随机变量及其分布知识点整理
- 格式:docx
- 大小:14.19 KB
- 文档页数:3
随机变量及其分布1、基本概念⑴互斥事件:不可能同时发生的两个事件.如果事件A B C 、、,其中任何两个都是互斥事件,则说事件A B C 、、彼此互斥. 当A B 、是互斥事件时,那么事件A B +发生(即A B 、中有一个发生)的概率,等于事件A B 、分别发生的概率的和,即()()(P A B P A P B +=+.⑵对立事件:其中必有一个发生的两个互斥事件.事件A 的对立事件通常记着A . 对立事件的概率和等于1. ()1()P A P A =-.特别提醒:“互斥事件”与“对立事件”都是就两个事件而言的,互斥事件是不可能同时发生的两个事件,而对立事件是其中必有一个发生的互斥事件,因此,对立事件必然是互斥事件,但互斥事件不一定是对立事件,也就是说“互斥”是“对立”的必要但不充分的条件.⑶相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,(即其中一个事件是否发生对另一个事件发生的概率没有影响).这样的两个事件叫做相互独立事件.当A B 、是相互独立事件时,那么事件A B ⋅发生(即A B 、同时发生)的概率,等于事件A B 、分别发生的概率的积.即()()()P A B P A P B ⋅=⋅.若A 、B 两事件相互独立,则A 与B 、A 与B 、A 与B 也都是相互独立的.⑷独立重复试验①一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验.②独立重复试验的概率公式p ,那么在n 次独立重复试验中这个试验恰好发生k 次的概率()()(1)0,12,.,k k n k n n P k n k C p p -==-⑸条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 发生的概率.知识结构公式:()(),()0.()P AB P B A P A P A => 2、离散型随机变量 ⑴随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用字母,,,X Y ξη等表示.⑵离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.⑶连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.⑷离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.若X 是随机变量,(,Y aX b a b =+是常数)则Y 也是随机变量 并且不改变其属性(离散型、连续型).3、离散型随机变量的分布列⑴概率分布(分布列)设离散型随机变量X 可能取的不同值为12,x x ,…,i x ,…,n x ,X )i i X x p ==,则称表为随机变量的概率分布,简称的分布列.性质:①0,1,2,...;i p i n ≥= ②1 1.n i i p ==∑⑵两点分布则称X 服从两点分布,并称(1)p P X ==为成功概率.⑶二项分布如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是()(1).k k n k n P X k C p p -==-我们称这样的随机变量X 服从二项分布,记作()p n B X ,~,并称p 为成功概率.判断一个随机变量是否服从二项分布,关键有三点:①对立性:即一次试验中事件发生与否二者必居其一;②重复性:即试验是独立重复地进行了n 次;① 等概率性:在每次试验中事件发生的概率均相等.② 注:⑴二项分布的模型是有放回抽样;⑵二项分布中的参数是,,.p k n⑷超几何分布一般地, 在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{}X k =发生的概率为()(0,1,2,,)k n k M N M n N C C P X k k m C --===,于是得到随机变量X其中{}min ,m M n =,*,,,,n N M N n M N N ∈≤≤. 我们称这样的随机变量X 的分布列为超几何分布列,且称随机变量X 服从超几何分布.注:⑴超几何分布的模型是不放回抽样;⑵超几何分布中的参数是,,.M N n 其意义分别是总体中的个体总数、N 中一类的总数、样本容量.4、离散型随机变量的均值与方差⑴离散型随机变量的均值则称()1122i i n n E X x p x p x p x p =+++++为离散型随机变量X 的均值或数学期望(简称期望).它反映了离散型随机变量取值的平均水平.⑵离散型随机变量的方差则称21()(())n ii i D X x E X p ==-∑为离散型随机变量X 的方差,为随机变量X 的标准差.它反映了离散型随机变量取值的稳定与波动,集中与离散的程度. ()D X 越小,X 的稳定性越高,波动越小,取值越集中;()D X 越大,X 的稳定性越差,波动越大,取值越分散.。
高考数学总复习考点知识专题讲解 专题11离散型随机变量及其分布列知识点一 随机变量的概念、表示及特征1.概念:一般地,对于随机试验样本空间Ω中的每个样本点ω都有唯一的实数X (ω)与之对应,我们称X 为随机变量.2.表示:用大写英文字母表示随机变量,如X ,Y ,Z ;用小写英文字母表示随机变量的取值,如x ,y ,z .3.特征:随机试验中,每个样本点都有唯一的一个实数与之对应,随机变量有如下特征:(1)取值依赖于样本点. (2)所有可能取值是明确的. 知识点二 离散型随机变量可能取值为有限个或可以一一列举的随机变量,我们称之为离散型随机变量. 判断离散型随机变量的方法 (1)明确随机试验的所有可能结果; (2)将随机试验的结果数量化;(3)确定试验结果所对应的实数是否可以一一列出,如能一一列出,则该随机变量是离散型随机变量,否则不是.【例1】((2023•丰台区期末)下面给出的四个随机变量中是离散型随机变量的为() ①高速公路上某收费站在半小时内经过的车辆数1X ;②一个沿直线2y x 进行随机运动的质点离坐标原点的距离X;③某同学射击3次,命中的次数3X;④某电子元件的寿2命X;4A.①②B.③④C.①③D.②④【例2】(2023•从化区期中)袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球的号码之和为随机变量X,则X所有可能取值的个数是()A.25B.10C.9D.5知识点三离散型随机变量的分布列及其性质1.定义:一般地,设离散型随机变量X的可能取值为x1,x2,…,x n,我们称X取每一个值x i的概率P(X=x i)=p i,i=1,2,3,…,n为X的概率分布列,简称分布列.2.分布列的性质(1)p i≥0,i=1,2,…,n.(2)p1+p2+…+p n=1.分布列的性质及其应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个范围内的概率时,根据分布列,将所求范围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式.【例3】(2023•辽宁期末)随机变量X的分布列如下表所示,则(2)(…)P XA .0.1B .0.2C .0.3D .0.4【例4】(2022•朝阳区开学)设随机变量X 的分布列为()(1P X k k k λ===,2,3,4),则λ的值为() A .10B .110C .10-D .110-【例5】(2023•珠海期末)已知某离散型随机变量ξ的分布列为:则(q =)A .13和1-B .13C .12D .1-【例6】(2022•多选•天津模拟)设随机变量ξ的分布列为()(15kP ak k ξ===,2,3,4,5),则()A .115a =B .141()255P ξ<<= C .112()10215P ξ<<=D .23()510P ξ=…【例7】(2023•湖北模拟)设随机变量ξ的分布列如表:则下列正确的是()A .当{}n a 为等差数列时,5615a a += B .数列{}n a 的通项公式可以为109(1)n a n n =+C .当数列{}n a 满足1(1,2,9)2n na n ==时,10912a =D .当数列{}n a 满足2()(1k P k k a k ξ==…,2,10)时,1110(1)n a n n =+知识点四 两点分布如果P (A )=p ,则P (A )=1-p ,那么X 的分布列为我们称X 服从两点分布或0-1【例8】(多选)若离散型随机变量X 的分布列如下表所示,则下列说法错误的是()A .常数c 的值为23或13B .常数c 的值为23C .1(0)3P X ==D .2(0)3P X ==【例9】(2023•阜南县期末)从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设ξ表示选出的3名同学中男生的人数,求ξ的分布列.【例10】(2023•崂山区期末)某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是2 3,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X的分布列.(3)求这位挑战者闯关成功的概率.同步训练1.(2022•多选•临朐县开学)下列X是离散型随机变量的是()A.某座大桥一天经过的某品牌轿车的辆数XB .一天内的温度为XC .某网页一天内被点击的次数XD .射击运动员对目标进行射击,击中目标得1分,未击中目标得0分,用X 表示该运动员在一次射击中的得分2.(2023•上蔡县校级月考)设随机变量ξ的概率分布列如下表:则(|2|1)(P ξ-==) A .712B .12C .512D .163.(2023•周至县期末)设随机变量X 的分布列为()(1,2,3,4,5,6)2kcP X k k ===,其中c 为常数,则(2)P X …的值为() A .34B .1621C .6364D .64634.(2023•多选•宝安区期中)已知随机变量ξ的分布如下:则实数a 的值为()A .12-B .12C .14D .14-5.(2023•和平区校级期末)设随机变量与的分布列如下:则下列正确的是()A .当{}n a 为等差数列时,5615a a +=B .当数列{}n a 满足1(12n na n ==,2,⋯,9)时,10912a = C .数列{}n a 的通项公式可以为109(1)n a n n =+D .当数列{}n a 满足2()(1k P k k a k ξ==…,2,⋯,10)时,1110(1)n a n n =+6.(2023•郫都区模拟)甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球.(Ⅰ)求“两球颜色相同”的概率;(Ⅱ)设ξ表示所取白球的个数,求ξ的概率分布列.。
离散随机变量及其概率分布知识点整理
离散随机变量是概率论和统计学中一种常见的数学模型,用于
描述只能取有限或可数个取值的随机变量。
在本文档中,我们将介
绍离散随机变量的相关概念和概率分布的基本知识点。
1.离散随机变量的定义
离散随机变量是一种随机变量,它只能取有限个或可数个取值。
离散随机变量的取值可以是整数或一系列离散的数值。
离散随机变量的取值的概率由概率质量函数(probability mass n)表示。
2.概率质量函数(PMF)
概率质量函数是离散随机变量的概率分布函数。
概率质量函数将每个可能的取值与其对应的概率关联起来,表
示为 P(X = x) = p(x),其中 X 表示随机变量,x 表示取值。
3.期望值
期望值是离散随机变量的平均值。
期望值可以通过将每个取值与其对应的概率相乘,然后求和得到。
期望值的符号表示为 E(X) 或μ。
4.方差
方差是离散随机变量的离散程度的度量。
方差可以通过计算每个取值与期望值的差的平方乘以对应的概率,然后求和得到。
方差的符号表示为 Var(X)。
5.常见的离散分布
伯努利分布:描述只有两个可能取值的随机变量,如抛硬币的结果。
二项分布:描述重复进行若干次独立实验,并且每次实验只有两个可能结果的情况。
泊松分布:描述在一段时间或空间距离内事件发生次数的概率分布。
几何分布:描述进行重复独立的伯努利试验,直到第一次成功的次数的概率分布。
以上是关于离散随机变量及其概率分布的基本知识点整理。
希望对你的学习有所帮助!。
高考数学知识点精讲常见随机变量的分布类型高考数学知识点精讲:常见随机变量的分布类型在高考数学中,随机变量的分布类型是一个重要的知识点,理解和掌握这些分布类型对于解决概率相关的问题至关重要。
下面我们就来详细讲解一下常见的随机变量分布类型。
首先,我们来认识一下什么是随机变量。
简单来说,随机变量就是把随机试验的结果用数字表示出来。
比如说掷骰子,我们可以定义随机变量 X 为骰子掷出的点数,那么 X 可能取值 1、2、3、4、5、6。
常见的随机变量分布类型主要有以下几种:一、离散型随机变量的分布1、两点分布两点分布是最简单的一种离散型随机变量分布。
比如抛一枚硬币,正面朝上记为1,反面朝上记为0,那么这个随机变量就服从两点分布。
其概率分布为 P(X = 1) = p,P(X = 0) = 1 p ,其中 0 < p < 1 。
2、二项分布二项分布在实际生活中有很多应用。
比如进行n 次独立重复的试验,每次试验只有两种结果(成功或失败),成功的概率为 p ,失败的概率为 1 p 。
那么成功的次数 X 就服从二项分布,记为 X ~ B(n, p) 。
二项分布的概率公式为:P(X = k) = C(n, k) p^k (1 p)^(n k) ,其中 C(n, k) 表示从 n 个元素中选出 k 个元素的组合数。
举个例子,假设一批产品的次品率为 02,从这批产品中随机抽取10 个,那么抽到次品个数 X 就服从二项分布 B(10, 02) 。
3、超几何分布超几何分布与二项分布有点类似,但适用的场景略有不同。
超几何分布是从有限 N 个物件(其中包含 M 个指定种类的物件)中抽出 n 个物件,成功抽出指定种类物件的次数 X 就是超几何分布。
超几何分布的概率公式为:P(X = k) = C(M, k) C(N M, n k) /C(N, n) 。
比如说在一个有 50 个球,其中 20 个红球,30 个白球的盒子中,随机抽取 10 个球,红球的个数 X 就服从超几何分布。
随机变量及其分布一、离散型随机变量的分布列一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ⋅⋅⋅⋅⋅⋅,X 取每一个值(1,2,,)i x i n =⋅⋅⋅的概率()i i P X x p ==,则称以下表格为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =⋅⋅⋅≥ (2)121n p p p ++⋅⋅⋅+=常见的两种分布: 1.两点分布如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为:(),0,1,2,3,...,k n k MN M n NC C P X k k m C--===则随机变量X 的概率分布列如下:{}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。
注:超几何分布的模型是不放回抽样二、条件概率一般地,设A,B 为两个事件,且()0P A >,称()(|)()P AB P B A P A =为在事件A发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤三、相互独立事件设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。
()()()A B P AB P A P B ⇔=即、相互独立一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =. 注:(1)互斥事件:指同一次试验中的两个事件不可能同时发生;(2) 相互独立事件:指在不同试验下的两个事件互不影响.四、n 次独立重复试验一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验. 在n次独立重复试验中,记iA 是“第i 次试验的结果”,显然,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅“相同条件下”等价于各次试验的结果不会受其他试验的影响 注: 独立重复试验模型满足以下三方面特征第一:每次试验是在同样条件下进行; 第二:各次试验中的事件是相互独立的;第三:每次试验都只有两种结果,即事件要么发生,要么不发生.五、二项分布一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则()(1)0,1,2,,k kn k n P X k C p p k n -==-=⋅⋅⋅,此时称随机变量X 服从二项分布,记作~(,)X B n p ,并称p 为成功概率.六、离散随机变量的均值(数学期望) 一般地,随机变量X 的概率分布列为则称1122()i i n n E X x p x p x p x p =+++++为X 的数学期望或均值,简称为期望.它反映了离散型随机变量取值的平均水平.1.若Y aX b =+,其中a ,b 为常数,则Y 也是变量则()EY aE X b =+,即()()E aX b aE X b +=+2.一般地,如果随机变量X 服从两点分布,那么()=10(1)E X p p p ⨯+⨯-=即若X 服从两点分布,则()E X p = 3.若~(,)X B n p ,则()E X np =七、离散型随机变量取值的方差和标准差 一般地,若离散型随机变量x 的概率分布列为 2221122(())(())(())..n n DX x E X p x E X p x E X p X X =-+-+⋅⋅⋅+-则称为随机变量的方差的标准差1.若X 服从两点分布,则()(1)D X p p =- 2.若~(,)X B n p ,则()(1)D X np p =- 3.2()()D aX b a D X +=八、正态分布1.正态分布一般记为N(μ,σ2).μ为正态分布的均值;σ是正态分布的标准差2.结合正态曲线,归纳其以下性质:(1)曲线在x轴的上方,与x轴不相交.(2)曲线关于直线x=μ对称.(3)当x=μ时,曲线位于最高点.(4)当x<μ时,曲线上升(增函数);当x>μ时,曲线下降(减函数).并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近.(5)μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,总体分布越分散;σ越小,曲线越“高”,总体分布越集中;3.3σ原则:对于正态总体),(2σμN 取值的概率:练习:1.正态分布有两个参数μ与σ,( )相应的正态曲线的形状越扁平。
高中数学知识点总结:随机变量及其分布随机变量及其分布1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。
2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.3、离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n X 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列4、分布列性质① p i ≥0, i =1,2, … ; ② p 1 + p 2 +…+p n = 1.5、二点分布:如果随机变量X 的分布列为:其中0<p<1,q=1-p ,则称离散型随机变量X 服从参数p 的二点分布6、超几何分布:一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N M n N C C P X k k m C --===,其中{}min ,m M n =,且*,,,,n N M N n M N N ∈≤≤7、条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率8、公式: .0)(,)()()|(>=A P A P AB P A B P9、相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
)()()(B P A P B A P ⋅=⋅10、n 次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验11、二项分布: 设在n 次独立重复试验中某个事件A 发生的次数,A 发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,事件A 不发生的概率为q=1-p ,那么在n 次独立重复试验中)(k P =ξk n k k n q p C -=(其中 k=0,1, ……,n ,q=1-p )于是可得随机变量ξ的概率分布如下:这样的随机变量ξ服从二项分布,记作ξ~B(n ,p) ,其中n ,p 为参数12、数学期望:一般地,若离散型随机变量ξ的概率分布为则称 E ξ=x1p1+x2p2+…+xnpn +… 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量。
第二章 随机变量及其分布 复习一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.3、分布列:设离散型随机变量ξ可能取的值为: ,,,,21i x x xξ取每一个值),2,1( =i x 的概率p x P ==)(,则表称为随机变量ξ的概率分布,简称ξ的分布列.1=≥i p ; ②121=++++ i p p p .注意:若随机变量可以取某一区间的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题:1、随机变量ξ的分布列为(),1,2,3(1)cP k k k k ξ===+……,则P(13)____ξ≤≤=2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为17,现在甲乙两人从袋中轮流摸去一球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。
(1)求ξ的分布列(2)求甲取到白球的的概率3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。
4已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;(3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.k2.072 2.7063.841 5.024 6.635 7.879 10.828(参考公式:2()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)二、几种常见概率1、条件概率与事件的独立性(1)B|A 与AB 的区别:__________________(2)P(B|A)的计算公式_____________,注意分子分母事件的性质相同 (3)P(AB)的计算公式_____________注意三点:前提,目标,一般情况___________________ (4)P (A+B )的计算公式__________注意三点:前提,目标,一般情况____________________ 典型例题:1、市场上供应的灯泡,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率80%,则从市场上买到一个是甲厂产的合格品的概率是多少?2、把一副扑克52随即均分给钱四家,A={家得到六章草花},B={家得到3草花},计算P(B|A),P(AB)3、从混有5假钞的20百元钞票中任取两,将其中1在验钞机上检验发现是假钞,求两都是假钞的概率。
随机变量及其分布知识点总结随机变量是数学中的一个基本概念,描述了一个随机事件的可能结果。
在概率论和统计学中,随机变量的分布是研究随机变量性质的重要工具。
本文将总结随机变量及其分布的相关知识,包括随机变量的定义、表示、分布、期望、方差等。
一、随机变量的定义随机变量是一种描述随机事件可能的变量,通常用符号 $X$ 表示。
随机变量的取值可以是离散的或连续的。
离散的随机变量只取有限或可数个取值,而连续的随机变量则取无限个取值。
二、随机变量的表示随机变量的表示通常用概率密度函数 $f_X(x)$ 或概率质量函数$g_X(x)$ 表示。
概率密度函数是描述随机变量取值分布的函数,通常用$f_X(x)$ 表示。
概率质量函数是描述随机变量离散程度的函数,通常用$g_X(x)$ 表示。
三、随机变量的分布随机变量的分布描述了随机变量取值的概率分布。
离散分布描述了随机变量只取有限或可数个取值的概率分布,连续分布描述了随机变量取无限个取值的概率分布。
1. 离散分布离散分布通常用 $P(X=x)$ 表示,其中 $x$ 是随机变量的取值。
离散分布的概率质量函数通常用 $g_X(x)$ 表示。
例如,正态分布的概率质量函数为:$$g_X(x) = frac{sqrt{2pi}}{x!}e^{-frac{(x-1)^2}{2}}$$2. 连续分布连续分布通常用 $P(X leq x)$ 表示,其中 $x$ 是随机变量的取值。
连续分布的概率质量函数通常用 $f_X(x)$ 表示。
例如,均匀分布的概率质量函数为: $$f_X(x) = begin{cases}1, & x in [0,1],0, & x in [1,2],end{cases}$$四、期望和方差随机变量的期望是随机变量的取值的总和。
离散分布的期望通常用$E(X)$ 表示,连续分布的期望通常用 $E[X]$ 表示。
期望的概率质量函数通常用$f_X(x)$ 表示。
随机变量及分布知识点(一)条件概率1、条件概率:事件B 在事件A 已经发生的情况下,发生的概率称为B 在A 条件下的条件概率,记为|B A2、条件概率的计算方法:(1)按照条件概率的计算公式:()()()|P AB P B A P A =(2)考虑事件A 发生后,题目产生了如何的变化,并写出事件B 在这种情况下的概率例如:5张奖券中有一张有奖,甲,乙,丙三人先后抽取,且抽完后不放回,已知甲没有中奖,则乙中奖的概率:按照(1)的方法:设事件A 为“甲没中奖”,事件B 为“乙中奖”,则所求事件为|B A ,按照公式,分别计算()(),P AB P A ,利用古典概型可得:()25415P AB A ==,()45P A =,所以()()()1|4P AB P B A P A == 按照(2)的方法:考虑甲已经抽完了,且没有中奖,此时还有4张奖券,1张有奖。
那么轮到乙抽时,乙抽中的概率即为143、含条件概率的乘法公式:设事件,A B ,则,A B 同时发生的概率()()()|P AB P A P B A =⋅ ,此时()|P B A 通常用方案(2)进行计算4、处理此类问题要注意以下几点:(1)要分析好几个事件间的先后顺序,以及先发生的事件对后面事件的概率产生如何的影响(即后面的事件算的是条件概率)(2)根据随机变量的不同取值,事件发生的过程会有所不同,要注意区别(3)若随机变量取到某个值时,情况较为复杂,不利于正面分析,则可以考虑先求出其它取值时的概率,然后用间接法解决。
(二)事件的相互独立性1、互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 2、对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=- 3、互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么)(21n A A A P ⋅⋅⋅++=)()()(21n A P A P A P ⋅⋅⋅++ 4、相互独立事件的定义:设B A ,为两个事件,如果)()()(B P A P AB P =,则称事件A 与事件B 相互独立(mutually in de p e n de nt ) . 事件A (或B )是否发生对事件B (或A 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 5、相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅ 6、对于非独立事件A 与B 及它们的和事件与积事件有下面的关系:)()()()(B A P B P A P B A P ⋅-+=+(三)离散型随机变量分布列1、随机变量:对于一项随机试验,会有多个可能产生的试验结果,则通过确定一个对应关系,使得每一个试验结果与一个确定的数相对应,在这种对应关系下,数字随着每次试验结果的变化而变化,将这种变化用一个变量进行表示,称这个变量为随机变量(1)事件的量化:将试验中的每个事件用一个数来进行表示,从而用“数”即可表示事件。
随机变量及其分布总结1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,,,… 表示.ξη2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…,ξ取每一个值x i (i =1,2,…)的概率为,则称表()i i P x p ξ==ξx 1x 2…x i …PP 1P 2…P i…为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质:(1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1.5.求离散型随机变量的概率分布的步骤:ξ(1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(=x i )=p i ξ(36.两点分布列:ξ01P1p -p7超几何分布列:一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品数,则事件{X=k }发生的概率为,其中(),0,1,2,,k n k M N MnNC C P X k k m C --=== ,且.称分布列min{,}m M n =,,,,n N M N n M N N *≤≤∈X 01…mP0n M N Mn NC C C -11n M N Mn NC C C --…m n m M N Mn NC C C --为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量X 服从超几何分布8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是,(k =0,1,2,…,n ,).kn k k n n q p C k P -==)(ξp q -=1于是得到随机变量ξ的概率分布如下:ξ01…k…nPnn qp C 00111-n n qp C …kn k k n qp C -…qp C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。
概率与统计的随机变量与分布知识点总结概率与统计是一门研究随机事件发生规律的学科,其中重要的概念就是随机变量与分布。
随机变量是数学模型中用来描述随机现象结果的变量,而分布则是描述随机变量可能取值的概率规律。
下面将对概率与统计中的随机变量与分布的知识点进行总结。
一、随机变量的基础知识随机变量是对随机事件结果的数学描述,它可以是离散型或连续型的。
离散型随机变量的取值有限或可数,比如掷硬币的结果(正面或反面),而连续型随机变量的取值是一个区间或者实数集合,比如人的身高、温度等。
随机变量的概率分布函数(Probability Distribution Function,PDF)描述随机变量的取值及其对应的概率。
对于离散型随机变量,概率分布函数通常表示为概率质量函数(Probability Mass Function,PMF),记作P(X=x);对于连续型随机变量,概率分布函数通常表示为概率密度函数(Probability Density Function,PDF),记作f(x)。
二、常见的随机变量与概率分布1. 二项分布(Binomial Distribution)二项分布描述了一系列独立重复试验中成功次数的概率分布。
每次试验只有两个可能结果,成功和失败。
例如,抛掷硬币的结果(正面或反面)符合二项分布。
二项分布的概率质量函数为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中,n是试验次数,p是单次试验的成功概率,k是成功次数。
2. 正态分布(Normal Distribution)正态分布是最常见的连续型随机变量分布,也称为高斯分布。
它具有钟形曲线的概率密度函数,对称分布在均值周围。
正态分布的概率密度函数为:f(x) = (1/√(2πσ^2)) * exp(-(x-μ)^2/(2σ^2))其中,μ是均值,σ是标准差。
3. 泊松分布(Poisson Distribution)泊松分布描述了一个固定时间或空间单位内随机事件发生的次数的概率分布。
教学过程(4)性质①E(aξ+b)=aE(ξ), V(aξ+b)=a2V(ξ);②X~B(n, p), 则E(X)=np, V(X)=np(1-p);③X~两点分布, 则E(X)=p, V(X)=p(1-p).考点一古典概型与几何概型例1已知关于x的一元二次函数f(x)=ax2-4bx+1.(1)设集合P={1,2,3}和Q={-1,1,2,3,4}, 分别从集合P和Q中随机取一个数作为a和b, 求函数y=f(x)在区间[1, +∞)上是增函数的概率;(2)设点(a, b)是区域内的随机点, 求函数y=f(x)在区间[1, +∞)上是增函数的概率.(1)解答有关古典概型的概率问题, 关键是正确求出基本事件总数和所求事件包含的基本事件数, 这常用到计数原理与排列、组合的相关知识.(2)在求基本事件的个数时, 要准确理解基本事件的构成, 这样教学效果分析教学过程(3)当构成试验的结果的区域为长度、面积、体积、弧长、夹角等时, 应考虑使用几何概型求解.(1)(2013·江苏)现有某类病毒记作XmYn, 其中正整数m, n(m≤7, n≤9)可以任意选取, 则m, n都取到奇数的概率为________.(2)(2013·四川)节日前夕, 小李在家门前的树上挂了两串彩灯, 这两串彩灯的第一次闪亮相互独立, 且都在通电后的4秒内任一时刻等可能发生, 然后每串彩灯以4秒为间隔闪亮, 那么这两串彩灯同时通电后, 它们第一次闪亮的时刻相差不超过2秒的概率是________.考点二相互独立事件和独立重复试验例2 甲、乙、丙三个同学一起参加某高校组织的自主招生考试, 考试分笔试和面试两部分, 笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取), 两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析, 甲、乙、丙三个同学能通过笔试的概率分别是0.6.0.5.0.4, 能通过面试的概率分别是0.6.0.6.0.75.(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;(2)求经过两次考试后, 至少有一人被该高校预录取的概率.教学效果分析概率模型的应用, 需熟练掌握以下常考的五种模型: (1)基本事件的发生具有等可能性, 一般可以抽象转化为古典概型问题, 解决古典概型问题的关键是分清基本事件个数n与事件A中包含的基本事件个数m;(2)与图形的长度、面积或体积有关的概率应用问题, 一般可以应用几何概型求解, 即随机事件A的概率可用“事件A包含的基本事件所占图形的度量(长度、面积或体积)”与“试验的基本事件所占图形的度量(长度、面积或体积)”之比表示;(3)两个事件或几个事件不能同时发生的应用问题, 可转化为互斥事件来解决, 解决这类问题的关键是分清事件是否互斥;(4)事件是否发生相互不影响的实际应用问题, 可转化为独立事件的概率问题, 其中在相同条件下独立重复多次的可转化为二项分布问题, 应用独立事件同时发生的概率和二项分布公式求解;(5)有关平均值和稳定性的实际应用问题, 一般可抽象为随机变量的期望与方差问题, 先求出事件在各种情况下发生的概率, 再应用公式求随机变量的期望和方差.课堂练习1. 如图, 用K、A1.A2三类不同的元件连结成一个系统. 当K正常工作且A1.A2至少有一个正常工作时, 系统正常工作. 已知K、A1.A2正常工作的概率依次为0.9、0.8、0.8, 则系统正常工作的概率为________.2. 某保险公司新开设了一项保险业务, 若在一年内事件E发生, 该公司要赔偿a元. 设在一年内E发生的概率为p, 为使公司收益的期望值等于a的百分之十, 公司应要求顾客交保险金为________元.3.甲乙两支球队进行总决赛, 比赛采用七场四胜制, 即若有。
随机变量及其分布总结一、随机变量随机变量(Random Variable)是概率论中的重要概念,它是表示一个随机实验的可能结果及这些结果发生的概率的指标,是随机现象中的重要解释指标。
随机变量由它的取值所确定,特点是:(1)它是一类不能确定的数,因此不能被直接测量,但是可以用概率来描述它;(2)它表示了实验结果的取值;(3)它可以表示有一定规律的实验结果,也可以表示没有规律的实验结果;(4)它用其取值及概率分布表示一个随机实验的结果,即实验结果的不确定性;(5)它可以用来描述随机实验中各可能结果对概率的影响,从而探究随机现象的规律性。
二、随机变量的分类根据随机变量的取值类型,随机变量可分为定型随机变量和随机变量。
(1)定型随机变量定型随机变量也称为离散型随机变量,它会取值完全可以确定的一组可数的取值。
其具体分类包括:(a)伽玛分布(Gamma Distribution):它是一种对数正态分布,可用来模拟某些自然现象,如系统失效时间的分布。
(b)指数分布(Exponential Distribution):这是一种特殊的定型随机变量,它可以用来模拟服从指数分布的概率分布函数或者指数函数,常用来描述生存分析中系统的衰减过程。
(c)伯努利分布(Bernoulli Distribution):这是一种概率分布,它是一种若干独立实验中,某个事件出现的概率。
(d)泊松分布(Poisson Distribution):它是描述某一时间段内发生的事件的概率分布,可用来模拟客流量等自然现象中的随机变量。
(2)随机变量随机变量又称为连续型随机变量,它的取值范围是无限的,其取值受随机实验影响,其取值不能确定,但可以描述它的概率分布。
具体分类包括:(a)正态分布(Normal Distribution):正态分布具有非常广泛的应用,它可用来描述许多现实世界中的现象,如智力、体重等。
(b)卡方分布(Chi-square Distribution):卡方分布是在实验设计中非常常见的概率分布,它包含了有关实验结果的统计量,如样本均值、样本方差等。
随机变量及其分布总结1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示.2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量3、分布列:设离散型随机变量ξ可能取得值为x 1,x 2,…,x 3,…,ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质:(1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格6.两点分布列:7超几何分布列:一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品数,则事件 {X=k }发生的概率为(),0,1,2,,k n kM NMnNC C P X k k m C --===,其中min{,}m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k kn n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ的概率分布如下:ξ 01 … k … nPnn q p C 00111-n n q p C … kn k k n q p C - …q p C n n n称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。
概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。
- 样本空间:所有可能事件发生的集合。
- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。
- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。
- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。
- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。
- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。
2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。
- 离散随机变量:取值为有限或可数无限的随机变量。
- 连续随机变量:可以在某个区间内取任意值的随机变量。
- 概率分布函数:描述随机变量取值的概率。
- 概率密度函数:连续随机变量的概率分布函数的导数。
- 累积分布函数:随机变量取小于或等于某个值的概率。
- 期望值:随机变量的长期平均值。
- 方差:衡量随机变量取值的离散程度。
3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。
- 边缘分布:通过联合分布求得的单个随机变量的分布。
- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。
- 协方差:衡量两个随机变量之间的线性关系。
- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。
4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。
- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。
5. 数理统计基础- 样本:从总体中抽取的一部分个体。
- 总体:研究对象的全体。
- 参数估计:用样本统计量来估计总体参数。
- 点估计:给出总体参数的一个具体估计值。
- 区间估计:给出一个包含总体参数可能值的区间。
- 假设检验:对总体分布的某些假设进行检验。
- 显著性水平:拒绝正确假设的最大概率。
随机变量及其分布知识点整理
、离散型随机变量的分布列
般地,设离散型随机变量 X 可能取的值为x-i , x 2, , x i , , Xn , X 取每一个值X j (i 1,2, ,n)的概率 P(X x ) p ,则称以下表格
离散型随机变量的分布列具有下述两个性质:
(1) P > 0,i 1,2, , n (2) p 1
p 2 p n 1 1.两点分布
如果随机变量X 的分布列为
则称X 服从两点分布,并称 p=P(X=1)为成功概率•
2.超几何分布
一般地,在含有 M 件次品的N 件产品中,任取
n 件,其中恰有X 件次品,则事件 x k 发生的概率为:
其中 m min M , n ,且n N, M N,n ,M,N N 。
注:超几何分布的模型是不放回抽样
二、条件概率
般地,设A,B 为两个事件,且P(A) 0,称P(B|A)鵲为在事件A 发生的条件下,事件B 发生的条
件概率• 0 < P(B | A) < 1
如果 B 和 C 互斥,那么 P[(BUC)|A] P(B|A) P(C|A)
三、相互独立事件
设A , B 两个事件,如果事件A 是否发生对事件 B 发生的概率没有影响(即P(AB) P(A)P(B)),则称事件
A 与事件
B 相互独立。
即A 、B 相互独立 P(AB) P(A)P(B)
般地,如果事件 A,A 2,…,A n 两两相互独立,那么这
n 个事件同时发生的概率,等于每个事件发生的概率 P(X
k) k n k C M C N M k C N
0,1,2,3,…,m
的积,即P(AA..A) P(A)P(A2)...P(A n).
注:(1)互斥事件:指同一次试验中的两个事件不可能同时发生;
(2)相互独立事件:指在不同试验下的两个事件互不影响•
四、n次独立重复试验
一般地,在相同条件下,重复做的n次试验称为n次独立重复试验•
在n次独立重复试验中,记A是“第i次试验的结果”,显然,P(AA2 A n) P(A)P(A2) P(AJ
“相同条件下”等价于各次试验的结果不会受其他试验的影响
注:独立重复试验模型满足以下三方面特征
第一:每次试验是在同样条件下进行;
第二:各次试验中的事件是相互独立的;第三:每次试验都只有两种结果,即事件要么发生,要么不发生
n次独立重复试验的公式:
一般地,在r次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为
P(X k) C:p k(1 p)n k C:p k q nk,k 0,1,2,…,n.(其中q 1 p),而称p 为成功概率•
五、二项分布
一般地,在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则k k n k
P(X k) C n p (1 p) ,k 0,1,2, ,n
此时称随机变量X服从二项分布,记作,并称p为成功概率
六、离散随机变量的均值(数学期望)
则称E(X) Xg X2P2 X i P i X n P n
为X的数学期望或均值,简称为期望•它反映了离散型随机变量取值的平均水平
则EY aE(X) b,即E(aX b) aE(X) b
2.一般地,如果随机变量X服从两点分布,那么
E(X)=1 p 0 (1 p) p
即若X服从两点分布,则E(X) p
3•若X ~ B(n, p),则E(X) np
七、离散型随机变量取值的方差和标准差
般地,若离散型随机变量x的概率分布列为
则称DX (X i E(X))2P I (X2 E(X))2P2 (X n E(X))2p n为随机变量X的方差. 并称.一DX 随机变量X的标准差.
1•若X服从两点分布,则D(X) P(1 p)
2•若X ~ B(n, p),则D(X) np(1 p)
3. D(aX b) a2D(X)。