牛头刨床六杆机构的设计
- 格式:doc
- 大小:735.00 KB
- 文档页数:24
摘要在工程技术领域,经常会遇到一些需要反复操作,重复性很高的工作,如果能有一个供反复操作且操作简单的专用工具,图形用户界面就是最好的选择。
如在本设计中对于牛头刨床平面六杆机构来说,为了保证结构参数与运动参数不同的牛头刨床的运动特性,即刨刀在切削过程中接近于等速运动从而保证加工质量和延长刀具寿命,以及刀具的急回性能从而提高生产率,这样的问题如果能够通过设计一个模型平台,之后只需改变参量就可以解决预期的问题,这将大大的提高设计效率。
本设计中正是通过建立牛头刨床六杆机构的数学模型,然后用MA TLAB程序设计出一个友好的人机交互的图形界面,并将数学模型参数化,使用户只需改变牛头刨床的参数就可以方便的实现运动分析和运动仿真,用户可以形象直观地观察到牛头刨床的运动轨迹、速度变化及加速度变化规律。
关键词:牛头刨床六杆机构MA TLAB 运动仿真程序开发AbstractIn the engineering area, often repeatedly encountered some operational needs, repetitive highly, and if the operation can be repeated for a simple operation and dedicated tool graphical user interface is the best choice. As in the planer graphic design for six pole bodies, and campaigns to ensure the structural parameters of different parameters planer movement characteristics, planning tool in the process of cutting close to equal campaign to ensure processing quality and extended life cutlery and cutlery rush back to the performance enhancing productivity, If such issues can be adopted to design a model platform parameter can be changed only after the expected settlement, which will greatly enhance the efficiency of the design. It is through the establishment of this design planer six pole bodies mathematical model, and then use MATLAB to devise procedures of a friendly aircraft in the world graphics interface, and mathematical models of the parameters, so that users only need to change the parameters planer can facilitate the realization of movement analysis and sports simulation, Users can visual image observed in planer movement trajectories, speed changes and acceleration changes.Keywords:Planer 6 pole bodies MATLAB Campaign simulation Procedure development.目录1 绪论 (4)2牛头刨床六杆机构运动分析程序设计2.1 MA TLAB介绍 (5)2.2 MA TLAB的特点 (6)2.3 用MA TLAB处理工程问题优缺点 (7)3牛头刨床运动分析的模型3.1 基本概念与原理 (9)3.2 牛头刨床六杆机构的数学模型 (9)4 图形用户界面GUI4.1界面设计的原则 (13)4.2 功能要求 (16)4.3界面结构设计 (17)4.4 程序框图的设计 (19)5运动仿真程序界面设计与编程实现5.1 句柄图形体系 (21)5.1.1 图形对象、对象句柄和句柄图形树结构 (22)5.1.2 对象属性 (23)5.1.3 对象句柄的获取方法 (23)5.1.4 对象句柄的获取和设置 (25)5.2 主界面参数含义 (27)5.3 界面制作步骤 (27)6总结 (49)7致谢 (50)8参考书目 (51)9附录程序源代码 (52)1 绪论1.1本课题的意义机构运动分析是不考虑引起机构运动的外力的影响,而仅从几何角度出发,根据已知的原动件的运动规律(通常假设为匀速运动),确定机构其它构件上各点的位移、速度、加速度,或构件的角位移、角速度、角加速度等运动参数。
一·机构简介·1.1牛头刨床的组成牛头刨床主要由床身、滑枕、刀架、工作台、横梁、进给机构和变速机构等组成。
(1)床身床身内部有变速机构和曲柄摇杆机构。
床身的顶面有水平导轨,滑枕沿水平导轨作往复直线运动。
在床身前面有垂宜导轨,横梁带动工作台沿垂直导轨升降。
2)滑枕滑枕的前端有环状T形槽,用来安装刀架和调节刀架的偏转角度:滑枕的内部装有调整滑枕行程位置的机构,它是由一对锥齿轮和丝杠组成。
滑枕的下部有两条燕尾型导轨,它与床身上部的水平导轨配合。
在曲柄摇杆机构的带动下,滑枕在床身水平导轨上作往复直线运动。
(3)横梁与工作台校梁安装在床身前部垂直导轨上。
横梁的底部装有升降丝杠,使校梁能沿着床身前部的垂直导轨作上下移动。
工作台和滑板连接在一起,安装在横梁水平导轨上,转动安装在校梁凹框内的横向进给丝杠,工作台就沿着横梁的水平导轨作横向移动。
工作台的前部底下装有支架,以防止工作台在刨削过程中产生向下倾斜和振动现象。
工作台的上平面和两侧面均制有T形槽、v 形槽和圆孔,用来固定不同形状的工件或夹具。
(4)刀架刀架用于装夹刨刀,并使刨刀沿着垂直方向和倾斜方向移动。
刀架由手柄、丝杠、刻度转盘、夹刀座、拍板、拍板座、滑板等组成。
刻度转盘6用T形职栓5紧固在滑枕前端的“环”状T形槽内。
可按加工的需要作160’的回转。
刻度转盘6与滑板13通过导轨相配合,只要摇动丝杠3上端的手柄1,就可使滑板13沿着刻度转盘6上的导轨移动,通过刻度环2来控制背吃刀量的大小。
拍板10与拍板座11的凹槽相配合,用铰链销7连接。
在拍板10的孔内装有夹刀座8刨刀就装在它的槽孔内,拍板10可以绕铰链销7向前上方拾起,这样可避免滑枕回程时刨刀与工件已加工。
(5)进给机构进给机构主要用来控制工作台横向进给运动的大小。
(6)变速机构操纵变速机构的手柄,可以把各种不同的转速传递到曲柄摆杆机构而改变格杆在相同时间间隔内的摆动次数。
(7)曲柄摇杆机构主要作用是把电动机的旋转运动转换为滑枕的往复直线运动。
牛头刨床的连杆机构运动分析0 前言机构运动分析的任务是对于结构型式及尺寸参数已定的具体机构,按主动件的位置、速度和加速度来确定从动件或从动件上指定点的位置、速度和加速度。
许多机械的运动学特性和运动参数直接关系到机械工艺动作的质量,运动参数又是机械动力学分析的依据,所以机构的运动分析是机械设计过程中必不可少的重要环节。
以计算机为手段的解析方法,由于解算速度快,精确度高,程序有一定的通用性,已成为机构运动分析的主要方法。
连杆机构作为在机械制造特别是在加工机械制造中主要用作传动的机构型式,同其他型式机构特别是凸轮机构相比具有很多优点。
连杆机构采用低副连接,结构简单,易于加工、安装并能保证精度要求。
连杆机构可以将主动件的运动通过连杆传递到与执行机构或辅助机构直接或间接相连的从动件,实现间歇运动,满足给定的运动要求,完成机器的工艺操作。
牛头刨床是一种利用工作台的横向运动和纵向往复运动来去除材料的一种切削加工机床。
工作台的纵向往复运动是机床的主运动,实现工件的切削。
工作台的横向运动即是进给运动,实现对切削精度的控制。
本文中只分析纵向运动的运动特性。
牛头刨床有很多机构组成,其中实现刨头切削运动的六连杆机构是一个关键机构。
刨床工作时,通过六杆机构驱动刨刀作往复移动。
刨刀右行时,当刨刀处于工作行程时;要求刨刀的速度较低且平稳,以减小原动机的容量和提高切削质量。
当刨刀处于返回行程时,刨刀不工作,称为空行程,此时要求刨刀的速度较高以提高生产率。
由此可见,牛头刨床的纵向运动特性对机床的性能有决定性的影响。
1 牛头刨床的六连杆机构牛头刨床有很多机构组成,其中实现刨头切削运动的六杆机构是一个关键机构。
图1所示的为一牛头刨床的六连杆机构。
杆1为原动件,刨刀装在C点上。
假设已知各构件的尺寸如表1所示,原动件1以等角速度ω1=1rad/s沿着逆时针方向回转,要求分析各从动件的角位移、角速度和角加速度以及刨刀C点的位移、速度和加速度的变化情况。
机械原理设计说明书设计题目:牛头刨床机构设计学生:汪在福班级:铁车二班学号:20116473指导老师:何俊机械原理设计说明书设计题目:牛头刨床机构设计学生姓名汪在福班级铁车二班学号20116473一、设计题目简介牛头刨床是用于加工中小尺寸的平面或直槽的金属切削机床,多用于单件或小批量生产。
为了适用不同材料和不同尺寸工件的粗、精加工,要求主执行构件—刨刀能以数种不同速度、不同行程和不同起始位置作水平往复直线移动,且切削时刨刀的移动速度低于空行程速度,即刨刀具有急回现象。
刨刀可随小刀架作不同进给量的垂直进给;安装工件的工作台应具有不同进给量的横向进给,以完成平面的加工,工作台还应具有升降功能,以适应不同高度的工件加二、设计数据与要求电动机轴与曲柄轴2平行,刨刀刀刃D点与铰链点C的垂直距离为50mm,使用寿命10年,每日一班制工作,载荷有轻微冲击。
允许曲柄2转速偏差为±5%。
要求导杆机构的最大压力角应为最小值;凸轮机构的最大压力角应在许用值[α]之内,摆动从动件9的升、回程运动规律均为等加速等减速运动。
执行构件的传动效率按0.95计算,系统有过载保护。
按小批量生产规模设计回6三、设计任务1、根据牛头刨床的工作原理,拟定2~3个其他形式的执行机构(连杆机构),并对这些机构进行分析对比。
2、根据给定的数据确定机构的运动尺寸。
并将设计结果和步骤写在设计说明书中。
3、用软件(VB、MATLAB、ADAMS或SOLIDWORKS等均可)对执行机构进行运动仿真,并画出输出机构的位移、速度、和加速度线图。
4、导杆机构的动态静力分析。
通过参数化的建模,细化机构仿真模型,并给系统加力,写出外加力的参数化函数语句,打印外加力的曲线,并求出最大平衡力矩和功率。
5、凸轮机构设计。
根据所给定的已知参数,确定凸轮的基本尺寸(基圆半径ro、机架lO2O9和滚子半径rr),并将运算结果写在说明书中。
将凸轮机构放在直角坐标系下,在软件中建模,画出凸轮机构的实际廓线,打印出从动件运动规律和凸轮机构仿真模型。
RPR-RPP六杆机构的动力学仿真作者:伍英来源:《科技创新导报》2011年第29期摘要:为了研究RPR-RPP六杆机构的工作过程,便于RPR-RPP六杆机构的设计、改进和使用,在ADAMS中建立了RPR-RPP六杆机构的三维工作模型,对ADAMS中模型的各部分进行了设置,对RPR-RPP六杆机构工作过程进行了仿真分析,对RPR-RPP六杆机构结构参数进行了优化研究。
关键词:RPR-RPP六杆机构三维建模仿真中图分类号:TH122 文献标识码: A 文章编号:1674-098X(2011)10(b)-0000-00牛头刨床是一种常见的金属切削机床,RPR-RPP六杆机构应用于牛头刨床的执行机构,实现将回转运动转变为直线往复运动的重要功能,RPR-RPP六杆机构对牛头刨床的工作性能起着非常关键作用;随着计算机技术的发展,在机构设计中计算机辅助设计得到了迅猛发展,特别为其建模仿真提供了极大的方便[1],以往的文献对其作了许多分析和研究[2-7];为了对RPR-RPP六杆机构的优化设计打下基础,有必要分析RPR-RPP六杆机构的结构和工作原理,建立RPR-RPP六杆机构虚拟样机,并对其工作过程进行仿真和优化;为对其进一步深入研究提供了基础。
1 RPR-RPP六杆机构的结构及工作机理牛头刨床实现刨头切削运动的六杆机构是一个关键机构,RPR-RPP六杆机构结构简图如图1所示。
由曲杆1、滑块2、摆动导杆3、滑块4、执行构件5、机架6等组成。
曲杆1、滑块2、摆动导杆3构成摆动导杆机构,由曲柄1作为原动件做圆周运动,带动滑块2作圆周运动;滑块2沿摆动导杆3滑动,带动摆动导杆3左右摆动;摆动导杆3带动滑块4左右摆动;滑块4在执行构件5上作上下滑动,带动执行构件5左右移动。
执行构件5左行时,刨刀进行切削,称工作行程;执行构件5右行时,刨刀不工作,称空行程。
通过ADAMS仿真及优化,为提高牛头刨床的工作质量提供了新的设计思路和方法。
目录一、课程设计任务书21.工作原理及工艺动作过程22.原始数据及设计要求4二、设计说明书51.画机构的运动简图52.对位置4点进展速度分析和加速度分析63.对位置9点进展速度分析和加速度分析9速度分析图:104.对位置9点进展动态静力分析12心得体会16谢辞17参考文献18一、课程设计任务书1.工作原理及工艺动作过程牛头刨床是一种用于平面切削加工的机床。
刨床工作时,如图(1-1〕所示,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。
刨头右行时,刨刀进展切削,称工作行程,此时要求速度较低并且均匀;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产率。
为此刨床采用有急回作用的导杆机构。
刨头在工作行程中,受到很大的切削阻力,而空回行程中那么没有切削阻力。
切削阻力如图(b〕所示。
Y图〔1-1〕(b)2.原始数据及设计要求曲柄每分钟转数n2,各构件尺寸及重心位置,且刨头导路x-x位于导杆端点B所作圆弧高的平分线上。
要求作机构的运动简图,并作机构两个位置的速度、加速度多边形以及刨头的运动线图。
以上内容与后面动态静力分析一起画在1号图纸上。
二、设计说明书1.画机构的运动简图1、以O4为原点定出坐标系,根据尺寸分别定出O2点,B点,C点。
确定机构运动时的左右极限位置。
曲柄位置图的作法为:取1和8’为工作行程起点和终点所对应的曲柄位置,1’和7’为切削起点和终点所对应的曲柄位置,其余2、3…12等,是由位置1起,顺ω2方向将曲柄圆作12等分的位置〔如下列图〕。
图1-2取第I 方案的第4位置和第9位置〔如下列图1-3〕。
图 1-32. 对位置4点进展速度分析和加速度分析〔a 〕 速度分析 取速度比例尺l μ=mm s m001.0对A 点:4A V = 3A V + 34A A V方向:4BO ⊥A O 2⊥ //B O 4大小: ? √ ?4A V =l μ⨯4pa =sm mm mmsm673239.0239.673001.0=⨯ 4ω=AO A l V 44=sr mmsm38431.1486334.0673239.0= 34A A V =l μ43a a l =sm mm mmsm156326.0326.156001.0=⨯ V 5B = V 4B =4ω⨯B O l 4=s m 747530.0对于C 点:C V = B V + CB V 方向: //'XX B O 4⊥BC ⊥大小: ? √ ?C V =l μ⨯pc l =mm sm001.0sm mm 749708.0708.749=⨯ CB V =l μ⨯bc l =mmsm001.0sm mm 0490895.00895.49=⨯ 5ω=bcl CBl u V =s r 363626.0 速度分析图:图 1-4(b)加速度分析 选取加速度比例尺为a μ=mm s m2001.0对于A 点:4A a = n A a 4 + t A a 4 = 3A a + k A A a 34 + 34rA A a 方向:A →4OB O 4⊥ A →2O B O 4⊥//B O 4 大小: √ ? √√ ? 由于3A a =22ωA O l 2=234263.4smKA A a 34=24ω34A A V =2432808.0s mnA a 4=24ωA O l 4=2931975.0s m ,根据加速度图1-5可得:t A a 4=a μ''a n l =2549416.0sm, r A A a 34=a μ''a k l =2298112.3sm 。
RPR-RPP六杆机构的动力学仿真摘要:为了研究RPR-RPP六杆机构的工作过程,便于RPR-RPP六杆机构的设计、改进和使用,在ADAMS中建立了RPR-RPP六杆机构的三维工作模型,对ADAMS中模型的各部分进行了设置,对RPR-RPP 六杆机构工作过程进行了仿真分析,对RPR-RPP六杆机构结构参数进行了优化研究。
关键词:RPR-RPP六杆机构三维建模仿真牛头刨床是一种常见的金属切削机床,RPR-RPP六杆机构应用于牛头刨床的执行机构,实现将回转运动转变为直线往复运动的重要功能,RPR-RPP六杆机构对牛头刨床的工作性能起着非常关键作用;随着计算机技术的发展,在机构设计中计算机辅助设计得到了迅猛发展,特别为其建模仿真提供了极大的方便[1],以往的文献对其作了许多分析和研究[2-7];为了对RPR-RPP六杆机构的优化设计打下基础,有必要分析RPR-RPP六杆机构的结构和工作原理,建立RPR-RPP六杆机构虚拟样机,并对其工作过程进行仿真和优化;为对其进一步深入研究提供了基础。
1 RPR-RPP六杆机构的结构及工作机理牛头刨床实现刨头切削运动的六杆机构是一个关键机构,RPR-RPP六杆机构结构简图如图1所示。
由曲杆1、滑块2、摆动导杆3、滑块4、执行构件5、机架6等组成。
曲杆1、滑块2、摆动导杆3构成摆动导杆机构,由曲柄1作为原动件做圆周运动,带动滑块2作圆周运动;滑块2沿摆动导杆3滑动,带动摆动导杆3左右摆动;摆动导杆3带动滑块4左右摆动;滑块4在执行构件5上作上下滑动,带动执行构件5左右移动。
执行构件5左行时,刨刀进行切削,称工作行程;执行构件5右行时,刨刀不工作,称空行程。
通过ADAMS仿真及优化,为提高牛头刨床的工作质量提供了新的设计思路和方法。
2 RPR-RPP六杆机构工作仿真模型的建立在图1中,各构件的尺寸为r1= 400mm,r3= 1600mm,AD=1000mm,转动副A到滑块5的滑道的垂直距离为800mm,各构件质心在构件的中心处,曲柄1做匀速圆周运动,以等角速度2πrad/s逆时针方向回转,执行构件5的工作阻力F=1000N。
XXXX大学课程设计说明书学生姓名:学号:学院:专业:题目:牛头刨床六杆机构的设计指导教师:职称:讲师: 职称:20**年12月5日概述一、机构机械原理课程设计的目的:机械原理课程设计是高等工业学校机械类专业学生第一次较全面的机械运动学和动力学分析与设计的训练,是本课程的一个重要实践环节。
其基本目的在于:(1)进一步加深学生所学的理论知识,培养学生独立解决有关本课程实际问题的能力。
(2)使学生对于机械运动学和动力学的分析设计有一较完整的概念。
(3)使学生得到拟定运动方案的训练,并具有初步设计选型与组合以及确定传动方案的能力。
(4)通过课程设计,进一步提高学生运算、绘图、表达、运用计算机和查阅技术资料的能力。
二、机械原理课程设计的任务:机械原理课程设计的任务是对机械的主体机构(连杆机构、凸轮机构、齿轮机构以及其他机构)进行设计和运动分析、动态静力分析,并根据给定机器的工作要求,在此基础上设计凸轮、齿轮;或对各机构进行运动分析。
要求学生根据设计任务,绘制必要的图纸,编写说明书。
三、械原理课程设计的方法:机械原理课程设计的方法大致可分为图解法和解析法两种。
图解法几何概念较清晰、直观;解析法精度较高。
根据教学大纲的要求,本设计主要应用图解法进行设计。
目录概述 (2)一、机构机械原理课程设计的目的: (2)二、机械原理课程设计的任务: (2)三、械原理课程设计的方法: (2)第一章机构简介: (4)第二章设计数据: (5)第三章设计内容: (5)第一节导杆机构的运动分析 (5)第二节凸轮机构的设计 (11)第三节齿轮机构的设计: (17)第四章设计总结 (19)第五章参考资料: (20)[设计名称]牛头刨床第一章机构简介:机构简图如下所示:牛头刨床机构简图牛头刨床是一种用于平面切削加工的机床,如上图所示。
电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。
刨床工作时,由导杆机构1-2-3-4-5-6带动刨头6和刨刀7作往复运动。
机械原理课程设计编程说明书设计题目:牛头刨床导杆机构的设计及运动分析(4)目录一、计任务及要求……………………………………………………二、数学模型的建立………………………………………………三、程序框……………………………………………………四、程序中符号说明…………………………………………五、程序清单及运行结果………………………………………六、课程设计总结………………………………………………七、参考文献………………………………………………牛头刨床导杆机构运动分析一、设计任务及要求:已知:牛头刨床的导杆机构的曲柄每分钟转速n2,各构件尺寸及重心位置,且报头导路x-x位于导杆端点B所作圆弧的平分线上。
数据如下表所示:设计内容导杆机构运动分析单位r/min mm符号n1 LO2O4LO2A LO4B LBE LO4S4数据70 400 95 800 256400要求:1、用c语言编写计算程序,对机构进行动态分析和动态显示。
2、上机调试程序并打印结果。
3、画出导杆4的角位移,角速度,角加速度的曲线。
4、编写设计计算说明书。
二、 数学模型的建立:ABCXa b d Z 2Z 1Z 3βαY该牛头刨床导杆机构为六杆机构,拆分成两个四杆机构:1)摆动导杆机构;2) 曲柄滑块机构。
求导杆4的角位移,角速度,角加速度,分析摆动导杆机构。
如图所示建立坐标。
三个向量构成封闭图形,所以可得:O Z Z Z =−→−+−→−-−→−342 (1)按复数形式可以写成:上式可以简化为,900)sin (cos )sin (cos )sin (cos 333︒==+++-+θθθϕϕααi d i b i a,求解得)式对时间求二阶导数将(得)对时间求一阶导数,将(联立解得)()(相等得)式中实部、虚部分别根据()(。
2)8)(sin()7)(cos(.2)6(sin 2)5(cos sin )4(),3(40sin sin 30cos cos 220)sin (cos )sin (cos )sin (cos 2242233ϕαωϕαωωαααϕϕαϕαθθϕϕααϕ--=-=++=+==+-=-=+++-+=a b v ad d a b a a d arctgd b a b a i d i b i a A ba)9](2)sin()cos([142224ωϕαωϕαξϕξA v a a b----==。
录第一章设计的任务与原始参数............................................................................................ - 3 -1.1设计任务.......................................................................................................................... - 3 -1.2 原始参数......................................................................................................................... - 4 -第二章运动方案设计·............................................................................................................ - 5 -2.1减速装置的选择............................................................................................................. - 5 -2.2刨刀切削运动的实现结构 ............................................................................................ - 5 -第三章电动机的选择................................................................................................................. - 6 -3.1 确定电机功率P d........................................................................................................... - 6 -3.2 根据P d查得电动机部分型号表选择电动机 ............................................................ - 7 -第四章传动比分配..................................................................................................................... - 8 -4.1计算传动比i和选定减速装置..................................................................................... - 8 -第五章减速机构设计................................................................................................................. - 9 -5.1 总体方案图 .................................................................................................................... - 9 -5.2 减速零件参数........................................................................................................... - 10 -第六章主机构设计................................................................................................................ - 12 -1.1机构运动简图及标号.................................................................................................. - 12 -1.2 极位夹角、曲柄1(杆AB)角速度及各杆件长度计算..................................... - 12 -第七章主机构运动分析.......................................................................................................... - 14 -7.1.位置分析....................................................................................................................... - 14 -7.2.速度分析....................................................................................................................... - 15 -7.3.加速度分析 .................................................................................................................. - 15 -7.4矩阵计算及绘图.......................................................................................................... - 15 -7.5输出图像及数据表格.................................................................................................. - 19 -第八章主机构受力分析........................................................................................................ - 21 -8.1 位置1:θ1=0˚........................................................................................................... - 21 -8.2 位置2:θ1=90˚......................................................................................................... - 24 -8.3 位置3:θ1=270˚ ...................................................................................................... - 26 -第九章主机构的速度波动调节........................................................................................... - 29 -9.1 等效驱动力矩及飞轮质量的计算............................................................................ - 29 -9.2 运用excel函数及绘图处理matlab输出的数据................................................ - 30 -第十章小结............................................................................................................................... - 32 -10.1 心得体会................................................................................................................... - 32 -10.2 参考文献................................................................................................................... - 32 -10.3 致谢 ........................................................................................................................... - 32 -第一章设计的任务与原始参数1.1设计任务●题目:牛头刨床●工作原理:牛头刨床是一种常用的平面切削加工机床,电动机经带传动、齿轮传动(图中未画出)最后带动曲柄1(见图1)转动,刨床工作时,是由导杆机构1-2-3-4-5带动刨头和刨刀作往复运动,刨头5右行时,刨刀切削,称工作行程,此时要求速度较低并且均匀;刨头左行时,不进行切削,称空回行程,此时速度较高,以节省时间提高生产率,为此刨床采用有急回作用的导杆机构。
牛头刨床六杆机构简介为大家收集的牛头刨床六杆机构简介,欢迎大家借鉴与参考,希望对大家有所帮助。
关键词六杆机构MATLAB仿真运动分析摘要连杆机构在机械制造特别是在加工机械制造中占有无法取代的重要地位。
深入研究平面六杆机构运动综合理论,建立适当的数学模型和误差评定方法进行平面六杆机构的运动综合,从而实现期望的间歇运动,是一个有着重要意义和实用价值的课题。
另外,关于牛头刨床运动过程的分析计算也是我们机械原理课的课程设计题目之一,我们需要一个快捷准确的方式来验证不同参数下设计计算的准确性。
这些原因就促使了这个课题的诞生。
绪论1、连杆机构的应用作为在机械制造特别是在加工机械制造中主要用作传动的机构型式—连杆机构,同其他型式机构特别是凸轮机构相比具有很多优点。
连杆机构采用低副连接,结构简单,易于加工、安装并能保证精度要求。
连杆机构可以将主动件的运动通过连杆传递到与执行机构或辅助机构直接或间接相连的从动件,实现间歇运动,满足给定的运动要求,完成机器的工艺操作。
连杆机构在机械制造特别是在加工机械制造中占有无法取代的重要地位,间歇运动机构是自动化机械的重要组成部分,对后者的运动精度、动态特性、和生产效率等均有直接和显著的影响,而要实现多种间歇运动,至少应为六杆机构。
因此,深入研究平面六杆机构运动综合理论,建立适当的数学模型和误差评定方法进行平面六杆机构的运动综合从而实现期望的间歇运动,是一个有着重要意义和实用价值的课题。
本文将通过分析牛头刨床六杆机构的运动,建立数学模型,实现将科学运算工具引进到六杆机构的计算分析及优化设计。
2、平面六杆机构的分类六杆机构,虽然结构、制造、研究过程都比四杆机构复杂,但可实现四杆机构无法实现的运动要求。
六杆机构的分类是建立在六杆转动副链的基础之上,而六杆转动副链是由四杆转动副链加上一个双杆组扩展而成。
按照双杆组连接到四杆转动副链的相对杆还是连接到相邻杆的两种不同情况,可以产生两种六杆转动副链,一种是具有相对的三副杆的六杆转动副链(斯蒂芬逊链),另一种是具有相邻的三副杆的六杆转动副链(瓦特链)。
目录一、概述 (1)1、设计目的 (1)2、设计任务 (1)3、设计方法 (1)二、牛头刨床机构简介 (2)1、牛头刨床的组成机构 (2)2、牛头刨床的工作原理 (3)三、导杆机构方案设计1、拟定运动方案2、方案机构的选择四、传动导杆机构的运动分析1、位置分析2、速度分析3、加速度分析五、齿轮机构设计1、齿轮的设计要求2、齿轮计算六、课程设计自我评价与心得七、参考文献一、概述1、设计目的机械原理课程设计是培养学生掌握机械系统运动方案设计能力的技术基础课程,它是机械原理课程学习过程中的一个重要实践环节。
机械原理课程设计目的在于巩固和加深所学的理论知识,培养学生独立解决有关本课程实际问题的能力,使学生对于常用机构(连杆机构、凸轮机构和齿轮机构)设计和运动分析有比较完整的认识,。
以及熟悉机械系统设计的步骤及方法,其中包括选型、运动方案的确定、运动学和动力学的分析和整体设计等,进一步提高设计计算和解决工程技术问题的能力2、设计任务本课程设计要求在规定的时间里按题目任务要求完成设计工作,并上交设计说明书一份。
设计说明书内容包括:1.题目介绍。
2.机构方案。
绘制原理图,说明原动件,从动件等的工作原理。
3.设计说明。
自由度计算,主要尺寸计算、选取等。
4.特点。
说明设计的特色,主要优缺点等。
3、设计方法机械原理课程设计的主要方法有图解法、解析法、实验法。
①图解法是利用已知的条件和某些几何关系,通过几何作图求得的结果。
此法概念清晰、形象直观,但是作图繁琐,精度不高。
②解析法是通过建立数学模型,编制框图和程序,借助计算机求出结果。
该方法精度高、速度快、能解决较复杂的问题。
③实验法是通过建立模型、计算机动态演示与仿真、CAD等,使设计的产品得以实现。
二、牛头刨床机构简介1、牛头刨床的组成机构如图1所示:图1图中:1—工作台;2—刀架;3—滑枕;4—床身;5—减速传动装置;6—带动执行机构;7—手柄;8—滑板。
2、牛头刨床工作原理牛头刨床是一种用于平面切削加工的机床。
i目录一: 机械原理课程设计内容、要求以及目的 1 二:牛头刨床机构简介及原始数据 1 三:机构方案的初步确定 3 1:曲柄滑块机构与摆动导杆机构 32:曲柄滑块机构与扇形齿轮齿条机构 53:综合评定确定方案7 四:机构工艺动作分解及运动循环图8 五:主机构尺度综合及运动特性评定9 六:电动机功率与型号的确定22 七: 主机构受力分析25 八:飞轮转动惯量的计算30 九:减速机构以及工作台进给机构的确定32 十:设计心得与体会35 十一:参考资料36- 1 - 一:课程设计题目、内容及其目的题目:牛头刨床内容:平面刨削机床运动简图设计及分析,计算刨削机构在指定位置的速度、加速度、受力、绘制位移、速度、加速度曲线、平衡力矩曲线、等效阻力矩曲线以及等效驱动力曲线。
根据上述得到的数据,确定飞轮转动惯量。
目的:1:学会机械运动见图设计的步骤和方法;2:巩固所学的理论知识,掌握机构分析与综合的基本方法;3:培养学生使用技术资料,计算作图及分析与综和能力;4:培养学生进行机械创新设计的能力。
二:牛头刨床简介,机构的要求及原始数据1:牛头刨床简介牛头刨床是一种用于平面切削加工的机床,如图1。
电动机经皮带和齿轮传动,经过减速机构减速从而带动曲柄1。
刨床工作时,由导杆3经过连杆4带动刨刀5作往复运动。
刨头左行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量,刨头右行时,刨刀不切削,称空行程,此时要求速度较高,以提高生产率。
为此刨床采用有急回作用的导杆机构。
刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构(图中未画),使工作台连同工件作一次进给运动,以便刨刀继续切削。
刨头在工作行程中,受到很大的切削阻力(在切削的前后各有一段约0.05H的空刀距离,见图2,b),而空回行程中只有摩擦阻力。
因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需安装飞轮来减小主轴的速度波动,以提高切削质量和减小电动机容量。
牛头刨床执行机构及部件设计本文先介绍了牛头刨床的工作原理,在满足运动协调的条件下,设计了刨床机构系统的运动尺寸,然后运用PRO/E软件对牛头刨床主要结构进行三维实体建模并装配,并通过该软件对牛头刨床机构的运动协调性进行仿真,进一步得出滑枕的位移、速度、和加速度随时间的变化曲线,从而验证牛头刨床机构系统运动尺寸的合理性。
其次,根据MATLAB软件对刨床主运动仿真得出的受力分析结果,对部分杆件进行强度计算校核。
牛头刨床是最早应用在生产实际中的金属切削机床之一。
机床的技术水平直接影响到它所加工零件的产品质量。
制造业是一个国家的现代化的源动力,是一个国家经济的支柱,是一个国家实现工业化之本,而评价一个国家制造业的高低,首先取决于工作母机的加工质量,也就是说机床的技术水平直接影响到制造业。
刨床因其结构简单,造价低廉,相对其他机床来说,其加工平面的效率很高,所以一直到现在其在工厂的加工应用很广泛。
近年来随着电子技术的发展,牛头刨床迎来了新时代,各种类型的刨床相继研发出来,其类型主要由机械牛头刨床,液压牛头刨床,数控牛头刨床,等。
每种类型的牛头刨床都有其自身的特点和加工优势,但与国外同种类型的的牛头刨床相比,我国的牛头刨床的技术水平在某些方面仍然很有限,其加工精度与和效率与国外的机床相比还有一定的差距,很多核心技术还没有完全国产化。
在提高技术方面,我国的科研人员还需奋起直追,要走很长的路。
通过对传统牛头刨床基础机构的研究,加深了对刨床运动机构的运动特性和力学特性的理解,从而为研究高精度的牛头刨床打下基础。
1.国外的研究状况牛头刨床在国外应用比较早,所以研究也更深入。
随着计算机技术的发展使得数控技术蓬勃发展,数控刨床完全靠程序控制,调整时只需改变程序即可,无需人的参与,因此适应性更强,加工范围更广,生产效率更高。
国外各种数控刨床的类型非常齐全,加工精度高,因此广泛应用于各种柔性自动化生产线中。
2.我国的研究状况我国最早的牛头刨床是60年代从苏联引进的,随着工业加工技术的发展,传统机械牛头刨床加工出零件的精度,已远远不能满足产品在装配精度和产量上的要求,近年来我国牛头刨床的研究形势喜人,硕果累累,不同类型的刨床相继研发出来,数控伺服系统也应用其中。
本科毕业设计(论文)通过答辩概述一、机构机械原理课程设计的目的:机械原理课程设计是高等工业学校机械类专业学生第一次较全面的机械运动学和动力学分析与设计的训练,是本课程的一个重要实践环节。
其基本目的在于:(1)进一步加深学生所学的理论知识,培养学生独立解决有关本课程实际问题的能力。
(2)使学生对于机械运动学和动力学的分析设计有一较完整的概念。
(3)使学生得到拟定运动方案的训练,并具有初步设计选型与组合以及确定传动方案的能力。
(4)通过课程设计,进一步提高学生运算、绘图、表达、运用计算机和查阅技术资料的能力。
二、机械原理课程设计的任务:机械原理课程设计的任务是对机械的主体机构(连杆机构、凸轮机构、齿轮机构以及其他机构)进行设计和运动分析、动态静力分析,并根据给定机器的工作要求,在此基础上设计凸轮、齿轮;或对各机构进行运动分析。
要求学生根据设计任务,绘制必要的图纸,编写说明书。
三、械原理课程设计的方法:机械原理课程设计的方法大致可分为图解法和解析法两种。
图解法几何概念较清晰、直观;解析法精度较高。
根据教学大纲的要求,本设计主要应用图解法进行设计。
目录概述 (1)一、机构机械原理课程设计的目的: (1)二、机械原理课程设计的任务: (1)三、械原理课程设计的方法: (1)第一章机构简介: (3)第二章设计数据: (4)第三章设计内容: (4)第一节导杆机构的运动分析 (4)第二节凸轮机构的设计 (10)第三节齿轮机构的设计: (16)第四章设计总结 (18)第五章参考资料: (19)[设计名称]牛头刨床第一章机构简介:机构简图如下所示:牛头刨床机构简图牛头刨床是一种用于平面切削加工的机床,如上图所示。
电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。
刨床工作时,由导杆机构1-2-3-4-5-6带动刨头6和刨刀7作往复运动。
刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产效率。
因此,刨床采用具有急回特性的导杆机构。
刨刀每切削完成一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构(图中未画),使工作台连同工件作一次进给运动,以便刨刀继续切削。
第二章 设计数据:第三章 设计内容:第一节 导杆机构的运动分析㈠导杆机构设计要求概述:已知曲柄每分钟的转数2n ,各构件尺寸,且刨头导路x x-位于导杆端头B 所作圆弧的平分线上。
要求作机构的运动简图,并作机构一个位置的速度、加速度多边形以及刨头的运动线图,画在 2号图纸上。
10位置的机构简图:㈡计算过程:由已知数据n2=60r/min得ω2=2π×60/60(rad/s)= 2πrad/s .1、求C点的速度:⑴确定构件3上A点的速度:构件2与构件3用转动副A相联,所以υA3=υA2。
又υA2=ω2l O2A =0.110×2π=0.22πm/s=0.69m/s.V的速度:⑵求4A选取速度比例尺:μv=0.023(m/s)/mm;υA4 = υA3 + υA4A3方向:⊥BO4 ⊥AO2 ∥BO4用图解法求解如图1:图1式中υA3、υA4表示构件3和构件4上 A 点的绝对速度,υA4A3表示构件4上A 点相对于构件3上A 点的速度,其方向平行于线段BO 4,大小未知;构件4上A 点的速度方向垂直于线段BO 4,大小未知。
在图上任取一点P ,作υA3 的方向线p a3 ,方向垂直于AO 2,指向与ω2的方向一致,长度等于υA3/μv ,(其中μv 为速度比例尺)。
过点p 作直线垂直于⊥BO 4 代表υA4的方向线,再过a 3作直线平行于线段BO 4 代表υA4A3的方向线这两条直线的交点为a 4,则矢量p a 4和a 3a 4分别代υA4和υA4A3 。
由速度多边形43a pa 得:υA4=μv ´ p a 4=μv ´ 20 = 0.483 m/s υA4A3=μv ´ a 3a 4=μv ´ 19 = 0.437 m/s ⑶ 求BO 4的角速度4ω:曲柄位于起点1时位置图如设计指导书图(1):此时42O AO ∠为:o 17.7383.1690380110arcsin 2arcsin242242=-=-=-=∠ππO O AO l l O AO 又由1位置起将曲柄圆周作12等分则当曲柄转到10位置时,如图(1): ∠ο83.1617.7327036042=︒ ︒ ︒=O AOAO O O AO A O O O l l l l l O O A 2424422cos 222242•-+=∠\mml O A 55.2764= 杆BO 4的角速度4ω:4ω=V A4/l BO 4= 0.4830.277rad/s =1.75 rad/s杆BO 4的速度V 4:V 4=4ω× l BO 4=1.75*1.54m/s =0.9431m/s⑷ 求C 点的速度υc :υc = υB + υCB方向: ∥X-X ⊥BO 4 ⊥BC图2速度图见图2:式中υc 、υB 表示点的绝对速度。
υCB 表示点C 相对点B 的相对速度其方向垂直于构件CB ,大小未知,点C 的速度方向平行于X-X ,大小未知,图上任取一点p 作代表υB 的矢量pb 其方向垂直于BO 4指向于2ω转向相反,长度等于v B V μ/(v μ为速度比例尺)。
过点p 作直线平行于X-X ,代表υc 的方向线,再点b 作直线垂直于BC 代表υCB 的方向线,这两方向线的交点为C 则矢量pc 和bc 便代表 υc 、υCB 。
则C 点的速度为:υc =μv ×pc =μv × 40 = 0.92 m/s υCB =μv ×cb=μv × 5 = 0.115 m/s 2、求C 点的加速度: ⑴ 求a A2:因曲柄匀速转动:故22222222/343.4/)2(110.0sm s m l a a AO n A A =⨯=⋅==πω223/343.4s m a a A A ==选取加速度比例尺:μa =0.15(m/s 2)/mm ⑵ 求a A4:343434A A A A K A A a a a a γ++=3434344A A A A K A A n A a a a a a γτ++=+方向: ⊥BO 4 B →O 4 A →O 2 ⊥BO 4 ∥BO 4 加速度见下图:∏式中44A n A a a 和τ是4A a 的切向和切法向加速度,34A A a γ是点A 4相对于A 3的相对加速度,由于构件3与构件4构成移动副,所以034=A A n a 则3434A A t A A r a a =其方向平行于相对移动方向,即平行于BO 4,大小未知,34A A Ka 为哥氏加速度,它的大小为θωsin 234434A A A A K Va=,其中θ为相对速度34A A V 和牵连角速度4ω矢量之间的夹角,但是对于平面运动,4ω的矢量垂直于运动平面而34A A V 位于运动平面内,故ο90=θ,从而344342A A A A K V a ω=哥氏加速度34A A Ka 的方向是将34A A v 沿4ω的转动方向转ο90(即图中'3k a 的方向)。
在上面的矢量方程中只有344A A rA a a 和τ的大小未知,故可用图解法求解。
如右图,从任意极点π连续作矢量'‘4'3aa ππ和代表43A nA a a 和;再过'3a 作''3k a 垂直于线段BO 4 ,大小mm u V w k a a A A 2.10/2'344'3==;然后再过'k 作BO 4的平行线,代表34A A aγ的方向,过'‘4a 作垂直于BO 4,的直线,代表4A na 的方向线,它们相交点'4a 则矢量‘4a ℵ代表4A a 。
4A a =μa ‘4a ℵ=μa * 60.6 = 9.09 2/s m⑶ 求B 点加速度B a : 构件4的角加速度βBO4为:2444/29.3'44s rad l a u l a AO a AO A BO ===ℵ"2244/654.1s m l a BO n B =⊕=⊃244/775.1s m l a BO BO B =⊕="⊗()()222/426.2775.1654.122s m a aa B n BB =+=+=4⊗︒==02.47arctan n BB a a ⊗÷⑷ 求C 点的加速度:C BB c a a a +=n C B C B B n B n c a a a a a a c+++=+τττ方向: \ ∥x-x B →O 4 ⊥BO 4 ⊥CB C →B加速度图见下图:式中,nCB a 表示点C 相对点B 的法向加速度其方向为从C 指B ;τCB a 表示点C 相对点B的切向加速度,其方向垂直于CB 。
又因速度多边形已作出,所以上式法向加速度可求出(C 点作水平运动,故C 点的法向加速度为0)。
仅有ττCB a a c 和的大小未知,同样可以用图解法求解。
如右图,在图上任取一点π作''b π代表nB a ,方向为平行于BO 4并从B 指向O 4,长度为a BO l μω/424,(其中a μ为加速度比例尺)。
过''b 作'''b b 代表τB a ,方向垂直于BO 4,长度为a BO BO l μβ/44,连接'b π,它表示B a ,再过过'b 作'''c b 代表n CB a ,方向平行CB并从C 指向B ,长度为a cB Bc l V μ/)/(2过''c 作垂直于CB 代表τc B a 的方向线又从π作平行于X-X 的方向线,两线交点为'c ,则矢量'c π便代表ca 。
222/090.0/135.0110.0s m s m l v a CB n CB n CB===ca =⊗c a =μa ´'c P = 1.98 2/s m3、此时C 点位置如下图: 选取长度比例尺为:mm mm l /5=μ则:此时C 点的位移c x 为:mm mm c c u x l c 486.95'''=⋅=⋅=第二节 凸轮机构的设计㈠凸轮机构的设计要求概述:⒈已知摆杆9作等加速等减速运动,要求确定凸轮机构的基本尺寸,选取滚子半径,将凸轮实际轮廓画在2号图纸上。