当前位置:文档之家› 实验一 光电导衰退测量少数载流子的寿命

实验一 光电导衰退测量少数载流子的寿命

实验一 光电导衰退测量少数载流子的寿命
实验一 光电导衰退测量少数载流子的寿命

实验一光电导衰退测量少数载流子的寿命

一、实验目的

1.理解非平衡载流子的注入和复合过程;

2.了解非平衡载流子寿命的测量方法;

3.学会光电导衰退测量少子寿命的实验方法。

二、实验原理

半导体中少数载流子的寿命对双极型器件的电流增益、正向压降和开关速度等起着决定性作用。半导体太阳能电池的换能效率、半导体探测器的探测率和发光二极管的发光效率也和载流子的寿命有关。因此,半导体中少数载流子寿命的测量一直受到广泛的重视。

处于热平衡状态的半导体,在一定的温度下,载流子浓度是一定的,但这种热平衡状态是相对的,有条件的。如果对半导体施加外界作用,破坏了热平衡的条件,这就迫使它处于与热平衡状态相偏离的状态,称为非平衡状态。处于非平衡状态的半导体,其载流子浓度也不再是 n0 和 p0,可以比它们多出一部分。比平衡状态多出来的这部分载流子称为非平衡载流子,有时也称为过剩载流子。要破坏半导体的平衡态,对它施加的外部作用可以是光,也可以是电或是其它的能量传递方式。常用到的方式是电注入,最典型的例子就是 PN 结。用光照使得半导体内部产生非平衡载流子的方法,称为非平衡载流子的光注入,光注入时,非平衡载流子浓度Δn=Δp。

当外部的光注入撤除以后,注入的非平衡载流子并不能一直存在下去,它们要逐渐消失,也是原来激发到导带的电子又回到价带,电了和空穴又成对的消失了。最后,载流子浓度恢复到平衡时的值,半导体又回到平衡态,过剩载流子逐渐消失,这一过程称为非平衡载流子的复合。实验表明,光照停止后,Δp 随时间按指数规律减少。这说明非平衡载流子不是立刻全部消失,而是有一个过程,即它们在导带和价带中有一定的生存时间,有的长些,有的短些。非平衡载流子的平均生存时间称为非平衡载流子的寿命,用t 表示。由于相对于非平衡多数载流子,非平衡少数载流子的影响处于主导的、决定的地位,因而非平衡载流子的寿命通常称为少数载流子寿命。显然 1/t 就表示单位时间内非平衡载流子的复合概率。通常把单位时间单位体积内净复合消失的电子-空穴对数称为非平衡载流子的复合率。很明显,Δp/t 就代表复合率。

以光子能量略大于半导体禁带宽度的光照射样品,在样品中激发产生非平衡电子和空穴。若样品中没有明显的陷阱效应,那么非平衡电子和空穴浓度相等,他们的寿命也就相同。如果所采用的光在半导体中的吸收系数比较小,而且非平衡载流子在样品表面复合掉的部分可以忽略,那么光激发的非平衡载流子在样品内可以看成是均匀分布。假定一束光在一块n型半导体内部均匀的产生非平衡载流子Δn和Δp。在t=0时刻,光照突然停止,Δp 随时间而变化,单位时间内非平衡载流子浓度的减少应为-dΔp(t)/dt,它由复合引起,因此应当等于非平衡载流子的复合率,即

在非平衡少数载流子浓度Δp 比平衡载流子浓度n0 小得多,即小注入时,t是一恒量,与Δp(t)无关,设t=0时,Δp(0)=(Δp)0,则(1)式的解为

上式就是非平衡载流子浓度随时间按指数衰减的规律。利用(2)式可以求出非平衡载流子平均生存时间t 就是寿命t ,即

若取t=t ,由(2)式知,Dp(t ) = (Dp)0 /e ,所以寿命也等于非平衡载流了浓度衰减到原值的1/e所经历的时间。

如果入射光的能量 hν>Eg ,这样的光被半导体吸收之后,就会产生过剩载流子,引起载流子浓度的变化。因而电导率也就随之该变。对一块n 型半导体来说,在无光照的情况下,即处于平衡状态。其电导率

,这时的电导率称为“暗电导率”。当有光照时,载流子的数目增加了,电导率也随之增加,增加量为:

电导率的这个增加量称为“光电导率”。

光照停止后,过剩载流子不再产生,只有复合。由于过剩载流子逐渐减少,则光电导也就不断下降。这样,通过对光电导随时间变化的测量,就可以得到过剩载流子随时间变化的情况,也就可以求出寿命。光电导衰退法测量过剩载流子寿命,就是根据这个原理进行的。

测量少数载流子寿命的方法很多,分别属于瞬态法和和稳态法两大类。

瞬态法是由测量半导体样品从非平衡态向平衡态过渡过程的快慢来确定载流寿命。例如:对均匀半导体材料有光电导衰退法,双脉冲法,相移法;对P-N 结二极管有反向恢复时间法,开路电压衰退法。稳态法是由测量半导体处在稳定的非平衡时的某些物理量来求得载流子的寿命。例如:扩散长度法,稳态光电导法,光磁效应法,表面光电压法等。近年来,许多文章介绍扫描电镜测量半导体的少数载流子扩散长度。在硅单晶的检验和器件工艺监测中应用最广泛的是光电导衰退法和表面光电压法,这两种测试方法已经被列入美国材料测试学会(ASTM)的标准方法。

光电导衰退法有直流光电导衰退法、高频光电导衰退法和微波光电导衰退法。其差别主要在于用直流、高频电流还是微波来提供检测样品中非平衡载流子的衰退过程的手段。直流法是标准方法,高频法在硅单晶质量检验中使用十分方便,而微波法则可以用于器件工艺线上测试晶片的工艺质量。三、实验仪器

LT-2 型单晶寿命测试仪:采用高频光电导衰退法的原理设计,用于测量硅

单晶及锗单晶的非平衡少数载流子寿命。由稳压电源、高频源、检波

放大器、脉冲光源及样品电极共五部分组成,采用印刷电路和高频接

插件连接。

四、实验步骤

(1)接上电源线以及用高频连接线将CZ 与示波器Y 输入端接通,开启主机及示波器,预热15分钟。在没放样品的情况下,可调节W2使检波电压为零。

(2)在电极上涂抹一点自来水(注意:涂水不可过多,以免水流入光照孔),然后将清洁处理后的样品置于电极上面,此时检波电压表将会显示检波电压。如样品很轻,可在单晶上端压上重物,以改善接触。

(3)按下K 接通红外发光管工作电源,旋转W1,适当调高电压。

(4)调整示波器电平及释抑时间内同步,Y 轴衰减X 轴扫描速度及曲线的上下左右位置,使仪器输出的指数衰减光电导信号波形稳定下来,并与屏幕的标准指数曲线尽量吻合。通常光电导衰减曲线的起始部分不是指数,而衰退到50%以后基本进入单一指数。在光电导衰退曲线的指数部分取点,使ΔV2=1/2ΔV1。根据扫描速度刻盘

或时标打点计数,读出t2-t1,就可以得到样品的有效寿命:

(5)关机时,要先把开关K 按起

五、实验数据记录与处理

六、思考题

1.如何确定光注入是否处于小注入情况?为何实验中要采用小注入注入?

答:一般控制在“注入比”≤1%,近似按下式计算注入比:

上式中,ΔV 为示波器上测出的讯号电压值;k 是前置放大器的放大倍数;

V 是检波器后面的电压表指示值。

少数载流子寿命一般是随注入比增大而增大,尤其是高阻样品。

2.实验得到的载流子寿命是否包含了表面复合的影响?应该如何得到少数载

流子的体寿命?

答:是,利用公式

七、总结

1.在调节示波器的时候,要尽量把图像调成标准的指数曲线。

2.取点的时候注意不要读数错误,尽量取特殊点。

3.在电极上涂抹一点自来水,改善接触。

少子寿命的测量

表面复合对少子寿命测量影响的定量分析 我们测量硅单晶、铸造多晶以及单晶硅片、多晶硅片的少子寿命,都希望得到与真实体寿命b τ相接近的测量值(表观寿命),而不是一个受表面影响很大的表面复合寿命s τ。因为在寿命测量中只有b τ才能真正反映半导体材料的内在质量,而表面复合寿命只能反映样品的表面状态,是随表面状态变化而变化的变数。 通过仪器测量出的寿命值我们一般称为表观寿命,它与样品体寿命及表面复合寿命有如下关系,公式(1)由SEMI MF28-0707给出的计算公式τ0 =S F R τ--11(τ0或b τ表示体寿命)推演出来: S b F τττ111+= (1) 即仪器测量值F τ,它实际上是少子体寿命b τ和表面复合寿命s τ的并联值。 光注入到硅片表面的光生少子向体内扩散,一方面被体内的复合中心(如铁原子)复合,另一方面扩散到非光照面,被该表面的复合中心复合。 光生少子在体内平均存在的时间由体复合中心的多少而决定,这个时间就称为体寿命。如果表面很完美,则表面复合寿命趋于无穷大,那么表观寿命即等于体寿命。 但实际上的表面复合寿命与样品的厚度及表面复合速度有关。 由MF1535-0707中给出s l D l sp diff s 222+=+=πτττ (2)可知,其中: diff τ=D l 22 π——少子从光照区扩散到表面所需的时间 sp τ= 2l s ——少子扩散到表面后,被表面(复合中心、缺陷能级)复合所需要的时间 l ——样品厚度 D ——少子扩散系数,电子扩散系数Dn=33.5cm 2/s ,空穴扩散系数Dp=12.4 cm 2/s

S ——表面复合速度,单位cm/s 硅晶体的表面复合速度随着表面状况在很大范围内变化。如表1所示: 表1 据文献记载,硅抛光面在HF 酸中剥离氧化层后复合速度可低至0.25cm/s ,仔细制备的干氧热氧化表面复合速度可低至1.5-2.5cm/s ,但是要达到这样的表面状态往往不容易,也不稳定,除非表面被钝化液或氧化膜保护。一般良好的抛光面表面复合速度都会达到 104 cm/s ,最容易得到而且比较稳定的是研磨面,因为它的表面复合速度已达到饱和,就像饱和浓度的盐水那样,再加多少盐进去浓度依然不变。 现在很多光伏企业为了方便用切割片直接测量寿命,即切割后的硅片不经清洗、抛光、钝化等减少和稳定表面复合的工艺处理,直接放进寿命测试仪中测量,俗称裸测,这种测量简单、方便、易操作。 为了定量分析表面复合对测量值F τ的影响,我们以最常用厚度为180μm 的P 型硅片为例进行定量分析。因为切割面实质上也是一种研磨面,是金属丝带动浆料研磨的结果,一般切割、研磨面的表面复合速度为S=107cm/s ,但线切割的磨料较细,我们将其表面复合的影响估计的最轻,也应该是S ≥105cm/s 。因为良好的抛光面S ≈104cm/s,我们按照2007版的国际标准MF1535-0707、MF28-0707提供的公式:b τ= S F R τ--1 1 ,其中Rs 是表面复合速率,表面复合寿命S s R 1=τ, 由以上公式即可推演出常用公式:S b F τττ111+= 表面复合寿命s l D l sp diff s 222+=+=πτττ 我们以以下的计算结果来说明,当切割面的表面复合速度为S=105cm/s 时, l =180μm 厚的硅片当它的体寿命由0.1μS 上升到50μS (或更低、更高)时, 我们测出的表观寿命受表面影响的程度,以及真实体寿命b τ与实测值F τ相差多

载流子寿命

载流子寿命 半导体中的非平衡载流子寿命是半导体的一个基本特性参数,它的长短将直接影响到依靠少数载流子来工作的半导体器件的性能,这种器件有双极型器件和p-n结光电子器件等。但是,对于在结构上包含有p-n结的单极型器件(例如MOSFET)也会受到载流子寿命的影响。 非平衡载流子寿命主要是指非平衡少数载流子的寿命。影响少子寿命的主要因素是半导体能带结构和非平衡载流子的复合机理;对于Si、Ge、GaP等间接禁带半导体,一般决定寿命的主要因素是半导体中的杂质和缺陷。 对于少子寿命有明显依赖关系的电子器件特性,主要有双极型器件的开关特性、导通特性和阻断特性;对于光电池、光电探测器等之类光电子器件,与少子寿命直接有关的特性主要有光生电流、光生电动势等。 (1)少子寿命对半导体器件性能的影响: ①双极型器件的开关特性与少子寿命的关系: 双极型器件的开关特性在本质上可归结为p-n结的开关性能。 p-n结的开关时间主要是关断时间,而关断时间基本上就是导通时注入到扩散区中的少子电荷消失的过程时间(包括有存储时间和下降时间两个过程)。少子寿命越短,开关速度就越快。因此,为了提高器件的开关速度,就应该减短少子寿命。 ②器件的阻断特性与少子寿命的关系: 半导体器件在截止状态时的特性——阻断特性,实际上也就是p-n结在反向电压下反向漏电流大小的一种反映。因此,这里器件的阻断特性不单指双极型器件,而且也包括场效应器件在内。 p-n结的反向漏电流含有两个分量:一是两边扩散区的少子扩散电流,二是势垒区中复合中心的产生电流;这些电流都与少子寿命有关,载流子寿命越长,反向漏电流就越小,则器件的阻断特性也就越好。当载流子寿命减短到一定程度时,反向电流即大幅度地上升,就会产生反向电流不饱和的“软”的阻断特性。 一般,硅p-n结的反向漏电流主要是势垒区复合中心的产生电流,因此载流子的产生寿命将严重地影响到器件的阻断特性。所以注意工艺控制,减小杂质和缺陷的不良影响,对于提高器件的阻断特性至关重要。 总之,为了获得良好的器件阻断特性,要求器件应该具有较长的少数载流子寿命。为此,

(完整版)光电材料

目录 目录 ------------------------------------------------------------------------------------------- 1 1前言----------------------------------------------------------------------------------------- 2 2 有机光电材料 ------------------------------------------------------------------------------ 2 2.1光电材料的分类 --------------------------------------------------------------------- 2 2.2有机光电材料的应用 ---------------------------------------------------------------- 3 2.2.1有机太阳能电池材料--------------------------------------------------------- 3 2.2.2有机电致发光二极管和发光电化学池 --------------------------------------- 4 2.2.3有机生物化学传感器--------------------------------------------------------- 4 2.2.4有机光泵浦激光器 ----------------------------------------------------------- 4 2.2.5有机非线性光学材料--------------------------------------------------------- 5 2.2.6光折变聚合物材料与聚合物信息存储材料 ---------------------------------- 5 2.2.7聚合物光纤------------------------------------------------------------------- 6 2.2.8光敏高分子材料与有机激光敏化体系 --------------------------------------- 6 2.2.9 有机光电导材料 ------------------------------------------------------------- 6 2.2.10 能量转换材料 -------------------------------------------------------------- 7 2.2.11 染料激光器----------------------------------------------------------------- 7 2.2.12 纳米光电材料 -------------------------------------------------------------- 7 3 光电转化性能原理 ------------------------------------------------------------------------- 7 4 光电材料制备方法 ------------------------------------------------------------------------- 8 4.1 激光加热蒸发法 ------------------------------------------------------------------- 8 4.2 溶胶-凝胶法 ---------------------------------------------------------------------- 8 4.3 等离子体化学气相沉积技术(PVCD)------------------------------------------ 9 4.4 激光气相合成法 ------------------------------------------------------------------ 9 5 光电材料的发展前景---------------------------------------------------------------------- 10

网络管理实验报告

实验1:W i n d o w2003S N M P服务配置 1.掌握简单网络管理协议的操作知识 (SNMP网络管理模型,抽象语法表示(ASN.1),管理信息结构(SMI),常用的管理信息(MIB)。SNMP协议数据格式与工作模式,网络管理系统) 2.收集在网络上实现SNMP所必需信息 (1)一个典型的网络管理系统包括四个要素:管理员、管理代理、管理信息数据库、代理服务设备。一般说来,前三个要素是必需的,第四个只是可选项。 (2)网络管理软件的重要功能之一,就是协助网络管理员完成管理整个网络的工作。网络管理软件要求管理代理定期收集重要的设备信息,收集到的信息将用于确定独立的网络设备、部分网络、或整个网络运行的状态是否正常。管理员应该定期查询管理代理收集到的有关主机运转状态、配置及性能等的信息。? 网络管理代理是驻留在网络设备中的软件模块,这里的设备可以是UNIX工作站、网络打印机,也可以是其它的网络设备。管理代理软件可以获得本地设备的运转状态、设备特性、系统配置等相关信息。管理代理软件就象是每个被管理设备的信息经纪人,它们完成网络管理员布置的采集信息的任务。管理代理软件所起的作用是,充当管理系统与管理代理软件驻留设备之间的中介,通过控制设备的管理信息数据库(MIB)中的信息来管理该设备。管理代理软件可以把网络管理员发出的命令按照标准的网络格式进行转化,收集所需的信息,之后返回正确的响应。在某些情况下,管理员也可以通过设置某个MIB对象来命令系统进行某种操作。 路由器、交换器、集线器等许多网络设备的管理代理软件一般是由原网络设备制造商提供的,它可以作为底层系统的一部分、也可以作为可选的升级模块。设备厂商决定他们的管 理代理软件可以控制哪些MIB对象,哪些对象可以反映管理代理软件开发者感兴趣的问题。 (3)管理信息数据库(MIB)定义了一种数据对象,它可以被网络管理系统控制。MIB是一个信息存储库,这里包括了数千个数据对象,网络管理员可以通过直接控制这些数据对象去控制、配置或监控网络设备。网络管理系统可以通过网络管理代理软件来控制MIB数据对象。不管到底有多少个MIB

少数载流子寿命测试

第三章:少数载流子寿命测试 少数载流子寿命是半导体材料的一个重要参数,它在半导体发展之初就已经存在了。早在20世纪50年代,Shockley 和Hall等人就已经报道过有关少数载流子的复合理论[1-4],之后虽然陆续有人研究半导体中少数载流子的寿命,但由于当时测试设备简陋,样品制备困难,尤其对于测试结果无法进行系统地分析。因此对于少数载流子寿命的研究并没有引起广泛关注。直到商业需求的增加,少数载流子寿命的测试才重新引起人们的注意。晶体生产厂家和IC集成电路公司纷纷采用载流子寿命测试来监控生产过程,如半导体硅单晶生产者用载流子寿命来表征直拉硅单晶的质量,并用于研究可能造成质量下降的缺陷。IC集成电路公司也用载流子寿命来表征工艺过程的洁净度,并用于研究造成器件性能下降的原因。此时就要求相应的测试设备是无破坏,无接触,无污染的,而且样品的制备不能十分复杂,由此推动了测试设备的发展。 然而对载流子寿命测试起重要推动作用的,是铁硼对形成和分解的发现[5,6],起初这只是被当作一种有趣的现象,并没有被应用到半导体测试中来。直到Zoth 和Bergholz发现,在掺B半导体中,只要分别测试铁硼对分解前后的少子寿命,就可以知道样品中铁的浓度[7]。由于在现今的晶体生长工艺中,铁作为不锈钢的组成元素,是一种重要的金属沾污,对微电子器件和太阳能电池的危害很严重。通过少数载流子寿命测试,就可以得到半导体中铁沾污的浓度,这无疑是一次重大突破,也是半导体材料参数测试与器件性能表征的完美结合。之后载流子寿命测试设备迅速发展。 目前,少数载流子寿命作为半导体材料的一个重要参数,已作为表征器件性能,太阳能电池效率的重要参考依据。然而由于不同测试设备在光注入量,测试频率,温度等参数上存在差别,测试值往往相差很大,误差范围可能在100%,甚至以上,因此在寿命值的比较中要特别注意。 概括来说,少数载流子寿命的测试及应用经历了一个漫长的发展阶段,理论上,从简单的载流子复合机制到考虑测试结果的影响因素。应用上,从单纯地用少子寿命值作为半导体材料的一个参数,到把测试结果与半导体生产工艺结合起来考虑。测试设备上,从简陋,操作复杂到精密,操作简单,而且对样品无接触,

软件工程实验报告

软件工程实验报告 姓名:冯巧 学号 实验题目:实验室设备管理系统 1、系统简介: 每天对实验室设备使用情况进行统计,对于已彻底损坏的作报废处理,同时详细记录有关信息。对于有严重问题(故障)的要即时修理,并记录修理日期、设备名、修理厂家、修理费用、责任人等。对于急需但又缺少的设备需以“申请表”的形式送交上级领导请求批准购买。新设备购入后立即对新设备登记(包括类别、设备名、型号、规格、单价、数量、购置日期、生产厂家、购买人等),同时更新申请表的内容。 2、技术要求及限定条件: 采用C#语言设计桌面应用程序,同时与数据库MySql进行交互。系统对硬件的要求低,不需要网络支持,在单机环境下也能运行,在局域网环境下也能使用。方案实施相对容易,成本低,工期短。 一:可行性分析 1、技术可行性分析 计算机硬件设备,数据库,实验室设备管理软件与实验室设备管理系统的操作人员组成,能够实现实验室设备管理的信息化,提高工作效率,实现现代化的实验室设备管理。系统需要满足实验室设备管理(包括对实验设备的报废、维修和新设备的购买)、实验室设备信息查询(包括按类别进行查询和按时间进行查询)、实验室设备信息统计报表(包括对已报废设备的统计、申请新设备购买的统计和现有设备的统计)。这些功能框图如下图所示: 2、经济可行性分析 依据用户的现实需求、技术现状、经济条件、工期以及其他局限性因素等等因素,考虑到工期的长短、技术的成熟可靠、操作方便等因素,本方案具备经济可行性。

3、系统可选择的开发方案 ①方案A用C#开发系统的特点是:开发工具与数据库集成一体,可视化,开发速度较快,但数据库能够管理的数据规模相对较小。系统对硬件的要求低,不需要网络支持,在单机环境下也能运行,在局域网环境下也能使用。方案的实施相对容易,成本低,工期短。 ②方案B:以小型数据库管理系统为后台数据库,该前台操作与数据库分离,也能够实现多层应用系统。系统对硬件的要求居中,特别适合在网络环境下使用,操作方便。但系统得实现最复杂,成本最高,工期也较长。 二:软件需求分析 1.软件系统需求基本描述: 实验室设备管理系统是现代企业资源管理中的一个重要内容,也是资源开发利用的基础性工作。实验室设备在信息化之前,在用户系统管理、设备维修管理、设备的增删改查管理等方面存在诸多不利于管理的地方,不适应现代的企业管理形势和资源的开发利用。 2.软件系统数据流图(由加工、数据流、文件、源点和终点四种元素组成): 1)顶层数据流图 2)二层流程图 3)总数据流图

实验室设备管理系统实验报告1讲解

本科实验报告 课程名称:软件工程导论 实验项目:实验室设备管理系统 实验地点:实验楼210 专业班级:软件1319 学号:2013005655 学生姓名:张卫东 指导教师:王会青 2015年05 月21 日

一、实验目的和要求 1.系统简介 某大学每学年都需要对实验室设备使用情况进行统计、更新。 其中: (1)对于已彻底损坏的实验设备做报废处理,同时详细记录有关信息。 (2)对于有严重问题(故障)的需要及时修理,并记录修理日期、设备名、编号、修理厂家、修理费用、责任人等。 (3)对于急需使用但实验室目前又缺乏的设备,需以“申请表”的形式送交上级领导请求批准购买。新设备购入后要立即进行设备登记(包括类别、设备名、编号、 型号、规格、单价、数量、购置日期、生产厂家、保质期和经办人等信息),同 时更新申请表的内容。 (4)随时对现有设备及其修理、报废情况进行统计、查询,要求能够按类别和时间段等条件进行查询。 2.技术要求及限制条件 (1)所有工作由专门人员负责完成,其他人不得任意使用。 (2)每件设备在做入库登记时均由系统按类别加自动顺序号编号,形成设备号;设备报废时要及时修改相应的设备记录,且有领导认可。 (3)本系统的数据存储至少包括:设备记录、修理记录、报废记录、申请购买记录。 (4)本系统的输入项至少包括:新设备信息、修理信息、申请购买信息、具体查询统计要求。 (5)本系统的输出项至少包括:设备购买申请表、修理/报废设备资金统计表。 二、实验内容和原理 可行性分析报告 可行性研究主要是初步确定项目的规模和目标,确定项目的约束和限制。对于项目的功能和性能方面的要求进行简要的概述。详见组长田彦博的实验报告。 需求规格说明书 需求规格说明书主要是进一步定制实验室设备管理系统软件开发的细节问题,便于用户与开发商协调工作。在此主要绘制了系统的数据流图、相应的数据字典、E-R图、以及系统的功能图,对于各个方面的需求进行了详细的阐述。详见组长田彦博的实验报告。 概要设计说明书 概要设计说明书是为了说明整个实验室设备管理系统的体系架构,以及需求用例的各个功能点在架构中的体现。在此主要绘制了系统流程图、总体结构和模块的外部设计,而且对于数据库中逻辑结构方面也进行了详细的设计。详见组长田彦博的实验报告。

数据库设备管理系统

郑州轻工业学院本科 数据库课程设计总结报告 设计题目:设备管理系统 学生姓名:xx 、xx 系别:计算机与通信工程学院 专业:计算机科学与技术 班级:计算机科学与技术10~01 学号:xx 指导教师:张保威金松河 2012 年12月30 日

郑州轻工业学院 课程设计任务书 题目设备管理系统 专业、班级计算机科学与技术10-1 学号 xx 姓名 xx 学号 xx 姓名 xx 主要内容: 了解设备管理的基本流程,根据构思活出E---R图。根据所化E---R图,对相应的试题和关系建立表格,实现数据的初始化。用SQL建立数据库表,然后再用其他软件建立界面(如此设备管理系统用的是C#实现界面),将建立好的界面同数据库进行链接,实现对数据库的简单的增删改查。 E-R图思路: 部门向设备处申请所需设备的数量及类型,设备处产生采购清单递交给采购员。 采购员从供应商获得设备存放在设备存放处,设备管理员将设备分配到需要设备的各个部门,部门将设备分给员工进行使用。 在使用设备的过程中,如果设备在保修期限内出现质量问题部门向设备处申请,设备退回供应商;如果设备损坏,由部门向维修人员报修;若无维修价值,则申请报废。 基本要求: 立足于科技日益发达,自动化组不占据主要市场,要求学生根据自己所学的数据库知识,建立简单的数据库实现对设备管理的机械化,自动化。 1:能够数量掌握SQL; 2:能够运用其他辅助工具做图形界面。 3:能够实现对C#和数据库的链接。 4:作出的系统能够对数据库进行简单的增删改查。 5:通过机械化,自动化工具的使用,提高工作效率、准确率。 主要参考资料等: 《数据库系统概论》作者:王珊萨师煊出版社:高等教育出版社 《数据库系统概论》课堂课件。 完成期限:两周 指导教师签名: 课程负责人签名: 2012年 12月 30 日

少子寿命概念

少子寿命是半导体材料和器件的重要参数。它直接反映了材料的质量和器件特性。能够准确的得到这个参数,对于半导体器件制造具有重要意义。 少子,即少数载流子,是半导体物理的概念。它相对于多子而言。 半导体材料中有电子和空穴两种载流子。如果在半导体材料中某种载流子占少数,导电中起到次要作用,则称它为少子。如,在 N型半导体中,空穴是少数载流子,电子是多数载流子;在P型半导体中,空穴是多数载流子,电子是少数载流子。 多子和少子的形成:五价元素的原子有五个价电子,当它顶替晶格中的四价硅原子时,每个五价元素原子中的四个价电子与周围四个硅原子以共价键形式相结合,而余下的一个就不受共价键束缚,它在室温时所获得的热能足以便它挣脱原子核的吸引而变成自由电子。出于该电子不是共价键中的价电子,因而不会同时产生空穴。而对于每个五价元素原子,尽管它释放出一个自由电子后变成带一个电子电荷量的正离子,但它束缚在晶格中,不能象载流子那样起导电作用。这样,与本征激发浓度相比,N型半导体中自由电子浓度大大增加了,而空穴因与自由电子相遇而复合的机会增大,其浓度反而更小了。 少子浓度主要由本征激发决定,所以受温度影响较大。 香港永先单晶少子寿命测试仪 >> 单晶少子寿命测试仪 编辑本段产品名称 LT-2单晶少子寿命测试仪 编辑本段产品简介 少数载流子寿命(简称少子寿命)是半导体材料的一项重要参数,它对半导体器件的性能、太阳能电池的效率都有重要的影响.我们采用微波反射光电导衰减法研制了一台半导体材料少子寿命测试仪,本文将对测试仪的实验装置、测试原理及程序计算进行了较详细的介绍,并与国外同类产品的测试进行比较,结果表明本测试仪测试结果准确、重复性高,适合少子寿命的实验室研究和工业在线测试. 技术参数: 测试单晶电阻率范围 >2Ω.cm 少子寿命测试范围 10μS~5000μS 配备光源类型 波长:1.09μm;余辉<1 μS; 闪光频率为:20~30次/秒; 闪光频率为:20~30次/秒; 高频振荡源 用石英谐振器,振荡频率:30MHz 前置放大器 放大倍数约25,频宽2 Hz-1 MHz 仪器测量重复误差 <±20%

实验一 光电导衰退测量少数载流子的寿命

实验一光电导衰退测量少数载流子的寿命 一、实验目的 1.理解非平衡载流子的注入和复合过程; 2.了解非平衡载流子寿命的测量方法; 3.学会光电导衰退测量少子寿命的实验方法。 二、实验原理 半导体中少数载流子的寿命对双极型器件的电流增益、正向压降和开关速度等起着决定性作用。半导体太阳能电池的换能效率、半导体探测器的探测率和发光二极管的发光效率也和载流子的寿命有关。因此,半导体中少数载流子寿命的测量一直受到广泛的重视。 处于热平衡状态的半导体,在一定的温度下,载流子浓度是一定的,但这种热平衡状态是相对的,有条件的。如果对半导体施加外界作用,破坏了热平衡的条件,这就迫使它处于与热平衡状态相偏离的状态,称为非平衡状态。处于非平衡状态的半导体,其载流子浓度也不再是 n0 和 p0,可以比它们多出一部分。比平衡状态多出来的这部分载流子称为非平衡载流子,有时也称为过剩载流子。要破坏半导体的平衡态,对它施加的外部作用可以是光,也可以是电或是其它的能量传递方式。常用到的方式是电注入,最典型的例子就是 PN 结。用光照使得半导体内部产生非平衡载流子的方法,称为非平衡载流子的光注入,光注入时,非平衡载流子浓度Δn=Δp。 当外部的光注入撤除以后,注入的非平衡载流子并不能一直存在下去,它们要逐渐消失,也是原来激发到导带的电子又回到价带,电了和空穴又成对的消失了。最后,载流子浓度恢复到平衡时的值,半导体又回到平衡态,过剩载流子逐渐消失,这一过程称为非平衡载流子的复合。实验表明,光照停止后,Δp 随时间按指数规律减少。这说明非平衡载流子不是立刻全部消失,而是有一个过程,即它们在导带和价带中有一定的生存时间,有的长些,有的短些。非平衡载流子的平均生存时间称为非平衡载流子的寿命,用t 表示。由于相对于非平衡多数载流子,非平衡少数载流子的影响处于主导的、决定的地位,因而非平衡载流子的寿命通常称为少数载流子寿命。显然 1/t 就表示单位时间内非平衡载流子的复合概率。通常把单位时间单位体积内净复合消失的电子-空穴对数称为非平衡载流子的复合率。很明显,Δp/t 就代表复合率。 以光子能量略大于半导体禁带宽度的光照射样品,在样品中激发产生非平衡电子和空穴。若样品中没有明显的陷阱效应,那么非平衡电子和空穴浓度相等,他们的寿命也就相同。如果所采用的光在半导体中的吸收系数比较小,而且非平衡载流子在样品表面复合掉的部分可以忽略,那么光激发的非平衡载流子在样品内可以看成是均匀分布。假定一束光在一块n型半导体内部均匀的产生非平衡载流子Δn和Δp。在t=0时刻,光照突然停止,Δp 随时间而变化,单位时间内非平衡载流子浓度的减少应为-dΔp(t)/dt,它由复合引起,因此应当等于非平衡载流子的复合率,即

用友ERP生产管理系统实验报告

用友ERP生产管理系统实验报告 本课程共分14单,以用友ERP-U8.72为实验平台,以一个企业的生产经营业务贯穿始终,分别介绍了ERP生产管理系统中物料清单、主生产计划、产能管理、需求规划、生产订单、车间管理、工程变更、设备管理的生产制造模块,以及与生产管理活动有关的销售管理、采购管理、委外管理、库存管理、应收款管理及应付款管理等模块的相关功能。 用友ERP生产管理系统是ERP-U8企业管理软件的重要组成部分,是企业信息化管理核心的和有效的方法和工具。它面向离散型和半离散型的制造企业资源管理的需求,遵循以客户为中心的经营战略,以销售订单及市场预测需求为导向,以计划为主轴,覆盖了面向订单采购、订单生产、订单装配和库存生产四种制造业生产类型,并广泛应用于机械、电子、食品、制药等行业。 本实验报告要针对的实验项目有客户订货、排程业务、产能管理、采购业务、委外业务、生产业务、车间管理、销售发货业务、应收款和应付款系统的制单业务、期末处理、物料清单维护、工程变更管理和设备管理。 实验一客户订货 一、实验目的 1.理解销售报价的作用,掌握销售报价的操作。 2.理解销售订货管理的主要功能,掌握相关的基本操作。 二、实验内容 1.输入销售报价单。 2.审核销售报价单。 3.输入销售预订单。 4.输入销售订单。 5.审核销售订单。 6.修改已审核销售订单。 三、实验步骤 1.输入报价单。 2.审核报价单。 3.根据报价单生成销售订单。 4.审核销售订单。 5.修改已审核销售订单。 6.手工输入新的销售订单。 7.审核手工输入的销售订单。

四、实验成果 实验二排程业务 一、实验目的 理解主生产计划和物料需求计划的作用,掌握产销排程和物料需求计划的操作。 二、实验内容 1.MPS累计提前天数推算和库存异常状况查询。 2.MPS计划参数维护。 3.MPS计划生成。 4.MPS计划作业的供需资料查询。 5.MRP累计提前天数推算和库存异常状况查询。 6.MRP计划参数维护。 7.MRP计划生成。 8.MRP供需资料查询。 三、实验步骤 1.MPS累计提前天数推算和库存异常状况查询。 2.MPS计划参数维护。 3.MPS计划生成。

少子寿命测量

高频光电导衰减法测量Si 中少子寿命 预习报告: 一,什么是少子寿命? 少子,即少数载流子。少子寿命指少子的平均生存时间,寿命标志少子浓度减少到原值的1/e 所经历的时间。少数载流子寿命是与半导体中重金属含量、晶体结构完整性直接有关的物理量。它对半导体太阳电池的换能效率、半导体探测器的探测率和发光二极管的发光效率等都有影响。 二,如何测量少子寿命? 测量非平衡少数载流子寿命的方法有许多种,分别属于瞬态法和稳态法两大类。本实验采用高频光电导衰减法测量Si 中少子寿命。 三,实验原理: 当能量大于半导体禁带宽度的光照射样品时,在样品中激发产生非平衡电子和空穴。若样品中没有明显的陷阱效应,那么非平衡电子(?n )和空穴(?p)的浓度相等,它们的寿命也就相同。样品电导率的增加与少子浓度的关系为n q p q n p ?+?=?μμσ当去掉光照,少子密度将按指数衰减,即τ t e p -∝?,因此导致电导率为τ σt e - ∝?。 高频源提供的高频电流流经被测样品,当红外光源的脉冲光照射样品时,单晶体内产生的非平衡光生载流子使样品产生附加光电导,从而导致样品电阻减小。由于高频源为恒压输出,因此流经样品的高频电流幅值增加?I ,光照消失后,?I 逐渐衰减,其衰减速度取决于光生载流子在晶体内存在的平均时间,即寿命。在小注入条件下,当光照区复合为主要因素时,?I 将按指数规律衰减,此时取样器上产生的电压变化?V 也按同样的规律变化,即 τt e V V - ?=?0 图2指数衰减曲线 一, Si. t

?V~t 曲线: (一) (二) (三) 计算少子寿命: 电压满足τ t e V V -?=?0,在测量数据中,由于时间原点的不同选择,t 的绝对值不同, 但是相对值相同。任选两个点(t 1,?V 1),(t 2,?V 2),有?V 1=?V 0e ? t 1+?t τ ,?V 2=?V 0e ? t 2+?t τ ,

实验二 光电导衰退测量少数载流子的寿命

实验二光电导衰退测量少数载流子的寿命 实验项目性质:综合实验 所涉及课程:半导体物理、半导体材料 计划学时:2学时 一、实验目的 1.理解非平衡载流子的注入与复合过程; 2.了解非平衡载流子寿命的测量方法; 2.学会光电导衰退测量少子寿命的实验方法。 二、实验原理 半导体中少数载流子的寿命对双极型器件的电流增益、正向压降和开关速度等起着决定性作用。半导体太阳能电池的换能效率、半导体探测器的探测率和发光二极管的发光效率也和载流子的寿命有关。因此,半导体中少数载流子寿命的测量一直受到广泛的重视。 处于热平衡状态的半导体,在一定的温度下,载流子浓度是一定的,但这种热平衡状态是相对的,有条件的。如果对半导体施加外界作用,破坏了热平衡的条件,这就迫使它处于与热平衡状态相偏离的状态,称为非平衡状态。处于非平衡状态的半导体,其载流子浓度也不再是n0和p0,可以比它们多出一部分。比平衡状态多出来的这部分载流子称为非平衡载流子,有时也称为过剩载流子。要破坏半导体的平衡态,对它施加的外部作用可以是光,也可以是电或是其它的能量传递方式。常用到的方式是电注入,最典型的例子就是PN结。用光照使得半导体内部产生非平衡载流子的方法,称为非平衡载流子的光注入,光注入时,非平衡载流子浓度Δn=Δp。 当外部的光注入撤除以后,注入的非平衡载流子并不能一直存在下去,它们要逐渐消失,也是原来激发到导带的电子又回到价带,电了和空穴又成对的消失了。最后,载流子浓度恢复到平衡时的值,半导体又回到平衡态,过剩载流子逐渐消失,这一过程称为非平衡载流子的复合。实验表明,光照停止后,Δp随时间按指数规律减少。这说明非平衡载流子不是立刻全部消失,而是有一个过程,

计算机操作系统体系结构实验报告

操作系统实验报告 实验目的: 随着操作系统应用领域的扩大,以及操作系统硬件平台的多样化,操作系统的体系结构和开发方式都在不断更新,目前通用机上常见操作系统的体系结构有如下几种:模块组合结构、层次结构、虚拟机结构和微内核结构。为了更好的了解计算机操作系统体系结构,以及linux 的体系结构,特作此报告。 实验内容: 计算机操作系统体系结构 一、模块组合结构 操作系统刚开始发展时是以建立一个简单的小系统为目标来实现的,但是为了满足其他需求又陆续加入一些新的功能,其结构渐渐变得复杂而无法掌握。以前我们使用的MS-DOS 就是这种结构最典型的例子。这种操作系统是一个有多种功能的系统程序,也可以看成是一个大的可执行体,即整个操作系统是一些过程的集合。系统中的每一个过程模块根据它们要完成的功能进行划分,然后按照一定的结构方式组合起来,协同完成整个系统的功能。如图1所示: 在模块组合结构中,没有一致的系统调用界面,模块之间通过对外提供的接口传递信息,模块内部实现隐藏的程序单元,使其对其它过程模块来说是透明的。但是,随着功能的增加,模块组合结构变得越来越复杂而难以控制,模块间不加控制地相互调用和转移,以及信息传递方式的随意性,使系统存在一定隐患。 二、层次结构 为了弥补模块组合结构中模块间调用存在的固有不足之处,就必须减少模块间毫无规则的相互调用、相互依赖的关系,尤其要清除模块间的循环调用。从这一点出发,层次结构的设计采用了高层建筑结构的理念,将操作系统或软件系统中的全部构成模块进行分类:将基础的模块放在基层(或称底层、一层),在此基础上,再将某些模块放在二层,二层的模块在基础模块提供的环境中工作;它只能调用基层的模块为其工作,反之不行。严格的层次结构,第N+l层只能在N层模块提供的基础上建立,只能在N层提供的环境中工作,也只能向N 层的模块发调用请求。 在采用层次结构的操作系统中,各个模块都有相对固定的位置、相对固定的层次。处在同一层次的各模块,其相对位置的概念可以不非常明确。处于不同层次的各模块,一般而言,不可以互相交换位置,只存在单向调用和单向依赖。Unix/Linux系统采用的就是这种体系结构。 在层次结构中,强调的是系统中各组成部分所处的位置,但是想要让系统正常运作,不得不协调两种关系,即依赖关系和调用关系。 依赖关系是指处于上层(或外层)的软件成分依赖下层软件的存在、依赖下层软件的运行而运行。例如,浏览器这部分软件就依赖GUI的存在和运行,GUI又依赖操作系统的存在和运行。在操作系统内部,外围部分依赖内核的存在而存在,依赖内核的运行而运行,内核又依赖HAL而运行。处在同层之内的软件成分可以是相对独立的,相互之间一般不存在相互依赖关系。 三、虚拟机结构 虚拟机的基本思想是系统能提供两个功能:①多道程序处理能力;②提供一个比裸机有更方便扩展界面的计算机。操作系统是覆盖在硬件裸机上的一层软件,它通过系统调用向位于

少子寿命测试判断是否有外延

Abruptness of a-Si:H/c-Si interface revealed by carrier lifetime measurements Stefaan De Wolf and Michio Kondo Citation: Appl. Phys. Lett. 90, 042111 (2007); doi: 10.1063/1.2432297 View online: https://www.doczj.com/doc/4110081950.html,/10.1063/1.2432297 View Table of Contents: https://www.doczj.com/doc/4110081950.html,/resource/1/APPLAB/v90/i4 Published by the AIP Publishing LLC. Additional information on Appl. Phys. Lett. Journal Homepage: https://www.doczj.com/doc/4110081950.html,/ Journal Information: https://www.doczj.com/doc/4110081950.html,/about/about_the_journal Top downloads: https://www.doczj.com/doc/4110081950.html,/features/most_downloaded Information for Authors: https://www.doczj.com/doc/4110081950.html,/authors

Abruptness of a-Si:H/c-Si interface revealed by carrier lifetime measurements Stefaan De Wolf a?and Michio Kondo National Institute of Advanced Industrial Science and Technology(AIST),Central2,1-1-1Umezono, Tsukuba,Ibaraki305-8568,Japan ?Received27September2006;accepted15December2006;published online26January2007? Intrinsic hydrogenated amorphous silicon?lms can yield outstanding electronic surface passivation of crystalline silicon wafers.In this letter the authors con?rm that this is strongly determined by the abruptness of the interface.For completely amorphous?lms the passivation quality improves by annealing at temperatures up to260°C,most likely by?lm relaxation.This is different when an epitaxial layer has been grown at the interface during?lm deposition.Annealing is in such a case detrimental for the passivation.Consequently,the authors argue that annealing followed by carrier lifetime measurements allows determining whether the interface is abrupt.?2007American Institute of Physics.?DOI:10.1063/1.2432297? Hydrogenated amorphous silicon?a-Si:H??lms depos-ited on crystalline silicon?c-Si?surfaces have increasingly attracted attention over the past20years.Initially,it was discovered that abrupt electronic heterojunctions can be cre-ated with such structures.1Soon afterwards applications fol-lowed,including bipolar transistors,2imaging devices,3and solar cells.4For the latter it was recognized that the output parameters bene?t substantially from inserting a few nano-meter thin intrinsic a-Si:H?i??lm between the doped amor-phous emitter and c-Si substrate.For solar cells that feature a similar heterostructure back surface?eld,impressive energy conversion ef?ciencies exceeding21%have been reported.5 The role of the a-Si:H?i?buffer layer has been discussed in literature?see,e.g.,Refs.6–12?:It is known that such?lms can yield outstanding surface passivation for c-Si surfaces,13 but also that growth of an epitaxial interface during a-Si:H?i?deposition is detrimental for heterojunction device performance.12For hot wire chemical vapor deposited ?CVD?a-Si:H,where no ion bombardment takes place, abrupt interfaces have been obtained either by limiting the deposition temperature T depo?Ref.14?or by terminating the c-Si surface with a SiN x monolayer prior to a-Si:H deposition.15The abruptness of the interface,i.e.,whether instant a-Si:H deposition on c-Si occurred without initial epitaxial growth,was in these studies determined either by transmission electron microscopy?TEM??Refs.12,14,and 15?or by?in situ?spectroscopic ellipsometry?SE?,16for which mirror polished surfaces are desirable.To gain know- ledge about the electronic surface passivation properties of these interfaces,the most straightforward technique is by measuring the effective carrier lifetime?eff of the samples. Such measurements are known to be extremely sensitive, allowing for detection of bulk defect densities as low as 109–1011cm?3in a simple,contactless technique at room temperature.17 In this letter,we show that by low temperature?up to 260°C?postdeposition annealing,the surface passivation quality of direct plasma enhanced?PE?CVD a-Si:H?i??lms improves when the a-Si:H/c-Si interface is abrupt.This contrasts with the case when an epitaxial?lm has been grown at the interface,where the surface passivation quality is seen to degrade signi?cantly by a similar annealing treat-ment.Consequently,we argue that annealing followed by carrier lifetime measurements allows accurate determination of the onset of epitaxial growth in an easy-to-use way which is not restricted to polished c-Si surfaces. For the experiments,300?m thick relatively low resistivity??3.0?cm?boron-doped?oat zone?100??FZ?-Si?p?wafers have been used.Both surfaces of the sub-strates were mirror polished to eliminate the in?uence of substrate surface roughness on the passivation properties18 and to allow for SE measurements.For predeposition surface cleaning,the samples were?rst immersed in a ?H2SO4:H2O2??4:1?solution for10min to grow a chemical oxide,which was followed by a rinse in de-ionized water. The oxide was then stripped off in a dilute HF solution?5%?for30s.After this the samples were immediately transferred to the load lock of the deposition system.For?lm deposi-tion,a parallel plate direct PECVD reactor operated at radio frequency?rf??13.56MHz?power was used,in which the samples were mounted at the top electrode.The electrode distance and diameter were respectively20and230mm.An undiluted SiH4?ow of20SCCM?SCCM denotes cubic cen-timeter per minute at STP?was used and the chamber was maintained at low pressure?0.5Torr?.The value for T depo was varied from105to255°C.The rf power absorbed by the plasma was5W.This is the minimal power required to maintain a stable plasma at the given deposition conditions. To evaluate the surface passivation quality,identical?lms of about50nm thick were deposited on both wafer surfaces. After deposition,the samples were consecutively annealed in a vacuum furnace?30min,with annealing temperatures T ann ranging from120to260°C?.In between the annealing steps,the value for?eff of the samples was measured with a Sinton Consulting WCT-100quasi-steady-state photocon-ductance system,19operated in the so-called generalized mode.Since high quality FZ-Si wafers have been used throughout the experiments,the contribution of the bulk to the total recombination expressed by?eff can be neglected.In such a case,the effective surface recombination velocity S eff, which value can be regarded as a direct measure for the passivation quality of the?lms present at the surfaces,may a?Electronic mail:stefaan.dewolf@aist.go.jp APPLIED PHYSICS LETTERS90,042111?2007? 0003-6951/2007/90?4?/042111/3/$23.00?2007American Institute of Physics 90,042111-1

相关主题
文本预览
相关文档 最新文档