总体参数区间估计(6)讲解
- 格式:ppt
- 大小:2.05 MB
- 文档页数:81
总体参数的区间估计公式在进行区间估计时,我们首先需要收集到一个样本,并根据样本对总体参数进行估计。
然后根据样本的统计量,结合分布的性质和抽样方法,建立置信区间。
设总体参数为θ,我们希望得到它的置信水平为1-α的置信区间。
置信水平表示我们对总体参数的估计的可信程度,一般常用的置信水平有90%、95%和99%等。
参数估计的方法有很多,具体的方法选择取决于总体参数的性质、样本的大小以及其他假设条件。
常见的参数估计方法有:1.总体均值的区间估计:假设总体呈正态分布,样本大小为n,则总体均值的区间估计公式为:[样本均值-Z值(α/2)*总体标准差/√(n),样本均值+Z值(α/2)*总体标准差/√(n)]其中Z值(α/2)为标准正态分布的分位数,可以从标准正态分布表中查得。
2.总体比例的区间估计:假设总体为二项分布,样本大小为n,成功的次数为x,则总体比例的区间估计公式为:[样本比例-Z值(α/2)*√(样本比例*(1-样本比例)/n),样本比例+Z值(α/2)*√(样本比例*(1-样本比例)/n)]其中Z值(α/2)为标准正态分布的分位数,可以从标准正态分布表中查得。
3.总体方差的区间估计:假设总体呈正态分布,样本大小为n,则总体方差的区间估计公式为:[(n-1)*样本方差/卡方分布(α/2),(n-1)*样本方差/卡方分布(1-α/2])]其中卡方分布是用于描述自由度为n-1的卡方随机变量的概率分布,可以从卡方分布表中查得。
以上是常见的总体参数区间估计公式,这些公式是根据统计学理论推导而来的,适用于不同情况下的参数估计。
在实际应用中,我们根据具体问题和假设条件选择适当的参数估计方法,计算置信水平的区间估计,从而对总体参数进行估计和推断。
第六章 参数值的估计 第一节 参数估计的一般问题一、估计量与估计值参数估计就是用样本统计量去估计总体参数,如用X 估计μ,用S2估计2σ,用p 估计π等。
总体参数可以笼统地用一个符号θ表示。
参数估计中,用来估计总体参数的统计量的名称,称为估计量,用θ表示,如样本均值、样本比例等就是估计量。
用来估计总体参数时计算出来的估计量的具体数值,叫做估计值。
二、点估计与区间估计——参数估计的两种方法 1、点估计用样本估计量θ的值直接作为总体参数θ的估计量值。
2、区间估计它是在点估计基础上,给出总体参数估计的一个区间,由此可以衡量点估计值可靠性的度量。
这个区间通常是由样本统计量加减抽样误差而得到。
以样本均值的区间估计来说明区间估计原理:根据样本均值的抽样分布可知,重复抽样或无限总体抽样情况下,样本均值,由此可知,样本均值落在总体均值两侧各为一个标准误差范围内的概率为0.6827,两个标准误差范围0.9545,三个标准误差范围0.9973,并可计算出样本均值落在μ的两侧任何一个标准误差范围内的概率(根据已知的μ,σ计算)。
但实际估计时,μ是未知的,因而不再是估计样本均值落在某一范围内的概率,而只能根据已设定的概率计算这个范围的大小。
例如:约有95%的样本均值会落在距μ的两个标准误差范围内,即约有95%的样本均值所构造的两个标准误差的区间会包括μ。
在区间估计中,由样本统计量所构造的总体参数的估计区间,称为置信区间,区间的最小值为置信下限,最大值为置信上限。
例如,抽取了1000个样本,根据每个样本构造一个置信区间,其中有95%的区间包含了真实的总体参数,而5%的没有包括,则称95%为置信水平/置信系数。
构造置信区间时,可以用所希望的值作为置信水平,常用的置信水平是90%,95%,99%,见下表:α称为显著性水平,表示用置信区间估计的不可靠的概率,1-为置信水平。
如何解释置信区间:如用95%的置信水平得到某班学生考试成绩的置信区间为(60,80),即在多次抽样中有95%的样本得到的区间包含了总体真实平均成绩,(60,80)这个区间有95%的可能性属于这些包括真实平均成绩的区间内的一个。
总体参数的区间估计公式摘要:1.总体参数的区间估计概述2.区间估计公式的推导3.区间估计在统计学中的应用正文:一、总体参数的区间估计概述总体参数的区间估计是统计学中一种重要的参数估计方法。
在实际问题中,我们通常需要对总体的某个未知参数进行估计,例如均值、方差等。
由于样本数据的随机性,我们需要通过一定的方法来估计总体参数的真实值,区间估计就是其中一种常用的方法。
区间估计的核心思想是利用样本数据计算出一个区间,该区间内包含总体参数真实值的概率在一定范围内。
这个概率范围通常用置信水平来表示,置信水平越高,所估计的区间范围就越宽,包含总体参数真实值的可能性就越大。
二、区间估计公式的推导设总体X 的概率密度函数为f(x),样本容量为n,样本均值为x,样本标准差为s,我们要估计总体均值μ。
根据中心极限定理,当n 充分大时,样本均值的分布近似于正态分布,即:x ~ N(μ, σ/n)其中,σ为总体方差。
为了估计总体均值μ,我们可以构造一个置信区间。
设α为置信水平,对应的Z 值为Zα,那么:μ的置信区间为:x ± Zα * s / √n其中,s / √n 为样本标准差除以√n,它实际上是总体标准差σ的估计。
三、区间估计在统计学中的应用区间估计在统计学中有广泛的应用,主要包括以下几个方面:1.对总体参数的单个估计:通过构造置信区间,我们可以估计总体参数的单个值,如均值、方差等。
2.对总体参数的统计推断:通过比较不同置信水平下的置信区间,我们可以对总体参数进行统计推断,如判断总体参数是否等于某个值等。
3.对样本容量的估计:在实际问题中,我们通常需要根据样本数据来估计总体参数,而样本容量的大小直接影响到估计的准确性。
通过构造置信区间,我们可以估计合适的样本容量。
双正态总体参数的区间估计双正态总体是指一个总体服从正态分布,且这两个分布的均值和方差都相等。
在双正态总体中,我们常常需要估计总体参数的区间估计,即估计参数的真实值落在哪个区间内。
对于双正态总体的均值μ,我们可以使用Z分数进行区间估计。
假设我们想要在95%的置信水平下估计μ的区间为(a,b),则有:P(μ-a < X < μ+b) = 0.95其中,X是从双正态总体中抽取的样本,a和b是未知的参数。
为了解决这个问题,我们可以利用双正态总体的对称性质,即在均值μ两侧的概率相等。
因此,我们可以使用Z分数的对称性质,得到:P(μ-a < X < μ+b) = 0.975这意味着,在95%的置信水平下,μ的区间为(a,b)的概率为0.975,也就是说,μ的真实值落在这个区间内的概率为0.975。
对于双正态总体的方差σ^2,同样可以使用Z分数进行区间估计。
假设我们想要在95%的置信水平下估计σ^2的区间为(d,e),则有:P(σ2-d < X2 <σ2+e) = 0.95其中,X2是从双正态总体中抽取的样本的方差,d和e 是未知的参数。
同样,我们可以利用双正态总体的对称性质,得到:P(σ2-d < X2 < σ2+e) = 0.975因此,在95%的置信水平下,σ2的区间为(d,e)的概率为0.975,也就是说,σ2的真实值落在这个区间内的概率为0.975。
需要注意的是,对于双正态总体的均值和方差的区间估计,我们需要先确定置信水平和区间长度。
一般来说,置信水平为95%是比较常见的选择,区间长度一般为2倍标准误差。
具体的参数和区间长度需要根据实际情况进行调整。
心理统计名词解释:1. 点估计点估计是一种通过样本数据估计总体参数的方法。
在心理统计学中,研究者通常只能获得一部分总体数据,因此需要利用样本数据来估计总体的特征。
点估计就是利用样本数据计算出一个数值作为总体参数的估计值,常见的点估计方法包括最大似然估计和矩估计。
2. 区间估计区间估计是一种用来估计总体参数范围的方法。
与点估计不同,区间估计不仅给出了参数的点估计值,还给出了参数估计的置信区间。
置信区间是总体参数的估计范围,通常表示为一个区间,例如(μ-δ, μ+δ),其中μ为参数的点估计值,δ为置信区间的半径。
心理统计中的点估计和区间估计在研究中具有重要意义。
通过点估计和区间估计,研究者可以对总体的特征进行估计,并对估计结果的可靠性进行评估。
这两种估计方法在量化研究中被广泛应用,对于从样本数据推断总体特征具有重要的参考价值。
点估计和区间估计的应用:3. 点估计的应用在心理统计学中,点估计通常用来估计总体的各种参数,如均值、方差、比例等。
研究者利用样本数据计算出点估计值,并将其作为总体参数的估计值。
在一项实验中,研究者可以利用样本数据计算出实验组和对照组的平均得分,以此作为两组总体均值的估计值。
4. 区间估计的应用区间估计在心理统计学中具有重要意义,它不仅给出了总体参数的估计值,还给出了估计的可靠范围。
研究者通常会根据置信水平选择相应的置信区间,常见的置信水平包括95、99等。
在研究中,研究者可以利用区间估计来估计总体均值的置信区间,从而评估估计结果的可靠性。
点估计和区间估计的特点:5. 点估计的特点点估计给出了总体参数的一个具体数值估计,具有直观性和简单性。
研究者可以通过点估计方便地获得总体参数的估计值,并基于这一估计值进行推断和决策。
然而,点估计也存在一定局限性,它无法提供参数估计的置信范围,使得估计结果的可靠性无法直观评估。
6. 区间估计的特点区间估计不仅给出了总体参数的估计值,还给出了参数估计的可靠范围。
第19讲 正态总体参数的区间估计教学目的:理解区间估计的概念,掌握各种条件下对一个正态总体的均值和方差进行区间估计的方法。
教学重点:置信区间的确定。
教学难点:对置信区间的理解。
教学时数: 2学时。
教学过程:第六章 参数估计§6.3正态总体参数的区间估计1. 区间估计的概念我们已经讨论了参数的点估计,但是对于一个估计量,人们在测量或计算时,常不以得到近似值为满足,还需估计误差,即要求知道近似值的精确程度。
因此,对于未知参数θ,除了求出它的点估计ˆθ外,我们还希望估计出一个范围,并希望知道这个范围包含参数θ真值的可信程度。
设ˆθ为未知参数θ的估计量,其误差小于某个正数ε的概率为1(01)αα-<<,即ˆ{||}1P θθεα-<=-或αεθθεθ-=+<<-1)ˆˆ(P这表明,随机区间)ˆ,ˆ(εθεθ+-包含参数θ真值的概率(可信程度)为1α-,则这个区间)ˆ,ˆ(εθεθ+-就称为置信区间,1α-称为置信水平。
定义 设总体X 的分布中含有一个未知参数θ。
若对于给定的概率1(01)αα-<<,存在两个统计量1112(,,,)n X X X θθ= 与2212(,,,)n X X X θθ= ,使得12{}1P θθθα<<=-则随机区间12(,)θθ称为参数θ的置信水平为1α-的置信区间,1θ称为置信下限,2θ称为置信上限,1α-称为置信水平。
注(1)置信区间的含义:若反复抽样多次(各次的样本容量相等,均为n ),每一组样本值确定一个区间12(,)θθ,每个这样的区间要么包含θ的真值,要么不包含θ的真值。
按伯努利大数定理,在这么多的区间中,包含θ真值的约占100(1)%α-,不包含θ真值的约仅占100%α。
例如:若0.01α=,反复抽样1000次,则得到的1000个区间中,不包含θ真值的约为10个。
(2)置信区间的长度表示估计结果的精确性,而置信水平表示估计结果的可靠性。