新北师大版八年级上册《1.2一定是直角三角形》教案
- 格式:doc
- 大小:40.00 KB
- 文档页数:2
北师大版八年级数学上册:1.2 《一定是直角三角形吗》教案2一. 教材分析《一定是直角三角形吗》这一节的内容,主要让学生了解直角三角形的定义及其特性。
通过学习,学生能理解直角三角形的概念,掌握直角三角形的特点,并能运用这些知识解决实际问题。
本节内容是八年级数学上册的重要内容,也是进一步学习几何知识的基础。
二. 学情分析学生在学习这一节内容前,已经学习了三角形的性质,对三角形有一定的了解。
但学生对直角三角形的理解可能只停留在表面,不能深入理解其内在联系。
因此,在教学过程中,需要引导学生从直观的图形中,发现直角三角形的性质,并通过实际操作,让学生感受直角三角形的特有性质。
三. 教学目标1.知识与技能:让学生理解直角三角形的定义,掌握直角三角形的特点,能运用这些知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。
3.情感态度与价值观:让学生体验数学与生活的联系,培养学生的学习兴趣。
四. 教学重难点1.重点:直角三角形的定义及其特性。
2.难点:如何引导学生从实际问题中发现直角三角形的性质,并运用这些性质解决实际问题。
五. 教学方法采用问题驱动法、直观演示法、合作交流法等,引导学生观察、操作、思考、交流,从而理解直角三角形的性质。
六. 教学准备1.准备一些直角三角形和一般三角形的图片。
2.准备一些实际问题,涉及直角三角形的特点。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过展示一些生活中的直角三角形,如教室的黑板、三角板等,让学生观察并提问:“这些图形有什么共同的特点?”引导学生思考直角三角形的性质。
2.呈现(10分钟)展示一些直角三角形和一般三角形的图片,让学生观察并提问:“你能区分直角三角形和一般三角形吗?直角三角形有什么特殊的性质?”引导学生发现直角三角形的特性。
3.操练(10分钟)让学生分组合作,每组找出一些实际问题,涉及直角三角形的特点,如计算直角三角形的面积、周长等。
北师大版八年级数学上册:1.2 《一定是直角三角形吗》说课稿2一. 教材分析《一定是直角三角形吗》这一节的内容,主要让学生通过已有的直角三角形的概念,进一步探索和发现直角三角形的性质。
在教材中,通过让学生观察和分析一些生活中的实例,引发学生对直角三角形的进一步思考,从而加深对直角三角形性质的理解。
教材还通过设计一些实践活动,让学生在操作中感知直角三角形的性质,提高学生的动手操作能力。
二. 学情分析在八年级的学生中,他们已经学习了三角形的分类,对直角三角形有了初步的认识。
但是,他们对直角三角形的性质的理解还不是很深入,需要通过一些实践活动,进一步巩固他们对直角三角形的认识。
同时,学生对数学知识的生活应用还不够熟练,需要通过一些生活中的实例,让学生感受数学与生活的联系。
三. 说教学目标1.知识与技能目标:通过观察和分析生活中的实例,让学生进一步理解直角三角形的性质,提高学生的动手操作能力。
2.过程与方法目标:通过小组合作,让学生在探究中发现直角三角形的性质,培养学生的合作意识。
3.情感态度与价值观目标:让学生在探究活动中,感受数学与生活的联系,提高学生学习数学的兴趣。
四. 说教学重难点1.教学重点:让学生进一步理解直角三角形的性质。
2.教学难点:让学生通过实践活动,发现和总结直角三角形的性质。
五. 说教学方法与手段在这一节课中,我将采用小组合作的学习方式,让学生在探究中发现直角三角形的性质。
同时,我会运用多媒体教学手段,为学生提供丰富的学习资源,激发学生的学习兴趣。
六. 说教学过程1.导入:通过展示一些生活中的实例,让学生观察和分析,引发学生对直角三角形的思考。
2.探究:让学生进行小组合作,通过实践活动,让学生发现和总结直角三角形的性质。
3.讲解:对学生的探究结果进行讲解,让学生进一步理解直角三角形的性质。
4.巩固:设计一些练习题,让学生进行练习,巩固他们对直角三角形的认识。
5.小结:对这一节课的内容进行小结,让学生明确学习的重点。
北师大版初中数学八年级上册第一章勾股定理1.2 一定是直角三角形吗?(教学设计)《一定是直角三角形吗》教学设计一、教材分析本节课是北师大版数学八年级上册第一章《勾股定理》第2节。
教学任务有:探索勾股定理的逆定理,并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验。
二、学情分析本课的教学对象是八年级学生。
学生此前学习了三角形的有关知识,了解了直角三角形的定义,掌握了直角三角形的性质,在此基础上学习本课时内容能够加深对三角形的认识,提高学生数形结合的应用与理解。
另外,八年级学生具有好胜、好强、思维活跃的特点,对学习有强烈的求知欲望,他们乐于探索和表现自我,为学生学习本节内容奠定了良好的心理基础。
三、教学目标(一) 知识与能力:1.掌握直角三角形的判定条件。
2.熟记一些勾股数。
3.能对直角三角形的判定条件进行一些综合应用。
(二)过程与方法:1.在观察、猜想、归纳、验证等过程中,培养语言表达能力和初步的逻辑推理能力。
2.在探索过程中,体会数形结合、由特殊到一般及化归等数学思想方法。
3.通过学习直角三角形判定的过程,进一步发展数感,增加对勾股数的直观体验,培养从实际问题中抽象出数学问题的能力,建立数学模型。
(三)情感态度价值观:1.通过介绍有关历史资料,激起学生的学习兴趣和解决问题的欲望。
2.通过让学生参加探索与创造,获得参加数学活动成功的经验。
3.通过对定理的综合应用,培养学生学习数学的兴趣及克服困难的勇气,并体验定理在生活实际中的应用性。
四、重点难点重点:运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,熟悉几组勾股数,并会辨析勾股定理及其逆定理运用的情境。
难点:灵活运用勾股定理及其逆定理。
五、教学过程(一)课堂导入:[师]:同学们好,今天我们继续学习勾股定理,首先请同学们观看一段视频。
[师]:播放视频《一定是直角三角形吗》[师]:为什么通过这样的方式得到的一定是直角三角形呢?今天我们就一起来探究其中的奥秘。
北师大版八年级数学上册:1.2《一定是直角三角形吗》说课稿一. 教材分析《一定是直角三角形吗》这一节的内容位于北师大版八年级数学上册第一章《三角形的认识》的第二节。
在这一节课中,学生将学习如何通过判定一个三角形的三个角是否为90度来确定一个三角形是否为直角三角形。
这一节的内容是学生在学习了三角形的分类和性质之后,进一步深化对三角形认识的重要一环。
通过对直角三角形的探究,学生能够更好地理解三角形的性质,为后续学习勾股定理和三角形的相关应用打下坚实的基础。
二. 学情分析在进入这一节的学习之前,学生已经学习了三角形的分类,对等腰三角形和等边三角形有了初步的认识。
同时,学生也学习了三角形的内角和定理,对三角形三个角的和为180度有了深入的理解。
然而,对于直角三角形的定义和性质,学生可能还不是很清晰。
因此,在这一节课中,我需要引导学生通过实践活动,加深对直角三角形的认识,从而能够独立判断一个三角形是否为直角三角形。
三. 说教学目标1.知识与技能:学生能够理解直角三角形的定义,掌握判断一个三角形是否为直角三角形的方法。
2.过程与方法:通过观察、操作、交流等活动,学生能够自主探索直角三角形的性质,培养空间想象能力和逻辑思维能力。
3.情感态度与价值观:学生能够体验到数学与生活的紧密联系,增强对数学的兴趣和信心。
四. 说教学重难点1.重点:直角三角形的定义和性质。
2.难点:如何引导学生自主探索并发现直角三角形的性质,以及如何判断一个三角形是否为直角三角形。
五. 说教学方法与手段在这一节课中,我将采用问题驱动的教学方法,引导学生通过自主探索、合作交流的方式来学习直角三角形的性质。
同时,我会利用多媒体课件和实物模型等教学手段,帮助学生更好地理解和掌握直角三角形的性质。
六. 说教学过程1.导入:通过复习三角形的分类,引导学生回顾等腰三角形和等边三角形的性质,为新课的学习做好铺垫。
2.自主探索:学生分组讨论,每组尝试找出一种方法来判断一个三角形是否为直角三角形。
2 一定是直角三角形吗1.勾股定理的逆定理(1)勾股定理的逆定理的内容:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(2)勾股定理的逆定理的释疑:不少的同学对知道三角形三边满足a2+b2=c2能得到直角三角形这样的一种结论持有怀疑的态度,其实通过三角形的全等可以很简单地证明出来.比如:如果在△ABC中,AB=c,BC=a,CA=b,并且满足a2+b2=c2(如图所示),那么∠C=90°.作△A1B1C1,使∠C1=90°,B1C1=a,C1A1=b,则A1B21=a2+b2.∵a2+b2=c2,∴A1B1=c(A1B1>0).在△ABC和△A1B1C1中,∵BC=a=B1C1,CA=b=C1A1,AB=c=A1B1,∴△ABC≌△A1B1C1.∴∠C=∠C1=90°.辨误区勾股定理的逆定理的条件(1)不能说成在直角三角形中,因为还没有确定直角三角形,当然也不能说“斜边”和“直角边”.(2)当满足a2+b2=c2时,c是斜边,∠C是直角.利用勾股定理的逆定理判断一个三角形是否为直角三角形的思路是:先确定最长边,算出最长边的平方及另两边的平方和,如果最长边的平方与另两边的平方和相等,则此三角形为直角三角形.对啊!到目前为止判定直角三角形的方法有:①说明三角形中有一个直角;②说明三角形中有两边互相垂直;③勾股定理的逆定理.【例1】如图所示,∠C=90°,AC=3,BC=4,AD=12,BD=13,问:AD⊥AB吗?试说明理由.解:AD⊥AB.理由:根据勾股定理得AB=AC2+BC2=5.在△ABD中,AB2+AD2=52+122=169,BD2=132=169,所以AB2+AD2=BD2.由勾股定理的逆定理知△ABD为直角三角形,且∠BAD=90°.故AD⊥AB.2.勾股定理的逆定理与勾股定理的关系勾股定理是通过“形”的状态来反映“数”的关系的,而勾股定理的逆定理是通过“数”的关系来反映“形”的状态的.(1)勾股定理是直角三角形的性质定理,勾股定理的逆定理是直角三角形的判定定理,二者是互逆的.(2)联系:①两者都与a2+b2=c2有关,②两者所讨论的问题都是直角三角形问题.(3)区别:勾股定理是以“一个三角形是直角三角形”为条件,进而得到这个直角三角形三边的数量关系“a2+b2=c2”;勾股定理的逆定理则是以“一个三角形的三边满足a2+b2=c2”为条件,进而得到这个三角形是“直角三角形”.是直角三角形的一个性质判定直角三角形的一种方法【例2】如图,在△中,为边上的点,已知:=13,=12,=15,=5,求DC.分析:先用勾股定理的逆定理判定形状,然后用勾股定理求数据.解:∵AD2+BD2=122+52=132=AB2,∴由勾股定理的逆定理知△ADB为直角三角形.∴AD⊥BC.在Rt△ADC中,由勾股定理,得DC2=AC2-AD2=152-122=92.∴DC=9.3.勾股数勾股数:满足a2+b2=c2的三个正整数,称为勾股数.(1)由定义可知,一组数是勾股数必须满足两个条件:①满足a2+b2=c2;②都是正整数.两者缺一不可.(2)将一组勾股数同时扩大或缩小相同的倍数所得的数仍满足a2+b2=c2(但不一定是勾股数),以它们为边长的三角形是直角三角形,比如以0.3 cm,0.4 cm,0.5 cm为边长的三角形是直角三角形.【例3】①7,24,25;②8,15,19;③0.6,0.8,1.0;④3n,4n,5n(n>1,且为自然数).上面各组数中,勾股数有______组.().A.1 B.2 C.3 D.42(是勾股数析规律勾股数的判断方法判断勾股数要看两个条件,一看能否满足a2+b2=c2,二看是否都是正整数.这两者缺一不可.4.勾股定理的逆定理的应用勾股定理的逆定理在解决实际问题中有着广泛的应用,可以用它来判定是不是直角.家里建房时,常需要在现场画出直角,在没有测量角的仪器的情况下,工人师傅常常利用勾股定理的逆定理作出直角.【例4】如图是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8 m,AD=BC=6 m,AC=9 m,请你帮他看一下,挖的地基是否合格?分析:本题是数学问题在生活中的实际应用,所以我们要把实际问题转化成数学问题来解决,运用直角三角形的判定条件,来判断它是否为直角三角形.解:∵AD2+DC2=62+82=100,AC2=92=81,∴AD2+DC2≠AC2.∴△ADC不是直角三角形,∠ADC≠90°.又∵按标准应为长方形,四个角应为直角,∴该农民挖的地基不合格.5.利用非负数的性质判定三角形的形状在由一个等式求三角形的三边长时,往往先把等式化为a2+b2+c2=0的形式,再由a=0,b =0,c=0,求得三角形三边之长,利用计算来判断△ABC是否是直角三角形.谈重点判定三角形的形状由条件等式来判断三角形的形状,就是将已知的条件等式变形,再根据它的结构特点,得出a,b,c的关系,从而判断三角形的形状.【例5】如果一个三角形的三边长a,b,c满足a2+b2+c2+338=10a+24b+26c,试说明这个三角形是直角三角形.分析:本题需要将已知等式进行变形,配成完全平方式,求出a,b,c的值,然后再说明.解:将式子变形,得a2+b2+c2+338-10a-24b-26c=0,即a 2-10a +25+b 2-24b +144+c 2-26c +169=0.整理,得(a -5)2+(b -12)2+(c -13)2=0. 因此a -5=0,b -12=0,c -13=0, ∴a =5,b =12,c =13. ∵a 2+b 2=52+122=132=c 2, ∴这个三角形是直角三角形.6.勾股定理及其逆定理的综合应用(1)利用勾股定理解决生活中的实际问题时,关键是利用转化的思想把实际问题转化为数学模型(直角三角形)来解决.(2)综合运用勾股定理及其逆定理,将不规则图形转化为规则图形是常用的数学方法,在这里,一方面要熟记常用的勾股数;另一方面要注意到:如果一个三角形的三边长已知或具有某些比例关系,那么就可以用勾股定理的逆定理去验证其是否是直角三角形.【例6】 如图所示,在四边形ABCD 中,AD =3 cm ,AB =4 cm ,∠BAD =90°,BC =12 cm ,CD =13 cm.求四边形ABCD 的面积.分析:根据AD =3 cm ,AB =4 cm ,∠BAD =90°,可连接BD 构成直角三角形,通过判断△BCD 是直角三角形解决问题.解:连接BD ,在△ABD 中,∵AD =3 cm ,AB =4 cm ,∠BAD =90°,根据勾股定理,得BD 2=AD 2+AB 2=32+42=52,∴BD =5 cm.在△BCD 中,∵BD =5 cm ,BC =12 cm ,CD =13 cm ,BD 2+BC 2=CD 2,∴△BCD 是直角三角形. ∴四边形ABCD 的面积=S △ABD +S △BCD =12×3×4+12×5×12=36 cm 2.。
义务教育教科书数学八年级上(北京师范大学出版社)1.2《一定是直角三角形吗》教学设计一、教学内容解析本节课的教学内容是探索勾股定理的逆定理,并能运用它们解决一些简单问题.《一定是直角三角形吗》是北师大版数学八年级上册第一章第2节的内容.勾股定理的逆定理属于事实性知识,本节课继探索勾股定理之后,勾股定理应用之前,在本章起着承上启下的作用.同时,勾股定理的逆定理又是初中阶段学生判定直角三角形非常重要的依据.本节课将勾股定理的条件和结论互相交换得到一个新的命题,探索并证明这个命题是真命题,这也是我们数学中研究问题的常用视角.同时,勾股定理的逆定理是从边的角度判定一个三角形是直角三角形,和前面学过的一些判定方法不同,它是通过数的计算来作形的判断,体现了数形结合的数学思想.探索定理的过程又体现了科学探索的一般方法“特殊验证—大胆猜想—小心求证”,从特殊到一般再回到特殊问题.故学习本节内容有利于培养学生主动提出问题、发现问题、和探索解决问题方法的能力,同时拓展学生思维,体会数形结合的数学思想,同时树立正确、科学的价值观.所以,本节课的教学重点是:探索并证明勾股定理的逆定理.二、教学目标设置根据《课标》要求和教学内容解析,确定本节课教学目标如下:(1)理解勾股定理逆定理的具体内容及勾股数的概念;(2)能根据三角形三边的条件判断三角形是否为直角三角形;(3)经历一般规律的探索过程,发展学生的抽象思维能力;经历从实验到验证的过程,发展学生的数学归纳能力;(4)体验生活中数学的应用价值,感受数学来源于生活并应用于生活,激发学生学数学和用数学的兴趣;在探索过程中体验成功的喜悦,在合作交流的过程中提高团队意识.三、学生学情分析从知识上看,学生已经探索并学习勾股定理,知道勾股定理是直角三角形重要的性质,勾股定理是根据“形”的特征得到“数”的关系.同时,七年级学习了全等三角形,知道通过全等三角形可以将数量和位置关系进行转化.从八年级学生的理解能力和思维特征上看,七年级学习中已经积累了一定的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?反之,满足什么条件的两直线平行?这既揭示了知识前后的内在联系,也是一种研究问题的常见视角.因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中,可能要用到反证法、构造全等三角形等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导.因此,本节课的难点为:探索勾股定理逆定理的过程及定理的证明.四、教学策略分析:数学是一门培养学生思维,发展学生思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,让学生了解探究问题一般过程和方法.根据本课内容特点,本节课采用“实验—猜想—归纳—论证—应用”的模式进行,从创设问题情景入手,通过知识再现,逆向思考得到关于直角三角形判别条件的猜想,通过动手操作验证猜想的合理性,由合情推理得到一般结论,再通过演绎推理证明结论的正确性.本节课通过“问题串”启发引导学生寻找边的关系判断直角三角.通过“弱”和“强”的提示语试图调动不同层次学生思维的深入,学生分组遵循“组间无差距”、“组内有梯度”的原则,营造“可探索”的环境,使学生积极参与,互相讨论,一步步地掌握勾股定理逆定理的内容,更好地理解并证明勾股定理的逆定理,从而体会转化与划归的数学思想.同时采用多媒体辅助教学,将不同组学生的做法进行展示,鼓励学生积极主动从不同角度阐述自己的想法,并及时肯定或优化解题思路,使学生学习数学更有成就感,培养学生学习数学的信心.。
第一章勾股定理1.2一定是直角三角形吗一、教学目标1.掌握直角三角形的判别条件,并能进行简单的应用;2.经历直角三角形的判别条件的探索过程,发展学生的抽象思维能力和归纳能力;3.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学和用数学的兴趣.二、教学重点及难点重点:会通过边长判断一个三角形是否是直角三角形,准确理解勾股定理逆定理的具体内容.难点:探索三角形是否是直角三角形过程及熟练应用勾股定理逆定理解决生活中的实际问题.三、教学准备多媒体课件,带有13个等距结的绳子四、相关资视频《利用13个打结的绳子作直角》五、教学过程【复习回顾】复习回顾,引如新课教学过程师:直角三角形有哪些性质?(可从边、角两方面分别说明)学生:①有一个内角为直角;②两个锐角互余;③两条直角边的平方和等于斜边的平方设计意图:通过复习,铺垫知识,为新课接受打好基础.师:我们前面学习的内容是已知直角三角形,利用这些性质解决问题,那如果我们想得到一个直角三角形应如何做呢?学生发表见解教师总结:可以利用直角得到一个直角三角形. 引出问题:三角形的三条边满足什么关系就能得到直角三角形.我们通过视频看看古人是如何做的.那么这样做出来的三角形一定是直角三角形吗?这就是我们这节课探究的问题.板书:2.一定是直角三角形吗【新知讲解】探究:利用三边数量关系判定直角三角形活动1:仿照视频演示下面我们一同还原视频中的做法,并画出图形.拿出事先准备好的绳子,上面有13个等距的结,把这根绳子分成等长的12段.让一个同学同时握住绳子的第(1)个和第(13)个结,再让两个同学分别握住绳子的第(4)个结和第(8)个结,(如下图所示)拉紧绳子,大家可以发现什么?学生通过观察,很容易得到一个直角三角形,在第(4)个结处的角是直角.教师进一步进行引导,看在第(1)个结到第(4)个结是3个单位长度即b=3;同理a=4,c=5.因为32+42=52,所以a2+b2=c2.那么是不是三角形的三边满足a2+b2=c2,就可以得到一个直角三角形呢?不妨再找几组数试一试.设计意图:在活动中探索结论,增强学生学习兴趣.活动2:做一做下面四组数分别是一个三角形的三边a,b,c的长:(1)5,12,13;(2)7,24,25;(3)8,15,17;(4)5,6,7.问题:这四组数都满足a2+b2=c2吗?分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?(学生分为4人活动小组,每个小组可以任选其中的一组数.)师生共析:(1)52+122=169=132;(2)72+242=625=252;(3)82+152=289=172;(4)52+62=61≠72.这四组数,前三组满足a2+b2=c2,而最后一组不满足.学生们通过作三角形,测量三角形三个内角发现:前三组数满足a2+b2=c2,作出的三角形都是直角三角形;而最后一组数不满足a2+b2=c2,作出的三角形不是直角三角形.设计意图:通过让学生亲自动手作三角形,并用量角器量出各个内角,然后小组内交流,从而获得一个三角形是直角三角形时三边满足的条件.活动3:归纳总结总结1:判定直角三角形的条件:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.满足的a2+b2=c2三个正整数,称为勾股数.总结2:(1)常见的勾股数有:①3,4,5;②9,40,41;③8,15,17;④7,24,25;⑤5,12,13;⑥9,12,15.(2)勾股数有无数组,一组勾股数中,各数的相同整数倍得到一组新的勾股数.注意:(1)勾股数必须都是正整数;(2)判断一组数是不是勾股数,看较小两个数的平方和是否等于最大数的平方.设计意图:明确结论,总结常见勾股数及注意事项,使学生在解决问题时有明确的解题思路.【典型例题】例1. 一个零件的形状如左下图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如右下图所示,这个零件符合要求吗?分析:这是一个利用直角三角形的判定条件解决实际问题的例子.解:在△ABD中,AB2+AD2=9+16=25=BD2,所以△ABD是直角三角形,∠A是直角.在△BCD中,BD2+BC2=25+144=169=132=CD2,所以△BCD是直角三角形,∠DBC 是直角.因此这个零件符合要求.设计意图:通过例题,巩固所学知识,并强化训练.例2.下列几组数能否作为直角三角形的三边长?请说说你的理由.(1)9,12,15;(2)15,36,39;(3)12,35,36;(4)12,18,32.解:根据直角三角形的判定条件进行判断.(1)92+122=152;(2)152+362=392,所以(1)(2)两组数可以作为直角三角形的三边;但(3)122+352≠362,(4)122+182≠322,所以(3)(4)两组数不能作为直角三角形的三边.例3.①7,24,25;②8,15,19;③0.6,0.8,1.0;④3n ,4n ,5n (n >1,且为自然数).上面各组数中,勾股数有______组.A .1B .2C .3D .4【答案】B ①√∵72+242=252,且7,24,25都是正整数,∴7,24,25是勾股数.②×∵82+152≠192,∴8,15,19不是勾股数.③×∵0.6,0.8,1.0不是正整数,∴0.6,0.8,1.0不是勾股数.④√∵(3n )2+(4n )2=25n 2=(5n )2(n >1,且为自然数),且它们都是正整数,∴3n ,4n ,5n (n >1,且为自然数)是勾股数.归纳总结:勾股数的判断方法判断勾股数要看两个条件,一看能否满足a 2+b 2=c 2,二看是否都是正整数.这两者缺一不可.例4.(1)下列各组数中,以a ,b ,c为边的三角形不是直角三角形的是( A )A .a =1.5,b =2,c =3B .a =7,b =24,c =25C .a =6,b =8,c =10D .a =3,b =4,c =5(2)如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 的形状为( A )A .直角三角形B . 锐角三角形C .钝角三角形D . 以上答案都不对(3)如图,正方形ABCD 是由9个边长为1的小正方形组成,每个小正方形的顶点都叫格点,连接AE ,AF ,则∠EAF =( B )A .30°B . 45°C . 60°D . 35°【随堂练习】1.如图是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8 m,AD=BC=6 m,AC=9 m,请你帮他看一下,挖的地基是否合格?分析:本题是数学问题在生活中的实际应用,所以我们要把实际问题转化成数学问题来解决,运用直角三角形的判定条件,来判断它是否为直角三角形.解:∵AD2+DC2=62+82=100,AC2=92=81,∴AD2+DC2≠AC2.∴△ADC不是直角三角形,∠ADC≠90°.又∵按标准应为长方形,四个角应为直角,∴该农民挖的地基不合格.2.如图,在△ABC中,D为BC边上的点,已知:AB=13,AD=12,AC=15,BD=5,求DC.分析:先用三边数量关系的判定形状,然后用勾股定理求数据.解:∵AD2+BD2=122+52=132=AB2,∴由勾股定理的逆定理知△ADB为直角三角形.∴AD⊥BC.在Rt△ADC中,由勾股定理,得DC2=AC2-AD2=152-122=92.∴DC=9.3.如图,在△ABD中,∠A是直角,AB=3,AD=4,BC=12,DC=13,求四边形ABCD的面积.解:连接BD,在△ABD中,∠A是直角,AB=3,AD=4,∴△BCD中,BC=12,DC=13,DB=5,52+122=132,即BC2+BD2=DC2,∴△BCD是直角三角形,∴S四边形ABCD=S△ABD+S△BDC=AD•AB+BD•BC=×4×3+×5×12=6+30=36.六、课堂小结谈谈本节课的收获:1.判定直角三角形的方法:如果一个三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.勾股数:满足a2+b2=c2的三个正整数,称为勾股数.2. 勾股数扩大相同的正整数倍后,仍为勾股数.七、板书设计。
课题:1.2 一定是直角三角形吗教学目标:1.理解直角三角形的判别条件及勾股数的概念.2.能根据所给三角形三边的条件判断三角形是否是直角三角形.3. 经历一般规律的探索过程,发展学生的抽象思维能力.教学重点与难点:重点:是会通过边长判断一个三角形是否是直角三角形,熟悉几组勾股数,并会辨析哪些问题应用哪个结论.难点:是理解勾股定理的逆定理是通过数的关系来反映形的特点.课前准备:多媒体课件.教学过程:一、创设情境,引入新课(课件展示)问题1 在一个直角三角形中三条边满足什么样的关系呢?问题2 如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?处理方式:问题1、2由学生口答完成,教师多媒体展示.问题1 在一个直角三角形中两直角边的平方和等于斜边的平方,即:a2+b2=c2.问题2 学生猜测回答的答案不统一.设计意图:通过对问题的思考一方面锻炼学生的动手操作的好习惯,另一方面让学生感悟结论的真实性从而引出新课.二、分组展示,探究总结探究一:(课件展示)下面有三组数,分别是一个三角形的三边长ca,,:b①5,12,13;②7,24,25;③8,15,17;回答这样两个问题:1.这三组数都满足22c2+吗?a=b2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?处理方式:学生分组实验,每个小组可以任选其中的一组数.经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足222c b a =+,可以构成直角三角形;②7,24,25满足222c b a =+,可以构成直角三角形;③8,15,17满足222c b a =+,可以构成直角三角形.从上面的分组实验很容易得出如下结论:如果一个三角形的三边长c b a ,,,满足222c b a =+,那么这个三角形是直角三角形. 在学生测量的基础上利用课件展示测量角的过程.实验结果: (学生分析后课件展示)① 5,12,13满足222c b a =+,可以构成直角三角形;② 7,24,25满足222c b a =+,可以构成直角三角形;③ 8,15,17满足222c b a =+ ,可以构成直角三角形.猜想:如果三角形的三边长a ,b ,c 满足222c b a =+,那么这个三角形是直角三角形. 设计意图:通过学生的合作探究,得出“若一个三角形的三边长c b a ,,,满足222c b a =+,则这个三角形是直角三角形”这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律.探究二:(课件展示)议一议:有同学认为测量结果可能有误差,不同意这个发现.你觉得这个发现正确吗?你能给出一个更有说服力的理由吗?处理方式:引导学生想办法说明理由.课件展示证明及说理过程.方法一:(利用全等说明)已知一个三角形三边是6,8,10满足222c b a =+;另一个直角三角形两条直角边是6和8,求①直角三角形的斜边?②两个三角形全等吗?方法二:(利用推理说明)理由一:锐角三角形和钝角三角形三边不满足a 2 +b 2=c 2.理由二:例如以6和8为边构造三角形,随着夹角的变大,第三边的长度也变大,而根据勾股定理知道:夹角是直角的时候,第三边长度是10,因此,边长为6,8,10的三角形一定是直角三角形.设计意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:如果一个三角形的三边长c b a ,,,满足222c b a =+,那么这个三角形是直角三角形 满足222c b a =+的三个正整数,称为勾股数.设计意图:学生在对定理感性认识的基础上获得了合理严谨的证明过程,感受到了数学的严谨性,体会到了观察——猜想——验证的过程,形成了较好的数学思维.想一想:(课件展示)内容:1.同学们还能找出哪些勾股数呢?2.今天的结论与前面学习勾股定理有哪些异同呢?3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?处理方式:学生小组交流,使学生能够对定理和勾股数有非常清晰的认识,并通过对比勾股定理和勾股定理的逆定理发现了二者的联系及不同:1.常见的基本勾股数有:3,4,5;5,12,13;8,15,17;7,24,25;9,40,41;…2.勾股定理是用来计算三角形边长的,逆定理是用来判定一个三角形是不是直角三角形的.勾股定理:先有直角三角形再有222c b a =+;逆定理:一个三角形的三边满足222c b a =+,则它是直角三角形.3.用角:如果有一个内角是90度,它就是直角三角形或如果有两个角的和是90度,那么这个三角形也是直角三角形;用边:如果三角形的三边长a ,b ,c 满足222c b a =+,那么这个三角形是直角三角形.设计意图:进一步让学生认识该定理与勾股定理之间的关系,通过对定理的认知过程感受数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊—一般—特殊”的发展规律.小试牛刀: (课件展示)⒈下列几组数能否作为直角三角形的三边长?说说你的理由.⑴ 9,12,15; ⑵ 15,36,39;⑶ 12,35,36; ⑷ 12,18,22.2.已知∆ABC 中BC =41, AC =40, AB =9, 则此三角形为_______三角形, ______是最大角.3.一个三角形的三边长分别是cm cm cm 25,20,15,则这个三角形的面积是( )A. 250 2cmB. 1502cmC. 200 2cmD. 不能确定处理方式:学生独立完成,教师巡视,了解学生对知识的掌握情况,同时关注:学生在练习中的反映的问题,有针对性的讲解.设计意图:通过这组题目的训练,可帮助学生对本节课所探究的问题作一回顾,同时也检验学生运用所学知识的能力.三、例题解析,巩固新知(多媒体出示)例 一个零件的形状如左图所示,按规定这个零件中 ∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?A DA D处理方式:学生独立完成,教师巡视,了解学生对知识的掌握情况同时规范学生解题过程.(课件展示或板书过程)解:在△ABD 中,222222516943BD AD AB ==+=+=+ ,所以△ABD 为直角三角形∠A =90°.在△BDC 中, 2222221316914425125BC DC BD ===+=+=+,所以△BDC 是直角三角形∠CDB =90°.因此,这个零件符合要求.设计意图:通过例题讲解一方面让学生学会如何运用新知进行做题,另一方面规范解题过程,重点放在落实上.随堂练习:1.如图,在正方形ABCD 中,AB =4,AE =2,DF =1,图中有几个直角三角形,你是如何判断的?与你的同伴交流.处理方式:要求学生独立完成(3分钟),并指出分别用了哪些知识.易知:△ABE ,△DEF ,△FCB 均为Rt△.由勾股定理知BE 2=22+42=20,EF 2=22+12=5, BF 2=32+42=25.∴BE 2+EF 2=BF 2 ∴ △BEF 是Rt △.设计意图:学生在对所学知识有一定的熟悉程度后,能够快速做答并能简要说明理由即可.四、总结收获,纳入系统师生相互交流总结出:1.今天所学内容①会利用三角形三边数量关系222c b a =+判断一个三角形是直角三角形;②满足222c b a =+的三个正整数,称为勾股数;2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律;③利用三角形三边数量关系222c b a =+判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将222c b a =+作适当变形,222a b c =-便于计算.处理方式:学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系222c b a =+判断一个三角形是直角三角形从古至今在实际生活中的广泛应用. 设计意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.五、达标检测,能力提升1.以下列各组数为三边长的三角形中,是直角三角形的有( )①3,4,5; ②1,2,4; ③32,42,52;④6,8,10A. 1个B. 2个C. 3个D. 4个2.三角形的三边分别是a ,b ,c ,且满足等式(a+b )2-c 2=2ab , 则此三角形是( )A. 直角三角形B. 是锐角三角形C. 是钝角三角形D. 是等腰直角三角形3.如图:在ABC ∆中,BC AD ⊥于D ,20,12,9===AC AD BD ,则ABC ∆是( )A. 等腰三角形B. 锐角三角形C. 直角三角形D. 钝角三角形4.将直角三角形的三边扩大相同的倍数后,得到的三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定5. 如图:四边形ABCD 中已知AB =3,BC =4,CD =12,DA =13,且∠ABC =900,求这个四边形的面积. (连接AC )处理方式:留给学生5~6分钟的时间独立做题,教师巡视,对于不甚明白知识点的学生给予帮助,同时批改完成同学的的检测题,及时收集具有代表性的错误,和好的解题方法.设计意图:旨在检测学生对一次函数的图象和性质的掌握情况,以便根据学生情况调整教学进程.六、布置作业,巩固知识必做题:习题1.3 第1、2题;选做题:习题1.3 第3、4题;拓展题:已知 a,b,c 是三角形的三边长,a =m 2-n 2, b =2mn ,c =m 2+n 2, (m 、n 为任意正整数,m >n ) 试说明△ABC 为直角三角形.板书设计:。
北师大版八年级数学上册《一定是直角三角形吗》教案及教学反思一、教案设计1. 教学目标通过本节课的教学,学生能够正确地理解和应用勾股定理,知道如何应用勾股定理判断一个三角形是否为直角三角形。
2. 教学重点•理解勾股定理的含义和适用范围;•如何应用勾股定理判断一个三角形是否为直角三角形。
3. 教学难点如何应用勾股定理判断一个三角形是否为直角三角形。
4. 教学内容(1)勾股定理的定义首先,我们来回顾一下勾股定理的定义:直角三角形的斜边的平方等于两直角边的平方和。
(2)如何应用勾股定理判断一个三角形是否为直角三角形接下来,我们来讲一讲如何应用勾股定理判断一个三角形是否为直角三角形。
首先,引导学生根据题目给出的条件,确定可能是直角三角形的三角形。
然后,让学生按照勾股定理计算斜边和两直角边的平方和,判断是否相等,若相等,说明这个三角形是直角三角形。
最后,让学生运用所学知识,解决一些实际问题。
5. 教学方法板书、讲解、引导、练习、讨论。
6. 教学过程(1)激发兴趣(3分钟)通过简单的问题导入,激发学生对本节课的兴趣,例如:在什么情况下,两直角边的平方和等于斜边的平方呢?(2)讲解概念(5分钟)通过一些具体的例子,让学生理解勾股定理的定义。
(3)引导理解(10分钟)通过一些具体的例题,引导学生理解如何应用勾股定理判断一个三角形是否为直角三角形。
(4)让学生动手练习(20分钟)让学生按照教师刚刚讲解的步骤,解决一些题目,提高学生的应用能力。
(5)讨论(10分钟)学生互相交换解题思路,发表个人看法和建议。
7. 教学评价让学生上台演练、口头答问,以此检查学生的学习效果。
同时,也可以通过课外练习和作业来检查学生在知识掌握和应用方面的能力。
二、教学反思本节课中,采用了讲解、引导、练习、讨论等多种教学方法,让学生在认识和掌握勾股定理的基础上,理解和掌握如何应用勾股定理判断一个三角形是否为直角三角形的方法。
在教学中,进行了简单的问题导入,引起了学生的兴趣。
北师大版数学八年级上册1.2 一定是直角三角形吗教学设计【思考】它们都是直角三角形吗?你是怎么想的?与同伴交流。
你能得到什么结论?如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2 ,那么这个三角形是直角三角形。
满足 a 2+b 2=c 2 的三个整数,称为勾股数。
【例】一个零件的形状如图所示,按规定这个零件中∠A 和∠DBC 都应为直角,工人师傅量得这个零件各边的尺寸如图所示,这个零件符号要求吗?解:在△ABD 中,AB 2+AD 2=9+16=25=BD 2,所以△ABD 是直角三角形,∠A 是直角。
在△BCD 中,BD 2+BC 2=25+144=169=CD 2,所以△BCD 是直角三角形,∠DBC 是直角。
因此,这个零件符合要求。
,这个三角形是直角三角形”这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律。
3cm4cm5cm 5cm12cm13cm5cm8cm 17cm 7cm24cm25cm1.下列各组数中不能作为直角三角形三边长的是( c )A. 1.5,2,2.5B. 7,24,25C. 8,12,15D. 6,8,102.下列各组数中不是勾股数的是( c )A.5,12,13 B. 7,24,25 C. 8,12,15 D. 3k,4k,5k(k 为正整数)3.已知a、b、c是三角形的三边长,如果满足(a﹣6)²+b 8+c-10=0,则三角形的形状是( D )。
A.底与腰不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形4.满足下列条件的三角形中,不是直角三角形的是(D )A.三内角之比1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:55.一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量出了这个零件各边尺寸,BC=4,AB=3,AC=5,AD=13,CD=12那么这个零件符合要求吗?求出四边形ABCD的面积.解:∵BC=4,AB=3,AC=5,DC=12,AD=13,∴AB2+BC2=AC2,AC2+CD2=AD2,∴△ABA、△DAC是直角三角形,∴∠B=90°,∠ACD=90°,∴这个零件的面积=△ABC的面积+△ADC的面积=3×4÷2+5×12÷2,=6+30,=36.6.(2019•北京)如图所示的网格是正方形网格,则∠PAB+∠PBA=__45°___(点A,B,P是网格线交点).7.(2018•汕头)已知△ABC的三边长分别为5,13,12,则△ABC的面积为(A)A.30B.60C.78D.不能确定。
1. 2必定是直角三角形吗1.掌握勾股定理的逆定理,并能进行简单应用; ( 难点 )2.理解勾股数的定义,研究常用勾股数的规律. ( 要点 )一、情境导入1.直角三角形中,三边长度之间知足什么样的关系?2.假如一个三角形中有两边的平方和等于第三边的平方,那么这个三角形能否就是直角三角形呢?二、合作研究研究点一:勾股定理的逆定理【种类一】判断三角形的形状判断知足以下条件的三角形是不是直角三角形.(1)在△ ABC中,∠A= 20°,∠ B=70°;(2)在△ ABC中, AC= 7, AB= 24, BC=25;(3)△ABC 的三边长 a、 b、 c 知足 (a +b)(a - b) =c2.分析: (1) 已知两角能够求出此外一个角; (2) 使用勾股定理的逆定理考证; (3) 将式子变形即可使用勾股定理的逆定理考证.解:(1) 在△ABC中,∵∠A=20°,∠B=70°,∴∠C=180°-∠A-∠B=90°,即△ ABC 是直角三角形;2 2 2 2 2 2(2) ∵AC + AB = 7 +24 = 625 ,BC= 252 2 2= 625,∴ AC+ AB = BC. 依据勾股定理的逆定理可知,△ABC是直角三角形;(3)∵(a + b)(a - b) = c2,∴ a2- b2= c2,即a2= b2+ c2. 依据勾股定理的逆定理可知,△ ABC是直角三角形.方法总结:在运用勾股定理的逆定理时,要特别注意找到最大边,定理描绘的最大边的平方等于此外两边的平方和.【种类二】判断线段之间的地点关系在正方形 ABCD中,F 是 CD的中点,1E 为 BC上一点,且 CE=4CB,试判断 AF 与EF 的地点关系,并说明原因.分析:察看图形并加以合理的推断,不难发现 AF⊥EF.解: AF⊥EF.设正方形的边长为 4a, 则EC=a,BE= 3a,CF=DF= 2a. 在 Rt △ ABE中,由勾股定理得2 2 2= 16a2+ 9a2=AE = AB + BE2 2 2 25a . 在 Rt △ CEF中,由勾股定理得EF= CE +CF2= a2+4a2= 5a2. 在 Rt △ ADF中,由勾股定理得2 2 2 2 2 2AF = AD+ DF = 16a + 4a = 20a . 在△A EF 中,AE2=EF2+AF2,∴△AEF 为直角三角形,且 AE为斜边.∴∠ AFE= 90°,即AF⊥EF.方法总结:利用三角形三边的数目关系来判断直角三角形,进而推出两线的垂直关系.研究点二:勾股数下列几组数中是勾股数的是________( 填序号 ) .2 2 2 1 1①3,4 , 5 ;② 9, 40, 41;③3,4,1;④ 0.9 , 1.2 ,1.5.5分析:第① 组不切合勾股数的定义,不是勾股数;第③④ 组不是正整数,不是勾股数;只有第②组的 9,40,41 是勾股数.故填②.方法总结:判断勾股数的方法:一定满足两个条件:一要切合等式 a2+ b2= c2;二要都是正整数.三、板书设计勾股定理的逆定理:假如一个三角形22 2的三边长a, b, c 知足 a + b =c ,那么这22 2勾股数:知足 a + b = c 的三个正整数,经历一般规律的研究过程,发展学生的抽象思想能力、概括能力.体验生活中数学的应用价值,感觉数学与人类生活的亲密联系,激发学生学数学、用数学的兴趣.。
1.2 一定是直角三角形
教学目的
知识与技能:掌握直角三角形的判别条件,并能进行简单应用;
教学思考:进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.
解决问题:会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.
情感态度与价值观:
敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识. 重点、难点
重点:探索并掌握直角三角形的判别条件。
难点:运用直角三角形判别条件解题 教学过程
一、创设情境,激发学生兴趣、导入课题
展示一根用 13 个等距的结把它分成等长的12 段的绳子,请三个同学上台,按老师的要求操作。
甲:同时握住绳子的第一个结和第十三个结。
乙:握住第四个结。
丙:握住第八个结。
拉紧绳子,让一个同学用量角器,测出这三角形其中的最大角。
问:发现这个角是多少?(直角。
) 展示投影 1。
(书P9图1—10) 教师道白:这是古埃及人曾经用过这种方法得到直角,这个三角形三边长分别为多少?( 3、4、5 ) ,这三边满足了哪些条件? ( 2
2
2
543=+),是不是只有三边长为3、4、 5的三角形才可以成为直角三角形呢?现在请同学们做一做。
二、做一做
下面的三组数分别是一个三角形的三边a 、b 、c 。
5、12、13 7、24、25 8、15、17
1、这三组数都满足222c b a =+吗?
同学们在运算、交流形成共识后,教师要学生完成。
2、分别用每组数为三边作三角形,用量角器量一量,它们都是直角三角形吗? 同学们在在形成共识后板书:
如果三角形的三边长a 、b 、c 满足2
22c b a =+,那么这个三角形是直角三角形。
满足2
2
2
c b a =+的三个正整数,称为勾股数。
大家可以想这样的勾股数是很多的。
今后我们可以利用“三角形三边a 、b 、c 满足2
2
2
c b a =+时,三角形为直角形”来判断三角形的形状,同时也可以用来判定两条直线是否垂直的方法。
三、讲解例题
例1 一个零件的形状如图,按规定这个零件中∠A 与∠BDC 都应为直角,工人师傅量得零件各边尺寸:AD = 4,AB = 3, DC = 12 , BC=13,这个零件符合要求吗?
分析:要检验这个零件是否符合要求,只要判断△ADB 和△DBC 是否为直角三角形,这样勾股定理的逆定理即可派上用场了。
解:在△ABD 中,2
2
2
2
2
2516943BD AD AB ==+=+=+
所以△ABD 为直角三角形 ∠A =90° 在△BDC 中,
2222221316914425125BC DC BD ===+=+=+
所以△BDC 是直角三角形∠CDB =90°
因此这个零件符合要求。
A D
四、随堂练习:
⒈下列几组数能否作为直角三角形的三边长?说说你的理由.
⑴9,12,15; ⑵15,36,39; ⑶12,35,36; ⑷12,18,22.
⒉已知∆ABC 中BC=41, AC=40, AB=9, 则此三角形为_______三角形, ______是最大角.
⒊四边形ABCD 中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.
A B
C
D 43
12
13
⒋习题1.3 五、读一读
P11 勾股数组与费马大定理。
⒈直角三角形判定定理:如果三角形的三边长a ,b ,c 六、小结:
1、满足a 2 +b 2=c 2 ,那么这个三角形是直角三角形.
2、满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数. 六、作业
1、课本 P12 1 .3 1、
2、3。
教学反思:这是勾股定理的逆应用。
大部分的同学只要能正确掌握勾股定理的话,都不难理解。
当然勾股定理的理解掌握是关键。