_生活中的变量关系

  • 格式:ppt
  • 大小:680.00 KB
  • 文档页数:19

下载文档原格式

  / 19
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习
6、在物理化学等学科中找出有函数关系的变 量的例子,并指出其中的自变量和因变量.
7、请找出至少3个生活中存在的函数关系的 实例,并与同伴交流.
例1 口香糖的生产已有很长的历史,咀嚼口香糖
有很多益处,但其残留物也会带来污染.为了研
究口香糖的黏附力与温度的关系,一位同学通过
19:30~22:00 600 22:00~23:00 500 23:00~结束 400
650 550 450
765000定000的因,876000变000则量987是000000的函值987数555000.关若198系0是000000,惟11否9一10000000
关系:广告价格播出时间长短的关系.则,不是函数关系.
储油量v与油面高度h存在 着依赖关系,储油量v与油 面宽度w也存在关依赖关系
那个是函数关系?
实例分析
对于油面高度h的每一个取值,都有唯一 的储油量v和它对应,所以,储油量v是油面 高度h的函数.
对于油面宽度w的一个值可以有两种油面 高度和它对应,于是可以有两种储油量v和它 对应,所以,储油量v不是油面宽度w的函数.
年份 1988 总里程 147 年份 1995 总里程 2141
1998~2001 年全国高速公路总里程 1989 1990 1991 1992
271
522
574
652
1996 1997 1998 1999
3422 4771 8733 11605
单位:千米 1993 1994 1145 1603 2000 2001 16314 19453
生活中的变量关系
变量间的依赖关系
生活中处处有变量,变量之间充满了依赖关系
实例分析
我国的道路交通 网,近十年的发 展非常迅速.
实例分析
1、我国自1998年开始建设高速公路,全国高速公路 通车总里程,于1998年底,位居世界第八;1999年底, 位居世界第四;2000年底,位居世界第三;2001年底, 超过了加拿大,跃居世界第二位.如下表格:
(2)班上45位同学,每人都有一个不同的学号,某次数学测验共有36个不同的
分数.关系为:学生的分数与学号的判关系断;一些变量间的依赖
(3)某电视台广告价格表(2001年1月份关报价系,单是位否:为元)函数关系,
时段 播出时间 10s 15s 20s其变关量30s键的4是值0s看,4对是5s于 否5每 惟0s一 一个 确60s
例1 当你去电影院时,你联想到哪些变量之间的关系 呢?
解 (1)每张电影票都有唯一的座位与它对应,座位随 电影票的变化而变化,座位是电影票的函数.
(2)电影广告的宣传费用与它获得的利润对应,利 润是宣传费用的函数.
(3)电影的票价与它获得的利润对应,利润是电影 票价的函数.
例2 请举出现实生活中变量之间关系的实例.
4、日期与星期之间存在差怎样的依赖关系?这种依赖 关系是函数关系吗?如果是,指出自变量和因变量.
每一个日期都有一个星期几和它对应,所以它们存
在函数关系;日期是自变量,星期是因变量
星期不能作自变量,对于每一个星
星期可否作
期,有很多个日期,不具有单值性
为自变量?
练习
5、下列过程中,变量之间是否存在依赖关系,其中哪 些是函数关系: (1)地球绕太阳公转的过程中,二者的距离与时间的 关系 (2)在空中作斜抛运动的铅球,铅球距地面的高度与 时间的关系; (3)某水文观测点记录的水位与时间的关系; (4)某十字路口,通过汽车的数量与时间的关系.
问题研讨
以上问题在介绍高速公路的情况下,得到变量与变 量之间的一些依赖关系,你能联想到类似情景下, 如邮局、机场等变量之间的依赖关系吗?
注意
并非有依赖关系的两个变量都有函数关系.
问题 如何判断两个有依赖关系的变量之间
是否是函数关系?
首先,确定因变量和自变量; 其次,判断对于自变量的每一个确定的值, 因变量是否有唯一确定值与之对应,若满 足则是函数关系,否则不是.
实例分析
(1)高速公路里程数随时间的变化而变化.所以, 高速公路里程可以看成因变量,年度可以看成 自变量,从而高速公路里程数是年度的函数.
(2)从1988年到2001年,里程数是不断增加的, 其中从1999年到2000年增长得最快.
实例分析
2、一辆汽车在高速公路上行驶的过程中,每个 时刻都有唯一行驶路程与它对应,行驶路程(因 变量)随时间(自变量)的变化而变化,行驶路程 是时间的函数,同样,汽车的速度、耗油量也 是时间的函数.
属于函数关系的有____(_ຫໍສະໝຸດ Baidu_)_(_2_)___.
练习
1、某电器商店以2000元一台的价格进了一批电视机, 然后以2100元的价格售出,随着售出台数的变化,商 店获得的收入是怎样变化的?其收入和售出 的台数 间存在函数关系吗?
设售出台数为x台,收入为y元,则y=(2100-2000)x 收入和台数间存在函数关系
解 (1)物体的热量与温度有关;(2)声音与乐器有关 系;(3)亮度与视觉有关系;(4)数轴上的点与实数之间 有关系;(5)气候与日期有关系;(6)人的脑重与体重有 关系.
实例分析
3、下图是某高速公路加油站的图片,加油站常 用圆柱体储油罐储存汽油.储油罐的长度d、截 面半径r是常量;油面高度h、油面宽度w、储油 量v是变量.
问题研讨
进一步分析上述储油罐的问题,讨论: (1)还有哪些常量?哪些变量? (2)哪些变量之间存在依赖关系? (3)哪些依赖关系是函数关系?哪些依赖 关系不是函数关系?
例3 给出下列情境与关系
(1)某护士从上午8:00到下午2:00每小时量一次病人的体温,结果如下表:
时间 8:00 9:00 10:00 11:00 12:00 13:00 14:00 体温 37.2 37.3 37.4 37.6 38.0 38.1 38.4
2、坐电梯时,电梯距地面的高度与时间之间存在怎 样的依赖关系?
对于任一时间,电梯都有唯一高度.它们之间存在函 数关系
练习
3、在一定量的水中加入蔗糖,糖水的质量浓度与所加 蔗糖的质量之间存在怎样的依赖关系?如果是函数关 系,指出自变量和因变量. 存在函数关系,其中蔗糖质量是自变量,糖水质量 浓度是因变量; 也可以糖水质量深度是自变量,蔗糖的质量是因变量