应用化学专业英语第五单元The Periodic Table
- 格式:doc
- 大小:39.50 KB
- 文档页数:3
英译汉:1.First, electrons are added one at a time moving from left to right across aperiod……首先,从左向右横跨一个周期时每次增加一个电子。
当这种情况发生时,最外层电子将受到逐渐增强的核引力,所以电子将更接近原子核而受到其更紧密的束缚力。
其次,在周期表中从上向下移动一列,最外层电子受到核的束缚力将变弱。
这是因为主能级数(屏蔽最外层电子受到核的吸引)在每族向下移动时增加。
这些趋势解释了通过观察元素的原子半径、电离能、电子亲和力和电负性而得到的元素性质的周期性规律。
2.It is important to note that at equilibrium the rates of reaction,rate r and rate fare equilibrium mixture are usually not equal……值得注意的是,在化学平衡时的反应速率,正反应速率和你反应速率相等但反应物和生成物的摩尔浓度在平衡混合态时一般不相等。
但是,事实上每种反应物和生成物在平衡时其浓度为定值,因为每种物质在一个反应中的消耗速率与其在相应你反应正的生成速率相等。
在化学平衡提出之前,这种系统被称为动力学平衡状态。
3.This is a mathematical expression of the law of chemical equilibrium which maybe stated as follows: When a reversible…………这是化学平衡定律的数学表达式,它可以通过如下所述:当一个可逆反应在给定温度下达到平衡时,在方程式中箭头右边物质的摩尔浓度的积除以左边物质摩尔浓度的积(每种物质浓度的幂等于反应方程式中每种物质的分子数)为定值,4.Analytical chemistry,or the art of recognizing different substances anddetermining their constituents, takes a prominent position among分析化学或鉴定不同物质并测定其成分的技术,因为可以解决每当化学过程被用于科学的或技术性的目的是产生的问题,而在科学应用领域中占显著地位。
1 Unit5元素周期表As our picture of the atom becomes more detailed 随着我们对原子的描述越来越详尽,我们发现我们陷入了进退两难之境。
有超过100多中元素要处理,我们怎么能记的住所有的信息?有一种方法就是使用元素周期表。
这个周期表包含元素的所有信息。
它记录了元素中所含的质子数和电子数,它能让我们算出大多数元素的同位素的中子数。
它甚至有各个元素原子的电子怎么排列。
最神奇的是,周期表是在人们不知道原子中存在质子、中子和电子的情况下发明的。
Not long after Dalton presented his model for atom( )在道尔顿提出他的原子模型(原子是是一个不可分割的粒子,其质量决定了它的身份)不久,化学家门开始根据原子的质量将原子列表。
在制定像这些元素表时候,他们观察到在元素中的格局分布。
例如,人们可以清楚的看到在具体间隔的元素有着相似的性质。
在当时知道的大约60种元素中,第二个和第九个表现出相似的性质,第三个和第十个,第四个和第十一个等都具有相似的性质。
In 1869,Dmitri Ivanovich Mendeleev,a Russian chemist, 在1869年,Dmitri Ivanovich Mendeleev ,一个俄罗斯的化学家,发表了他的元素周期表。
Mendeleev通过考虑原子重量和元素的某些特性的周期性准备了他的周期表。
这些元素的排列顺序先是按原子质量的增加,,一些情况中, Mendeleev把稍微重写的元素放在轻的那个前面.他这样做只是为了同一列中的元素能具有相似的性质.例如,他把碲(原子质量为128)防在碘(原子质量为127)前面因为碲性质上和硫磺和硒相似, 而碘和氯和溴相似.Mendeleev left a number of gaps in his table.Instead of Mendeleev在他的周期表中留下了一些空白。
应用化学专业英语第五单元The PeriodicTable周期表是化学中一个重要的工具,它以一种有序的方式组织了所有已知的化学元素。
它是由俄罗斯化学家德米特里·门捷列夫于1869年发表的。
周期表通过将元素按照原子序数从小到大的顺序排列,并将具有相似化学性质的元素放在同一列中,使得科学家能够更好地理解和研究元素之间的关系和属性。
周期表的组织方式使得人们可以很容易地获取元素的基本信息。
每个元素都有一个原子序数,用来表示元素在周期表中的位置。
原子序数越大,元素的原子量也越大。
原子序数还代表着元素在元素周期表中的电子结构。
元素周期表还给出了每个元素的原子量、原子半径、电负性等重要数据。
这些数据对于理解元素的性质和反应非常重要。
周期表将元素划分为若干个不同的区域。
最常见的是主族元素和过渡元素。
主族元素包括位于周期表的左侧和右侧的元素,它们通常具有相似的化学性质。
过渡元素则是位于周期表中间部分的元素,它们具有不同的化学性质。
周期表还包含了稀土元素和放射性元素等特殊分类。
周期表的排列方式基于元素的原子结构和周期性规律。
元素周期表中水平的行被称为周期,垂直的列称为族。
元素周期表中的元素是按照原子序数递增的顺序排列的,每个周期都包含了一种新的元素。
这种排列方式揭示了许多周期性规律,例如,元素性质的周期性重复以及原子半径和电负性等特性的变化规律。
周期表的发展对于化学研究和工业应用都有着极其重要的意义。
科学家能够通过研究周期表中的元素,预测和设计新的化合物和材料。
周期表的使用还有助于解释许多化学现象和反应的原理。
周期表中的元素被广泛应用于制药、材料科学、环境保护等领域。
总之,周期表是化学中不可或缺的工具。
它通过以系统和有序的方式组织化学元素,帮助科学家更好地理解元素之间的关系和性质。
周期表提供了元素的基本信息和重要数据,为化学研究和应用提供了重要的参考。
周期表的发展对于推动化学领域的进步起到了重要的推动作用。
一单词短语1.Molecule 分子molecular 分子的2.chemical process 化学过程element 元素3.a t o m原子a t t r a c t i o n吸引力4.repulsion 排斥力distillation 蒸馏、n5.distill 蒸馏v rectification 精馏position 构成structure 结构7.property 性质mass 质量8.atomicweight 原子量atomic number 原子序数9.ionization energy 电离能period 周期10.g r o u p族f a m i l y族11.transition group 过渡族main group 主族12.i o n离子s u b s t i t u t i o n取代反应13.el i mi na ti on消除反应nucl eoph i l i c 亲核的14.nucleophilie 亲核试剂electrophilie亲电试剂15.alkyl 烷基的functional group 官能团16.halides 卤素的leaving group 离去基团17.transition state过渡态intermediate 中间体18.r e a c t a n t反应物p r o d u c t生成物19.concentration 浓度rate equation 速率方程20.c o n s t a n t常数e t h e r醚21.endothermic 吸热的substrate 反应底物22.mechanism 机理reagen 试剂23.alkene 烯烃exothermic 放热的24.A n i o n阴离子n i t r o g e n氮气25.Hydrocarbon 碳氢化合物carbonhydrate 碳水化合物26.Alkane 烷烃substituent 取代基27.Isomerism 同分异构现象isomer 同分异构28.V i n y l乙烯基d e r i v a t i v e s衍生物29.acid halides 酰卤acid anhydrides 酸酐30.e s t e r s酯a m i d e酰胺31.ammonia NH3 Acetic anhydride乙酸酐32.phenol 芬acid—base titration 酸碱滴定33.precipitation沉淀analyses 化学分析员34.IR 红外UV紫外MS质谱GC色相色谱HPLC高效液相色谱TLC薄层色谱X—rayX射线衍射二选词填空1、We can now easily account for many things,which were thought to be mysterious by theancients2、the acid acts on the metal and a gas is givenoff.3、you should adapt yourself to new ways oflooking at matters4、electrolytes have more pronounced effect oncolligative properties than do nonelectrolytes. 5、if water in these lakes evaporated at the samerate as fresh water ,both would nearly dryup in a matter of year.6、both laks evaporated very slow compared with afresh lake or even the ocean.7、a property that depends only on the relativeamounts of solute and solvent is know as acolligative property.8、for example ,both NaCl (ionic) and HCl (polarcovalent)are classified as electrolytes becausethey form ions in aqueous solution.9、when compounds such as NaCl and HCl aredissolved in water ,the effect is obvious.10、if the wires is cut ,the light goes out becausethe circuit is broken.11、when wires are attached to a charged batteryand then to a light bulb ,the light shinesbrightly.12、glass and wood as well as pure water areexamples or nonconductors of electricity.13、other substances resist the flow of electricityand are known as nonconductors orinsulators.14、it has long been known that the presence of asolute in water may affect its ability toconduct electricity.15、when the collection of papers was first broughtout,it was well received by the reviewers.16、in the same way the dozen or so mostcommon kinds of kinds of atoms can be put together in many millions of different ways tomake molecules .17、elements are made up of tiny fundamentalparticles called atoms. Fundamental, as it is usedhere ,means that they cannot be furtherdivided by any chemical metheods.18、each element has atoms that is different fromthe atoms of other elements.19、it would not be quite round; on the contraryit would consist of three parts represented byspheres.20、it is not to be summed up in a singleproduct or word ,but in an idea or basicconcept.21、the chemical symbol of an element may standthe element for.22、the rate of a chemical reaction is influencedby several factors such as temperature ,concentration of reagents , particle size ,light ,and catalyst.23、all forms of life in earth are very dependenton chemical reactions or chemical changes.24、a chemical reaction occurs when elements andcompounds react together to produce differentcompounds , or when compounds break down into simpler compounds or elements.三无机物的命名H Hydrogen Li Lithium Na Sodium K Potassium Mg Magnesium Ca CalciumMn manganese Cu copper Zn zinc Fe iron Hg mercury Ag silver Au gold C Carbon Si Silicon Pb Lead Al Aluminium F Fluorine Cl Chlorine Br Bromine I IodineO Oxygen S Sulfur N Nitrogen P Phosphorus1.直呼其名,即读其元素名称+ ion如:Na+ sodium ionK+ potassium ion2.对于有变价的金属元素,除了可用前缀来表示以外,更多采用罗马数字来表示金属的氧化态,或用后缀-ous 表示低价,-ic 表示高价如:Cu+ copper (Ⅰ) ion 或cuprous ion Cu2+ copper (Ⅱ) ion 或cupric ionFe2+ iron (Ⅱ) ion 或ferrous ionFe3+ iron (Ⅲ) ion 或ferric ion3.含氢酸根:酸根中的H读做hydrogen,氢原子的个数用希腊前缀表示:mono- di - tri- tetra - penta- hexa-hepta- octa- nona- deca-举例:CO32-carbonate ionHCO3-hydrogen carbonate ionPO43- phosphate ionHPO42hydrogencarbonate ionH2PO4- dihydrogenphosphate ion4.结晶水读做hydrate ,结晶水的个数用希腊前缀表示:mono-di - tri- tetra - penta- hexa- hepta- octa- nona- deca-CuSO4·5H2O copper(Ⅱ) sulfate pentahydrateAlCl3 ·6H2O aluminum chloride hexahydrate5.测试Mg(OH)2magnesium hydroxide AlCl3aluminum chlorideFeBr2 iron(II) bromide CaSO4calcium sulfateZnCO3zinc carbonate HF hydrofluoric acidH3PO4phosphoric acid NO2nitrogen dioxideCuO copper(II) oxide Al2O3aluminum oxideNaHSO3sodium hydrogen sulfiteKMnO4potassium permanganateNaClO sodium hypochloride四有机物的命名1)命名正烷基时,只需把烷烃的词尾“-ane换成“-yl”,加在相应的烷烃的字首后2)字母规则:Butyl>Ethyl>Isopropyl>Methyl>Neopentyl>tert-Pentyl >Propyl3)环烷烃:只需在所对应的烷烃前加上cyclo-即可4)有些结构较复杂的烷基,需添加词头5)烯烃和炔烃命名时将相应的烷烃的词尾“烷”(ane)改为“烯”(ene)或“炔”(yne),后缀前加上不饱和键的编号即可。
专业英语重点总结单词Toxic chemicals:有毒化学品 Chemical pollution:化学污染Physical property :物性 Isolate:分离Determine:测定 Synthesize:合成Fundamental principles:基本原理 Investigation:研究Utilize:利用 Catalyst 催化剂Enzyme 酶 Biosphere 生物圈Heterogeneous catalyst 非均相催化剂 Nanotechnology 纳米技术Carbon monoxide 一氧化碳 Chemical formulas:化学式anion: 阴离子 Oxidation number:氧化值sulphate: 硫酸盐 Hydrides: 氢化物Sodium:钠 cation: 阳离子Covalent bond:共价键 electroneutral: 电中性的Electronegative atom:电负性原子 trivial names:俗名Oxidation:氧化 Peroxides:过氧化物Superoxide:超氧化物 Periodic table:周期表Noble gases: 惰性气 vacant orbital:空轨道Coordination (complex) compound: 配位化合物Unshared pair of electrons:未共用电子对oxidation state:氧化态 hydroxides:氢氧化物caustic soda solution:苛性钠溶液 vacant orbital:空轨道Formula 分子式 Common name 俗名Derivative 衍生物 Acid salt 酸式盐Hydrate 水合物 Anhydrous 无水的Oxidizing agent 氧化剂 Reducing agent 还原剂Oxidation reduction reaction氧化还原反应Electrochemistry 电化学 Electrolysis 电解Strong acid 强酸 Weak base 弱碱Acid-base indicator 酸碱指示剂 Distilled water 蒸馏水Buffer solution 缓冲溶液 Common ion effect 同离子效应Equivalence point 等效点 Neutralization 中和Dissociation 离解度 Anhydride 脱水物Periodic law: 元素周期率 periods (rows):周期group (columns):族 protons:质子Valence electrons:价电子 Halogens: 卤素Atomic radius: 原子半径 alkaline earths:碱土金属attractive force: 吸引力 electronegativity: 电负性electropositive:正电性 univalent ion: 一价离子electron shell: 电子层 bonding force 结合力monatomic 单原子的 Neutrons:中子hydrogen bond 氢键 conduct electricity 导电Electrically neutral 电中性的 Electrostatic 静电的isomerism :异构现象 Reversible :可逆的Chirality :手性 Charge:电荷mirror image:镜像 mirror image:镜像Hydrocarbons:碳氢化合物 Methane: 甲烷propane :丙烷 butane :丁烷-ane:-烷 -ene:烯-yne:炔 -ol:醇-one :酮 -al:醛-aldehyde: 醛 -acetal:缩醛alkoxy-:烷氧基 -amide: 酰胺-amino:氨基的 -amine : 胺Aquo- 含水的 azo- 偶氮Polythene (PE): 聚乙烯 Benzene:苯Ethene:乙烯 Propene:丙烯double bond:双键 triple bond:三键Valence bond theory 价键理论 skeleton:骨架methyl:甲基 ethyl:乙基alkyl :烷基 side chains: 侧链substituent:取代基Meth-:甲 eth-:乙propyl-:丙 but-:丁Pent(a)-:戊 hex-:己hepta-:庚 oct-:辛non-:壬 deca-:葵di-:二 tri- : 三tetra- : 四 penta-: 五primary carbon:伯碳 secondary carbon:仲碳tertiary carbon:叔碳 allyl :烯丙基substitution reaction :取代反应 free radical:自由基nucleophilic substitution:亲核取代 carbocation :碳正离子electrophilic substitution:亲电取代 carbanion :碳负离子addition reaction :加成反应elimination reaction:消去反应acid anhydride:酸酐 alcohol:乙醇Thermodynamics 热力学 quantum chemistry 量子化学statistical mechanics 统计力学 Kinetics 动力学Equilibrium 平衡 deposition 沉积sublimation 升华 Condensation 冷凝evaporation 蒸发 Melting 熔化Freezing 冷冻 Work 功the states of system系统状态Irreversible 不可逆的 surrounding 环境open system 开放系统 closed system 封闭系统isolated system 孤立系统 impermeable 不可渗透的Adiabatic 绝热的 steady state稳态tap water 自来水 rinse 润洗fine chemicals 精细化学品 Buchner funnel 布氏漏斗bunsen burners 煤气喷灯 tripod supports 三角支架wash bottles 洗瓶 dropper 滴管transfer pipette 移液管 hot plate 轻便电炉wire gauzes 石棉网 test tube brush 试管刷test tube rack 试管架filter paper 滤纸ring stand with rings 带环环架iron support 铁架台utility clamp 铁试管夹 clamp holder 夹柄buret clamp 滴定管夹 extension clamp 万能夹ring clamp 环形夹子 pinchcock 弹簧夹pinch clamp 弹簧节流夹 tubing clamp 管夹hose clamp 软管夹 test tube clamp 试管夹cork stopper 软木塞 rubber stopper 橡胶塞laboratory jack 实验升降台 spatulas 刮刀beaker tongs 烧杯钳 crucible tongs 坩埚钳tweezer 镊子 watch glasses 表面皿goggles 护目镜fume hoods 通风橱capillary melting point tube 毛细熔点管 Caliper 卡尺table balance 托盘天平 analytical balance 分析天平top pan balance 市秤 magnetic stirrers 电磁搅拌器Fahrenheit thermometer 华氏温度计 celsius 摄氏度magnetic stir bar 磁搅拌子 alcohol lamp 酒精灯Spectrophotometers 分光光度计 connection tube 连接管rubber tube 橡皮管 adapter 接合器Socket 套接口 ball joint 球形接头Stopper 塞子 adaptor 转接口splash heads 防溅头 thermometer pocket温度计插孔air leak tube 空气渗漏管 distill head 蒸馏头melting point tube 熔点管 burettes 滴定管Stopcock 活塞 volumetric flask 容量瓶measuring cylinder 量筒 centrifuge tube 离心管graduated pipette刻度吸量管 filter funnel 过滤漏斗chromatography colum 层析柱dropping funnel 滴液漏斗pressure equalizing funnel 均压漏斗 separating funnel 分液漏斗rotary evaporator 旋转蒸发仪 petri dishes 培养皿spectrophotometer 分光光度计 drying tube 干燥管evaporating dishes 蒸发皿 condenser 冷凝管Reflux 回流 erlenmeyer flask 锥形烧瓶round bottom flask 圆底烧瓶 distillation flask 蒸馏烧瓶filtration flask 过滤瓶 reagent bottle 试剂瓶glass desiccator 玻璃干燥器Beaker 烧杯distilling receiver 蒸馏接收器dry tower 干燥塔vaccume dessicator 真空干燥器 extractor 萃取器无机化合物及化学式的命名·二元化合物:氧化物,盐,酸(1)阴离子元素加后缀–ide(2)多价态元素加前缀:mono-, di-, tri-, tetra-, penta-, hexa(3)低价氧化态后缀–ous,高价氧化态后缀–ic·酸:基础元素(前缀 hydro-, 后缀-ic)+ acid·氢氧化物(碱):金属元素(价态)+ hydroxide·含氧酸及其盐(1)基本元素仅有一种氧化态酸:基础元素加后缀-ic + acid盐:阳离子元素+基础元素加后缀-ate(2)基本元素有二种氧化态酸:基础元素加后缀( -ous低价态,-ic高价态) + acid盐:阳离子元素 + 基础元素加后缀( -ite低价态, -ate高价态)(3)基本元素有多种氧化态酸:最低氧化态基础元素(前缀 hypo-, 后缀-ous)+ acid较低氧化态基础元素加后缀-ous+ acid较高氧化态基础元素加后缀-ic + acid最高氧化态基础元素(前缀 per-, 后缀-ic)+ acid 盐:最低氧化态阳离子元素 + 基础元素(前缀 hypo-, 后缀-ite)较低氧化态阳离子元素 + 基础元素加后缀-ite较高氧化态阳离子元素 + 基础元素加后缀-ate最高氧化态阳离子元素 + 基础元素(前缀 per-, 后缀-ate)·不同水分子含量的酸较低水含量前缀 meta较高水含量前缀 ortho·不同基本元素形成的酸前缀 di-, pyro·含硫的酸:源于含氧酸中的氧被硫取代,使用前缀 thio·含氢盐(酸式盐):源于含有1个以上氢原子酸中的氢原子被金属离子取代,形成酸式盐,氢原子以及金属离子使用前缀 di-, (bi),tri·配位化合物的命名阳离子 + [ 配体及中心原子] (氧化数)前缀:prefix·二元化合物,原子个数前缀1—mono-(可省略);2—di-;3—tri-;4—tetra-;5—penta-;6—hexa- Eg:·Oxide-氧化物CaO:calcium oxide(quicklime-生石灰)N2O:nitrogen(Ⅰ) oxide = dinitrogen oxide = nitrous oxide(laughing gas) NO:nitrogen(Ⅱ) oxide = nitrogen oxide = nitric oxideN 2O3:nitrogen(Ⅲ) oxide = dinitrogen trioxideNO2:nitrogen(Ⅳ) oxide = nitrogen dioxideN 2O5:nitrogen(Ⅴ)oxide = dinitrogen pentaoxideCu2O: copper(Ⅰ) oxide = dicopper oxide = cuprous oxide-低价态CuO: copper(Ⅱ) oxide = cupric oxide-高价态·Salt-盐ZnF2: znic fluorideSnCl2: tin(Ⅱ) chloride = stannous chlorideHg2Cl2: mercury(Ⅰ) chloride = mercurous chloride (calomel-甘汞)HgCl2: mercury(Ⅱ) chloride = mercuric chloride (sublimate) KCN: potassium cyanide·Acids-酸HBr: hydrobromic acid (aqueous solution)HCN: hydrocyanic acidH2S: hydrosulphuric acid·Hydroxides(bases)-碱NaOH: sodium hydroxide (sodium lye, caustic soda solution) KOH: potassium (hydroxid potassium lye, caustic potash)Fe(OH)2: iron(Ⅱ) hydroxide (ferrous hydroxide)Fe(OH)3: iron(Ⅲ) hydroxide (ferric hydroxide)·Oxo acids and their salts-含氧酸及其盐H2CO3: carbonic acid Na2CO3: sodium carbonateH3BO3: boric acid K3BO3: potassium borate·The basic element is in two oxidation statesHNO2: nitrous acid NaNO2: sodium nitriteHNO3: nitric acid Co(NO3)2: cobalt(Ⅱ) nitrate = cobaltous nirate·The basic element is in more than two oxidation states HClO: hypochlorous acid KClO: potassium hypochloritaHClO2: chlorous acid KClO2: potassium chloriteHClO3: chloric acid KClO3: potassium chlorateHClO4: perchloric acid KClO4: potassium perchlorateHMnO4: permanganic acid AgMnO4:sliver permanganate·The hydrogen salt-含氢盐Na3PO4: trisodium phosphate (tertiary phosphate)Na2HPO4: disodium hydrogen phosphate (secondary phosphate)NaH2PO4: sodium dihydrogen phosphate (primary phosphate)NaHCO3: sodium hydrogen carbonate (sodium bicarbonate) ·Give formulas for the following1.ammonium sulfate: (NH4)2 SO42.barium iodide: BaI23.iron(Ⅱ) sulfate:Fe2SO44.potassium permanganate:KMnO4 5.copper(Ⅱ)oxide:CuO6.carbonic acid:H2CO3科技论文写作Introduction section-研究的是什么问题?Key sections·Materials and Methods section-这个问题是怎么研究的?·Results and Discussion sections-发现了什么?Conclusion section-这些发现意味着什么?1.ABSTRACT (摘要)研究动机、研究方法、主要结果、简要结论摘要应言简意赅,因此以上各项内容争取用一句话说明一项,每项最多不要超过三句话,即:为什么做这个研究?用了什么方法?取得了什么结果?结论是什么?这些问题逐一回答了,摘要就写完整了。
Unit1 The Roots ofChemistry 化学的起源1.Chemistry can be broadly defines as the science of molecules and their transf ormations.化学可以被广泛的定义为分子的科学和它们之间的转换。
和数学不同,化学在人类之前。
我们的星球(地球)上的生命和人类的外观很可能是化学进程的具体结果。
化学过程从历史的开端一直到现在都出现在人们的生活中。
最初,这些过程不在我们的掌控之中,例如,果汁的发酵,肉和鱼的腐烂,木头的燃烧。
后来我们学着去控制化学进程使用它来生产不同的产品,比如食物,金属,陶瓷和皮革。
在化学的发展上,主要区分为四个阶段:史前化学,希腊化学,炼金术,科学化学。
2.The early beginnings of chemistry were clearly motivated by practical needs of people .早期的化学显然是出于实际的需要。
火的发现为远古人提供了第一个机会去实现控制化学反应过程。
他们学会制备铜制物品,铜和其它材料是现成的。
.由于化学过程的使用早于人们的书写,因而没有书面记录有关它们的化学技巧。
可以判断他们的化学能力只有从考古的发现的各个手工艺品。
正如早期的数学发展,清楚的预示着实际需求影响着化学的发展。
但化学和数学在这个阶段可能没有互相影响。
如果它们影响了,但是没有记录证明这个。
3. Greek chemistry was based mainly on speculation rather than on experiment . 希腊化学主要基于猜测而不是实验。
这是所有古代希腊化学的一个共同特征。
古代希腊化学家实际是希腊哲学家。
所以不足为奇的是希腊人思考比实验更有兴趣。
实际上他们很少进行实验以外的思维实验。
对于数学来说这是一个好方法,但没有一个人把它推荐在物理、化学或生物科学上。
东华大学应用化学专业英语总结专业英语重点总结单词Toxic chemicals:有毒化学品Chemical pollution:化学污染Physical property :物性 Isolate:分离Determine:测定 Synthesize:合成Fundamental principles:基本原理 Investigation:研究Utilize:利用 Catalyst 催化剂Enzyme 酶Biosphere 生物圈Heterogeneous catalyst 非均相催化剂Nanotechnology 纳米技术Carbon monoxide 一氧化碳Chemical formulas:化学式anion: 阴离子 Oxidation number:氧化值sulphate: 硫酸盐 Hydrides: 氢化物Sodium:钠 cation: 阳离子Covalent bond:共价键electroneutral: 电中性的Electronegative atom:电负性原子 trivial names:俗名Oxidation:氧化Peroxides:过氧化物Superoxide:超氧化物Periodic table:周期表Noble gases: 惰性气vacant orbital:空轨道Coordination (complex) compound: 配位化合物Unshared pair of electrons:未共用电子对oxidation state:氧化态 hydroxides:氢氧化物caustic soda solution:苛性钠溶液vacant orbital:空轨道Formula 分子式 Common name 俗名Derivative 衍生物 Acid salt 酸式盐Hydrate 水合物 Anhydrous 无水的Oxidizing agent 氧化剂Reducing agent 还原剂Oxidation reduction reaction氧化还原反应Electrochemistry 电化学 Electrolysis 电解Strong acid 强酸 Weak base 弱碱Acid-base indicator 酸碱指示剂Distilled water 蒸馏水Buffer solution 缓冲溶液Common ion effect 同离子效应Equivalencepoint 等效点 Neutralization 中和Dissociation 离解度 Anhydride 脱水物Periodic law: 元素周期率 periods (rows):周期group (columns):族 protons:质子Valence electrons:价电子 Halogens: 卤素Atomic radius: 原子半径alkaline earths:碱土金属attractive force: 吸引力electronegativity: 电负性electropositive:正电性univalent ion: 一价离子electron shell: 电子层 bonding force 结合力monatomic 单原子的 Neutrons:中子hydrogen bond 氢键conduct electricity 导电Electrically neutral 电中性的Electrostatic 静电的isomerism :异构现象Reversible :可逆的。
Elements(元素)碳carbon氢hydrogen硫sulfur, sulphur氮nitrogen氧oxygen氟fluorine氯chlorine溴bromine碘iodine砷arsenic硅silicon磷phosphorus金gold银silver铁iron钴cobalt镍nickel钒vanadium铜copper铝aluminum, aluminium 钾potassium钠sodium镁magnesium钙calcium铅lead锌zinc铂platinum非含氧酸(尾缀-ic acid)氢氟酸hydrofluoric acid 氢氯酸,盐酸hydrochloric acid氢溴酸hydrobromic acid氢碘酸hydroiodic acid氢硫酸hydrosulfuric acid含氧某酸(尾缀-ic acid)碳酸carbonic acid硝酸nitric acid硫酸sulfuric acid磷酸phosphoric acid硼酸boric acid硫代硫酸thiosulfuric acid氯酸chloric acid溴酸bromic acid碘酸iodic acid铬酸chromic acid重铬酸dichromic acid含氧亚某酸(尾缀-ous acid)亚硝酸nitrous acid亚硫酸sulfurous acid亚磷酸phosphorous acid亚硼酸borous acid亚氯酸chlorous acid亚溴酸bromous acid含氧次某酸(前缀hypo-, 尾缀-ous acid)次磷酸hypophosphorous acid次氯酸hypochlorous acid次溴酸hypobromous acid次碘酸hypoiodous acid次硝酸nitroxylic acid次硫酸sulfoxylic acid含氧偏某酸(前缀meta-, 尾缀-ic acid)偏硼酸metaboric acid偏磷酸metaphosphoric acid偏硅酸metasilicic acid偏钒酸metavanadic acid含氧高某酸(前缀per-, 尾缀-ic acid)高氯酸perchloric acid高碘酸periodic acid高锰酸permanganic acid高铁酸ferric acid无机酸对应的盐(以-ic acid结尾的,-ate;以-ous acid结尾的,-ite)硫酸钠sodium sulfate亚硫酸钠sodium sulfite次硫酸钠sodium sulfoxylate次磷酸钠sodium hypophosphite偏磷酸钠sodium metaphosphateThe nomenclature of inorganic substances(无机物的命名)某化物(尾缀-ide)氧化物oxide硫化物sulfide氮化物nitride碳化物carbide氢氧化物hydroxide氟化物fluoride氯化物chloride溴化物bromide碘化物iodide氧化物一氧化碳carbon monoxide二氧化碳carbon dioxide二氧化硫sulfur dioxide三氧化硫sulfur trioxide五氧化二氮dinitrogen pentoxide氧化铜copper oxide, cupric oxide, copper monoxide氧化亚铜cuprous oxide, copper(I) oxide, copper hemioxide氧化铁iron oxide, ferric oxide 氧化亚铁ferrous oxide硫化物硫化氢hydrogen sulfide 二硫化碳carbon disulfide硫化钠sodium sulfide氧化亚铁ferrous sulfide氯化物氯化氢hydrogen chloride四氯化碳carbon tetrachloride,tetrachloromethane氯仿,三氯甲烷trichloromethane, chloroform氯化钠sodium chloride氯化铵ammonium chloride氯化铝aluminium chloride,aluminium trichloride氯化银silver chloride氯化亚铁ferrous chloride,iron(II) chloride, irondichloride氢氧化物氢氧化钠sodium hydroxide氢氧化铝aluminium hydroxide氢氧化镁magnesium hydroxide氢氧化铜cupric hydroxide, copperhydroxide, copper(II)hydroxideNomenclature of derivative(命名的衍生)醇(尾缀-ol, ~ alcohol)甲醇methanol, methyl alcohol乙醇ethanol, ethyl alcohol2-丙醇2-propanol1,3-丁二醇1,3-butanediol1,2,3-丁三醇1,3-butanetriol1,2-乙二醇1,2-ethanediol,glycol, ethylene glycol醚(~ ether)甲醚methyl ether乙醚ethyl ether异丙醚isopropyl ether叔丁醚tert-butyl ether甲乙醚methyl ethyl ether二苯醚diphenyl ether醛(~ aldehyde, 尾缀-al)甲醛methanal, formaldehyde乙醛ethanal, acetic aldehyde丙醛propanal, propyl aldehyde丁醛butyl aldehyde, butanal戊醛pentanal, valeraldehyde己醛hexanal, hexaldehyde苯甲醛benaldehyde, benzoicaldehyde酮(~ ketone, 尾缀-one)丙酮propanone, acetone丁酮butanone, methyl ethyl ketone戊酮pentanone, methyl propyl ketone2,4-己二酮2,4-hexanedione 1,4-环己二酮1,4-cyclohexanedione羧酸(尾缀-ic acid)甲酸methanoic acid, formic acid乙酸ethanoic acid, acetic acid 丙酸propanoic acid, propionic acid, ethylformic acid异丁酸i-butanoic acid, isobutyric acid, 2-methyl…戊二酸pentanedioic acid苯甲酸benzoic acid苯乙酸phenylacetic acid苯丙酸benzenepropanoic acid 对氯苯丙酸p-chlorophenyl propionic acid,p-chlorobenzenepropanoic acid 对羟基苯乙酸p-hydroxyphenyl acetic acid羧酸盐(~ ester, 尾缀-ate)甲酸乙酯ethyl formate乙酸异丙酯isopropyl acetate 丙酸钙calcium propionate丁酸丁酯butyl butanate, butylbutyrate苯甲酸乙酯benzoic acid ethylester, ethyl benzoate异丁酸钠sodium isobutyrate酚(尾缀-ol)苯酚phenol1,3-苯二酚1,3-benzenediol,1,3-dihydroxybenzene1,2,4-苯三酚1,2,4-benzenetriol邻、间、对- ortho-, meta-, para-萘酚naphthol醇与酚的盐(尾缀-olate)甲醇钠sodium methanolate乙醇钾potassium ethanolate三异丙醇铝aluminumtriisopropanolate苯酚钠sodium phenolateNomenclature ofHydrocarbon(烃的命名)Meth:1Eth:2Prop:3But:4Pent:5Hex:6Hept:7Oct:8Non:9Dec:10正构normal, n-异构isomery, iso-, i-伯primary, pri-仲secondary, sec-叔tertiary, tert-季quaternary, quat-正丁基normal butyl, n-butyl异丁基isomery butyl, iso-butyl仲丁基secondary butyl,sec-butyl叔丁基tertiary butyl, tert-butyl叔戊基tertiary pentyl,tert-pentyl二甲基dimethyl三甲基trimethyl四甲基tetramethyl五乙基pentaethyl六丙基hexapropyl三叔丁基tri-tertbutyl二异丁基di-isobutyl烯烃(尾缀-ene)乙烯ethene, ethylene丙烯propene, propylene丁烯butene, butylene异丁烯iso-butene2-丁烯2-butene戊烯pentene2,4-二甲基-2-己烯2,4-dimethyl-2-hexene多烯烃(尾缀-adiene, -atriene)1,3-丁二烯1,3-butadiene1,4-戊二烯1,4-pentadiene2-甲基- 1,3-戊二烯2-methyl-1,3-pentadiene2-甲基-1,3,5-庚三烯2-methyl-1,3,5-heptatriene乙炔ethyne丙炔propyne2-丁炔2-butyne4-甲基-2-戊炔4-methyl-2-pentyne环丙烷cyclopropane环己烷cyclohexane甲基环戊烷methyl-cyclopentane3-甲基环己烯3-methyl-cyclohexene1,4-环己二烯1,4-cyclohexadiene2-甲基-1,3-环己二烯2-methyl-1,3-cyclohexadiene Petroleum refining(石油炼制)原油蒸馏petroleum distillation热转化thermal conversion催化裂化catalytic cracking催化加氢catalytichydroprocessing催化重整catalytic reforming气体加工gas processing油品精制oil refining原油蒸馏过程闪蒸flash distillation初馏primary distillation常压蒸馏atmospheric distillation减压蒸馏vacuum distillation闪蒸塔flasher, flashdistillation column, flash(ing)tower初馏塔primary distillationtower, primary fractionator常压塔atmospherictower/column减压塔vacuum tower/column汽提塔stripping tower, stripper再沸器reboiler加热炉heater, heating furnace换热器heat-exchanger热转化过程热裂化thermal cracking减粘裂化visbreaking蒸汽裂解steam pyrolysis焦化/焦炭化coking延迟焦化delayed coking, DC流化焦化fluid coking灵活焦化flexicoking焦化反应器coker, cokingreactor焦化汽油coker gasoline焦化柴油coker diesel焦化蜡油coker gas oil, CGO催化裂化过程流化催化裂化fluid catalyticcracking, FCC提升管反应器riser再生器regenerator沉降器disengager汽提段stripper zone催化裂化装置catalyticcracking unit催化裂化汽油FCC gasoline,catalytic gasoline催化裂化柴油FCC diesel催化裂化油浆FCC slurry裂化催化剂cracking catalyst催化剂失活deactivation ofcatalyst催化剂再生regeneration ofcatalyst待生催化剂spent catalyst再生催化剂regenerated catalyst催化加氢过程加氢处理hydrotreating, hydrotreatment加氢裂化hydrocracking加氢精制hydrofining加氢脱硫hydrodesulfurization, HDS加氢脱硫hydrodenitrogenation, HDN加氢脱氧hydrodeoxygenation, HDO加氢脱金属hydrodementallization, HDM加氢脱芳hydrodearomatization加氢异构hydroisomerization 部分加氢partial hydrogenation 选择性加氢selective hydrogenation循环氢recycle hydrogen补充氢make-up hydrogen新氢fresh hydrogen高压分离器high pressure separator低压分离器low pressure separator循环压缩机recycle compressor 催化重整过程重整装置/器reformer重整汽油reformed gasoline,reformate芳烃抽提aromatic extraction脱氢环化dehydrocyclization重整催化剂reforming catalyst气体加工过程烷基化alkylation碳四烷基化isobutanealkylation烷基化油alkylate醚化etherification聚合polymerization异构化isomerization油品精制过程溶剂精制solventrefining/treating溶剂精制油solvent-refined oil加氢精制hydrofining萃取脱硫desulfurization byextraction溶剂脱蜡solvent dewaxing溶剂脱沥青过程溶剂脱沥青solvent deasphalting脱沥青油deasphalted oil, DAO脱油沥青deoiled asphalt, DOA丙烷脱沥青propane deasphalting超临界溶剂脱沥青supercritical solventdeasphalting加工过程分类脱碳carbon rejection加氢hydrogen additionUnit1. The roots of chemistry(化学的起源)Atomism: 原子学说,原子论Derived from: 由…而来,起源于Be familiar with: 熟悉Be traced back: 追踪Bronze: 青铜Consist of: 由…组成Cube: 立方体Flammable: 易燃物,可燃的Geometry: 几何Mercury: 水银,汞Metric: 公制的Molecule: 分子Particle: 微粒,粒子Speculation: 思索,推测Theorem: 定理,原则Treatise: 论述,论文Benzene: 苯Isomer: 异构体Unit 6. the periodic table(元素周期表)Proton: 质子Electron: 电子Neutron: 中子Isotope: 同位素Element: 元素Indicate: 指出Periodicity: 周期性Tabulate: 制表V ertical: 垂直的Unit 7. acids, bases and salts (酸、碱、盐)Acid 酸Base 碱Salt 盐Citric acid 柠檬酸Lactic acid 乳酸Sour 酸性的Vinegar 醋Hydrochloric HCl Hydrogen 氢Carbon dioxide CO2Ion 离子Cation 阳离子Anion 阴离子Polar极性Hydronium水合氢离子Neutralization reaction 中和反应Alkaline 碱溶液Hydroxide OH-Unit 8. Chemical Bonds(化学键)Compound化合物Bond化学键—Ionic bond离子键—Covalent bond共价键—Polar covalent bond极性共价键Fiber纤维Cation (cat-ion) 阳离子Anion (ann-ion) 阴离子Nucleus原子核toxic有毒的affinity亲和力Unit 9. Chemical Kinetics:Basic concepts化学动力学:基本概念Kinetics 动力学Equilibrium (-bria)平衡Dynamic动态Forward reaction正向反应Reverse reaction逆向反应Reaction mechanism反应机理Activation energy活化能Rate of reaction反应速率Rate equation速率方程Concentration浓度Partial pressure分压Rate-determining step速率控制步骤Combustion燃烧Pre-exponential factor指前因子Reciprocal倒数Free energy自由能Enthalpy焓Entropy熵Parameter参数Differential微分Integrate整合Coefficient系数Unit 17. Crystallisation(晶体)Saturate饱和Supersaturate过饱和Solute溶质Solvent溶剂Solution溶液Solubility溶解度Yield产率Evaporation蒸发Labile不安定的metastable亚稳态Isomorphous同形的Homologues同族体Magma乳浆剂Diluent稀释剂Precipitant沉淀剂Unit 19. Solvent Extraction (溶剂萃取)Funnel 漏斗Chelates 螯合物Association 配位化合物Chromatography 色谱Terms 术语Hydrophilic 亲水性Hydrophobic 憎水性Electrostatic 静电Unit 21. Reactor Types(反应器类型)均相反应homogeneous reaction非均相反应heterogeneous reaction吸热反应endothermic reaction放热反应exothermic reaction 基元反应elementary reaction 宏观反应macroscopic reaction 微观反应microscopic reaction 分子反应molecular reaction 可逆反应reversible reaction不可逆反应irreversible reaction,non-reversible reaction主反应main reaction副反应side reaction理想反应ideal reaction非理想反应non-ideal reaction一次反应primary reaction二次反应secondary reaction简单反应simple reaction复杂反应complex reaction平行反应parallel reaction顺序反应sequential reaction歧化反应disproportionationreaction氧化反应oxidation reaction还原反应reduction reaction加成反应addition reaction重排反应rearrangementreaction裂化反应cracking reaction链/连锁反应chain reaction反应动力学reaction kinetics反应速率reaction rate快速反应quick reaction慢反应slow reaction瞬间反应instant reaction反应级数reaction order一级反应first order reaction二级反应second order reaction准/拟一级反应pseudo-firstorder reaction零级反应zero order reaction活化能activation energy频率因子,指前因子frequencyfactor, pre-exponential factor反应速率常数reaction rateconstant表观活化能apparentactivation energy阿累尼乌斯Arrheniusequation反应温度reaction temperature反应时间reaction time反应压力reaction pressure反应物浓度reactantconcentration原料转化率conversion of feed反应选择性reaction selectivity反应机理reaction mechanism反应途径reaction pathway自由基free radical正碳离子carbonium ion气相反应gas phase reaction气-液反应gas-liquid reaction气-液-固反应gas-liquid-solidreaction液-液反应liquid-liquidreaction平推流/活塞流piston/plugflow reactor全混流perfect mixing flow串联反应器reactors in series 并联反应器reactors in parallel 连续搅拌反应釜/槽式反应器continuous stirred tank reactor, CSTR固定床反应器fixed bed reactor流化床fluidized/fluid bed固定流化床confined fluidized bed移动床moving bed鼓泡床ebullated bed悬浮床/浆态床slurry/suspension bed滴流床trickle bed快速床fast bed输送床transport bed管式反应器tubular reactor塔式反应器column/tower reactorUnit operations(单元操作)传质过程蒸馏distillation吸收absorption吸附adsorption萃取extraction离子交换ion exchange膜分离membrane separation 传热过程换热heat exchange/transfer蒸发evaporation, vaporization传质、传热过程干燥dry, drying, desiccation 结晶crystallization增湿humidification减湿dehumidification动量传递沉降sedimentation, settlement 过滤filtration, filtering搅拌stir, agitate, mixing流态化fluidization塔类型气泡塔bubble column喷雾塔spray tower填料塔packed/filled column 板式塔plate/tray tower。
1.3 THE PERIODIC LAW周期律In 1869, Dmitri Ivanovitch Mendeleev (1834-1907) of Russia and Lothar Meyer (1830-1895) of Germany independently published their periodic arrangements of the elements. Both of these periodic arrangements were based on increasing atomic weights.译:1869年,俄罗斯的德米特里·伊万诺维奇门捷列夫(1834年至1907年)和德国的洛萨迈耶(1830至1895年)独立地出版了他们对元素的定期安排。
这两个周期的安排都是以原子量的增加为基础的。
At the time of Mendeleev's periodic table, about 63 elements were known. The brilliance and foresightedness of this work can be seen by the fact that Mendeleev left spaces between certain elements in his original table and predicted that these spaces would be filled by the discovery of new elements. He left a space for an undiscovered element after calcium and called the element eka-boron; another space was left under aluminum, which he called eka-aluminum; and another space under silicon, which he called eka-silicon. The term “eka” comes from Sanskrit meaning “one,” which Mendeleev used to indicate that the missing element was one place away in his table from the element indicated. Mendeleev even went so far as to predict, with high accuracy, the physical and chemical properties of those elements yet to be discovered. The three elements above were, in fact, discovered within his lifetime. Scandium (atomic number 21) was discovered in 1879 by Lars F. Nilson(1840-1899) of Sweden, and was found to correspond in properties to eka-boron; gallium (31) was discovered in 1875 by Lecoq de Baisbaudran (1832-1912),and was found to correspond to eka-aluminum; and ger-manium(32)was discovered in 1886 by C.A. Winkler (1838-1904),and was found to correspond to eka-silicon. The amazing way in which Mendeleev's predictions were fulfilled is illustrated in Table 1.2 which compares the predicted properties of eka-silicon with those of germanium.译:在门捷列夫的周期表中,大约有63种元素是众所周知的。
应用化学英文教材Applied Chemistry: An Introduction to the Fundamentals.Chemistry, a branch of science dealing with the composition, structure, properties, and transformations of matter, finds its applications in almost every aspect of our lives. Applied Chemistry, as a subset, focuses on the practical applications of these principles, bridging the gap between pure science and real-world applications.Fundamentals of Applied Chemistry.The foundation of Applied Chemistry rests on the laws and principles established by classical chemistry. The laws of conservation of mass and conservation of energy, for instance, provide a framework for understanding how chemical reactions occur and the energy changes involved. The periodic table, which organizes elements based on their atomic number, reveals patterns in element properties and预测s possible chemical reactions.Applications in Industry.Applied Chemistry plays a crucial role in various industries. In the petroleum industry, it helps in the extraction, processing, and refining of crude oil into usable fuels like gasoline and diesel. In the pharmaceutical industry, it is involved in the development of drugs and medicines, ensuring their safety and efficacy. In the food industry, it ensures the safety and quality of food products through preservation techniques and the development of new food items.Environmental Applications.The environmental impact of human activities has become a global concern. Applied Chemistry plays a vital role in addressing these issues. It helps in the development of sustainable energy sources like solar cells and fuel cells, reducing our dependency on fossil fuels. It also assists in waste management, developing techniques to recycle and dispose of waste safely.Nanotechnology and Applied Chemistry.The emergence of nanotechnology has further expanded the horizons of Applied Chemistry. At the nanoscale, matter exhibits unique properties that can be harnessed for various applications. Applied Chemists are at the forefront of developing nanomaterials for use in areas like medicine, electronics, and energy storage.The Future of Applied Chemistry.With the rapid advancements in technology, the future of Applied Chemistry looks bright. The integration of chemistry with other disciplines like biology, physics, and engineering is expected to lead to new discoveries and applications. The development of smart materials, green chemistry, and sustainable technologies are some of the exciting areas that Applied Chemistry is expected to explore in the coming years.In conclusion, Applied Chemistry is a dynamic fieldthat constantly evolves to meet the challenges of our time. It not only finds applications in various industries but also contributes to addressing global issues like environmental degradation and energy sustainability. As we move forward, the role of Applied Chemistry is expected to become even more crucial in shaping our future.。
Unit 1 The Rootsof Chemis tryI. Compre hensi on.1.It can be inferred from this articl e whichone of the followi ng itemsi s not mainly basedon practi c al use C. Greekchemis try2. It was B. Empedo cless who firsti ntrod ucedthe idea that all things are not formed from just one elemen t.3. In the develo pment of Greekchemis t ry, D. Democri tus was the first one defini tingthe ultimatelyconsti tuent s of matter?4. Accord i ng to Plato, thereare B. 4 ―elemen ts‖ whosefacesare consti tuted by regula r polygons.5. In the last paragraph,authors thinkthat experi ment DD.can deal with the reacti ons by whichone substa n ce is converted into anothe rII. Make a senten ce out of each item by rearra nging the wordsin bracke ts.1.The purifi catio n of an organi c compou nd is usuall y a matter of consid erabl e diffic ulty, and itis necess ary to employ variou s method s for this purpos e.2.Scienc e is an ever-increa singbody of accumu lated and system atize d knowle dge and is also anactivi ty by whichknowle dge is genera ted.3.Life, afterall, is only chemis try, in fact, a smallexampl e of chemis try observ ed on a si nglemundan e planet.4.People are made of molecul es; some of the molecul es in people are rather simple wherea sothers are highly comple x.5.Chemist ry is ever presen t in our livesfrom birthto deathbecause withou t chemis t ry therei sneithe r life nor death.6.Mathem atics appears to be almost as humanki nd and also permea tes all aspect s of humanlife,althou gh many of us are not fullyawareof this.III. Transl ation.1.(a)化学过程;(b)自然科学;(c)蒸馏技术(a) chemic al proces s (b) natura l science (c) the techni que of distil latio n2.正是原子构成铁、水、氧等。
化学英语作文期末总结Introduction:Chemistry is an essential branch of science that deals with the composition, structure, properties, and reactions of matter. Over the course of the semester, we have explored various topics in chemistry, including the periodic table, chemical reactions, atomic structure, and different types of bonding. In this final summary, I will highlight the key concepts and knowledge gained during this semester and reflect on my overall learning experience.1. Periodic Table:The periodic table is a fundamental tool in chemistry that organizes elements based on their atomic number and properties. It consists of rows called periods and columns called groups. Each element has a unique name, symbol, and atomic number. The periodic table also provides information about atomic mass, electron configuration, and the trend of properties across periods and groups. Understanding the periodic table is crucial for predicting chemical behavior and identifying trends in element properties.2. Chemical Reactions:Chemical reactions involve the transformation of substances into new substances with different properties. We learned about different types of chemical reactions, such as synthesis, decomposition, combustion, and redox reactions. Balancing chemical equations allows us to determine the stoichiometry of reactions and calculate the amount of reactants and products involved. Knowledge of chemical reactions is necessary for understanding the changes that occur during chemical processes.3. Atomic Structure:The atomic structure comprises the nucleus, which contains protons and neutrons, and the electron cloud, which surrounds the nucleus. The number of protons determines the atomic number and defines the element. Electrons occupy different energy levels or shells around the nucleus. The Bohr model and quantum mechanical model help explain the behavior and properties of electrons. Understanding atomic structure is crucial for comprehending bonding, periodic trends, and the behavior of elements.4. Bonding:Chemical bonding occurs when atoms share, gain, or lose electrons. We explored different types of bonding, including covalent bonding, ionic bonding, and metallic bonding. Covalent bonding involves the sharing of electrons between atoms, while ionic bonding occurs when electrons are transferred between atoms. Metallic bonding results from the delocalization of electrons in a metal lattice. Understanding bonding is crucial for understanding the nature of compounds, their polarity, and their physical and chemical properties.Reflective Learning Experience:The study of chemistry throughout this semester has been both challenging and rewarding. It required a solid foundation of mathematical skills, critical thinking, and problem-solving abilities. The laboratory experiments provided hands-on experience, allowing us to apply theoretical knowledge to practical scenarios. The periodic assessments and class discussions enhanced our understanding of the subject matter and enabled us to clarify doubts.To succeed in chemistry, I learned the importance of regular studying and review. The density of content required consistent effort and a structured study routine. I also realized the significance of seeking help when facing difficulties. Collaborative learning, through group discussions and interacting with classmates, expanded my understanding of complex concepts. Additionally, engaging with online resources and educational videos helped in visualizing abstract concepts and simplified learning.Moreover, I appreciate the role of real-life applications of chemistry in motivating learning. Understanding how chemistry is applied in industries, medical research, and environmental science provided me with a broader perspective and made the subject more interesting.Conclusion:The study of chemistry is essential for understanding the world around us. From the periodic table to chemical reactions and atomic structure, the field of chemistry encompasses a wide range of topics that shape our lives and contribute to scientific advancements. The knowledge gained during this semester has laid a strong foundation in chemistry and prepared me for further studies in the field. The challenges faced and the efforts put forth have led to personal growth in terms of critical thinking, problem-solving skills, and collaborative learning. Overall, this semester's chemistry course has been a valuable and enriching experience.。
应用化学专业英语(课后答案和课文翻译)Unit 1 The Roots of ChemistryI. Comprehension.1.It can be inferred from this article which one of the following items is not mainly based on practical use C. Greek chemistry2. It was B. Empedocless who first introduced the idea that all things are not formed from just one element.3. In the development of Greek chemistry, D. Democritus was the first one definiting the ultimately constituents of matter?4. According to Plato, there are B. 4 ―elements‖ whose faces are constituted by regular polygons.5. In the last paragraph,authors think that experiment DD.can deal with the reactions by which one substance is converted into anotherII. Make a sentence out of each item by rearranging the words in brackets.1.The purification of an organic compound is usually a matter of considerable difficulty, and itis necessary to employ various methods for this purpose.2.Science is an ever-increasing body of accumulated and systematized knowledge and is also anactivity by which knowledge is generated.3.Life, after all, is only chemistry, in fact, a small example of chemistry observed on a singlemundane planet.4.People are made of molecules; some of the molecules in people are rather simple whereasothers are highly complex.5.Chemistry is ever present in our lives from birth to death because without chemistry there isneither life nor death.6.Mathematics appears to be almost as humankind and also permeates all aspects of human life,although many of us are not fully aware of this.III. Translation.1.(a)化学过程;(b)自然科学;(c)蒸馏技术(a) chemical process (b) natural science (c) the technique of distillation2.正是原子构成铁、水、氧等。
1. Applied Chemistry 应用化学2. Reaction Mechanisms 反应机理3. Homogeneous Catalysis 均相催化剂4. Heterogeneous Catalysis 非均相催化剂5. The pH Scales pH值6. Proton-Transfer Reactions 质子转移反应7. Conjugate Acid-Base Pairs 共轭酸碱对8. Relative Strength of Acids and Bases 酸碱的相对强度9. Lewis Acids and Bases 路易斯酸碱10. Hydrolysis of Metal Ions 金属离子的水解11. Buffer Solutions 缓冲溶液12. The Common-Ion Effects 同离子效应13. Buffer Capacity 缓冲容量14. Formation of Complex Ions 配离子的形成15. Solubility 溶解度16. The Solubility-Product Constant K sp溶度积常数17. Precipitation and separation of Ions 离子的沉淀与分离18. Selective Precipitation of Ions 离子的选择沉淀19. Oxidation-Reduction Reactions 氧化还原反应20. Half-Reaction 半反应21. Galvani Cell 原电池22. V oltaic Cell 伏特电池23. Cell EMF 电池电动势24. Energies of Orbital 轨道能量25. The Pauli Exclusion Principle 泡林不相容原理26. Electron Configurations 电子构型27. The Periodic Table 周期表28. Friedel-Crafts reaction 傅列德尔-克拉夫茨反应29. carboxylic acid derivative 羧酸衍生物30.Isotopes, Atomic Numbers, and Mass Numbers 同位素,原子数,质量数31. Periodic Properties of the Elements 元素的周期律32. Radius of Atoms 原子半径33. Ionization Energy 电离能34. Electronegativity 电负性35. Effective Nuclear Charge 有效核电荷36. Electron Affinities 亲电性37. Valence Bond Theory 价键理论38. Covalence Bond 共价键39. Orbital Overlap 轨道重叠40. Hybrid Orbital 杂化轨道41. The VSEPR Model 价层电子对互斥理论42. Molecular Geometries 分子空间构型43. Molecular Orbital 分子轨道44. Diatomic Molecules 双原子分子45. Bond Length 键长46. Bond Order 键级47. Bond Angles 键角48. Bond Enthalpies 键能49. Bond Polarity 键矩50. Dipole Moments 偶极矩51. Polarity Molecules 极性分子52. Polyatomic Molecules 多原子分子53. Crystal Structure 晶体结构54. Non-Crystal 非晶体55. Close Packing of Spheres 球密堆积56. Metallic Solids 金属晶体57. Metallic Bond 金属键58. Kekule structure 凯库勒结构式59. Ionic Solids 离子晶体60. Ion-Dipole Forces 离子偶极力61. Molecular Forces 分子间力62. Intermolecular Forces 分子间作用力63. Hydrogen Bonding 氢键64. Covalent-Network Solids 原子晶体65. Compounds 化合物66. The Nomenclature, Composition and Structure of Complexes 配合物的命名,组成和结构67. Charges, Coordination Numbers, and Geometries 电荷数、配位数、及几何构型68. Isomerism 异构现象69. Structural Isomerism 结构异构70. Stereoisomerism 立体异构71.Electron Configurations in Octahedral Complexes 八面体构型配合物的电子分布72. Tetrahedral and Square-planar Complexes 四面体和平面四边形配合物73. General Characteristics 共性74. s-Block Elements s区元素75. Alkali Metals 碱金属76. Alkaline Earth Metals 碱土金属77. Peroxides and Superoxides 过氧化物和超氧化物78. Hydroxides 氢氧化物79. p-Block Elements p区元素80.Boron Group (Boron, Aluminium, Gallium, Indium, Thallium) 硼族(硼,铝,镓,铟,铊)81. Carbon Group (Carbon, Silicon, Germanium, Tin, Lead) 碳族(碳,硅,锗,锡,铅)82. Carbonic Acid, Carbonates and Carbides 碳酸,碳酸盐,碳化物83. Nitrogen Group (Phosphorus, Arsenic, Antimony, and Bismuth) 氮族(磷,砷,锑,铋)84. Oxygen Group (Oxygen, Sulfur, Selenium, and Tellurium) 氧族元素(氧,硫,硒,碲)85. Sulfides 硫化物86. Halogens (Fluorine, Chlorine, Bromine, Iodine) 卤素(氟,氯,溴,碘)87. Halides, Chloride 卤化物,氯化物88. The Noble Gases 稀有气体89. Noble-Gas Compounds 稀有气体化合物90. Transition Metals 过渡金属91. f-Block Elements f区元素92. analytical chemistry 分析化学93. qualitative analysis 定性分析94. quantitative analysis 定量分析95. chemical analysis 化学分析96. instrumental analysis 仪器分析97. titrimetry 滴定分析98. gravimetric analysis 重量分析法99. regent 试剂100. chromatographic analysis 色谱分析101. electrochemical analysis 电化学分析102. on-line analysis 在线分析103. macro analysis 常量分析104. characteristic 表征105. micro analysis 微量分析106. deformation analysis 形态分析107. semimicro analysis 半微量分析108. systematical error 系统误差109. routine analysis 常规分析110. random error 偶然误差111. gross error 过失误差112. normal distribution 正态分布113. deviation偏差114. precision精密度115. relative standard deviation相对标准偏差(RSD)116. coefficient variation变异系数(CV)117.confidence level置信水平118. confidence interval置信区间119. significant test显著性检验120. significant figure有效数字121. standard solution标准溶液122. titration滴定123. stoichiometric point化学计量点124. titration error滴定误差125. primary standard基准物质126. amount of substance 物质的量127. chemical equilibrium化学平衡128. general equation for a chemical reaction化学反应的通式129. proton theory of acid-base酸碱质子理论130. acid-base titration 酸碱滴定法131. dissociation constant解离常数132. conjugate acid-base pair 共轭酸碱对133. hydronium ion水合氢离子134. electrolyte 电解质135. ion-product constant of water水的离子积136. ionization电离137. proton condition质子平衡138. buffer solution缓冲溶液139. acid-base indicator 酸碱指示剂140. coordination compound配位化合物141. center ion中心离子142. cumulative stability constant累积稳定常数143. alpha coefficient酸效应系数144. overall stability constant 总稳定常数145. ligand 配位体146. side reaction coefficient副反应系数147. coordination atom配位原子148. coordination number 配位数149. lone pair electron孤对电子150. metal indicator 金属指示剂151. masking掩蔽152. demasking解蔽153. oxidation氧化154. catalyst催化剂155. reduction还原156. electrode potential电极电势157. redox couple 氧化还原电对158. redox indicator氧化还原指示159. oxygen consuming耗氧量(OC)160. chemical oxygen demanded 化学需氧量(COD) 161. dissolved oxygen 溶解氧(DO)162. precipitation 沉淀反应163. argentimetry银量法164. heterogeneous equilibrium of ions 多相离子平衡165. spectrophotometry分光光度法166. transmittance透光率167. absorptivity吸光率168. absorption cell吸收池169. bathochromic shift红移170. Molar absorptivity摩尔吸光系数171. bimolecular elimination 双分子消除反应173. bimolecular nucleophilic substitution 双分子亲核取代反应174. open chain compound 开链族化合物175. molecular orbital theory 分子轨道理论176. chiral molecule 手性分子177. tautomerism 互变异构现象178. chemical shift 化学位移179. Enantiomorph 对映体180. addition reaction 加成反应181. dextro- 右旋182. levo- 左旋183. stereochemistry 立体化学184. stereoisomer 立体异构体185. Lucas reagent 卢卡斯试剂186. covalent bond 共价键187. conjugated double bond 共轭双键188. hybrid orbital 杂化轨道189. heterocyclic compound 杂环化合物190. peroxide effect 过氧化物效应191. valence bond theory 价键理论192. electron-attracting grou p 吸电子基193. Huckel rule 休克尔规则194. Hinsberg test 兴斯堡试验195. infrared spectrum 红外光谱196. Michael reacton 麦克尔反应197. halogenated hydrocarbon 卤代烃198. Polymer 聚合物199. systematic nomenclatur 系统命名法200. Newman projection 纽曼投影式201. aromatic compound 芳香族化合物202. aromatic character 芳香性203. Claisen condensation reaction 克莱森酯缩合反应204. Claisen rearrangement 克莱森重排205. Diels-Alder reation 狄尔斯-阿尔得反应206. Clemmensen reduction 克莱门森还原207. Cannizzaro reaction 坎尼扎罗反应208. positional isomers 位置异构体209. unimolecular elimination reaction 单分子消除反应210. unimolecular nucleophilic substitution 单分子亲核取代反应211. The Nernst Equation 能斯特方程212. conformation 构象213. confomational isome 构象异构体214. nucleophilic substitution reaction 亲核取代反应215. active intermediate 活性中间体216. Saytzeff rule 查依采夫规则217. cis-trans isomerism 顺反异构218. inductive effect 诱导效应219. Fehling’s reagent 费林试剂220. phase transfer catalysis 相转移催化作用221. aliphatic compound 脂肪族化合物222. elimination reaction 消除反应223. nuclear magnetic resonance 核磁共振224. allyl cation 烯丙基正离子225. leaving group 离去基团226. optical activity 旋光性227. boat confomation 船型构象228. silver mirror reaction 银镜反应。
Unit 5The Periodic TableAs our picture of the atom becomes more detailed, we find ourselves in a dilemma.当我们对原子了解的越来越详细时,我们发现我们其中处在两难之中己。
With more than 100 elements to deal with, how can we keep all this information straight?由于超过100种元素要处理,我们怎样能理顺所有的信息?One way is by using the periodic table of the elements.一个方法是使用元素周期表。
The periodic table neatly tabulates information about atoms. 周期表整齐地列出了原子信息的表格。
It records how many protons and electrons the atoms of a particular element contain. 它记录了一个具体的元素的原子包含多少质子和电子。
It permits us to calculate the number of neutrons in the most common isotope for most elements. 它允许我们为大多数元素计算最常见的同位素中的中子的数量。
It even stores information about how electrons are arranged in the atoms of each element. 它甚至储存了每个元素的原子周围是如何安排电子的信息。
The most extraordinary thing about the periodic table is that it was largely developed before anyone knew there were protons or neutrons or electrons in atoms. 关于周期表的最杰出的事情是在任何人知道在原子周围有质子、中子或者电子之前被提出来。
Not long after Dalton presented his model for the atom (an indivisible particle whose mass determined its identity ),chemists began preparing listings of elements arranged according to their atomic weights .不久之后道尔顿提出他的原子模型(一个不可分割的粒子的质量决定其特性)科学家开始准备按他们的原子的重量安排元素表。
While working out such tables of elements ,these scientists observed patterns among the elements .当规划出这些元素的表,这些科学家观察这些元素的模型。
For example ,it became clear that elements that occurred at specific intervals shared a similarity in certain properties .例如,越来越清晰的表明某些特定间隔的元素共享某些相似的性质。
Among the approximately 60 elements known at that time ,the fourth and eleventh ,the fifth and twelfth ,and so on .在那个时候大约60个已知元素中,第四和第十一,第五和第十二(拥有相似性质),等等。
In 1869, Dmitri Ivanovich Mendeleev, a Russian chemist, published his periodic table of the elements. 在1869年,德米特里·伊万诺维奇·门捷列夫,一位俄罗斯化学家,出版了他的元素周期表。
Mendeleev prepared his table by taking into account both the atomic weights and the periodicity of certain properties of the elements. 门捷列夫综合考虑元素的原子量和性质的相似性制成了他的元素周期表。
The elements were arranged primarily in order of increasing atomic weight. 元素主要按照原子量增加的顺序排列。
In a few cases, Mendeleev placed a slightly heavier element with similar chemical properties in the same row. 在一些情况里,门捷列夫把稍微重一点且性质相似的(元素)放在一列中。
For example, he placed tellurium (atomic weight = 128) ahead of iodine (atomic weight = 127) because tellurium resembled sulfur and selenium in its properties, whereas iodine was similar to chlorine and bromine. 例如,他把碲(原子量= 128)排在碘(原子量= 127)前面,因为碲在它的特性方面类似硫和硒,而碘类似于氯和溴。
Mendeleev left a number of gaps in his table. 门捷列夫在他的元素周期表中留下了许多空格。
Instead of looking upon those blank spaces as defects, he boldly predicted the existence of elements as yet undiscovered. 他没有认为这些空格的出现是周期表的缺陷,而是大胆的预言还有未被发现的元素的存在。
Furthermore, he even predicted the properties of some of these missing elements. 而且,他甚至预言一些这些未发现的元素的特性。
In succeeding years, many of the gaps were filled in by the discovery of new elements. 在以后的许多年中,许多空格被发现的新元素填入。
The properties were often quite close to those Mendeleev had predicted. 性质经常十分接近于门捷列夫已经预言的那些性质。
The predictive value of this great innovation led to the wide acceptance of Mendeleev's table. 这个伟大革新的预言价值是门捷列夫的元素周期表被广泛接受。
It is now known that properties of an element depend mainly on the number of electrons in the outermost energy level of the atoms of the element. 现在知道一种元素的性质主要取决于元素原子最外层能级的电子数目。
Sodium atoms have one electron in their outermost energy level (the third). 钠原子在它们的最外层能级(第3层)里有一个电子。
Lithium atoms have a single electron in their outermost level (the second). 锂原子在他们的最外层能级(第2)里有一个单电子。
The chemical properties of sodium and lithium are similar. 钠和锂的化学性质是相似的。
The atoms of helium and neon have filled outer electron energy levels, and both elements are inert. 氦和氖的原子充满电子能级,并且两种元素都是不活泼的。
That is, they do not undergo chemical reactions readily. 也就是说,他们不容易发生化学反应。
Apparently, not only are similar chemical properties shared by elements whose atoms have similar electron configurations (arrangements) but also certain configurations appear to be more stable (less reactive) than others. 显然,不仅是具有相似的电子构造(安排)的原子的元素具有相似的化学性质,而且某些构造看起来比其它(构造)是更稳定(更少活性)的。
In Mendeleev's table, the elements were arranged by atomic weights for the most part, and this arrangement revealed the periodicity of chemical properties. 在门捷列夫的周期表中,大部分元素按照原子量安排,而且这种安排显示了化学性质的周期性。
Because the number of electrons determines the element's chemical properties, that number should (and now does)determine the order of the periodic table. 因为电子的数量决定元素的化学性质,所以数量应该(并且确实)决定周期表的顺序。