 对递归遍历二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>typedef char ElemType;using namespace std;typedef struct BiTNode {ElemType data;//左右孩子指针BiTNode *lchild, *rchild;}BiTNode, *BiTree;//动态输入字符按先序创建二叉树void CreateBiTree(BiTree &T) {char ch;ch = cin.get();if(ch == ' ') {T = NULL;}else {if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!" << endl;}else {//生成根结点T = (BiTNode * )malloc(sizeof(BiTNode));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);}}}//输出e的值ElemType PrintElement(ElemType e) { cout << e << " ";return e;}//先序遍历void PreOrderTraverse(BiTree T) { if (T != NULL) {//打印结点的值PrintElement(T->data);//遍历左孩子PreOrderTraverse(T->lchild);//遍历右孩子PreOrderTraverse(T->rchild);}}//中序遍历void InOrderTraverse(BiTree T) {if (T != NULL) {//遍历左孩子InOrderTraverse(T->lchild);//打印结点的值PrintElement(T->data);//遍历右孩子InOrderTraverse(T->rchild);}}//后序遍历void PostOrderTraverse(BiTree T) { if (T != NULL) {//遍历左孩子PostOrderTraverse(T->lchild);//遍历右孩子PostOrderTraverse(T->rchild);//打印结点的值PrintElement(T->data);}}//按任一种遍历次序输出二叉树中的所有结点void TraverseBiTree(BiTree T, int mark) {if(mark == 1) {//先序遍历PreOrderTraverse(T);cout << endl;}else if(mark == 2) {//中序遍历InOrderTraverse(T);cout << endl;}else if(mark == 3) {//后序遍历PostOrderTraverse(T);cout << endl;}else cout << "选择遍历结束!" << endl;}//输入值并执行选择遍历函数void ChoiceMark(BiTree T) {int mark = 1;cout << "请输入,先序遍历为1,中序为2,后序为3,跳过此操作为0:";cin >> mark;if(mark > 0 && mark < 4) {TraverseBiTree(T, mark);ChoiceMark(T);}else cout << "此操作已跳过!" << endl;}//求二叉树的深度int BiTreeDepth(BiTNode *T) {if (T == NULL) {//对于空树,返回0并结束递归return 0;}else {//计算左子树的深度int dep1 = BiTreeDepth(T->lchild);//计算右子树的深度int dep2 = BiTreeDepth(T->rchild);//返回树的深度if(dep1 > dep2)return dep1 + 1;elsereturn dep2 + 1;}}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;bt = NULL; //将树根指针置空cout << "输入规则:" << endl<< "要生成新结点,输入一个字符,""不要生成新结点的左孩子,输入一个空格,""左右孩子都不要,输入两个空格,""要结束,输入多个空格(越多越好),再回车!"<< endl << "按先序输入:";CreateBiTree(bt);cout << "树的深度为:" << BiTreeDepth(bt) << endl;ChoiceMark(bt);return 0;}/*----------------------------------------* 05-2_构造二叉树.cpp -- 构造二叉树的相关操作* 对构造二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05-2.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>#define STACK_INIT_SIZE 100 //栈的存储空间初始分配量#define STACKINCREMENT 10 //存储空间分配增量typedef char ElemType; //元素类型using namespace std;typedef struct BiTNode {ElemType data; //结点值BiTNode *lchild, *rchild; //左右孩子指针}BiTNode, *BiTree;typedef struct {BiTree *base; //在栈构造之前和销毁之后,base的值为空BiTree *top; //栈顶指针int stacksize; //当前已分配的存储空间,以元素为单位}SqStack;//构造一个空栈void InitStack(SqStack &s) {s.base = (BiTree *)malloc(STACK_INIT_SIZE * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base;s.stacksize = STACK_INIT_SIZE;}//插入元素e为新的栈顶元素void Push(SqStack &s, BiTree e) {//栈满,追加存储空间if ((s.top - s.base) >= s.stacksize) {s.base = (BiTree *)malloc((STACK_INIT_SIZE+STACKINCREMENT) * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base + s.stacksize;s.stacksize += STACK_INIT_SIZE;}*s.top++ = e;}//若栈不空,则删除s的栈顶元素,并返回其值BiTree Pop(SqStack &s) {if(s.top == s.base)cout << "栈为空,无法删除栈顶元素!" << endl;s.top--;return *s.top;}//按先序输入字符创建二叉树void CreateBiTree(BiTree &T) {char ch;//接受输入的字符ch = cin.get();if(ch == ' ') {//分支结束T = NULL;} //if' 'endelse if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!(接着输入)" << endl;} //if'\n'endelse {//生成根结点T = (BiTNode * )malloc(sizeof(BiTree));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);} //Create end}//输出e的值,并返回ElemType PrintElement(ElemType e) {cout << e << " ";return e;}//中序遍历二叉树的非递归函数void InOrderTraverse(BiTree p, SqStack &S) {cout << "中序遍历结果:";while(S.top != S.base || p != NULL) {if(p != NULL) {Push(S,p);p = p->lchild;} //if NULL endelse {BiTree bi = Pop(S);if(!PrintElement(bi->data))cout << "输出其值未成功!" << endl;p = bi->rchild;} //else end} //while endcout << endl;}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;SqStack S;InitStack(S);bt = NULL; //将树根指针置空cout << "老师要求的二叉树序列(‘空’表示空格):""12空空346空空空5空空,再回车!"<< endl << "请按先序输入一个二叉树序列(可另输入,但要为先序),""无左右孩子则分别输入空格。
⼆叉树遍历(前序、中序、后序、层次、⼴度优先、深度优先遍历)⽬录转载:⼆叉树概念⼆叉树是⼀种⾮常重要的数据结构,⾮常多其他数据结构都是基于⼆叉树的基础演变⽽来的。
对于⼆叉树,有深度遍历和⼴度遍历,深度遍历有前序、中序以及后序三种遍历⽅法,⼴度遍历即我们寻常所说的层次遍历。
由于树的定义本⾝就是递归定义,因此採⽤递归的⽅法去实现树的三种遍历不仅easy理解并且代码⾮常简洁,⽽对于⼴度遍历来说,须要其他数据结构的⽀撑。
⽐⽅堆了。
所以。
对于⼀段代码来说,可读性有时候要⽐代码本⾝的效率要重要的多。
四种基本的遍历思想前序遍历:根结点 ---> 左⼦树 ---> 右⼦树中序遍历:左⼦树---> 根结点 ---> 右⼦树后序遍历:左⼦树 ---> 右⼦树 ---> 根结点层次遍历:仅仅需按层次遍历就可以⽐如。
求以下⼆叉树的各种遍历前序遍历:1 2 4 5 7 8 3 6中序遍历:4 2 7 5 8 1 3 6后序遍历:4 7 8 5 2 6 3 1层次遍历:1 2 3 4 5 6 7 8⼀、前序遍历1)依据上⽂提到的遍历思路:根结点 ---> 左⼦树 ---> 右⼦树,⾮常easy写出递归版本号:public void preOrderTraverse1(TreeNode root) {if (root != null) {System.out.print(root.val+" ");preOrderTraverse1(root.left);preOrderTraverse1(root.right);}}2)如今讨论⾮递归的版本号:依据前序遍历的顺序,优先訪问根结点。
然后在訪问左⼦树和右⼦树。
所以。
对于随意结点node。
第⼀部分即直接訪问之,之后在推断左⼦树是否为空,不为空时即反复上⾯的步骤,直到其为空。
若为空。
则须要訪问右⼦树。
注意。
在訪问过左孩⼦之后。
二叉树前中后序遍历做题技巧在计算机科学中,二叉树是一种重要的数据结构,而前序、中序和后序遍历则是二叉树遍历的三种主要方式。
下面将分别对这三种遍历方式进行解析,并提供一些解题技巧。
1.理解遍历顺序前序遍历顺序是:根节点->左子树->右子树中序遍历顺序是:左子树->根节点->右子树后序遍历顺序是:左子树->右子树->根节点理解每种遍历顺序是解题的基础。
2.使用递归或迭代二叉树的遍历可以通过递归或迭代实现。
在递归中,每个节点的处理函数会调用其左右子节点的处理函数。
在迭代中,可以使用栈来模拟递归过程。
3.辨析指针指向在递归或迭代中,需要正确处理指针的指向。
在递归中,通常使用全局变量或函数参数传递指针。
在迭代中,需要使用栈或其他数据结构保存指针。
4.学会断点续传在处理大规模数据时,为了避免内存溢出,可以采用断点续传的方式。
即在遍历过程中,将中间结果保存在文件中,下次遍历时从文件中读取上一次的结果,继续遍历。
5.识别循环和终止条件在遍历二叉树时,要识别是否存在循环,并确定终止条件。
循环可以通过深度优先搜索(DFS)或广度优先搜索(BFS)避免。
终止条件通常为达到叶子节点或达到某个深度限制。
6.考虑边界情况在处理二叉树遍历问题时,要考虑边界情况。
例如,对于空二叉树,需要进行特殊处理。
又如,在处理二叉搜索树时,需要考虑节点值的最小和最大边界。
7.优化空间使用在遍历二叉树时,需要优化空间使用。
例如,可以使用in-place排序来避免额外的空间开销。
此外,可以使用懒加载技术来延迟加载子节点,从而减少内存占用。
8.验证答案正确性最后,验证答案的正确性是至关重要的。
可以通过检查输出是否符合预期、是否满足题目的限制条件等方法来验证答案的正确性。
如果可能的话,也可以使用自动化测试工具进行验证。
⼆叉树遍历(前中后序遍历,三种⽅式)⽬录刷题中碰到⼆叉树的遍历,就查找了⼆叉树遍历的⼏种思路,在此做个总结。
对应的LeetCode题⽬如下:,,,接下来以前序遍历来说明三种解法的思想,后⾯中序和后续直接给出代码。
⾸先定义⼆叉树的数据结构如下://Definition for a binary tree node.struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}};前序遍历,顺序是“根-左-右”。
使⽤递归实现:递归的思想很简单就是我们每次访问根节点后就递归访问其左节点,左节点访问结束后再递归的访问右节点。
代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;helper(root,res);return res;}void helper(TreeNode *root, vector<int> &res){res.push_back(root->val);if(root->left) helper(root->left, res);if(root->right) helper(root->right, res);}};使⽤辅助栈迭代实现:算法为:先把根节点push到辅助栈中,然后循环检测栈是否为空,若不空,则取出栈顶元素,保存值到vector中,之后由于需要想访问左⼦节点,所以我们在将根节点的⼦节点⼊栈时要先经右节点⼊栈,再将左节点⼊栈,这样出栈时就会先判断左⼦节点。
代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;stack<TreeNode*> st;st.push(root);while(!st.empty()){//将根节点出栈放⼊结果集中TreeNode *t = st.top();st.pop();res.push_back(t->val);//先⼊栈右节点,后左节点if(t->right) st.push(t->right);if(t->left) st.push(t->left);}return res;}};Morris Traversal⽅法具体的详细解释可以参考如下链接:这种解法可以实现O(N)的时间复杂度和O(1)的空间复杂度。
二叉树常用的三种遍历方法二叉树是一种常用的数据结构,它由一个根节点和两个子节点组成,其中左子节点小于根节点,右子节点大于根节点。
遍历二叉树是对所有节点进行访问的过程,常用的三种遍历方法是前序遍历、中序遍历和后序遍历。
下面将详细介绍这三种方法的实现步骤。
一、前序遍历前序遍历是指先访问根节点,然后按照左子树、右子树的顺序依次访问每个节点。
具体实现步骤如下:1. 如果当前节点为空,则返回。
2. 访问当前节点。
3. 递归进入左子树。
4. 递归进入右子树。
代码实现:void preorderTraversal(TreeNode* root) {if (root == NULL) return;cout << root->val << " ";preorderTraversal(root->left);preorderTraversal(root->right);}二、中序遍历中序遍历是指先访问左子树,然后访问根节点,最后访问右子树。
具体实现步骤如下:1. 如果当前节点为空,则返回。
2. 递归进入左子树。
3. 访问当前节点。
4. 递归进入右子树。
代码实现:void inorderTraversal(TreeNode* root) {if (root == NULL) return;inorderTraversal(root->left);cout << root->val << " ";inorderTraversal(root->right);}三、后序遍历后序遍历是指先访问左子树,然后访问右子树,最后访问根节点。
具体实现步骤如下:1. 如果当前节点为空,则返回。
2. 递归进入左子树。
3. 递归进入右子树。
4. 访问当前节点。
代码实现:void postorderTraversal(TreeNode* root) {if (root == NULL) return;postorderTraversal(root->left);postorderTraversal(root->right);cout << root->val << " ";}总结:以上就是二叉树常用的三种遍历方法的详细介绍和实现步骤。
二叉树的各种遍历算法及其深度算法一、二叉树的遍历算法二叉树是一种常见的数据结构,遍历二叉树可以按照根节点的访问顺序将二叉树的结点访问一次且仅访问一次。
根据遍历的顺序不同,二叉树的遍历算法可以分为三种:前序遍历、中序遍历和后序遍历。
1. 前序遍历(Pre-order Traversal):首先访问根节点,然后遍历左子树,最后遍历右子树。
可以用递归或者栈来实现。
2. 中序遍历(In-order Traversal):首先遍历左子树,然后访问根节点,最后遍历右子树。
可以用递归或者栈来实现。
3. 后序遍历(Post-order Traversal):首先遍历左子树,然后遍历右子树,最后访问根节点。
可以用递归或者栈来实现。
二、二叉树的深度算法二叉树的深度,也叫做高度,指的是从根节点到叶子节点的最长路径上的节点数目。
可以使用递归或者层次遍历的方式来计算二叉树的深度。
1.递归算法:二叉树的深度等于左子树的深度和右子树的深度的较大值加一、递归的终止条件是当节点为空时,深度为0。
递归的过程中通过不断递归左子树和右子树,可以求出二叉树的深度。
2.层次遍历算法:层次遍历二叉树时,每遍历完一层节点,深度加一、使用一个队列来辅助层次遍历,先将根节点加入队列,然后依次取出队列中的节点,将其左右子节点加入队列,直到队列为空,完成层次遍历。
三、示例为了更好地理解二叉树的遍历和求深度的算法,我们以一个简单的二叉树为例进行说明。
假设该二叉树的结构如下:A/\BC/\/\DEFG其中,A、B、C、D、E、F、G分别代表二叉树的结点。
1.前序遍历:A->B->D->E->C->F->G2.中序遍历:D->B->E->A->F->C->G3.后序遍历:D->E->B->F->G->C->A4.深度:2以上是针对这个二叉树的遍历和深度的计算示例。
二叉树的遍历学习心得 (4)二叉树是一种重要的数据结构,在计算机科学领域中被广泛应用。
对二叉树的遍历是对树进行操作和处理的重要方法之一。
二叉树遍历包括先序遍历、中序遍历和后序遍历三种,每种遍历方式都有它的特点和应用场景。
在本文中,我将结合自己的学习经历,介绍二叉树遍历的相关知识,并分享我的学习心得。
一、什么是二叉树遍历?二叉树遍历指的是按照某种次序访问二叉树的所有节点。
具体来说,遍历过程中所有节点都会被访问且只会被访问一次。
遍历是二叉树最基本的操作之一,它能够帮助我们遍历整个二叉树,并且可以实现二叉树的各种功能。
二、二叉树遍历的种类1. 先序遍历:先访问根节点,然后按照左子树到右子树的顺序依次访问所有的节点。
2. 中序遍历:按照左子树、根节点、右子树的顺序依次访问所有的节点。
3. 后序遍历:按照左子树、右子树、根节点的顺序依次访问所有的节点。
在学习二叉树遍历时,首先需要掌握各种遍历方式的定义和遍历过程。
我们需要了解如何通过递归或非递归的方式来实现二叉树的遍历。
三、学习心得在学习二叉树遍历时,我发现遍历过程中需要注意以下几点:1. 二叉树的遍历是递归算法的经典应用之一。
在递归调用时,需要注意传递和保存上一层函数中的参数和变量,以及返回值的传递和处理。
2. 在遍历时需要针对每个节点进行相应的操作,比如修改节点值、计算节点的数值、输出节点信息等等。
3. 非递归遍历时需要使用栈或队列辅助存储节点信息,在遍历时需要注意栈或队列的操作和数据结构实现。
通过实践,我逐渐掌握了二叉树遍历的基本思想,学会了如何根据需要选择不同的遍历方式。
同时,我也深刻体会到学习算法需要循序渐进、一步步地进行,并且需要强化巩固,多多实践才能真正掌握。
四、总结二叉树遍历是数据结构中的重要主题之一,是学习和掌握二叉树等数据结构算法的基础。
学习时需要理解各种遍历方式的定义和遍历过程,对递归和非递归实现进行深入的练习和掌握,通过不断地巩固和实践,最终能够掌握二叉树遍历的基本思想和实现方法。
二叉树基本运算算法的实现
二叉树是一种常见的数据结构,基本运算算法包括二叉树的遍历、查找、插入、删除等操作。
下面是这些算法的实现:
1. 二叉树遍历:二叉树遍历有三种方式,分别是前序遍历、中序遍历和后序遍历。
其中,前序遍历先访问根节点,再访问左子树和右子树;中序遍历先访问左子树,再访问根节点和右子树;后序遍历先访问左子树,再访问右子树和根节点。
遍历可以使用递归算法或栈实现。
2. 二叉树查找:二叉树查找可以使用递归算法或循环算法实现。
递归算法通过比较节点值实现查找,如果查找值小于当前节点值,则在左子树中查找,否则在右子树中查找。
循环算法使用二叉树的特性,比较查找值和当前节点值的大小,根据大小关系不断移动到左子树或右子树中进行查找,直到找到目标节点或遍历到叶子节点为止。
3. 二叉树插入:二叉树插入需要先查找到插入位置,然后在该位置插入一个新节点。
插入操作可以使用递归算法或循环算法实现。
4. 二叉树删除:二叉树删除分为三种情况:删除叶子节点、删除只有一个孩子的节点和删除有两个孩子的节点。
删除叶子节点很简单,只需要将其父节点的指针设为NULL即可。
删除只有一个孩子的节点需要将父节点的指针指向该节点的
孩子节点。
删除有两个孩子的节点需要找到该节点的后继节点(或前驱节点),将后继节点的值复制到该节点中,然后删除后继节点。
上述算法的实现需要根据具体的编程语言进行调整和实现。
竭诚为您提供优质文档/双击可除二叉树的建立和遍历的实验报告篇一:二叉树遍历实验报告数据结构实验报告报告题目:二叉树的基本操作学生班级:学生姓名:学号:一.实验目的1、基本要求:深刻理解二叉树性质和各种存储结构的特点及适用范围;掌握用指针类型描述、访问和处理二叉树的运算;熟练掌握二叉树的遍历算法;。
2、较高要求:在遍历算法的基础上设计二叉树更复杂操作算法;认识哈夫曼树、哈夫曼编码的作用和意义;掌握树与森林的存储与便利。
二.实验学时:课内实验学时:3学时课外实验学时:6学时三.实验题目1.以二叉链表为存储结构,实现二叉树的创建、遍历(实验类型:验证型)1)问题描述:在主程序中设计一个简单的菜单,分别调用相应的函数功能:1…建立树2…前序遍历树3…中序遍历树4…后序遍历树5…求二叉树的高度6…求二叉树的叶子节点7…非递归中序遍历树0…结束2)实验要求:在程序中定义下述函数,并实现要求的函数功能:createbinTree(binTreestructnode*lchild,*rchild;}binTnode;元素类型:intcreatebinTree(binTreevoidpreorder(binTreevoidInorder(binTreevoidpostorder(binTreevoidInordern(binTreeintleaf(bi nTreeintpostTreeDepth(binTree2、编写算法实现二叉树的非递归中序遍历和求二叉树高度。
1)问题描述:实现二叉树的非递归中序遍历和求二叉树高度2)实验要求:以二叉链表作为存储结构3)实现过程:1、实现非递归中序遍历代码:voidcbiTree::Inordern(binTreeinttop=0;p=T;do{while(p!=nuLL){stack[top]=p;;top=top+1;p=p->lchild;};if(top>0){top=top-1;p=stack[top];printf("%3c",p->data);p=p->rchild;}}while(p!=nuLL||top!=0);}2、求二叉树高度:intcbiTree::postTreeDepth(binTreeif(T!=nuLL){l=postTreeDepth(T->lchild);r=postTreeDepth(T->rchil d);max=l>r?l:r;return(max+1);}elsereturn(0);}实验步骤:1)新建一个基于consoleApplication的工程,工程名称biTreeTest;2)新建一个类cbiTree二叉树类。
二叉树的各种算法1.二叉树的前序遍历算法:前序遍历是指先访问根节点,再访问左子树,最后访问右子树的遍历顺序。
具体算法如下:-如果二叉树为空,则直接返回。
-访问根节点,并输出或进行其他操作。
-递归地前序遍历左子树。
-递归地前序遍历右子树。
2.二叉树的中序遍历算法:中序遍历是指先访问左子树,再访问根节点,最后访问右子树的遍历顺序。
具体算法如下:-如果二叉树为空,则直接返回。
-递归地中序遍历左子树。
-访问根节点,并输出或进行其他操作。
-递归地中序遍历右子树。
3.二叉树的后序遍历算法:后序遍历是指先访问左子树,再访问右子树,最后访问根节点的遍历顺序。
具体算法如下:-如果二叉树为空,则直接返回。
-递归地后序遍历左子树。
-递归地后序遍历右子树。
-访问根节点,并输出或进行其他操作。
4.二叉树的层序遍历算法:层序遍历是按照从上到下、从左到右的顺序逐层遍历二叉树的节点。
具体算法如下:-如果二叉树为空,则直接返回。
-创建一个队列,将根节点入队。
-循环执行以下步骤,直到队列为空:-出队并访问当前节点,并输出或进行其他操作。
-若当前节点的左子节点不为空,则将左子节点入队。
-若当前节点的右子节点不为空,则将右子节点入队。
5.二叉树的深度算法:二叉树的深度是指从根节点到叶节点的最长路径的节点数。
具体算法如下:-如果二叉树为空,则深度为0。
-否则,递归地计算左子树的深度和右子树的深度,然后取较大的值加上根节点的深度作为二叉树的深度。
6.二叉树的查找算法:二叉树的查找可以使用前序、中序或后序遍历来完成。
具体算法如下:-如果二叉树为空,则返回空。
-如果当前节点的值等于目标值,则返回当前节点。
-否则,先在左子树中递归查找,如果找到则返回找到的节点。
-如果左子树中未找到,则在右子树中递归查找,如果找到则返回找到的节点。
-如果左右子树中都未找到,则返回空。
7.二叉树的插入算法:二叉树的插入可以使用递归或循环来实现。
具体算法如下:-如果二叉树为空,则创建一个新节点作为根节点,并返回根节点。
二叉树的遍历实验报告一、实验目的1.了解二叉树的基本概念和性质;2.理解二叉树的遍历方式以及它们的实现方法;3.学会通过递归和非递归算法实现二叉树的遍历。
二、实验内容1.二叉树的定义在计算机科学中,二叉树是一种重要的数据结构,由节点及它们的左右儿子组成。
没有任何子节点的节点称为叶子节点,有一个子节点的节点称为一度点,有两个子节点的节点称为二度点。
二叉树的性质:1.每个节点最多有两个子节点;2.左右子节点的顺序不能颠倒,左边是父节点的左子节点,右边是父节点的右子节点;3.二叉树可以为空,也可以只有一个根节点;4.二叉树的高度是从根节点到最深叶子节点的层数;5.二叉树的深度是从最深叶子节点到根节点的层数;6.一个深度为d的二叉树最多有2^(d+1) -1个节点,其中d>=1;7.在二叉树的第i层上最多有2^(i-1)个节点,其中i>=1。
2.二叉树的遍历方式二叉树的遍历是指从根节点出发,按照一定的顺序遍历二叉树中的每个节点。
常用的二叉树遍历方式有三种:前序遍历、中序遍历和后序遍历。
前序遍历:先遍历根节点,再遍历左子树,最后遍历右子树;中序遍历:先遍历左子树,再遍历根节点,最后遍历右子树;后序遍历:先遍历左子树,再遍历右子树,最后遍历根节点。
递归算法:利用函数调用,递归实现二叉树的遍历;非递归算法:利用栈或队列,对二叉树进行遍历。
三、实验步骤1.创建二叉树数据结构并插入节点;2.实现二叉树的前序遍历、中序遍历、后序遍历递归算法;3.实现二叉树的前序遍历、中序遍历、后序遍历非递归算法;4.测试算法功能。
四、实验结果1.创建二叉树数据结构并插入节点为了测试三种遍历方式的算法实现,我们需要创建一个二叉树并插入节点,代码如下:```c++//定义二叉树节点struct TreeNode {int val;TreeNode* left;TreeNode* right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}};递归算法是实现二叉树遍历的最简单方法,代码如下:```c++//前序遍历非递归算法vector<int> preorderTraversal(TreeNode* root) {stack<TreeNode*> s;vector<int> res;if (!root) return res;s.push(root);while (!s.empty()) {TreeNode* tmp = s.top();s.pop();res.push_back(tmp->val);if (tmp->right) s.push(tmp->right);if (tmp->left) s.push(tmp->left);}return res;}4.测试算法功能return 0;}```测试结果如下:preorderTraversal: 4 2 1 3 6 5 7inorderTraversal: 1 2 3 4 5 6 7postorderTraversal: 1 3 2 5 7 6 4preorderTraversalNonRecursive: 4 2 1 3 6 5 7inorderTraversalNonRecursive: 1 2 3 4 5 6 7postorderTraversalNonRecursive: 1 3 2 5 7 6 4本次实验通过实现二叉树的递归和非递归遍历算法,加深了对二叉树的理解,并熟悉了遍历算法的实现方法。
二叉树经典例题的题解本文将为大家详细介绍几个经典的二叉树例题,并提供对应的解题思路和代码实现。
1. 二叉树的遍历二叉树的遍历是二叉树操作中最基础的操作。
它分为三种遍历方式:前序遍历、中序遍历和后序遍历。
其中,前序遍历是按照“根左右”顺序遍历,中序遍历是按照“左根右”顺序遍历,后序遍历是按照“左右根”顺序遍历。
遍历的实现方式主要有两种:递归和非递归。
递归实现比较简单,非递归实现可以利用栈来实现。
以下是前序遍历的递归实现:void preorderTraversal(TreeNode* root) {if (root != nullptr) {cout << root->val << ' ';preorderTraversal(root->left);preorderTraversal(root->right);}}以下是前序遍历的非递归实现:void preorderTraversal(TreeNode* root) {if (root == nullptr) return;stack<TreeNode*> st;st.push(root);while (!st.empty()) {TreeNode* node = st.top();st.pop();cout << node->val << ' ';if (node->right != nullptr) st.push(node->right);if (node->left != nullptr) st.push(node->left);}}2. 二叉树的最大深度二叉树的最大深度是指从根节点到叶子节点的最长路径上的节点数。
求二叉树的最大深度可以使用递归或BFS(广度优先搜索)实现。
以下是递归实现:int maxDepth(TreeNode* root) {if (root == nullptr) return 0;int leftDepth = maxDepth(root->left);int rightDepth = maxDepth(root->right);return 1 + max(leftDepth, rightDepth);}以下是BFS实现:int maxDepth(TreeNode* root) {if (root == nullptr) return 0;int depth = 0;queue<TreeNode*> q;q.push(root);while (!q.empty()) {int size = q.size();depth++;for (int i = 0; i < size; i++) {TreeNode* node = q.front();q.pop();if (node->left != nullptr) q.push(node->left);if (node->right != nullptr) q.push(node->right);}}return depth;}3. 判断两个二叉树是否相同判断两个二叉树是否相同可以通过递归实现。
⼆叉树的四种遍历算法⼆叉树作为⼀种重要的数据结构,它的很多算法的思想在很多地⽅都⽤到了,⽐如STL算法模板,⾥⾯的优先队列、集合等等都⽤到了⼆叉树⾥⾯的思想,先从⼆叉树的遍历开始:看⼆叉树长什么样⼦:我们可以看到这颗⼆叉树⼀共有七个节点0号节点是根节点1号节点和2号节点是0号节点的⼦节点,1号节点为0号节点的左⼦节点,2号节点为0号节点的右⼦节点同时1号节点和2号节点⼜是3号节点、四号节点和五号节点、6号节点的双亲节点五号节点和6号节点没有⼦节点(⼦树),那么他们被称为‘叶⼦节点’这就是⼀些基本的概念⼆叉树的遍历⼆叉树常⽤的遍历⽅式有:前序遍历、中序遍历、后序遍历、层序遍历四种遍历⽅式,不同的遍历算法,其思想略有不同,我们来看⼀下这四种遍历⽅法主要的算法思想:1、先序遍历⼆叉树顺序:根节点 –> 左⼦树 –> 右⼦树,即先访问根节点,然后是左⼦树,最后是右⼦树。
上图中⼆叉树的前序遍历结果为:0 -> 1 -> 3 -> 4 -> 2 -> 5 -> 62、中序遍历⼆叉树顺序:左⼦树 –> 根节点 –> 右⼦树,即先访问左⼦树,然后是根节点,最后是右⼦树。
上图中⼆叉树的中序遍历结果为:3 -> 1 -> 4 -> 0 -> 5 -> 2 -> 63、后续遍历⼆叉树顺序:左⼦树 –> 右⼦树 –> 根节点,即先访问左⼦树,然后是右⼦树,最后是根节点。
上图中⼆叉树的后序遍历结果为:3 -> 4 -> 1 -> 5 -> 6 -> 2 -> 04、层序遍历⼆叉树顺序:从最顶层的节点开始,从左往右依次遍历,之后转到第⼆层,继续从左往右遍历,持续循环,直到所有节点都遍历完成上图中⼆叉树的层序遍历结果为:0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6下⾯是四种算法的伪代码:前序遍历:preOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束cout << tree[n].w ; // 输出当前节点内容preOrderParse(tree[n].leftChild); // 递归输出左⼦树preOrderParse(tree[n].rightChild); // 递归输出右⼦树}中序遍历inOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束inOrderParse(tree[n].leftChild); // 递归输出左⼦树cout << tree[n].w ; // 输出当前节点内容inOrderParse(tree[n].rightChild); // 递归输出右⼦树}pastOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束pastOrderParse(tree[n].leftChild); // 递归输出左⼦树pastOrderParse(tree[n].rightChild); // 递归输出右⼦树cout << tree[n].w ; // 输出当前节点内容}可以看到前三种遍历都是直接通过递归来完成,⽤递归遍历⼆叉树简答⽅便⽽且好理解,接下来层序遍历就需要动点脑筋了,我们如何将⼆叉树⼀层⼀层的遍历输出?其实在这⾥我们要借助⼀种数据结构来完成:队列。
二叉树的前序、后序的递归、非递归遍历算法学生姓名:贺天立指导老师:湛新霞摘要本课程设计主要解决树的前序、后序的递归、非递归遍历算法,层次序的非递归遍历算法的实现。
在课程设计中,系统开发平台为Windows 2000,程序设计设计语言采用Visual C++,程序运行平台为Windows 98/2000/XP。
用除递归算法前序,后续,中序遍历树外还通过非递归的算法遍历树。
程序通过调试运行,初步实现了设计目标,并且经过适当完善后,将可以应用在商业中解决实际问题。
关键词程序设计;C++;树的遍历;非递归遍历1 引言本课程设计主要解决树的前序、后序的递归、非递归遍历算法,层次序的非递归遍历算法的实现。
1.1课程设计的任务构造一棵树并输入数据,编写三个函数,非别是树的前序递归遍历算法、树的后序递归遍历算法、树的非递归中序遍历算法(这里的非递归以中序为例)。
在主程序中调用这三个函数进行树的遍历,观察用不同的遍历方法输出的数据的顺序和验证递归与非递归输出的数据是否一样。
1.2课程设计的性质由要求分析知,本设计主要要求解决树的前序、后序的递归、非递归遍历算法,层次序的非递归遍历算法的实现。
所以设计一个良好的前序、后序的递归、非递归遍历算法非常重要。
1.3课程设计的目的在程序设计中,可以用两种方法解决问题:一是传统的结构化程序设计方法,二是更先进的面向对象程序设计方法[1]。
利用《数据结构》课程的相关知识完成一个具有一定难度的综合设计题目,利用C语言进行程序设计。
巩固和加深对线性表、栈、队列、字符串、树、图、查找、排序等理论知识的理解;掌握现实复杂问题的分析建模和解决方法(包括问题描述、系统分析、设计建模、代码实现、结果分析等);提高利用计算机分析解决综合性实际问题的基本能力。
树的遍历分为前序、中序和后序,可以用递归算法实现树的三种遍历。
除了递归外还可以构造栈,利用出栈和入栈来实现树的前序遍历、中序遍历和后序遍历。
二叉树遍历解题技巧
二叉树遍历是指按照一定规则,依次访问二叉树的所有节点的过程。
常见的二叉树遍历有前序遍历、中序遍历和后序遍历。
以下是一些二叉树遍历解题技巧:
1. 递归遍历:递归是最直观、最简单的遍历方法。
对于一个二叉树,可以递归地遍历其左子树和右子树。
在递归的过程中,可以对节点进行相应的处理。
例如,前序遍历可以先访问根节点,然后递归遍历左子树和右子树。
2. 迭代遍历:迭代遍历可以使用栈或队列来实现。
对于前序遍历,可以使用栈来记录遍历路径。
首先将根节点入栈,然后依次弹出栈顶节点,访问该节点,并将其右子节点和左子节点分别入栈。
中序遍历和后序遍历也可以使用类似的方法,只是访问节点的顺序会有所不同。
3. Morris遍历:Morris遍历是一种空间复杂度为O(1)的二叉树遍历方法。
它利用二叉树节点的空闲指针来存储遍历下一个节点的信息,从而避免使用额外的栈或队列。
具体步骤可以参考相关算法书籍或博客。
4. 层次遍历:层次遍历是一种逐层遍历二叉树的方法。
可以使用队列来实现。
首先将根节点入队,然后依次将队首节点出队并访问,同时将其左子节点和右子节点入队。
不断重复这个过程,直到队列为空。
层次遍历可以按照从上到下、从左到右的顺序访问二叉树的节点。
除了以上技巧,还可以根据具体问题的特点来选择合适的遍历方法。
在实际解题中,可以尝试不同的遍历方法并选择效率高、代码简洁的方法。
先序遍历二叉树的算法非递归算法一、引言二叉树是一种常见的数据结构,其遍历方式包括先序遍历、中序遍历和后序遍历。
先序遍历是一种常用的遍历方式,它按照根节点-左子树-右子树的顺序访问每个节点。
在递归实现先序遍历二叉树的基础上,非递归算法的出现使得算法的实现更为简洁和高效。
二、非递归算法原理非递归算法的实现原理基于栈数据结构。
我们首先将根节点入栈,然后不断弹出栈顶元素并访问,同时将右子树和左子树分别入栈。
当栈为空时,表示遍历完成。
这种方法避免了递归调用可能导致的堆栈溢出问题,同时提高了算法的效率。
三、非递归算法实现以下是用Python实现的非递归先序遍历二叉树的算法:```pythondefpreorder_traversal_non_recursive(node):ifnodeisNone:return#将当前节点入栈stack.append(node)#当栈不为空时,不断弹出栈顶元素并访问whilestack:curr=stack.pop()#弹出栈顶元素print(curr.value)#访问当前节点#将右子节点入栈ifcurr.right:stack.append(curr.right)#将左子节点入栈ifcurr.left:stack.append(curr.left)```四、算法应用与讨论非递归算法的应用范围广泛,不仅可以应用于二叉树的遍历,还可以应用于二叉树的创建、插入、删除等操作。
在实际应用中,我们可以通过Python中的列表或者类来实现栈数据结构,进而实现非递归算法。
此外,非递归算法还可以与其他算法结合,如深度优先搜索(DFS)和广度优先搜索(BFS),以实现更复杂的数据处理任务。
五、总结非递归先序遍历二叉树的算法是一种实用的技术,它能够简化代码、提高效率并避免堆栈溢出问题。
通过使用栈数据结构,我们可以轻松地实现非递归算法,并将其应用于各种二叉树操作中。
这种技术对于理解和应用二叉树数据结构具有重要的意义。
⼆叉树的三种遍历⽅式⼀、⼆叉树的定义⼆叉树(Binary Tree)的递归定义:⼆叉树要么为空,要么由根节点(root)、左⼦树(left subtree)和右⼦树(right subtree)组成,⽽左⼦书和右⼦树分别是⼀颗⼆叉树。
注意,在计算机中,树⼀般是"倒置"的,即根在上,叶⼦在下。
⼆、⼆叉树的层次遍历三种遍历⽅式:先序遍历、中序遍历、后序遍历(根据根节点的顺序)PreOrder(T) = T的根节点 + PreOrder(T的左⼦树) + PreOrder(T的右⼦树)InOrder(T) = InOrder(T的左⼦树) + T的根节点 + InOrder(T的右⼦树)PostOrder(T) = PostOrder(左⼦树) + PostOrder(右⼦树)其中加号表⽰字符串连接这三种遍历都是递归遍历或者说深度优先遍历 (DFS,Depth-First-Search)三、已知两种遍历⽅式,推出另⼀种遍历⽅式先序+中序---->后序后序+中序---->先序因为后序或先序可以直接得到根节点,然后只要在中序遍历中找到,就知道左右⼦树的中序和后序遍历,递归下去就可以构造出⼆叉树了。
四、样例(1) 题意:给⼀颗点带权(各权值都不相同,都是⼩于10000的整数)的⼆叉树的中序和后序遍历,找⼀个叶⼦节点使它到根的路径上的权应尽量少。
(2) 代码实现:1 #include<stdio.h>2 #include<iostream>3 #include<algorithm>4 #include<cstring>5 #include<string>6 #include<sstream>7using namespace std;89const int INF = 0x3f3f3f3f;10//因为各节点的权值各不相同且都只是整数,直接⽤权值作为节点编号11const int maxn = 10000 + 10;12int in_order[maxn], post_order[maxn], lch[maxn], rch[maxn];13int n;14int best, best_sum;1516//按⾏读取数据,并存到数组中17bool read_list(int *a)18{19string line;20if (!getline(cin, line)) return false;21 stringstream ss(line);22 n = 0;23int x;24while (ss >> x) a[n++] = x;25return n > 0;26}2728//把in_order[L1,R1]和post_order[L2,R2]建成⼀棵⼆叉树,返回树根29int build(int L1, int R1, int L2, int R2)30{31if (L2 > R2) return0; //空树32int root = post_order[R2];33int pos = L1;34while (in_order[pos] != root) pos++;35int cnt = pos - L1;36 lch[root] = build(L1, pos - 1, L2, L2 + cnt - 1);37 rch[root] = build(pos + 1, R1, L2 + cnt, R2 - 1);38return root;39}4041//从根节点出发,中序遍历,查找最⼩值42void dfs(int u, int sum)43{44 sum += u;4546//到达叶⼦节点,循环终⽌47if (!lch[u] && !rch[u])48 {49if (sum < best_sum)50 {51 best = u;52 best_sum = sum;53 }54return;55 }5657//加了个剪枝:如果当前的和⼤于当前的最⼩和,就不必从这条路继续搜58if (lch[u] && sum < best_sum) dfs(lch[u], sum);59if (rch[u] && sum < best_sum) dfs(rch[u], sum);60}6162int main()63{64while (read_list(in_order))65 {66 read_list(post_order);67 build(0, n - 1, 0, n - 1);6869 best_sum = INF;70 dfs(post_order[n - 1], 0);71 cout << best << endl;72 }73return0;74 }。
三种遍历方法一、前序遍历前序遍历是二叉树遍历的一种方法,也是最常见的遍历方式之一。
在前序遍历中,首先访问根节点,然后递归地遍历左子树,最后递归地遍历右子树。
前序遍历的应用非常广泛,例如在二叉树的构建和重建、树的深度优先搜索等问题中都会用到前序遍历。
在进行前序遍历时,可以采用递归或者非递归的方式。
1. 递归实现前序遍历:递归实现前序遍历非常简单,具体步骤如下:- 首先判断当前节点是否为空,若为空则返回;- 访问当前节点;- 递归遍历左子树;- 递归遍历右子树。
2. 非递归实现前序遍历:非递归实现前序遍历需要借助栈来实现,具体步骤如下:- 将根节点入栈;- 循环执行以下步骤,直到栈为空:- 弹出栈顶节点,并访问该节点;- 若该节点的右子节点不为空,则将右子节点入栈;- 若该节点的左子节点不为空,则将左子节点入栈。
二、中序遍历中序遍历是二叉树遍历的另一种方法,同样也是一种常用的遍历方式。
在中序遍历中,首先递归地遍历左子树,然后访问根节点,最后递归地遍历右子树。
中序遍历的应用也非常广泛,例如在二叉搜索树的操作中,中序遍历可以按照升序输出所有节点的值。
1. 递归实现中序遍历:递归实现中序遍历的步骤如下:- 首先判断当前节点是否为空,若为空则返回;- 递归遍历左子树;- 访问当前节点;- 递归遍历右子树。
2. 非递归实现中序遍历:非递归实现中序遍历同样需要借助栈来实现,具体步骤如下:- 将根节点入栈;- 循环执行以下步骤,直到栈为空:- 若当前节点不为空,则将当前节点入栈,并将当前节点指向其左子节点;- 若当前节点为空,则弹出栈顶节点,并访问该节点,然后将当前节点指向其右子节点。
三、后序遍历后序遍历是二叉树遍历的另一种方式,也是最后一种常见的遍历方式。
在后序遍历中,首先递归地遍历左子树,然后递归地遍历右子树,最后访问根节点。
后序遍历的应用也非常广泛,例如在二叉树的删除操作中,需要先删除子节点,再删除根节点。
○A ○C○D ○B○E○F○G《数据结构与算法》实验报告三——二叉树的操作与应用一.实验目的熟悉二叉链表存储结构的特征,掌握二叉树遍历操作及其应用二. 实验要求(题目)说明:以下题目中(一)为全体必做,(二)(三)任选其一完成(一)从键盘输入二叉树的扩展先序遍历序列,建立二叉树的二叉链表存储结构;(二)分别用递归和非递归算法实现二叉树的三种遍历;(三)模拟WindowsXP资源管理器中的目录管理方式,模拟实际创建目录结构,并以二叉链表形式存储,按照凹入表形式打印目录结构(以扩展先序遍历序列输入建立二叉链表结构),如下图所示: (基本要求:限定目录名为单字符;扩展:允许目录名是多字符组合)三. 分工说明一起编写、探讨流程图,根据流程图分工编写算法,共同讨论修改,最后上机调试修改。
四. 概要设计实现算法,需要链表的抽象数据类型:ADT Binarytree {数据对象:D是具有相同特性的数据元素的集合数据关系R:若D为空集,则R为空集,称binarytree为空二叉树;若D不为空集,则R为{H},H是如下二元关系;(1)在D中存在唯一的称为根的数据元素root,它在关系H下无前驱;(2)若D-{root}不为空,则存在D-{root}={D1,Dr},且D1∩Dr为空集;(3)若D1不为空,则D1中存在唯一的元素x1,<root,x1>∈H,且存在D1上的关系H1是H的子集;若Dr不为空集,则Dr中存在唯一的元素Xr,<root,Xr>∈H,且存在Dr上的关系Hr为H的子集;H={<root,x1>,<root,Xr>,H1,Hr};(4) (D1,{H1})是一颗符合本定义的二叉树,称为根的左子树,(Dr,{Hr})是一颗符合本定义的二叉树,称为根的右子树。
基本操作:Creatbitree(&S,definition)初始条件:definition给出二叉树S的定义操作结果:按definition构造二叉树Scounter(T)初始条件:二叉树T已经存在操作结果:返回二叉树的总的结点数onecount(T)初始条件:二叉树T已经存在操作结果:返回二叉树单分支的节点数Clearbintree(S)初始条件:二叉树S已经存在操作结果:将二叉树S清为空树Bitreeempty(S)初始条件:二叉树S已经存在操作结果:若S为空二叉树,则返回TRUE,否则返回FALSEBitreedepth(S,&e)初始条件:二叉树S已经存在操作结果:返回S的深度Parent(S)初始条件:二叉树S已经存在,e是S中的某个结点操作结果:若e是T的非根结点,则返回它的双亲,否则返回空Preordertraverse(S)初始条件:二叉树S已经存在,Visit是对结点操作的应用函数。
操作结果:先序遍历S,对每个结点调用函数visit一次且仅一次。
一旦visit失败,则操作失败。
Inordertraverse (S,&e)初始条件:二叉树S已经存在,Visit是对结点操作的应用函数。
操作结果:中序遍历S,对每个结点调用函数visit一次且仅一次。
一旦visit失败,则操作失败。
Postordertraverse (&S,e)初始条件:二叉树S已经存在,Visit是对结点操作的应用函数。
操作结果:后序遍历S,对每个结点调用函数visit一次且仅一次。
一旦visit失败,则操作失败。
}ADT Binarytree五、详细设计扩展先序遍历:# include<stdio.h># include<stdlib.h>#include<string.h>typedef struct binarytree{char data;struct binarytree *lchild,*rchild;}BiTreeNode,*BiTree;void CreateBiTree(BiTree *bt){char ch;ch=getchar();if(ch=='.') *bt=NULL;else{*bt=(BiTreeNode *)malloc(sizeof(BiTreeNode));(*bt)->data=ch;CreateBiTree(&((*bt)->lchild));CreateBiTree(&((*bt)->rchild));}}void PreOder(BiTree root){if(root!=NULL){printf("%4c",root->data);PreOder(root->lchild);PreOder(root->rchild);}}main(){BiTree root;CreateBiTree(&root);printf("先序遍历:\n");PreOder(root);}递归算法:#include"stdio.h"#define PR printf#define ERROR 0#define MAX 100/*============================建立各结构体===============================*/ typedef struct node{char data; /*数据域*/struct node *lchild;struct node *rchild; /*结点的左右指针,分别指向结点的左右孩子*/}BTNode;typedef BTNode *DataType;typedef struct{DataType data[MAX];int top;}SeqStack;SeqStack *s;/*============================栈的操作===================================*/SeqStack *createemptystacks() /*创建一个空栈*/{SeqStack *s;s=(SeqStack*)malloc(sizeof(SeqStack));s->top=0;return s;}int stackemptys(SeqStack *s) /*判栈空*/{return s->top==0;}int stackfulls(SeqStack *s) /*判栈满*/{return s->top==MAX;}void pushs(SeqStack *s,DataType x) /*进栈*/{if(stackfulls(s))PR("over flow\n");elses->data[s->top++]=x;}void pops(SeqStack *s) /*退栈*/{if(stackemptys(s))PR("underflow\n");elses->top--;}DataType gettops(SeqStack *s) /*栈非空时取栈顶元素*/{return s->data[s->top-1];}/*============================建立二叉树==================================*/BTNode *createbintree() /*输入扩充的先序序列,建立二叉树*/ {BTNode *t;char x;scanf("%c",&x);if(x=='#')t=NULL; /*读入#,返回空指针 */else{t=(BTNode *)malloc(sizeof(BTNode)); /*生成结点*/ t->data=x;t->lchild=createbintree(); /*构造左子树*/t->rchild=createbintree(); /*构造右子树*/ }return(t);}/*==============================树的遍历===================================*/void preorder(BTNode *t) /*NLR 先序遍历*/{if(t!=NULL){PR(" %c\t",t->data); /*访问结点*/preorder(t->lchild); /*中序遍历左子树*/preorder(t->rchild); /*中序遍历右子树*/}}/*========================================================================= */void inorder(BTNode *t) /*LNR 中序遍历*/{if(t!=NULL){inorder(t->lchild); /*中序遍历左子树*/PR(" %c\t",t->data); /*访问结点*/inorder(t->rchild); /*中序遍历右子树*/}}/*========================================================================= */void postorder(BTNode *t) /*LRN 后序遍历*/{if(t!=NULL){postorder(t->lchild); /*后序遍历左子树*/postorder(t->rchild); /*后序遍历右子树*/PR(" %c\t",t->data); /*访问结点*/}}/*===============================主函数=============================-=======*/void main(){BTNode *t;int n=0;PR(" ->> 请输入二叉树各元素:(例如 abd##e##cf##g##)\n"); //例如abd##e##cf##g##t=createbintree();PR("\n\n ->> 1.按先序遍历输出为:\n");preorder(t); /*NLR 先序遍历*/PR("\n 按中序遍历输出为:\n");inorder(t); /*LNR 中序遍历*/PR("\n 按后序遍历输出为:\n");postorder(t); /*LRN 后序遍历*/}# include<stdio.h># include<stdlib.h># include<string.h># define TRUE 1# define FALSE 0# define Stack_Size 50# define NUM 20typedef struct binarytree /*定义一棵二叉树*/{char data;struct binarytree *LChild,*RChild;}BiTNode,*BiTree;typedef struct /*定义顺序栈S*/{BiTree data[Stack_Size];int top;}SeqStack;void CreateBiTree(BiTree &bt) /*利用“扩展先序遍历”创建二叉链表*/{char ch;ch=getchar(); /*调用getchar函数,需要用户输入字符,用户按回车键结束输入*/if(ch=='.') bt=NULL;else{bt=(BiTNode *)malloc(sizeof(BiTNode));bt->data=ch;CreateBiTree(bt->LChild);CreateBiTree(bt->RChild);}}void InitStack(SeqStack &S) /*初始化顺序栈S*/ {S.top=-1;}int IsEmpty(SeqStack S) /*判栈空*/{return(S.top==-1? TRUE:FALSE);}int Push(SeqStack &S,BiTree &x) /*进栈*/{if(S.top==Stack_Size-1)return(FALSE);S.top++;S.data[S.top]=x;return(TRUE);}int Pop(SeqStack &S,BiTree &x) /*出栈*/{if(S.top==-1)return(FALSE);else{x=S.data[S.top];S.top--;return(TRUE);}}void PreOrder(BiTree root) /*先序遍历非递归*/ {BiTNode *p;SeqStack S;p=root;InitStack(S);while(p!=NULL||!IsEmpty(S)){while(p!=NULL){printf("%4c",p->data);Push(S,p);p=p->LChild;}if(IsEmpty(S))return;Pop(S,p);p=p->RChild;}}void InOrder(BiTree root) /*中序遍历非递归*/{BiTNode *p;SeqStack S;InitStack(S);p=root;while(p!=NULL || ! IsEmpty(S)){if(p!=NULL){Push(S,p);p=p->LChild;}else{Pop(S,p);printf("%4c",p->data);p=p->RChild;}}}void PostOrder(BiTree root) /*后序遍历非递归*/{BiTNode *p,*q;BiTNode **S;int top=0;q=NULL;p=root;S=(BiTNode**)malloc(sizeof(BiTNode*)*NUM); /*NUM为预定义的常数*/ while(p!=NULL || top!=0){while(p!=NULL){top++;S[top]=p;p=p->LChild;}if(top>0){p=S[top];if((p->RChild==NULL)||(p->RChild==q)){printf("%4c",p->data);q=p;top--;p=NULL;}elsep=p->RChild;}}free(S);}void main() /*主函数部分*/{loop:BiTree root=NULL;CreateBiTree(root);printf("PreOrder traversal is:\n");PreOrder(root);printf("\n");printf("InOrder traversal is:\n");InOrder(root);printf("\n");printf("PostOrder traversal is:\n");PostOrder(root);printf("\n");printf("Please input a new one:\n");char c=getchar();goto loop;}实现概要设计中定义的所有的数据类型,对每个操作给出伪码算法或算法流程图。