递归非递归两种算法遍历二叉树讲解
- 格式:doc
- 大小:163.50 KB
- 文档页数:12
二叉排序树的非递归算法二叉排序树,也称为二叉搜索树,是一种常用的数据结构。
它具有以下特点:对于二叉排序树中的任意节点,其左子树中的所有节点的值小于该节点的值,而右子树中的所有节点的值大于该节点的值。
因此,二叉排序树的非递归算法是一种用于在二叉排序树中执行操作的方法。
非递归算法是一种迭代的方式来操作二叉排序树。
它使用栈来保存待处理的节点。
初始时,将根节点入栈。
然后,从栈中弹出一个节点,进行相应的操作。
如果该节点存在左子树,则将左子树的根节点入栈。
如果该节点存在右子树,则将右子树的根节点入栈。
对于二叉排序树的非递归算法,我们可以实现以下几个常用的功能:1. 查找:从根节点开始,如果目标值小于当前节点的值,则继续在左子树中查找;如果目标值大于当前节点的值,则继续在右子树中查找;如果目标值等于当前节点的值,则找到目标节点。
如果遍历完整个树仍未找到目标节点,则表示目标节点不存在。
2. 插入:从根节点开始,逐个比较待插入节点的值与当前节点的值。
如果待插入节点的值小于当前节点的值,则继续在左子树中插入;如果待插入节点的值大于当前节点的值,则继续在右子树中插入。
如果待插入节点的值等于当前节点的值,则表示待插入节点已经存在于树中,不需要重复插入。
3. 删除:从根节点开始,逐个比较待删除节点的值与当前节点的值。
如果待删除节点的值小于当前节点的值,则继续在左子树中删除;如果待删除节点的值大于当前节点的值,则继续在右子树中删除。
如果待删除节点的值等于当前节点的值,则分为以下三种情况处理:- 如果该节点为叶子节点,直接删除该节点;- 如果该节点只有一个子节点,将该节点的子节点替代该节点的位置;- 如果该节点有两个子节点,可以选择将其左子树中的最大节点或右子树中的最小节点替代该节点的位置。
以上是二叉排序树的非递归算法的基本描述。
非递归算法是一种高效的处理二叉排序树的方法,它使用栈来保存待处理的节点,通过迭代的方式实现各种操作。
中序遍历二叉树t的非递归算法-回复中序遍历是二叉树遍历的一种方法,它的特点是先访问左子树,然后访问根节点,最后访问右子树。
在非递归算法中,我们需要借助栈来实现中序遍历。
下面我们将逐步分析如何用非递归算法中序遍历二叉树。
首先,我们需要了解栈的基本知识。
栈是一种后进先出(LIFO)的数据结构,它有两个基本操作:入栈(push)和出栈(pop)。
在中序遍历中,我们将节点按照遍历顺序依次入栈,然后出栈并访问节点。
接下来,我们来介绍中序遍历二叉树的非递归算法。
我们可以通过模拟递归来实现中序遍历。
首先,我们定义一个栈用于存储待访问的节点。
初始时,将根节点入栈。
在每一次迭代中,我们需要判断栈是否为空。
若不为空,则将栈顶节点出栈,并访问该节点。
然后,我们将栈顶节点的右子树入栈。
接下来,将栈顶节点的左子树依次入栈,直到左子树为空。
下面,我们以一个简单的例子来说明这个过程。
假设我们有如下二叉树t:1/ \2 3/ \ / \4 5 6 7我们使用中序遍历的非递归算法来遍历这棵树。
首先,将根节点入栈,此时栈中的元素为[1]。
然后,循环执行以下步骤:1. 判断栈是否为空,栈不为空,执行以下步骤;2. 将栈顶节点出栈,访问该节点;3. 将栈顶节点的右子树入栈;4. 将栈顶节点的左子树依次入栈,直到左子树为空。
按照这个步骤,我们首先将1出栈并访问,然后将右子树入栈,栈中的元素为[2, 3]。
然后,我们继续将左子树入栈,栈中的元素变为[4, 2, 3]。
此时,我们将4出栈并访问,然后将栈中的元素变为[2, 3]。
接着,我们将2出栈并访问,将右子树入栈,栈中的元素变为[5, 3]。
继续将左子树入栈,栈中的元素为[5, 6, 3]。
接着,我们将5出栈并访问,将栈中的元素变为[6, 3]。
最后,我们将6出栈并访问,将右子树入栈,栈中的元素变为[7, 3]。
最后,我们将7出栈并访问,此时栈为空,遍历结束。
通过这个例子,我们可以看到中序遍历的非递归算法确实按照中序遍历的顺序访问了二叉树的所有节点。
golang 中序遍历递归非递归中序遍历是二叉树遍历的一种方式,以左子树、根节点、右子树的顺序访问节点。
在Golang中,我们可以使用递归和非递归两种方式实现中序遍历。
一、递归实现中序遍历递归实现中序遍历是最简单直观的方式。
我们可以定义一个递归函数,用于按中序遍历访问树的节点。
```gopackage mainimport "fmt"type TreeNode struct {Val intLeft *TreeNodeRight *TreeNode}func inorderTraversal(root *TreeNode) {if root != nil {inorderTraversal(root.Left)fmt.Printf("%d ", root.Val)inorderTraversal(root.Right)}}func main() {// 构造一棵二叉树root := &TreeNode{Val: 1}root.Left = &TreeNode{Val: 2}root.Right = &TreeNode{Val: 3}root.Left.Left = &TreeNode{Val: 4}root.Left.Right = &TreeNode{Val: 5}fmt.Println("中序遍历结果:")inorderTraversal(root)}```以上代码中,我们先构造了一棵二叉树,然后调用`inorderTraversal`函数进行中序遍历。
递归函数首先检查根节点是否为空,如果不为空,则按照左子树、根节点、右子树的顺序递归调用自身。
二、非递归实现中序遍历非递归实现中序遍历使用栈来模拟递归的过程。
具体实现过程如下:```gopackage mainimport "fmt"type TreeNode struct {Val intLeft *TreeNodeRight *TreeNode}func inorderTraversal(root *TreeNode) { stack := []*TreeNode{}cur := rootfor len(stack) > 0 || cur != nil {for cur != nil {stack = append(stack, cur)cur = cur.Left}cur = stack[len(stack)-1]stack = stack[:len(stack)-1]fmt.Printf("%d ", cur.Val)cur = cur.Right}}func main() {// 构造一棵二叉树root := &TreeNode{Val: 1}root.Left = &TreeNode{Val: 2}root.Right = &TreeNode{Val: 3}root.Left.Left = &TreeNode{Val: 4}root.Left.Right = &TreeNode{Val: 5}fmt.Println("中序遍历结果:")inorderTraversal(root)}```以上代码中,我们定义了一个栈和一个指针`cur`,其中栈用于存储遍历过程中的节点。
二叉树后序遍历的非递归算法
二叉树后序遍历是指按照左子树、右子树、根节点的顺序遍历二叉树的过程。
与前序遍历和中序遍历不同,后序遍历需要考虑根节点的位置,因此需要使用栈来存储节点信息。
非递归算法一般使用栈来实现,因为后序遍历的过程中需要先遍历左子树和右子树,最后才遍历根节点,所以存储节点信息的栈需要进行一些特殊处理。
下面是二叉树后序遍历的非递归算法:
1. 创建一个空栈,并将根节点入栈。
2. 创建一个辅助变量pre表示上一个被遍历的节点。
3. 当栈不为空时,取出栈顶元素top,判断它是否为叶子节点或者它的左右子节点都被遍历过了(被遍历过的节点可以通过辅助变量pre来判断)。
4. 如果top为叶子节点或者它的左右子节点都被遍历过了,则将top出栈,并将它的值输出。
5. 如果不满足条件3,判断top的右子节点是否为pre,如果是,则说明右子树已经遍历完了,此时可以直接输出top的值,并将top出栈;如果不是,则将top的右子节点入栈。
6. 将top的左子节点入栈。
7. 将上一个被遍历的节点pre更新为top。
根据这个算法,我们可以分别对左子树和右子树进行遍历,并保证根节点最后被遍历到,从而实现二叉树的后序遍历。
这个算法的时间复杂度为O(n),空间复杂度为O(n)。
总的来说,二叉树的后序遍历是一种比较复杂的遍历方式,需要使用栈保存节点信息,并且需要特殊处理根节点的位置。
使用非递归算法实现后序遍历可以优化空间复杂度和避免栈溢出的问题。
二叉树的各种遍历算法及其深度算法一、二叉树的遍历算法二叉树是一种常见的数据结构,遍历二叉树可以按照根节点的访问顺序将二叉树的结点访问一次且仅访问一次。
根据遍历的顺序不同,二叉树的遍历算法可以分为三种:前序遍历、中序遍历和后序遍历。
1. 前序遍历(Pre-order Traversal):首先访问根节点,然后遍历左子树,最后遍历右子树。
可以用递归或者栈来实现。
2. 中序遍历(In-order Traversal):首先遍历左子树,然后访问根节点,最后遍历右子树。
可以用递归或者栈来实现。
3. 后序遍历(Post-order Traversal):首先遍历左子树,然后遍历右子树,最后访问根节点。
可以用递归或者栈来实现。
二、二叉树的深度算法二叉树的深度,也叫做高度,指的是从根节点到叶子节点的最长路径上的节点数目。
可以使用递归或者层次遍历的方式来计算二叉树的深度。
1.递归算法:二叉树的深度等于左子树的深度和右子树的深度的较大值加一、递归的终止条件是当节点为空时,深度为0。
递归的过程中通过不断递归左子树和右子树,可以求出二叉树的深度。
2.层次遍历算法:层次遍历二叉树时,每遍历完一层节点,深度加一、使用一个队列来辅助层次遍历,先将根节点加入队列,然后依次取出队列中的节点,将其左右子节点加入队列,直到队列为空,完成层次遍历。
三、示例为了更好地理解二叉树的遍历和求深度的算法,我们以一个简单的二叉树为例进行说明。
假设该二叉树的结构如下:A/\BC/\/\DEFG其中,A、B、C、D、E、F、G分别代表二叉树的结点。
1.前序遍历:A->B->D->E->C->F->G2.中序遍历:D->B->E->A->F->C->G3.后序遍历:D->E->B->F->G->C->A4.深度:2以上是针对这个二叉树的遍历和深度的计算示例。
中序遍历非递归算法一、前言在二叉树的遍历中,中序遍历是一种重要的遍历方式。
中序遍历非递归算法是指不使用递归函数,通过循环和栈等数据结构实现对二叉树进行中序遍历。
本文将详细介绍中序遍历非递归算法的实现过程和相关知识点。
二、中序遍历的定义在二叉树中,对每个节点的访问顺序有三种方式:先访问左子树,再访问根节点,最后访问右子树;先访问根节点,再访问左子树和右子树;先访问左子树和右子树,最后访问根节点。
这三种方式分别称为前序遍历、中序遍历和后序遍历。
其中,中序遍历是指按照“先访问左子树,再访问根节点,最后访问右子树”的顺序进行访问。
三、中序遍历非递归算法的思路1. 定义一个空的辅助栈;2. 从二叉树的跟节点开始循环:a. 将当前节点压入辅助栈;b. 如果当前节点存在左孩子,则将当前节点设置为其左孩子,继续循环;c. 如果当前节点不存在左孩子,则从辅助栈中弹出一个节点,并将该节点的值输出;d. 如果被弹出的节点存在右孩子,则将当前节点设置为其右孩子,继续循环;e. 如果被弹出的节点不存在右孩子,则回到步骤c。
四、中序遍历非递归算法的实现1. 定义一个空的辅助栈和一个指向二叉树跟节点的指针cur;2. 对于每个节点,如果该节点不为空或者辅助栈不为空,则进行循环:a. 如果当前节点不为空,则将其压入辅助栈中,并将当前节点更新为其左孩子;b. 如果当前节点为空,则从辅助栈中弹出一个元素,并输出该元素的值;i. 将当前节点更新为被弹出元素的右孩子。
3. 循环结束后,即可完成对二叉树的中序遍历。
五、代码实现以下是Java语言实现中序遍历非递归算法的代码:```public static void inOrder(TreeNode root) {Stack<TreeNode> stack = new Stack<>();TreeNode cur = root;while (cur != null || !stack.isEmpty()) {if (cur != null) {stack.push(cur);cur = cur.left;} else {cur = stack.pop();System.out.print(cur.val + " ");cur = cur.right;}}}```六、时间和空间复杂度中序遍历非递归算法的时间复杂度为O(n),其中n为二叉树节点的个数。
二叉树的递归及非递归的遍历及其应用二叉树是一种常见的数据结构,由节点和边组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。
递归和非递归是两种遍历二叉树的方法,递归是通过递归函数实现,而非递归则利用栈的数据结构来实现。
二叉树的遍历是指按照一定的顺序访问二叉树中的每个节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
1.前序遍历(Preorder Traversal):在前序遍历中,首先访问根节点,然后递归地遍历左子树和右子树。
遍历顺序为:根节点-左子树-右子树。
2.中序遍历(Inorder Traversal):在中序遍历中,首先递归地遍历左子树,然后访问根节点,最后递归地遍历右子树。
遍历顺序为:左子树-根节点-右子树。
3.后序遍历(Postorder Traversal):在后序遍历中,首先递归地遍历左子树和右子树,最后访问根节点。
遍历顺序为:左子树-右子树-根节点。
递归遍历方法的实现相对简单,但可能存在性能问题,因为递归调用会导致函数的调用和返回开销,尤其是在处理大规模二叉树时。
而非递归遍历方法则能够通过利用栈的特性,在迭代过程中模拟函数调用栈,避免了函数调用的性能开销。
非递归遍历二叉树的方法通常利用栈来实现。
遍历过程中,将节点按照遍历顺序入栈,然后访问栈顶元素,并将其出栈。
对于前序遍历和中序遍历,入栈顺序不同,而对于后序遍历,需要维护一个已访问标记来标识节点是否已访问过。
以下是非递归遍历二叉树的示例代码(以前序遍历为例):```pythonclass TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightdef preorderTraversal(root): if not root:return []stack = []result = []stack.append(root)while stack:node = stack.pop()result.append(node.val)if node.right:stack.append(node.right)if node.left:stack.append(node.left)return result```在实际应用中,二叉树的遍历方法有很多应用。
森林、树、⼆叉树的性质与关系森林、树、⼆叉树的性质与关系这篇博客写的太累了。
本⽂中对于这部分的讲解没有提到的部分:对于⼆叉树的遍历:重点讲了⾮递归遍历的实现⽅式和代码(递归⽅法使⽤的相对较多,请直接参考博客代码)对于哈夫曼编码和线索⼆叉树的代码实现没有列出。
树我们对于树和⼆叉树这⼀部分的内容主要研究树的逻辑结构和存储结构,由于计算机的特殊性存储结构及⼆叉树的简单性,我们更主要讨论⼆叉树的逻辑结构和存储结构并对其进⾏实现(其中包含⼆叉树的⼀些重要性质),另外我们在研究这⼀类问题时,⾸先要考虑到树与森林之间的转换,以及树与⼆叉树之间的转换。
从⽽简化为最简单的⼆叉树问题。
知识体系结构图:树的定义:(采⽤递归⽅法去定义树)树:n(n≥0)个结点的有限集合。
当n=0时,称为空树;任意⼀棵⾮空树满⾜以下条件:(1)有且仅有⼀个特定的称为根的结点;(2)当n>1时,除根结点之外的其余结点被分成m(m>0)个互不相交的有限集合T1,T2,… ,Tm,其中每个集合⼜是⼀棵树,并称为这个根结点的⼦树。
(⽤图的定义法去描述树:连通⽽不含回路的⽆向图称为⽆向树,简称树,常⽤T表⽰树)树的基本术语:结点的度:结点所拥有的⼦树的个数。
树的度:树中各结点度的最⼤值。
叶⼦结点:度为0的结点,也称为终端结点。
分⽀结点:度不为0的结点,也称为⾮终端结点。
孩⼦、双亲:树中某结点⼦树的根结点称为这个结点的孩⼦结点,这个结点称为它孩⼦结点的双亲结点;兄弟:具有同⼀个双亲的孩⼦结点互称为兄弟。
祖先、⼦孙:在树中,如果有⼀条路径从结点x到结点y,那么x就称为y的祖先,⽽y称为x的⼦孙。
路径:如果树的结点序列n1, n2, …, nk有如下关系:结点ni是ni+1的双亲(1<=i<k),则把n1, n2, …, nk称为⼀条由n1⾄nk的路径;路径上经过的边的个数称为路径长度。
结点所在层数:根结点的层数为1;对其余任何结点,若某结点在第k层,则其孩⼦结点在第k+1层。
二叉树的遍历实验报告一、实验目的1.了解二叉树的基本概念和性质;2.理解二叉树的遍历方式以及它们的实现方法;3.学会通过递归和非递归算法实现二叉树的遍历。
二、实验内容1.二叉树的定义在计算机科学中,二叉树是一种重要的数据结构,由节点及它们的左右儿子组成。
没有任何子节点的节点称为叶子节点,有一个子节点的节点称为一度点,有两个子节点的节点称为二度点。
二叉树的性质:1.每个节点最多有两个子节点;2.左右子节点的顺序不能颠倒,左边是父节点的左子节点,右边是父节点的右子节点;3.二叉树可以为空,也可以只有一个根节点;4.二叉树的高度是从根节点到最深叶子节点的层数;5.二叉树的深度是从最深叶子节点到根节点的层数;6.一个深度为d的二叉树最多有2^(d+1) -1个节点,其中d>=1;7.在二叉树的第i层上最多有2^(i-1)个节点,其中i>=1。
2.二叉树的遍历方式二叉树的遍历是指从根节点出发,按照一定的顺序遍历二叉树中的每个节点。
常用的二叉树遍历方式有三种:前序遍历、中序遍历和后序遍历。
前序遍历:先遍历根节点,再遍历左子树,最后遍历右子树;中序遍历:先遍历左子树,再遍历根节点,最后遍历右子树;后序遍历:先遍历左子树,再遍历右子树,最后遍历根节点。
递归算法:利用函数调用,递归实现二叉树的遍历;非递归算法:利用栈或队列,对二叉树进行遍历。
三、实验步骤1.创建二叉树数据结构并插入节点;2.实现二叉树的前序遍历、中序遍历、后序遍历递归算法;3.实现二叉树的前序遍历、中序遍历、后序遍历非递归算法;4.测试算法功能。
四、实验结果1.创建二叉树数据结构并插入节点为了测试三种遍历方式的算法实现,我们需要创建一个二叉树并插入节点,代码如下:```c++//定义二叉树节点struct TreeNode {int val;TreeNode* left;TreeNode* right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}};递归算法是实现二叉树遍历的最简单方法,代码如下:```c++//前序遍历非递归算法vector<int> preorderTraversal(TreeNode* root) {stack<TreeNode*> s;vector<int> res;if (!root) return res;s.push(root);while (!s.empty()) {TreeNode* tmp = s.top();s.pop();res.push_back(tmp->val);if (tmp->right) s.push(tmp->right);if (tmp->left) s.push(tmp->left);}return res;}4.测试算法功能return 0;}```测试结果如下:preorderTraversal: 4 2 1 3 6 5 7inorderTraversal: 1 2 3 4 5 6 7postorderTraversal: 1 3 2 5 7 6 4preorderTraversalNonRecursive: 4 2 1 3 6 5 7inorderTraversalNonRecursive: 1 2 3 4 5 6 7postorderTraversalNonRecursive: 1 3 2 5 7 6 4本次实验通过实现二叉树的递归和非递归遍历算法,加深了对二叉树的理解,并熟悉了遍历算法的实现方法。
二叉树的创建与遍历的实验总结引言二叉树是一种重要的数据结构,在计算机科学中有着广泛的应用。
了解二叉树的创建和遍历方法对于数据结构的学习和算法的理解至关重要。
本文将对二叉树的创建和遍历进行实验,并总结相应的经验和思考。
二叉树的定义在开始实验之前,我们首先需要了解二叉树的定义和基本概念。
二叉树是一种每个节点最多拥有两个子节点的树形结构。
每个节点包含一个值和指向其左右子节点的指针。
根据节点的位置,可以将二叉树分为左子树和右子树。
创建二叉树二叉树的创建可以采用多种方法,包括手动创建和通过编程实现。
在实验中,我们主要关注通过编程方式实现二叉树的创建。
1. 递归方法递归是一种常用的创建二叉树的方法。
通过递归,我们可以从根节点开始,逐层创建左子树和右子树。
具体步骤如下:1.创建一个空节点作为根节点。
2.递归地创建左子树。
3.递归地创建右子树。
递归方法的代码实现如下所示:class TreeNode:def __init__(self, value):self.value = valueself.left = Noneself.right = Nonedef create_binary_tree(values):if not values:return None# 使用队列辅助创建二叉树queue = []root = TreeNode(values[0])queue.append(root)for i in range(1, len(values)):node = TreeNode(values[i])# 当前节点的左子节点为空,则将新节点作为左子节点if not queue[0].left:queue[0].left = node# 当前节点的右子节点为空,则将新节点作为右子节点elif not queue[0].right:queue[0].right = node# 当前节点的左右子节点已经齐全,可以从队列中删除该节点queue.pop(0)# 将新节点添加到队列中,下一次循环时可以使用该节点queue.append(node)return root2. 非递归方法除了递归方法,我们还可以使用非递归方法创建二叉树。
二叉树的前序、后序的递归、非递归遍历算法学生姓名:贺天立指导老师:湛新霞摘要本课程设计主要解决树的前序、后序的递归、非递归遍历算法,层次序的非递归遍历算法的实现。
在课程设计中,系统开发平台为Windows 2000,程序设计设计语言采用Visual C++,程序运行平台为Windows 98/2000/XP。
用除递归算法前序,后续,中序遍历树外还通过非递归的算法遍历树。
程序通过调试运行,初步实现了设计目标,并且经过适当完善后,将可以应用在商业中解决实际问题。
关键词程序设计;C++;树的遍历;非递归遍历1 引言本课程设计主要解决树的前序、后序的递归、非递归遍历算法,层次序的非递归遍历算法的实现。
1.1课程设计的任务构造一棵树并输入数据,编写三个函数,非别是树的前序递归遍历算法、树的后序递归遍历算法、树的非递归中序遍历算法(这里的非递归以中序为例)。
在主程序中调用这三个函数进行树的遍历,观察用不同的遍历方法输出的数据的顺序和验证递归与非递归输出的数据是否一样。
1.2课程设计的性质由要求分析知,本设计主要要求解决树的前序、后序的递归、非递归遍历算法,层次序的非递归遍历算法的实现。
所以设计一个良好的前序、后序的递归、非递归遍历算法非常重要。
1.3课程设计的目的在程序设计中,可以用两种方法解决问题:一是传统的结构化程序设计方法,二是更先进的面向对象程序设计方法[1]。
利用《数据结构》课程的相关知识完成一个具有一定难度的综合设计题目,利用C语言进行程序设计。
巩固和加深对线性表、栈、队列、字符串、树、图、查找、排序等理论知识的理解;掌握现实复杂问题的分析建模和解决方法(包括问题描述、系统分析、设计建模、代码实现、结果分析等);提高利用计算机分析解决综合性实际问题的基本能力。
树的遍历分为前序、中序和后序,可以用递归算法实现树的三种遍历。
除了递归外还可以构造栈,利用出栈和入栈来实现树的前序遍历、中序遍历和后序遍历。
二叉树遍历解题技巧
二叉树遍历是指按照一定规则,依次访问二叉树的所有节点的过程。
常见的二叉树遍历有前序遍历、中序遍历和后序遍历。
以下是一些二叉树遍历解题技巧:
1. 递归遍历:递归是最直观、最简单的遍历方法。
对于一个二叉树,可以递归地遍历其左子树和右子树。
在递归的过程中,可以对节点进行相应的处理。
例如,前序遍历可以先访问根节点,然后递归遍历左子树和右子树。
2. 迭代遍历:迭代遍历可以使用栈或队列来实现。
对于前序遍历,可以使用栈来记录遍历路径。
首先将根节点入栈,然后依次弹出栈顶节点,访问该节点,并将其右子节点和左子节点分别入栈。
中序遍历和后序遍历也可以使用类似的方法,只是访问节点的顺序会有所不同。
3. Morris遍历:Morris遍历是一种空间复杂度为O(1)的二叉树遍历方法。
它利用二叉树节点的空闲指针来存储遍历下一个节点的信息,从而避免使用额外的栈或队列。
具体步骤可以参考相关算法书籍或博客。
4. 层次遍历:层次遍历是一种逐层遍历二叉树的方法。
可以使用队列来实现。
首先将根节点入队,然后依次将队首节点出队并访问,同时将其左子节点和右子节点入队。
不断重复这个过程,直到队列为空。
层次遍历可以按照从上到下、从左到右的顺序访问二叉树的节点。
除了以上技巧,还可以根据具体问题的特点来选择合适的遍历方法。
在实际解题中,可以尝试不同的遍历方法并选择效率高、代码简洁的方法。
⼆叉树的三种遍历⽅式⼀、⼆叉树的定义⼆叉树(Binary Tree)的递归定义:⼆叉树要么为空,要么由根节点(root)、左⼦树(left subtree)和右⼦树(right subtree)组成,⽽左⼦书和右⼦树分别是⼀颗⼆叉树。
注意,在计算机中,树⼀般是"倒置"的,即根在上,叶⼦在下。
⼆、⼆叉树的层次遍历三种遍历⽅式:先序遍历、中序遍历、后序遍历(根据根节点的顺序)PreOrder(T) = T的根节点 + PreOrder(T的左⼦树) + PreOrder(T的右⼦树)InOrder(T) = InOrder(T的左⼦树) + T的根节点 + InOrder(T的右⼦树)PostOrder(T) = PostOrder(左⼦树) + PostOrder(右⼦树)其中加号表⽰字符串连接这三种遍历都是递归遍历或者说深度优先遍历 (DFS,Depth-First-Search)三、已知两种遍历⽅式,推出另⼀种遍历⽅式先序+中序---->后序后序+中序---->先序因为后序或先序可以直接得到根节点,然后只要在中序遍历中找到,就知道左右⼦树的中序和后序遍历,递归下去就可以构造出⼆叉树了。
四、样例(1) 题意:给⼀颗点带权(各权值都不相同,都是⼩于10000的整数)的⼆叉树的中序和后序遍历,找⼀个叶⼦节点使它到根的路径上的权应尽量少。
(2) 代码实现:1 #include<stdio.h>2 #include<iostream>3 #include<algorithm>4 #include<cstring>5 #include<string>6 #include<sstream>7using namespace std;89const int INF = 0x3f3f3f3f;10//因为各节点的权值各不相同且都只是整数,直接⽤权值作为节点编号11const int maxn = 10000 + 10;12int in_order[maxn], post_order[maxn], lch[maxn], rch[maxn];13int n;14int best, best_sum;1516//按⾏读取数据,并存到数组中17bool read_list(int *a)18{19string line;20if (!getline(cin, line)) return false;21 stringstream ss(line);22 n = 0;23int x;24while (ss >> x) a[n++] = x;25return n > 0;26}2728//把in_order[L1,R1]和post_order[L2,R2]建成⼀棵⼆叉树,返回树根29int build(int L1, int R1, int L2, int R2)30{31if (L2 > R2) return0; //空树32int root = post_order[R2];33int pos = L1;34while (in_order[pos] != root) pos++;35int cnt = pos - L1;36 lch[root] = build(L1, pos - 1, L2, L2 + cnt - 1);37 rch[root] = build(pos + 1, R1, L2 + cnt, R2 - 1);38return root;39}4041//从根节点出发,中序遍历,查找最⼩值42void dfs(int u, int sum)43{44 sum += u;4546//到达叶⼦节点,循环终⽌47if (!lch[u] && !rch[u])48 {49if (sum < best_sum)50 {51 best = u;52 best_sum = sum;53 }54return;55 }5657//加了个剪枝:如果当前的和⼤于当前的最⼩和,就不必从这条路继续搜58if (lch[u] && sum < best_sum) dfs(lch[u], sum);59if (rch[u] && sum < best_sum) dfs(rch[u], sum);60}6162int main()63{64while (read_list(in_order))65 {66 read_list(post_order);67 build(0, n - 1, 0, n - 1);6869 best_sum = INF;70 dfs(post_order[n - 1], 0);71 cout << best << endl;72 }73return0;74 }。
三种遍历方法一、前序遍历前序遍历是二叉树遍历的一种方法,也是最常见的遍历方式之一。
在前序遍历中,首先访问根节点,然后递归地遍历左子树,最后递归地遍历右子树。
前序遍历的应用非常广泛,例如在二叉树的构建和重建、树的深度优先搜索等问题中都会用到前序遍历。
在进行前序遍历时,可以采用递归或者非递归的方式。
1. 递归实现前序遍历:递归实现前序遍历非常简单,具体步骤如下:- 首先判断当前节点是否为空,若为空则返回;- 访问当前节点;- 递归遍历左子树;- 递归遍历右子树。
2. 非递归实现前序遍历:非递归实现前序遍历需要借助栈来实现,具体步骤如下:- 将根节点入栈;- 循环执行以下步骤,直到栈为空:- 弹出栈顶节点,并访问该节点;- 若该节点的右子节点不为空,则将右子节点入栈;- 若该节点的左子节点不为空,则将左子节点入栈。
二、中序遍历中序遍历是二叉树遍历的另一种方法,同样也是一种常用的遍历方式。
在中序遍历中,首先递归地遍历左子树,然后访问根节点,最后递归地遍历右子树。
中序遍历的应用也非常广泛,例如在二叉搜索树的操作中,中序遍历可以按照升序输出所有节点的值。
1. 递归实现中序遍历:递归实现中序遍历的步骤如下:- 首先判断当前节点是否为空,若为空则返回;- 递归遍历左子树;- 访问当前节点;- 递归遍历右子树。
2. 非递归实现中序遍历:非递归实现中序遍历同样需要借助栈来实现,具体步骤如下:- 将根节点入栈;- 循环执行以下步骤,直到栈为空:- 若当前节点不为空,则将当前节点入栈,并将当前节点指向其左子节点;- 若当前节点为空,则弹出栈顶节点,并访问该节点,然后将当前节点指向其右子节点。
三、后序遍历后序遍历是二叉树遍历的另一种方式,也是最后一种常见的遍历方式。
在后序遍历中,首先递归地遍历左子树,然后递归地遍历右子树,最后访问根节点。
后序遍历的应用也非常广泛,例如在二叉树的删除操作中,需要先删除子节点,再删除根节点。
一、设计思想1. 用递归算法遍历设计思想:主要是通过不同程序顺序,从而实现递归的顺序遍历前序遍历:先判断节点是否为空,如果不为空,则输出。
再判断左节点是否为空,如果不为空,则递归调用,直到遍历到最左边。
接着再遍历最左边的右子树,如果此时右子树不为空,则递归遍历左子树的操作,直到遍历到叶子节点。
如果右子树为空,则回溯上次的递归调用,重复输出和遍历右子树的操作。
中序遍历:先遍历左节点是否为空,如果不为空,则递归调用,直到遍历到最左边或者叶子节点,然后输出,接着再遍历最左边的右子树,如果此时右子树不为空,则递归重复遍历左子树的操作,直到遍历到叶子节点。
如果右子树为空,则回溯到上次递归调用,重复输出和遍历右子树的操作。
后序遍历:先判断左节点是否为空,如果不为空则一直递归直到遍历到最左边,然后遍历右节点,再接着遍历到左子树的最右边,直到遍历到叶子节点。
此时输出,回溯到上次递归,继续执行后面的操作,重复,直到将整个树遍历完毕。
2. 用非递归算法遍历设计思想:主要是通过栈的存取,判空,从而实现树的遍历前序遍历:通过一个循环实现。
先输出节点的数值,因为栈的特性,则需要先判断右子树是否为空,如果不为空,则将右子树压栈。
然后判断左子树是否为空,如果不为空,则将左子树压栈。
接着再将栈里面的子树弹出赋给给当前节点变量,重复上述操作,直到栈为空后退出循环。
中序遍历:通过循环实现。
将树一直遍历到最左端,并将中间所经过的节点保存在栈中,当遍历到最左边的时候,则弹出栈里面的子树。
输出数值,将当前节点赋值为当前节点的右子树,遍历右子树,即重复上述操作,直到当前节点为空,并且栈内元素为0。
后序遍历:通过循环和标记栈实现。
将数一直遍历到最左端,并将中间的节点保存在树栈中,同时同步的添加一个标记栈。
当遍历到最左边的时候,弹栈并赋值给当前栈,然后判断标记栈的数值,如果数值为0的话则代表当前树没有遍历过,遍历右子树。
然后重复上面的操作,如果数值为1的话则代表此时数已经遍历过了,可以开始输出了,为了避免重复输出,将当前栈赋为空。
重复循环操作,直到栈内没有元素,且当前节点为空(因为一直左的操作并没有将右子树压栈)。
二、算法流程图图1 递归算法-先序遍历 图2 递归算法-后序遍历 图3 递归算法-中序遍历图4 非递归算法-先序遍历 图5 非递归算法-中序遍历图6 非递归算法-后序遍历三、源代码#include<stdio.h>#include<stdlib.h>typedef char ElemType;//定义树结构typedef struct tree{ElemType data;struct tree * lchild;struct tree * rchild;unsigned int isOut; //专为后序遍历设置的,0为不需要被输出,1为需要被输出}TreeNode, *Tree;//定义栈结构typedef struct stack{Tree * base;Tree * top;int stacksize;}SqStack;void InitStack( SqStack &s );void Push( SqStack &s, Tree e );void GetTop( SqStack s, Tree &e );void Pop( SqStack &s, Tree &e );int StackEmpty( SqStack s );void CreateTree(Tree &t);void PreOrder(Tree t);void PreOrder1(Tree t);void InOrder(Tree t);void InOrder1(Tree t);void PostOrder(Tree t);void PostOrder1(Tree t);int main(){Tree T;printf("\n按先序序列输入结点序列,'*'代表空:");CreateTree(T);printf("\n 递归先序遍历的结果:");PreOrder(T);printf("\n非递归先序遍历的结果:");PreOrder1(T);printf("\n 递归中序遍历的结果:");InOrder(T);printf("\n非递归中序遍历的结果:");InOrder1(T);printf("\n 递归后序遍历的结果:");PostOrder(T);printf("\n非递归后序遍历的结果:");PostOrder1(T);printf("\n");return 0;}void InitStack( SqStack &s ) //初始化栈{s.base = (Tree *)malloc(100*sizeof(Tree));if ( !s.base ){printf("InitStack内存分配出错,程序将推出执行!\n");exit (-1);}s.top = s.base;s.stacksize = 100;}void Push (SqStack &s, Tree e ) //元素入栈接收一个stack 类型变量和一个tree* 类型变量{if ( s.top - s.base >= s.stacksize ){s.base = (Tree *)realloc(s.base,(s.stacksize+20)*sizeof(Tree));if ( !s.base ){printf("Push内存分配出错,程序将退出执行\n");exit (-1);}s.top = s.base + s.stacksize; //s.stacksize += 20;}e->isOut = 0;*s.top++ = e;}void GetTop( SqStack s, Tree &e ) //获得栈顶元素{e = *(s.top - 1); //s.top为tree** 类型}void Pop( SqStack &s, Tree &e ) //出栈{if ( s.top == s.base ){printf("栈为空\n");return ;}e = *(--s.top);}int StackEmpty( SqStack s ) //判断栈是否为空{if ( s.top == s.base )return 1;return 0;}void CreateTree(Tree &t) //以先序序列建立树{char ch;scanf("%c",&ch);if ( ch == '*' )t = NULL;else{t = (Tree)malloc(sizeof(TreeNode));if ( !t ){printf("分配内存出错!");return ;}t->data = ch;CreateTree(t->lchild);CreateTree(t->rchild);}}void PreOrder(Tree t) //递归先序遍历,遍历顺序:根、左、右{//先访问根节点,再先序遍历左子树,再先序遍历右子树if ( t ) //如果树t 不为空树,才继续执行先序遍历{printf("%c ",t->data);PreOrder(t->lchild);PreOrder(t->rchild);}}void InOrder(Tree t) //递归中序遍历,遍历顺序:左、中、右{ //先中序遍历左子树,再访问根节点,再中序遍历右节点if ( t ) //如果树t 为空树,则停止向下遍历{InOrder(t->lchild);printf("%c ",t->data);InOrder(t->rchild);}}void PostOrder(Tree t) //递归后序遍历,遍历顺序:左、右、根{if ( t ){PostOrder(t->lchild);PostOrder(t->rchild);printf("%c ",t->data);}}void PreOrder1(Tree t) //非递归先序遍历{Tree p = t; //p为tree* 类型变量SqStack s;InitStack(s);while ( p || !StackEmpty(s) ) //当树的节点不为空或栈不为空执行循环{if ( p ) //当数的此节点不为空时,打印此节点值且将此节点入栈{printf("%c ",p->data);Push(s,p);p = p->lchild;}else //否则父节点出栈,p指向父节点的右子树{Pop(s,p);p = p->rchild;}}}void InOrder1(Tree t) //非递归中序遍历{Tree p = t;SqStack s;InitStack(s);while ( p || !StackEmpty(s) ){if ( p ){Push(s,p);p = p->lchild;}else{Pop(s,p);printf("%c ",p->data);p = p->rchild;}}}void PostOrder1(Tree t) //非递归后序遍历,遍历顺序:左、右、根{t->isOut = 0; //初始值表示不输出Tree p = t;SqStack s;InitStack(s);while ( p || !StackEmpty(s) ) //节点非空或栈非空执行循环{if ( p ){if ( p->isOut ){ //左右子树都已输出,则该节点也输出Pop(s,p);printf("%c ",p->data);if (!StackEmpty(s))GetTop(s,p); //得到该节点元素的父节点elsep = NULL;}else{if ( (p->lchild) && (p->lchild->isOut == 1) ){ //如果存在左子树,并且左子树已经遍历完,则说明该节点已经入栈p->isOut = 1;p = p->rchild;}else //否则入栈该节点的树,并且走向它的左子树{Push(s,p);p = p->lchild;}}}else{GetTop(s,p);if ( p->rchild ){p = p->rchild;}else{Pop(s,p);printf("%c ",p->data);p->isOut = 1;if (!StackEmpty(s)){GetTop(s,p);if ( p->lchild == NULL )p->isOut = 1; //右子树已输出,将父节点isOut置1}elsep = NULL;}}}}四、运行结果图7 遍历二叉树运行结果图五、遇到的问题及解决这部分我主要遇到了如下三个问题,其内容与解决方法如下所列:●第一个问题:递归的使用,没有完全理解递归的含义描述:递归的使用是每次都将上次调用的现场保留,直到本次的方法的完成才会返回上次的调用的现场,由于没有完全的了解,所以在调用的时候回忽略掉上次保存的现场。