第十四届华杯赛初赛试题及解析
- 格式:doc
- 大小:40.50 KB
- 文档页数:2
华杯赛中年级组初赛模拟试题考试时间:60分钟一、选择题(每小题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请用表示正确答案的英文字母作答。
)1、两个自然数的和是25,那么这两个自然数的乘积不可能是()。
(A)24 (B)114 (C)132 (D)144【答案】C【解析】1与24的乘积是24;6与19的乘积是114,9与16的乘积是144,只有132无法得到。
2、将所有用1、2、3、4各1次组成的四位数按照从小到大的顺序排成一排,那么第23个数与第21个数的差是()。
(A)2 (B)18 (C)81 (D)99【答案】D【解析】最大的是4321,是第24个,那么4312是第23个,4231是第22个,4213是第21个,所以第23个和第21个的差是4312-4213=993、买2瓶汽水和1瓶矿泉水一共要花7元,买4瓶汽水和3瓶矿泉水一共要花16元,那么买10瓶汽水和10瓶矿泉水一共要花元。
(A)45 (B)46 (C)47 (D)55【答案】A【解析】将两个条件相减,会发现2瓶汽水和2瓶矿泉水共花9元,所以10瓶汽水和10瓶矿泉水要花9元的5倍,也就是45元。
4、赵、钱、孙、李四位同学各准备了一份礼物,在新学期开学时送给另外三位同学中的一位。
已知赵的礼物没有送给钱,孙接到的不是李的礼物,孙不知道赵把礼物送给了谁,李不知道钱收到了谁的礼物。
那么钱把礼物送给了()。
(A)赵(B)孙(C)李(D)以上都不可能【答案】B【解析】根据第一个条件和第三个条件知,赵没有把礼物送给钱和孙,那么赵把礼物送给了李;根据第二个条件和第四个条件知,李没有把礼物送给孙和钱,所以李把礼物送给了赵。
那么赵、李互相送了礼物,因此钱、孙互相送了礼物,那么钱把礼物送给了孙。
5、60加120,减100,加120,减100 ,…… ,每次加、减各称为1次运算,那么至少经过()次运算可以恰好得到结果500。
(网校王笑寒老师供题)(A)22 (B)33 (C)44 (D)55【答案】B【解析】本题容易错选成答案C,一部分孩子会简单地理解成加120、减100,两次运算增加了20,于是(500-60)÷(120-100)×2=44(次)。
目录2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (30)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (32)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (38)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (40)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (46)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (48)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (53)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (60)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (70)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (72)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (79)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (81)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?考点:竖式数字谜.专题:填运算符号、字母等的竖式与横式问题.分析:根据整数加法的计算方法进行推算即可.解答:解:解法一:个位上:0+“杯”=4,可得“杯”=4;十位上:1+“华”的末尾是0,由1+9=10,可得“华”9,向百位上进1;百位上:9+1=10,向千位上进1;千位上:1+1=2;由以上可得:;因此,“华杯”代表的两位数是94.解法二:已知1910与“华杯”之和等于2004;那么“华杯”=2004﹣1910=94;因此,“华杯”代表的两位数是94.点评:本题非常巧妙地考察了对整数的加法运算法则及数位的进位等知识要点的熟悉掌握程度.2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?考点:百分数的实际应用;长方形的周长;长方形、正方形的面积.专题:分数百分数应用题.分析:设长方形的长为a,宽为b,因此各边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,因此各边长增加10%时,周长增加2(1.1a+1.1b)﹣2(a+b)=2(a+b)×10%,即周长增加10%.面积增加1.1a×1.1b﹣ab=1.21ab﹣ab=ab×21%,即面积增加21%.解答:周长增加10%,面积增加21%解:设长方形的长为a,宽为b,边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,周长增加:2(110%a+110%b)﹣2(a+b)=220%a+220%b﹣2a﹣2b=2(a+b)×10%;面积增加:110%a×110%b﹣ab=121%ab﹣ab=ab×21%;答:周长增加了10%,面积增加了21%.点评:在求出长宽增加后的长度基础上,根据长方形的周长与面积公式计算是完成本题的关键.3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?考点:正方体的展开图.专题:立体图形的认识与计算.分析:如图,是正方体展开图的“222”结构,把它折叠成正方体后,A面与1面相对,B面与2面相对,C 面与4面相对,相使使其对面两数之和为7,A面填6,B面填5,C面填3.解答:解:如图,折成正方体后,A面与1面相对,B面与2面相对,C面与4面相对,要使其对面之各为7,则A面填6,B面填5,C面填3.点评:本题是考查正方体的展开图,关键是弄清把它折叠成正方体后,哪两个面相对.4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?考点:数列中的规律.专题:探索数的规律.分析:这列数的特点是每个数的分母比分子大2,分子为奇数列,要使1﹣<,则n>999.5,即从n=1000开始,带入分数,即可得解.解答:解:这列数的特点是每个数的分母比分子大2,分子为奇数列,1﹣<,n>999.5,从n=1000开始,即从开始,满足条件.答:从开始,1与每个数之差都小于.点评:找出这列数的规律,根据已知列出等式求解.5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).考点:有关圆的应用题.专题:平面图形的认识与计算.分析:先圆形轨道的半径,再根据圆的周长公式:C=2πr求出飞船沿圆形轨道飞行1圈的长度,再乘以10即可求出飞船沿圆形轨道飞行了多少千米.解答:解:2×3.14×(6371+343)×10=2×3.14×6714×10=3.14×134280=421639.2(千米);答:飞船沿圆形轨道飞行了421639.2千米.点评:考查了有关圆的应用题,关键是熟练掌握圆的周长公式.6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?考点:染色问题.专题:传统应用题专题.分析:根据四个扇形中有一个红色、两个、三个、四个分类列举即可.解答:解:按逆时针方向涂染各扇形:红红红红红红红黄红红黄黄红黄红黄红黄黄黄黄黄黄黄所以,共有6种.点评:本题考查了排列组合知识中的染色问题,还可以列式解答:4×(4﹣1)÷2=6(种).7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?考点:时间与钟面.专题:时钟问题.分析:可设当前是9点x分,则5分钟前分针指向x﹣5的位置,而分针转动的速度是时针的12倍,分针5分钟后指向x+5的位置,时针指向9刻度后刻度处,根据题意列出方程解答即可.解答:解:设当前时刻是9点x分.则5分钟后时针的位置为45+=x﹣5540+x+5=12x﹣6011x=605x=55;答:此时刻是9点55分.点评:本题主要考查钟表问题的实际应用,熟练掌握钟表的特征是解答本题的关键.8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?考点:抽屉原理.专题:传统应用题专题.分析:建立抽屉:一副扑克牌有54张,大小鬼不相同,那么(54﹣2)÷4=13,所以一共有13+2=15个抽屉;分别是:1、2、3、…K、小鬼、大鬼,由此利用抽屉原理考虑最差情况,即可进行解答.解答:解:建立抽屉:54张牌,根据点数特点可以分别看做15个抽屉,考虑最差情况:每个抽屉都摸出了1张牌,共摸出15张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有两张牌在同一个抽屉,即两张牌点数相同,15+1=16(张),答:至少抽取16张扑克牌,方能使其中至少有两张牌有相同的点数.点评:此类问题关键是根据点数特点,建立抽屉,这里要注意考虑最差情况.9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?考点:带余除法.专题:余数问题.分析:先设这个两位数为10a+b,则可用含a、b的代数式表示将它依次重复写3遍成的一个8位数,再将此8位数除以该两位数得到商为1010101,然后将1010101除以9即可求解.解答:解:设这个两位数为10a+b,则将它依次重复3遍成的一个8位数为:1000000(10a+b)+10000(10a+b)+100(10a+b)+10a+b=1010101(10a+b),将此8位数除以该两位数得到的商为:1010101(10a+b)÷(10a+b)=1010101,则1010101÷9=112233…4.答:得到的余数是4.点评:本题考查了带余除法的定义及应用,难度中等,用含a、b的代数式正确表示将(10a+b)这个数依次重复写3遍成的一个8位数是解题的关键.10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?考点:图形的拆拼(切拼).专题:平面图形的认识与计算.分析:因为这块长方形木板的面积为90×40=3600(平方厘米),又因为3600=60×60,即所求的正方形的边长为60厘米,如下图所示.解答:解:因为90×40=3600,3600=60×60,所求的正方形的边长为60厘米,可以如下图拼成:因此,能拼成一个正方形.点评:先求出总面积,看看是否能分成两个数的平方.11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).考点:组合图形的面积.专题:平面图形的认识与计算.分析:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,利用圆的面积公式即可求解.解答:解:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,所以阴影部分的面积是:×3.14×(12÷2)2=×3.14×36=56.52(平方厘米);答:图中阴影部分的面积是56.52平方厘米.点评:此题可以巧妙地利用“缩小法”,得出阴影部分的面积与直径为AB的圆的面积的关系,问题即可得解.12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?考点:有关圆的应用题.专题:平面图形的认识与计算.分析:由于小铁环的半径为25厘米,大铁环的半径为50厘米,可得小铁环的半径是大铁环半径的一半.根据周长与半径的关系可得大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,再减去公转的1圈,可得小环自身转动的圈数.解答:解:由于小铁环的半径是大铁环半径的一半,所以大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,其中有1个周长属于小环公转的,而另一个周长才是小环自身转动的,因此,小环自身转动1圈.点评:本题考查了圆与圆的位置关系,小铁环运动的圈数乘以它的周长就等于大铁环的周长.2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与试题解析一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?考点:日期和时间的推算.分析:先求出郑和首次下西洋的时间,再求差.解答:解:2005﹣600=1405(年),1492﹣1405=87(年).答:这两次远洋航行相差87年.点评:本题先根据2005年求出郑和首次下西洋的时间,再用较晚的时间减去较早的时间.2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?考点:日期和时间的推算.分析:先求出2004年的12月21日到2005年的2月4日经过了多少天,再求这些天里有几个9天,还余几天,再根据余数推算是几九第几天即可.解答:解:2004年的12月21日到12月31日共有11天,1月份有31天,2月4日是2月的第四天,那么一共经过了:11+31+4=46(天),46÷9=5…1,说明已经经过了5个9天,还余1天,这一天就是六九的第一天.答:立春之日是六九的第1天.点评:本题的是9天为1个周期,先求出经过的天数(注意两头的天数都算),再求这些天里有几个9天,还余几天,再根据余数判断.3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?考点:规则立体图形的体积.分析:根据棱柱的体积公式:底面积×高,进行计算.解答:解:因为直三棱柱的底面是直角边都为1的直角三角形,高为1,所以直三棱柱的体积=×1×1×1=.答:这个直三棱柱的体积是.故答案为:.点评:本题考查了直三棱柱及展开图的特征和直三棱柱体积计算.直三棱柱是由三个长方形的侧面和上下两个底面组成.4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?考点:加法原理.分析:可先把我放在第一个位置,进而考虑我的左邻的情况,我的左邻的左邻的情况,找到总情况数即可.解答:解:共有6种不同的入座方法.点评:考查用列表法解决问题;把1个人固定位置,进而考虑左邻的情况是解决本题的关键.5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.考点:分数除法应用题.分析:把自行车的距离看成单位“1”,那么长跑的距离就是自行车的,游泳的距离是自行车的,它们的差对应的数量是8.5千米,用除法可以求出自行车的距离,根据自行车的距离求出另外两项的距离,再把三者加起来.解答:解:自行车比赛距离是长跑的4倍,那么长跑的距离就是自行车的,8.5÷()=8.5÷,=40(千米);40×=10(千米);40×=1.5(千米);40+10+1.5=51.5(千米);答:三项的总距离是51.5千米.点评:本题关键是把倍数关系看成一个是另一个的几分之几,找出单位“1”分析出数量关系,再由基本的数量关系求解.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?考点:事物的简单搭配规律.分析:观察图形,分析数列,发现规律:从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…据此规律,推出即可.解答:解:6﹣3=3;10﹣6=4;15﹣10=5;21﹣15=6;…从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…往下写数:3,6,10,15,21,28,36,45,55,…第9个数是55.答:这列数中的第9个是55.点评:观察图形,分析数列,发现规律,然后利用规律解决问题.7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?考点:规则立体图形的体积.分析:根据圆锥的体积公式求出容器甲容积,根据球的体积公式求出容器乙容积,相除即可求解.解答:解:容器甲容积:V甲=×π×()2×1=π;容器乙容积:V乙=×π×13=π,V乙÷V甲=π÷π=8.答:至少要注水8次.点评:考查了圆锥的体积和球的体积.球的体积公式是V=πr3.圆锥的体积是V=sh=πr2h.8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?考点:鸡兔同笼.分析:可设高年级有学生x人,则低年级的学生有100﹣x人,根据等量关系:高年级组数+低年级组数=41组解答即可.解答:解:高年级有学生x人,则低年级的学生有100﹣x人,由题意得:=41,3x+2(100﹣x)=246,3x+200﹣2x=246,x=46,100﹣46=54(人),答:高年级有46人,低年级有54人.点评:此类题目中一般都有两个等量关系,抓住其中一个等量关系设出一个未知数,从而得出另一个未知数;另一个等量关系用来列方程.9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?考点:整数、小数复合应用题;合数与质数;质数与合数问题.分析:先将48分解质因数:48=1×48=2×24=3×16=4×12=6×8,因数全写出来,再找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价.解答:解:48=48=1×48=2×24=3×16=4×12=6×8,找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价;只有4×12和6×8,12比8多4,4比6少2,则零售价为6元,批发价为4元;答:零售价为6元.点评:解答此题应结合合数和质数的含义进行分析,通过分解质因数,找出符合题意的答案即可.10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?考点:最大与最小.分析:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a人,第二种的人数是8+5b人,因为总人数一定相等,求出a与b的关系,根据a和b关系讨论取值.解答:解:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a,第二种的人数是8+5b,则5+8a=8+5b即;8a=5b+3,当b=1时,a=1,总人数为5+8×1=13(人);当b=9时,a=6,总人数为5+8×6=53(人);当b=17时,a=11,总人数为5+8×11=93(人).数字再大就超过100了,所以最多有93人.答:最多有93名同学.点评:本题先找出两种组数之间的关系,然后根据组数是自然数和它们之间的关系讨论取值,找出100以内最大的即可.11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?考点:整数、小数复合应用题.分析:水平面的刻度是80毫升,说明空的部分是80毫升;根据每分钟的输液量和输液时间求出已经输出的体积,用100毫升减去已经输出的体积就是瓶内剩下的体积;整个吊瓶的容积就是空的部分加剩下的这部分体积.解答:解:100﹣2.5×12=70(毫升),80+70=150(毫升),答:整个吊瓶的容积是150毫升.点评:本题第12分时瓶子上方没有溶液的容积的等量关系是解决本题的关键.12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?考点:乘法原理.分析:根据题意,“夹角”只能是30°,60°或90°,都是30°的倍数,根据这个倍数,通过旋转的方法,进一步解答即可.解答:解:因为夹角只能是30°、60°或者90°,其均为30°的倍数,所以每画一条直线后,逆时针旋转30°画下一条直线,这样就能够保证两两直线夹角为30°的倍数,即为30°、60°或者90°(因为如果每次旋转度数其他角度,例如15°,则必然会出现两条直线的夹角为15°或15°的其它倍数,如45°这与题目不符);因为该平面上的直线两两相交,也就是说不会出现平行的情况,在画出6条直线时,直线旋转过5次,5×30°=150°,如果再画出第7条直线,则旋转6次,6×30°=180°,这样第七条直线就与第一条直线平行了.如图:所以最多能画出六条.答:至多有6条直线.点评:根据题意,由题目给出的条件,通过旋转的方法进一步解答即可.2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷一、选择题(共6小题,每小题6分,满分36分)1.(6分)如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB 的中点M和BC 的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.2.(6分)2008006共有()个质因数.A.4B.5C.6D.73.(6分)(2007•北塘区)奶奶告诉小明:“2006年共有53个星期日”.聪敏的小明立刻告诉奶奶:2007年的元旦一定是()A.星期一B.星期二C.星期六D.星期日4.(6分)如图,长方形ABCD小AB:BC=5:4.位于A点的第一只蚂蚁按A→B→C→D→A的方向,位于C点的第二只蚂蚁按C→B→A→D→C的方向同时出发,分别沿着长方形的边爬行.如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在()边上.A.A B B.B C C.C D D.D A5.(6分)如图,ABCD是个直角梯形(∠DAB=∠ABC=90°).以AD为一边向外作长方形ADEF,其面积为6.36平方厘米,连接BE交AD于P,再连接PC.则图中阴影部分的面积是()平方厘米.A.6.36 B.3.18 C.2.12 D.1.596.(6分)五位同学扮成奥运会吉祥物福娃贝见、晶晶、欢欢、迎迎和妮妮,排成一排表演节目,如果贝贝和妮妮不相邻,共有()种不同的排法.A.48 B.72 C.96 D.120二、填空题(共8小题,每小题3分,满分24分)7.(3分)在算式中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6.7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于_________•8.(3分)全班50个学生,每人恰有三角板或直尺中的一种,28人有直尺,有三角板的人中,男生是14人,若已知全班共有女生31人,那么有直尺的女生有_________人.9.(3分)如图是﹣个直圆柱形状的玻璃杯,一个长为12厘米的直棒状细吸管(不考虑吸管粗细)放在玻璃杯内.当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面边缘2厘米,最多能露出4厘米.则这个玻璃杯的容积为_________立方厘米.(取π=3.14)(提示:直角三角形中“勾6、股8、弦10)10.(3分)有5个黑色和白色棋子围成一圈,规定:将同色的和相邻的两个棋子之间放入一个白色棋子,在异色的和相邻的两个棋子之间放入一个黑色棋子,然后将原来的5个棋子拿掉,如果从图5(1)的初始状态开始依照上述规定操作下去,对于圆圈上呈现5个棋子的情况,圆圈上黑子最多能有_________个.11.(3分)李大爷用一批化肥给承包的麦田施肥.若每亩施6千克,则缺少化肥300千克;若每亩施5千克,则余下化肥200千克.那么李大爷共承包了麦田_________亩,这批化肥有_________千克.12.(3分)将从1开始的到103的连续奇数依次写成﹣个多位数:a=13579111315171921…9799101103.则数a共有_________位,数a除以9的余数是_________.13.(3分)自制的一副玩具牌共计52张(含4种牌:红桃,红方、黑桃、黑梅.每种牌都有1点、2点,…、13点牌各一张).洗好后背面朝上放好.一次至少抽取_________张牌,才能保证其中必定有2张牌的点数和颜色都相同.如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取_________张牌.。
[华杯赛初赛试题]华杯赛试题篇一:[华杯赛试题]小学组华杯赛初赛试题精选8道题小学组华杯赛初赛试题1、全世界胡杨90%在中国,中国胡杨90%在新疆,新疆胡杨90%在塔里木.塔里木的胡杨占全世界的%.2、50个各不相同的正整数,它们的总和是2022,那么这些数里奇数至多有个。
3、在一个正方形里面画一个最大的圆,这个圆的面积是正方形面积的_______%。
(π取3.14)4、如果物价下降50%,那么原来买1件东西的钱现在就能买2件。
1件变2件增加了100%,这就相当于我手中的钱增值了100%。
如果物价上涨25%,相当于手中的钱贬值了_____%。
5、算式的计算结果是_______。
6、如图,大等边三角形中放了三个面积都是30平方厘米的小正六边形。
大三角形的面积是______平方厘米。
7、小学组华杯赛初赛试题:如果(A、B均为自然数),那么B最大是______。
8、甲、乙两车都从A地到B地。
甲车比乙车提前30分钟出发,行到全程三分之一时,甲车发生了故障,修车花了15分钟,结果比乙车晚到B地15分钟。
甲车修车前后速度不变,全程为300千米。
那么乙车追上甲车时在距A地_______千米。
篇二:[华杯赛试题]有关小学奥数华杯赛试题小学奥数华杯赛试题:一、选择题(每小题10分,以下每题的四个选项中,仅有一个是正确的,请单击选择答案。
)1、如图,时钟上的表针从(1)转到(2)最少经过了()。
(A)、2小时30分(B)、2小时45分(C)、3小时30分(D)、3小时45分2、在2022年,1月1日是星期日,并且()(A)、1月份有5个星期三,2月份只有4个星期三(B)、1月份有5个星期三,2月份也有5个星期三(C)、1月份有4个星期三,2月份也有4个星期三(D)、1月份有4个星期三,2月份有5个星期三3、有大小不同的4个数,从中任取3个数相加,所得的和分别是180,197,208和222,那么,第二小的数所在的和一定不是()。
华杯赛数论专辑A1.哥德巴赫猜想是说:“每个大于2的偶数都可以袤示成两个质数之和”。
问:168是哪两个两位数的质数之和,并且其中的一个的个位数字是1?【第六届华杯赛初赛试题】2.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?【第九届华杯赛初赛试题】3.将l999表示为两个质数之和:l999=口+口,在口中填入质数。
共有多少种表示法?【第七届华杯赛初赛试题】4.五个比0大的数它们两两的乘积是1,80,35,1.4,50,56,1.6,2,40,70这十个值,问这五个数中最大数是最小数的多少倍?【第07届华罗庚金杯少年数学邀请赛团体决赛口试试题】5.能将1,2,3,4,5,6,7,8,9填在3×3的方格表中(如下图),使得横向与竖向任意相邻两数之和都是质数吗?如果能,请给出一种填法:如果不能,请你说明理由.【第07届华罗庚金杯少年数学邀请赛团体决赛口试试题】6.将1,2,3,4,5,6,7,8,9九个数排成一行,使得第二个数整除第一个数,第三个数整除前两个数的和,第四个数整除前三个数的和,…,第九个数整除前八个数的和,如果第一个数是6,第四个数是2,第五个数是1.问排在最后的数是几?【第07届华罗庚金杯少年数学邀请赛团体决赛口试试题】7.能否找到自然数a和b,使a2=2002+b2.【第八届华杯赛复赛试题及解答】8.1到100所有自然数中与100互质各数之和是多少?【第九届华杯赛总决赛一试试题】9.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。
如果它们满足等式ab+c=2005,则a+b+c=( )。
【第十届华杯赛决赛试题】10.小于10且分母为36的最简分数共有多少个? 【第十届华杯赛口赛试题】11.构成自然数的所有数字互不相同,这些数字的乘积等于360。
求n的最大值。
【第十届华杯赛口赛试题】12.将两个不同的自然数中较大的数换成这两个数的差,称为一次操作,如对18和42可连续进行这样的操作。
初一华杯赛初赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个选项是正确的数学表达式?A. 2 + 3 = 5B. 4 × 3 = 12C. 5 - 2 = 3D. 6 ÷ 2 = 3答案:A2. 如果一个数的平方等于9,那么这个数是:A. 3B. -3C. 3 或 -3D. 9答案:C3. 一个圆的直径是10厘米,那么这个圆的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A4. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/9答案:C5. 如果一个三角形的两个内角分别是40度和60度,那么第三个角的度数是:A. 40度B. 60度C. 80度D. 100度答案:C二、填空题(每题2分,共10分)6. 一个数的平方根是4,那么这个数是________。
答案:167. 一个数的立方根是2,那么这个数是________。
答案:88. 如果一个长方形的长是6厘米,宽是4厘米,那么它的周长是________厘米。
答案:209. 一个数的倒数是1/5,那么这个数是________。
答案:510. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的斜边长是________厘米。
答案:5三、计算题(每题5分,共20分)11. 计算下列表达式的值:(3 + 2) × (5 - 1)答案:2512. 计算下列分数的和:1/2 + 1/3 + 1/4答案:13/1213. 计算下列代数式的值,当x = 2时:2x² - 3x + 1答案:314. 解下列方程:2x + 5 = 11答案:x = 3四、解答题(每题10分,共30分)15. 一个班级有40名学生,其中1/4是男生,其余是女生。
请问这个班级有多少名男生和女生?答案:男生有10名,女生有30名。
16. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,求这个长方体的体积。
华罗庚金杯少年数学邀请赛(简称“华杯赛”)是为了纪念我国杰出数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动,由中国少年报社(现为中国少年儿童新闻出版社)、中国优选法、统筹法与经济数学研究会、中央电视台青少中心等单位联合发起主办的。
华杯赛堪称国内小学阶段规模最大、最正式也是难度最高的比赛。
对一个对于学校课堂内容学有余力的学生来讲,适当学习小学奥数能够有以下方面的好处
1、促进在校成绩的全面提高,培养良好的思维习惯;
2、使学生获得心理上的优势,培养自信;
3、有利于学生智力的开发;
4、数学是理科的基础,学习奥数对于这个学生进入初中后的学习物理化学都非常有好处(很多重点中学就是因为这个原因招奥数好的学生)。
5、很多重点中学招生要看学生的奥数成绩是否优秀。
您可能还感兴趣的有:。
少年一组一、填空题1、115 解题思路:以21作为参照数,其中231116和305153均大于21,其余三个数115、136、6430均小于21。
用21与这三个数分别作差依次可得221、261、321。
所以,最小的数为115。
2、24解题思路:由ABCD 是正方形可得:ABCD DMC ADN S S S 21==∆∆。
根据容斥原理可得:RNC MQ NB APM D PQ R S S S S ∆∆∆++=,所以:24121551=--=∆MQ NB S 。
3、4种解题思路:105是一个奇数,所以这个数一定能写成2个相邻的自然数之和,即105=52+53。
又因为奇数个连续自然数数列的平均数等于这组数的中位数,根据105=3×35=5×21=7×15,可以等到符合条件的三种表达式,分别是105=34+35+36=19+20+21+22+23=12+13+14+15+16+17+18。
4、10110,99920解题思路:要使A 为能被5整除的五位数,则A 的各位必须是0或5。
当A 最小时,它的最高位只能是1,考虑到这个多位数均由奇数组成,因此可以在101与103之间截出一个最小的五位数是10110;当A 最大时,它的最高位上的数要尽可能大,故这个多位数中1999与2001之间可以截出一个最大的五位数时99920。
二、解答题5、解:由题意可得, 当110〈⎥⎦⎤⎢⎣⎡n 时,不存在符合题意的解,所以1~9均不是牛数。
当110=⎥⎦⎤⎢⎣⎡n 时,由于1是所有非0自然数的公因数,所以10~19都是牛数。
当210=⎥⎦⎤⎢⎣⎡n 时,n 必须是偶数才能符合题意,故在20~29之间符合条件的牛数只有20、22、24、26、28。
当310=⎥⎦⎤⎢⎣⎡n 时,n 必须是2和3的公倍数才能符合题意,故在30~39之间符合条件的牛数只有30、36。
当410=⎥⎦⎤⎢⎣⎡n 时,n 必须是3和4的公倍数才能符合题意,故在40~49之间符合条件的牛数只有48。
第二十二届华罗庚金杯少年数学邀请赛初赛试卷及参考答案解析(小学中年级组)一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1、两个小三角形不重叠放置可以拼成一个大三角形, 那么这个大三角形不可能由()拼成.(A)两个锐角三角形(B)两个直角三角形(C)两个钝角三角形(D)一个锐角三角形和一个钝角三角形【解析】答案:A两个三角形有6条边,拼成一个三角形要去掉3条边,除了重合的两条边以外,一定还有两条边要组成一条线段,即有两个角之和为180°,而两个锐角三角形所有的内角均小于90°,不可能找到两个角之和为180°,所以选A。
2、从1至10这10个整数中, 至少取()个数, 才能保证其中有两个数的和等于10.(A)4 (B)5 (C)6 (D)7【解析】答案:D将1—10可分成(1,9)、(2,8)、(3,7)、(4,6)、(5)、(10)六组。
在这六组中各取1个数,依然不能不能得到有两数之和等于10,。
当再取1个数那么必有2个数在同一组,和为10。
所以选D。
3、小明行李箱锁的密码是由两个数字8与5构成的三位数. 某次旅行, 小明忘记了密码, 他最少要试()次, 才能确保打开箱子.(A)9(B)8(C)7(D)6【解析】答案:D含有5和8的三位数有:885,858,855,588,585,558六个,所以小明最少要试6次,才能确保打开箱子。
所以选D。
4、猎豹跑一步长为2米, 狐狸跑一步长为1米. 猎豹跑2步的时间狐狸跑3步.猎豹距离狐狸30米, 则猎豹跑动()米可追上狐狸.(A)90(B)105(C)120(D)135【解析】答案:C相同时间内猎豹跑:2×2=4(米),狐狸跑1×3=3(米),4-3=1(米),也就是说猎豹每跑4米可追1米,所以要追30米,猎豹需跑:30×4=120(米),所以选C。
华杯赛小学生试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 华杯赛是面向中学生的数学竞赛B. 华杯赛是面向小学生的数学竞赛C. 华杯赛是面向大学生的数学竞赛D. 华杯赛是面向高中生的数学竞赛答案:B2. 华杯赛的全称是什么?A. 华罗庚杯数学竞赛B. 华罗庚杯物理竞赛C. 华罗庚杯化学竞赛D. 华罗庚杯信息学竞赛答案:A3. 华杯赛每年举办几次?A. 一次B. 两次C. 三次D. 四次答案:A4. 华杯赛的主办单位是?A. 教育部B. 科技部C. 体育部D. 文化部答案:A二、填空题(每题5分,共20分)1. 华杯赛的举办时间为每年的________月。
答案:32. 华杯赛的参赛对象是________年级的学生。
答案:小学3. 华杯赛的初赛通常包括________和________两种题型。
答案:选择题填空题4. 华杯赛的决赛题型包括________、________和________。
答案:选择题填空题应用题三、解答题(每题10分,共20分)1. 请简述华杯赛的历史背景。
答案:华杯赛全称华罗庚杯数学竞赛,是为了纪念中国著名数学家华罗庚而设立的,旨在激发小学生学习数学的兴趣,提高他们的数学素养。
该竞赛自1993年起每年举办,已成为中国小学生数学竞赛中的重要赛事之一。
2. 华杯赛的参赛流程是怎样的?答案:华杯赛的参赛流程通常包括报名、初赛、复赛和决赛四个阶段。
首先,学生需要在指定时间内完成报名。
初赛通常在3月份举行,通过初赛选拔出的学生将参加复赛。
复赛成绩优异者将进入决赛,最终角逐华杯赛的各类奖项。
初赛试卷(小学高年级组)(时间: 2016年12月10日10:00—11:00)一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.(A)16 (B)17 (C)18 (D)192.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.(A)6 (B)8 (C)10 (D)123.将长方形ABCD对角线平均分成12段,连接成右图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.(A)14 (B)16 (C)18 (D)204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是().(A)2986 (B)2858 (C)2672 (D)2754CD BA5. 在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去.那么从第5个数字开始,该序列中一定不会出现的数组是( ). (A )8615(B )2016(C )4023(D )20176. 从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的.(A )1(B )2(C )3(D )4二、填空题 (每小题 10 分, 共40分)7. 若15322.254553923444741A ⎛⎫-⨯÷+=⎪ ⎪ ⎪+ ⎪⎝⎭,那么A 的值是________. 8. 右图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有 ________种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为CD 的中点,AE 和BD 的交点为F ,AC 和BE 的交点为H ,AC 和BD 的交点为G ,四边形EHGF 的面积是15平方厘米,则ABCD 的面积是__________平方厘米.10. 若2017,1029与725除以d 的余数均为r ,那么d r -的最大值是________.第二十届华罗庚金杯少年数学邀请赛这句话里有( )个数大于1,有( )个数大于2,有( )个数大于3,有( )个数大于4. 罗华庚金 杯决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552⨯+⨯-⨯+=________.2. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.7. 见右图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角形DOE 的面积为________.8. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.二、解答下列各题(每题10分,共40分,要求写出简要过程)9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为,5,y x 的长方体(,x y 为整数),余下部分的体积为120,求x 和y .yx515411. 圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?12. 两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1: MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积.14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?第十八届华罗庚金杯少年数学邀请赛 初赛试题C (小学高年级组) (时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn=+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ).(A )1243 (B )1343 (C )4025 (D )40292. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情:最终,( )得到的糖水最甜.(A )甲 (B )乙 (C )丙 (D )乙和丙3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为( )分钟. (A )22 (B )20 (C )17 (D )164. 已知正整数A 分解质因数可以写成γβα532⨯⨯=A , 其中α、β、γ 是自然数. 如果A的二分之一是完全平方数, A 的三分之一是完全立方数, A 的五分之一是某个自然数的五再加入50克含糖率20%的糖水.再加入20克糖和30克水.再加入100克糖与水的比是2:3的糖水.次方, 那么γβα++ 的最小值是( ).(A )10 (B )17 (C )23 (D )315. 今有甲、乙两个大小相同的正三角形, 各画出了一条两边中点的连线. 如图, 甲、乙位置左右对称, 但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始, 甲向右水平移动, 直至两个三角形重叠后再离开. 在移动过程中的每个位置, 甲与乙所组成的图形中都有若干个三角形. 那么在三角形个数最多的位置, 图形中有( )个三角形.(A )9 (B )10 (C )11 (D )126. 从1~11这11个整数中任意取出6个数, 则下列结论正确的有( )个.① 其中必有两个数互质;② 其中必有一个数是其中另一个数的倍数; ③ 其中必有一个数的2倍是其中另一个数的倍数. (A )3 (B )2 (C )1 (D )0 二、填空题 (每小题 10 分, 满分40分)7. 有四个人去书店买书, 每人买了4本不同的书, 且每两个人恰有2本书相同, 那么这4个人至少买了_______种书. .8. 每天, 小明上学都要经过一段平路AB 、一段上坡路BC和一段下坡路 CD (如右图). 已知AB :BC :CD = 1:2:1, 并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 那么小明上学与放学回家所用的时间比是 .9.黑板上有11个1, 22个2, 33个3, 44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦掉的第四种数字多写2个. 例如: 某次操作擦掉1个1, 1个2, 1个3, 那就再写上2个4. 经过若干次操作后, 黑板上只剩下3个数字, 而且无法继续进行操作, 那么最后剩下的三个数字的乘积是.10.如右图, 正方形ABCD被分成了面积相同的8个三角形, 如果DG = 5, 那么正方形ABCD面积是.第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间: 2015年12月12日10:00—11:00)一、选择题 (每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 算式个个2016201699999999⨯的结果中含有( )个数字0. (A )2017 (B )2016 (C )2015 (D )20142. 已知A , B 两地相距300米.甲、乙两人同时分别从A , B 两地出发, 相向而行, 在距A 地140米处相遇; 如果乙每秒多行1米, 则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米.(A )532 (B )542(C )3 (D )513 3. 在一个七位整数中, 任何三个连续排列的数字都构成一个能被11或13整除的三位数, 则这个七位数最大是( ).(A )9981733 (B )9884737 (C )9978137 (D )98717734. 将1, 2, 3, 4, 5, 6, 7, 8这8个数排成一行, 使得8的两边各数之和相等, 那么共有( )种不同的排法.(A )1152 (B )864 (C )576 (D )2885. 在等腰梯形ABCD 中, AB 平行于CD , 6=AB , 14=CD , AEC ∠是直角, CE CB =, 则2AE 等于( ).(A )84 (B )80 (C )75 (D )646. 从自然数1,2,32015,2016,,中, 任意取n 个不同的数, 要求总能在这n 个不同的数中找到5个数, 它们的数字和相等. 那么n 的最小值等于( ). (A )109 (B )110 (C )111 (D )112 二、填空题 (每小题 10 分, 共40分)7. 两个正方形的面积之差为2016平方厘米, 如果这样的一对正方形的边长都是整数厘米, 那么满足上述条件的所有正方形共有 对.8. 如下图, O , P , M 是线段AB 上的三个点, AB AO 54=, AB BP 32=, M 是AB 的中点, 且2=OM , 那么PM 长为 .9. 设q 是一个平方数. 如果2-q 和2+q 都是质数, 就称q 为P 型平方数. 例如, 9就是一个P 型平方数.那么小于1000的最大P 型平方数是 .10. 有一个等腰梯形的纸片, 上底长度为2015, 下底长度为2016. 用该纸片剪出一些等腰梯形, 要求剪出的梯形的两个底边分别在原来梯形的底边上, 剪出的梯形的两个锐角等于原来梯形的锐角, 则最多可以剪出 个同样的等腰梯形.第十七届华罗庚金杯少年数学邀请赛初赛试题A(小学高年级组)一、选择题1、计算:19+⨯+-=[(0.8)24]7.6(___)514(A)30 (B)40 (C)50 (D)602、以平面上4个点为端点连接线段,形成的图形中最多可以有()个三角形。
第十四届华杯赛决赛A卷答案一、填空:1. 1+1=22. 4×2×4×2=643. 2的10次方=1024<2009<2的11次方, 1024÷7=146……2所以最后的数字是34. 设小正方形的边长是ⅹ厘米,则ⅹ+ⅹ+ⅹ+0.5ⅹ=91,ⅹ=265. 设这个班的学生共有ⅹ人,则Kⅹ+38=9ⅹ—3,有(9—K)ⅹ=41因为K、X都是整数,41是质数,所以9—K=1,K=8,X=416. A×B×C=11011×28,28是偶数,则A、B、C必有一个数是偶数且是4,剩下两个数的积=11011×7=1573×7×7,又因为A、B、C两两互质,剩下两个数是1573和7×7=49,所以A+B+C=4+49+1573=1626.7. 根据题意○ +3◇=36,2▽+2○=50,☆+3○=41,3◇+▽=37,解得▽=13,○=12,◇=8,☆=5. 8×2+12+5=338. 根据公式(1+n)·n/2的积个位是3,十位是0可知:(1+n)和n/2是奇数,或(1+n)/2和n是奇数,且这两个数的个位必为7、9或1、3(相乘个位才得3).当这两个数的个位为7、9时,37×19=703最小;当这两个数的个位为1、3时,21×43=903最小。
所以n最小值是37.二、简答:9. 1<1/2+1/3+1/5+1/7=247/210<2,2- 247/210=173/210>1/2>24/143=1/11+1/13,所以这六个分数的和在1和2之间。
10.月天数第一天几个星期日1 31 星期四 42 28 星期日 43 31 星期日 54 30 星期三 45 31 星期五 56 30 星期一 47 31 星期三 48 31 星期六 59 30 星期二 410 31 星期四 411 30 星期日 512 31 星期二 410月第一天星期四,有3,5,8,11个月都有5个星期日11. [60,270]= 54012. 1+3+5+……99+101=(1+101)/2×51=2601,2601-1949=652,要求K的最小值,则652-101-99-97-95-93-91=76=75+1,k=51-8= 43个三、详答:13. 高=4×2÷(3+5)=1,cd:ab=3:5,则两个三角形高之比是3:5,三角形oab 的高是5/8,面积是5×5/8÷2= 25/1614. 不同数字代表不同的数字,48×华杯赛=第十四届,积是四位数,则华一定是1,贺8是偶数,则届也是偶数,所以届可能是2或6当届是6时,赛一定是7,杯可能2、3、5、948×127=6096不符合题意,48×157=7536不符合题意48×137=6576不符合题意,48×197=9456不符合题意当届是2时,赛一定是9,杯可能2、3、5、748×129=6192不符合题意,48×139=6672不符合题意48×159=7632符合题意,48×179=8592不符合题意则华杯赛是 159,48×159=7632。
【备战华杯赛】近五年华杯赛小高初赛真题解读为了帮助大家更有效地准备初赛,今天我们针对华杯赛初赛考点和大家进行分享。
1 初赛考什么?初赛一共十道题(六道选择题四道填空题),共100分,都不用写过程,用时60分钟。
大家首先一定要知道华杯赛的所有考点:计算、应用题、行程问题、数论、几何、计数、组合杂题。
而这正好对应于我们小学奥数核心知识体系里面的七大模块。
华杯赛其实就是对学生所学奥数知识的一个测试。
那其中哪些模块是我们的重难点呢?哪些是我们在这段时间里需要重点关注的呢?看下面!2 初赛怎么考?想要通过华杯赛初赛,我们第一步先要了解一下华杯赛初赛的命题规律,在这里我们对近五年的所有华杯赛初赛试题做了一份详细的考点分析。
通过把所有的数据整合到一起,我们发现每年的考点是这样的:通过这个图我们发现:华杯赛涉及的知识点都很全面,七个模块均会考察,只不过每年对模块中的细分知识点有所变化,这就要求我们对各个知识模块的完整体系有所掌握与研究。
然而考试重点在哪里呢?哪些是我们需要关注的重中之重呢?我们通过一个饼图来观察分析一下。
我们可以发现初赛考试侧重点在于:数论、组合杂题、应用题这几个模块。
数论一直最受华杯赛组委会所青睐,小高华杯赛考察数论方面是一个重点!因为2015年华杯赛主试委员会委员陶晓永教授讲过:“华杯赛主要目的是要学习华罗庚先生的精神,而华罗庚先生在数学方面最大的成就就在数论这一块。
” 在数论这一个模块上,考察知识点较多,综合性也比较强,这就要求孩子们对于数论里面的知识点要有一定的了解和灵活运用的能力。
组合杂题一般难度系数比较大点,有的题目需要孩子具有很强的分析、空间、逻辑思维能力。
但不要慌张,大部分学生都做不出来,所以这个不是学生前期备考的重点。
想再冲刺华杯赛一等奖的孩子,组合杂题一定需要被重视起来的。
应用题这个模块,一般考察浓度问题、经济问题、工程问题、比例问题(份数思想、量率对应)、列方程解应用题等,基本上难度系数不高,加把劲,一定可以拿得下来!3 初赛难易度分析上述部分,我们对于模块进行了详细的分析。
华杯赛复习题及答案一、选择题1. 已知一个数列的前三项分别为1, 2, 4,且每一项都是前一项的两倍,那么第四项是多少?A. 6B. 8C. 10D. 16答案:D2. 如果一个圆的半径是2厘米,那么它的面积是多少平方厘米?A. 4πB. 8πC. 12πD. 16π答案:B二、填空题3. 计算下列表达式的值:\((3x^2 - 2x + 1) - (x^2 + 4x - 3)\)。
答案:\(2x^2 - 6x + 4\)4. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,它的体积是多少立方厘米?答案:60三、解答题5. 一个班级有40名学生,其中20名男生和20名女生。
如果随机选择一名学生,那么选中男生的概率是多少?答案:选中男生的概率是 \(\frac{20}{40} = \frac{1}{2}\)。
6. 一个工厂生产了100个零件,其中有5个是次品。
如果随机抽取5个零件,那么至少抽到一个次品的概率是多少?答案:首先计算没有抽到次品的概率,即从95个合格品中抽取5个的概率,然后用1减去这个概率得到至少抽到一个次品的概率。
计算过程如下:\[ P(\text{至少一个次品}) = 1 - \frac{C(95,5)}{C(100,5)} \] 其中 \(C(n,k)\) 表示从n个不同元素中取出k个元素的组合数。
四、证明题7. 证明对于任意实数 \(a\) 和 \(b\),不等式 \(a^2 + b^2 \geq 2ab\) 成立。
答案:通过展开和重新排列项,可以证明:\[ a^2 + b^2 - 2ab = (a - b)^2 \]由于平方总是非负的,所以 \((a - b)^2 \geq 0\),因此 \(a^2 + b^2 \geq 2ab\)。
8. 证明勾股定理:在一个直角三角形中,直角边的平方和等于斜边的平方。
答案:设直角三角形的两条直角边长分别为 \(a\) 和 \(b\),斜边长为 \(c\)。
华杯赛试题及答案六年级华杯赛试题及答案(六年级)一、选择题(每题5分,共20分)1. 一个数的1/3等于另一个数的1/4,那么这个数与另一个数的比是:A. 3:4B. 4:3C. 1:1D. 无法确定答案:B2. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,那么它的体积是:A. 480立方厘米B. 400立方厘米C. 360立方厘米D. 480立方厘米答案:C3. 一个数的1/2与另一个数的1/3相等,这两个数的比是:A. 2:3B. 3:2C. 1:1D. 无法确定答案:B4. 一个数的3倍加上这个数的2倍等于45,这个数是多少?A. 9B. 15C. 10D. 5答案:B二、填空题(每题5分,共30分)5. 一个圆的半径是5厘米,那么它的周长是________厘米。
答案:31.46. 一个数的5倍是30,那么这个数是________。
答案:67. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,那么它的表面积是________平方厘米。
答案:2368. 一个数的3/4等于另一个数的1/2,那么这个数与另一个数的比是________。
答案:2:39. 一个数的2/3等于24,那么这个数是________。
答案:3610. 一个数的4倍减去这个数等于36,那么这个数是________。
答案:12三、解答题(每题15分,共45分)11. 一个长方体的长、宽、高分别是12厘米、10厘米和8厘米,求它的体积和表面积。
解答:长方体的体积 = 长 ×宽 ×高 = 12 × 10 × 8 = 960立方厘米。
长方体的表面积 = 2 ×(长 ×宽 + 长 ×高 + 宽 ×高) = 2 ×(12 × 10 + 12 × 8 + 10 × 8) = 2 × (120 + 96 + 80) = 2 × 296 = 592平方厘米。
最新小学华杯赛试题及答案以下是最新小学华杯赛的试题及答案。
请同学们认真阅读题目并选择最合适的答案。
答案将在试题结束后公布。
第一节:选择题1. 下面哪个是地球的大洲?A. 北极洲B. 夏威夷C. 亚马逊河D. 太阳系2. 以下哪个国家是世界上最大的国家?A. 美国B. 中国C. 加拿大D. 日本3. 铁是哪种物质?A. 液体B. 气体C. 固体D. 火星4. 西瓜属于以下哪个类别?A. 水果B. 蔬菜C. 肉类D. 饮料5. 恒星是由什么组成的?A. 水B. 空气C. 树木D. 氢和氦气体第二节:填空题1. 太阳是一个恒星,它处于太阳系的_________。
2. 中国的首都是_________。
3. 北京是哪个省的首府?4. 学生应该_______勤奋学习才能取得好成绩。
5. 跑步是一项很好的_______。
第三节:问答题1. 简述地球自转和公转的概念。
2. 什么是环保?为什么我们应该保护环境?第四节:阅读理解阅读下面的短文,然后回答问题。
学唱歌有很多好处。
首先,唱歌可以让人快乐。
当我们唱歌的时候,我们的身体会释放出一种叫做“快乐激素”的化学物质,这会使我们更加开心。
其次,唱歌还可以训练我们的声音和听觉。
唱歌可以让我们更敏感地听到声音的变化,并且提高我们的音准。
最后,在唱歌的过程中,我们还可以锻炼我们的肺活量和呼吸能力。
问题:1. 唱歌对人有哪些好处?2. 唱歌可以训练哪些技能?答案:第一节:选择题1. A2. C3. C4. A5. D第二节:填空题1. 中心2. 北京3. 北京市4. 努力5. 锻炼第三节:问答题1. 地球自转是指地球绕着自己的轴心旋转,并且在24小时内完成一次旋转。
公转是指地球绕太阳运动,一年绕行一周。
2. 环保是指保护环境并且减少对环境的污染。
我们应该保护环境,因为一个健康的环境对人类的生存和发展至关重要,而且保护环境也是我们应尽的责任。
第四节:阅读理解问题:1. 唱歌可以让人快乐,并且释放出快乐激素。
第十四届华罗庚金杯少年数学邀请赛初赛试卷(学校组)试题
一、 选择题。
每小题10分,满分60分。
以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英语字母写在每题的圆括号内) 1. 下面的表情图片中。
没有对称轴的个数为( )
(A ) 3 (B ) 4 (C ) 5 (D ) 6
2. 开学前6天,小明还没做寒假数学作业,而小强已完成了60道题。
开学时,两人都完成了数学作业,在这6天中,小明做的题的数目是小张的3倍,他平均每天做了( )道题。
(A ) 6 (B ) 9 (C ) 12 (D ) 15
3. 依据中国篮球职业联赛组委会的规定,各队队员的号码可以选择的范围是0~55号,但选择两位数的号码时,每位数字均不能超过5。
那么,可供每支球队选择的号码共有( )个。
(A ) 34 (B ) 35 (C ) 40 (D ) 56
4. 在19,197,2009这三个数中,质数的个数是( )。
(A ) 0 (B ) 1 (C ) 2 (D ) 3
5. 下面有四个算式:
① 0.6+0.1●
33●
=0.7●
33●
② 0.625= 5
8
③ 5 14 + 3 2 = 3+5 14+2 = 8 16 = 1 2
④ 337 ×415 =1425
其中正确的算式是( )
(A )①和② (B )②和④ (C )②和③ (D )①和④
6. A、B、C、D、E五个小伴侣做玩耍,每轮玩耍都依据下面的箭头方向把原来手里的玩具传给另外一个小伴侣:A→C ,B→E,C→A,D→B,E→D,开头时A、B拿着福娃,C、D、E拿着福牛,传递完5轮时,拿着福娃的小伴侣是( )。
(A )C与D (B )A 与D (C )C 与E (D )A 与B
二、 填空题(每小题10分,满分40分)
7.下面的算式中,同一个汉字代表同一个数字,不同的汉字代表不同的数字。
团团×圆圆=大熊猫则“大熊猫”代表的三位数是( )。
8.从4个整数中任意选出3个,求出它们的平均值,然后再求这个平均值和余下1个数的和,
这样可以得到4个数:4、6、513 和42
3 ,则原来给定的4个整数的和为( )。
9.如下图所示,AB 是半圆的直径,O 是圆心,弧AC=弧CD=弧DB ,M 是弧CD 的中点,H 是弦CD 的中点,若N是OB 上一点,半圆的面积等于12平方厘米,则图中阴影部分的面积是( )平方厘米。
10.在大于2009的自然数中,被57除后,商与余数相等的数共有( )个。
答案:。