初中数学第二章因式分解复习
- 格式:doc
- 大小:243.37 KB
- 文档页数:2
初中数学《因式分解》12个常见答题方法摘要:1.引言2.因式分解的概念和重要性3.12个常见答题方法详解a.提公因式法b.平方差公式法c.完全平方公式法d.分组法e.差平方公式法f.分解因式公式法g.归纳法h.轮换对称法i.添项法j.拆项法k.合并同类项法4.方法总结与实用案例5.结尾正文:【引言】在初中数学中,因式分解是一项重要的技能,它可以帮助我们更好地理解和解决各种数学问题。
掌握一些常用的答题方法,能够让我们在解决因式分解问题时更加得心应手。
下面,我们就来详细介绍12个常见的答题方法。
【因式分解的概念和重要性】因式分解,指的是将一个多项式表达式转化为几个简单多项式的乘积形式。
它的重要性在于,可以将复杂的数学问题简化,便于我们理解和计算。
同时,因式分解也是后续学习高中数学、大学数学等课程的基础。
【12个常见答题方法详解】1.提公因式法:这是一种最基本的因式分解方法,通过提取多项式中的公因式,将原式不断简化,最终得到简单的乘积形式。
2.平方差公式法:适用于形如a-b的式子,可以通过平方差公式进行因式分解,即(a+b)(a-b)。
3.完全平方公式法:适用于形如a+2ab+b的式子,可以通过完全平方公式进行因式分解,即(a+b)。
4.分组法:适用于多项式中存在两项可以合并成一组的情况,将多项式分组,然后对每组进行因式分解,最后再将各组的因式相乘。
5.差平方公式法:适用于形如a-b的式子,可以通过差平方公式进行因式分解,即(a+b)(a-b)。
6.分解因式公式法:掌握一些常用的分解因式公式,如平方差公式、完全平方公式、立方差公式等,可以直接应用于题目中。
7.归纳法:通过观察多项式的规律,逐步进行因式分解,直至得到最简形式。
8.轮换对称法:适用于具有轮换对称性质的多项式,通过对称轴进行轮换,得到新的多项式,再进行因式分解。
9.添项法:在多项式中添加适当的项,使得原多项式变为可以进行因式分解的形式。
10.拆项法:将多项式中的某一项拆分为两项,然后再进行因式分解。
初中数学之因式分解知识点汇总因式分解1. 因式分解的概念:把一个多项式化成几个整式的积的形式,这样的式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
2. 因式分解与整式乘法的关系因式分解与整式乘法都是整式变形,两者互为逆变形。
因式分解是将“和差”的形式化为“积”的形式,而整式乘法是将“积”化为“和差”的形式。
注:分解因式必须进行到每一个多项式的因式都不能再分解为止,即分解因式要彻底。
3. 公因式多项式的各项都含有的公共因式叫做这个多项式各项的公因式。
系数——取各项系数的最大公约数;字母——取各项都含有的字母;指数——取相同字母的最低次幂。
例如:多项式pa+pb+pc 中因式p 即为多项式各项的公因式。
因式分解九大方法:(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
初中数学因式分解知识点复习一、选择题1.下列因式分解中:①32(2)x xy x x x y ++=+;②2244(2)x x x ++=+;③22()()x y x y y x -+=+-;④329(3)x x x x -=-,正确的个数为( )A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】将各项分解得到结果,即可作出判断.【详解】①322(2+1)x xy x x x y ++=+,故①错误;②2244(2)x x x ++=+,故②正确;③2222()()x y y x x y y x -+=-=+-,故③正确;④39(+3)(3)x x x x x -=-故④错误.则正确的有2个.故选:B.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.2.多项式x 2y (a -b )-xy (b -a )+y (a -b )提公因式后,另一个因式为( ) A .21x x -+B .21x x ++C .21x x --D .21x x +-【答案】B【解析】解:x 2y (a -b )-xy (b -a )+y (a -b )= y (a -b )(x 2+x +1).故选B .3.已知4821-可以被在60~70之间的两个整数整除,则这两个数是( )A .61、63B .61、65C .61、67D .63、65 【答案】D【解析】【分析】由()()()()()()24242412686421212121221121=+-=+++--,多次利用平方差公式化简,可解得.【详解】解:原式()()24242121=+-,()()()()()()()()()24121224126624122121212121212163652121=++-=+++-=⨯⨯++ ∴这两个数是63,65.选D.【点睛】本题考查的是因式分解的应用,熟练掌握平方差公式是解题的关键.4.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )A .2B .4C .6D .8 【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.5.下列等式从左边到右边的变形,属于因式分解的是( )A .2ab(a-b)=2a 2b-2ab 2B .x 2+1=x(x+1x )C .x 2-4x+3=(x-2)2-1D .a 2-b 2=(a+b)(a-b)【答案】D【解析】【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B.不是因式分解,等式左边的x 是取任意实数,而等式右边的x ≠0C.不是因式分解,原式=(x -3)(x -1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法、分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法.6.下列各式分解因式正确的是( )A .2112(12)(12)22a a a -=+-B .2224(2)x y x y +=+C .2239(3)x x x -+=-D .222()x y x y -=- 【答案】A【解析】【分析】根据因式分解的定义以及平方差公式,完全平方公式的结构就可以求解.【详解】 A. 2112(12)(12)22a a a -=+-,故本选项正确; B. 2222224(2)(2)=+44x y x y x y x xy y +≠+++,,故本选项错误;C. 222239(3)(3)=69x x x x x x -+≠---+,,故本选项错误;D. ()22()x y x y x y -=-+,故本选项错误. 故选A.【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握平方差公式,完全平方公式.7.下列各式从左到右的变形中,属于因式分解的是( )A .m (a +b )=ma +mbB .a 2+4a ﹣21=a (a +4)﹣21C .x 2﹣1=(x +1)(x ﹣1)D .x 2+16﹣y 2=(x +y )(x ﹣y )+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.8.把代数式2x 2﹣18分解因式,结果正确的是( )A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)【答案】C【解析】 试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运用.9.下列分解因式,正确的是( )A .()()2x 1x 1x 1+-=+B .()()29y 3y y 3-+=+- C .()2x 2x l x x 21++=++ D .()()22x 4y x 4y x 4y -=+- 【答案】B【解析】【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【详解】A. 和因式分解正好相反,故不是分解因式;B. 是分解因式;C. 结果中含有和的形式,故不是分解因式;D. x 2−4y 2=(x+2y)(x−2y),解答错误.故选B.【点睛】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.10.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形【答案】D【解析】试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3,∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0,∴(b ﹣c )(a 2+b 2﹣c 2)=0,∴b ﹣c=0,a 2+b 2﹣c 2=0,∴b=c或a2+b2=c2,∴△ABC是等腰三角形或直角三角形.故选D.11.下列因式分解结果正确的是( ).A.10a3+5a2=5a(2a2+a)B.4x2-9=(4x+3)(4x-3)C.a2-2a-1=(a-1)2D.x2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A作出判断;而B符合平方差公式的结构特点,因此可对B作出判断;C不符合完全平方公式的结构特点,因此不能分解,而D可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A、原式=5a2(2a+1),故A不符合题意;B、原式=(2x+3)(2x-3),故B不符合题意;C、a2-2a-1不能利用完全平方公式分解因式,故C不符合题意;D、原式=(x-6)(x+1),故D符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.12.某天数学课上,老师讲了提取公因式分解因式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-12xy2+6x2y+3xy=-3xy•(4y-______)横线空格的地方被钢笔水弄污了,你认为横线上应填写()A.2x B.-2x C.2x-1 D.-2x-l【答案】C【解析】【分析】根据题意,提取公因式-3xy,进行因式分解即可.【详解】解:原式=-3xy×(4y-2x-1),空格中填2x-1.故选:C.【点睛】本题考查用提公因式法和公式法进行因式分解的能力.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,同时要注意提取公因式后各项符号的变化.13.下列各因式分解的结果正确的是( )A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+-【答案】C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】 ()321a a a a -=-=a (a+1)(a-1),故A 错误; 2(1)b ab b b b a ++=++,故B 错误;2212(1)x x x -+=-,故C 正确;22x y +不能分解因式,故D 错误,故选:C .【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.14.已知a b >,a c >,若2M a ac =-,N ab bc =-,则M 与N 的大小关系是( ) A .M N <B .M N =C .M N >D .不能确定 【答案】C【解析】【分析】计算M-N 的值,与0比较即可得答案.【详解】∵2M a ac =-,N ab bc =-,∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),∵a b >,a c >,∴a-b >0,a-c >0,∴(a-b)(a-c)>0,∴M >N ,故选:C .【点睛】本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.15.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+1【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a 2﹣1=(a+1)(a ﹣1),a 2+a=a (a+1),a 2+a ﹣2=(a+2)(a ﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C ;故答案选C .考点:因式分解.16.已知三个实数a ,b ,c 满足a ﹣2b +c <0,a +2b +c =0,则( )A .b >0,b 2﹣ac ≤0B .b <0,b 2﹣ac ≤0C .b >0,b 2﹣ac ≥0D .b <0,b 2﹣ac ≥0【答案】C【解析】【分析】根据a ﹣2b +c <0,a +2b +c =0,可以得到b 与a 、c 的关系,从而可以判断b 的正负和b 2﹣ac 的正负情况.【详解】∵a ﹣2b +c <0,a +2b +c =0,∴a +c =﹣2b ,∴a ﹣2b +c =(a +c )﹣2b =﹣4b <0,∴b >0,∴b 2﹣ac =222222a c a ac c ac +++⎛⎫-= ⎪⎝⎭=2222042a ac c a c -+-⎛⎫= ⎪⎝⎭…, 即b >0,b 2﹣ac ≥0,故选:C .【点睛】 此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b 和b 2-ac 的正负情况.17.已知a 、b 、c 为ABC ∆的三边长,且满足222244a c b c a b -=-,则ABC ∆是( )A .直角三角形B .等腰三角形或直角三角形C .等腰三角形D .等腰直角三角形【答案】B【解析】【分析】移项并分解因式,然后解方程求出a、b、c的关系,再确定出△ABC的形状即可得解.【详解】移项得,a2c2−b2c2−a4+b4=0,c2(a2−b2)−(a2+b2)(a2−b2)=0,(a2−b2)(c2−a2−b2)=0,所以,a2−b2=0或c2−a2−b2=0,即a=b或a2+b2=c2,因此,△ABC等腰三角形或直角三角形.故选B.【点睛】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a、b、c的关系式是解题的关键.18.把x2-y2-2y-1分解因式结果正确的是().A.(x+y+1)(x-y-1) B.(x+y-1)(x-y-1)C.(x+y-1)(x+y+1) D.(x-y+1)(x+y+1)【答案】A【解析】【分析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.【详解】解:原式=x2-(y2+2y+1),=x2-(y+1)2,=(x+y+1)(x-y-1).故选A.19.下列从左到右的变形属于因式分解的是()A.(x+1)(x-1)=x2-1 B.m2-2m-3=m(m-2)-3C.2x2+1=x(2x+1x) D.x2-5x+6=(x-2)(x-3)【答案】D 【解析】【分析】根据因式分解的定义,因式分解是把多项式写出几个整式积的形式,对各选项分析判断后利用排除法求解.【详解】解:A 、(x+1)(x-1)=x 2-1不是因式分解,是多项式的乘法,故本选项错误; B 、右边不全是整式积的形式,还有减法,故本选项错误;C 、右边不是整式积的形式,分母中含有字母,故本选项错误;D 、x 2-5x +6=(x -2)(x -3)符合因式分解的定义,故本选项正确.故选:D .【点睛】本题主要考查了因式分解的定义,因式分解与整式的乘法是互为逆运算,要注意区分.20.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 【答案】A【解析】试题分析:把多项式分别进行因式分解,多项式2mx m -=m (x+1)(x-1),多项式221x x -+=()21x -,因此可以求得它们的公因式为(x-1).故选A考点:因式分解。
初中数学知识点:因式分解考前复习
初中数学知识点大全:因式分解
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。
②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。
②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
最新初中数学因式分解知识点总复习附答案解析(2)一、选择题1.将2x 2a -6xab +2x 分解因式,下面是四位同学分解的结果:①2x (xa -3ab ), ②2xa (x -3b +1), ③2x (xa -3ab +1), ④2x (-xa +3ab -1). 其中,正确的是( )A .①B .②C .③D .④【答案】C【解析】【分析】直接找出公因式进而提取得出答案.【详解】2x 2a-6xab+2x=2x (xa-3ab+1).故选:C .【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.2.若()()21553x kx x x --=-+,则k 的值为( )A .-2B .2C .8D .-8【答案】B【解析】【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值.【详解】∵()()253215x x x x -+=--∴2k -=-解得2k =故答案为:B .【点睛】本题考查了因式分解的问题,掌握十字相乘法是解题的关键.3.下列多项式不能使用平方差公式的分解因式是( )A .22m n --B .2216x y -+C .22b a -D .22449a n -【答案】A【解析】【分析】原式各项利用平方差公式的结构特征即可做出判断.【详解】下列多项式不能运用平方差公式分解因式的是22m n --.故选A .【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.4.若三角形的三边长分别为a 、b 、c ,满足22230a b a c b c b -+-=,则这个三角形是( )A .直角三角形B .等边三角形C .锐角三角形D .等腰三角形 【答案】D【解析】【分析】首先将原式变形为()()()0b c a b a b --+=,可以得到0b c -=或0a b -=或0a b +=,进而得到b c =或a b =.从而得出△ABC 的形状.【详解】∵22230a b a c b c b -+-=,∴()()220a b c b c b -+-=,∴()()220b c a b --=,即()()()0b c a b a b --+=,∴0b c -=或0a b -=或0a b +=(舍去),∴b c =或a b =,∴△ABC 是等腰三角形.故选:D .【点睛】本题考查了因式分解-提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.5.下列各式分解因式正确的是( )A .22()()()(1)a b a b a b a b +-+=++-B .236(36)x xy x x x y --=-C .223311(4)44a b ab ab a b -=- D .256(1)(6)x x x x --=+- 【答案】D【解析】【分析】 利用提公因式法、十字相乘法法分别进行分解即可.【详解】A. 22()()()(1)+-+≠++-a b a b a b a b ,故此选项因式分解错误,不符合题意;B. 23-6-(3-6-1)=x xy x x x y ,故此选项因式分解错误,不符合题意;C. 223211(4)44-=-a b ab ab a b ,故此选项因式分解错误,不符合题意; D. 256(1)(6)x x x x --=+-,故此选项因式分解正确,符合题意.故选:D【点睛】本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用其他方法进行分解.6.下列各式从左到右的变形中,属于因式分解的是( )A .m (a +b )=ma +mbB .a 2+4a ﹣21=a (a +4)﹣21C .x 2﹣1=(x +1)(x ﹣1)D .x 2+16﹣y 2=(x +y )(x ﹣y )+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.7.下列各式中,能用完全平方公式分解因式的是( )A .2161x +B .221x x +-C .2224a ab b +-D .214x x -+ 【答案】D【解析】【分析】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数的平方和的形式,另一项是这两个数的积的2倍,对各选项分析判断后利用排除法求解.【详解】A. 2161x +只有两项,不符合完全平方公式;B. 221x x +-其中2x 、-1不能写成平方和的形式,不符合完全平方公式;C. 2224a ab b +-,其中2a 与24b - 不能写成平方和的形式,不符合完全平方公式;D. 214x x -+符合完全平方公式定义, 故选:D.【点睛】此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键.8.下列因式分解正确的是( )A .x 3﹣x =x (x 2﹣1)B .x 2+y 2=(x+y )(x ﹣y )C .(a+4)(a ﹣4)=a 2﹣16D .m 2+4m+4=(m+2)2 【答案】D【解析】【分析】逐项分解因式,即可作出判断.【详解】A 、原式=x (x 2﹣1)=x (x+1)(x ﹣1),不符合题意;B 、原式不能分解,不符合题意;C 、原式不是分解因式,不符合题意;D 、原式=(m+2)2,符合题意,故选:D .【点睛】此题主要考查了提公因式法,以及公式法在因式分解中的应用,要熟练掌握.9.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形【答案】D【解析】试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3,∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0,∴(b ﹣c )(a 2+b 2﹣c 2)=0,∴b ﹣c=0,a 2+b 2﹣c 2=0,∴b=c 或a 2+b 2=c 2,∴△ABC 是等腰三角形或直角三角形.故选D .10.下列各因式分解正确的是( )A .﹣x 2+(﹣2)2=(x ﹣2)(x+2)B .x 2+2x ﹣1=(x ﹣1)2C .4x 2﹣4x+1=(2x ﹣1)2D .x 3﹣4x=2(x ﹣2)(x+2)【答案】C【解析】【分析】分别根据因式分解的定义以及提取公因式法和公式法分解因式得出即可.【详解】A .﹣x 2+(﹣2)2=(2+x)(2﹣x),故A 错误;B .x 2+2x ﹣1无法因式分解,故B 错误;C.4x 2﹣4x+1=(2x ﹣1)2,故C 正确;D 、x 3﹣4x= x(x ﹣2)(x+2),故D 错误.故选:C .【点睛】此题主要考查了提取公因式法与公式法分解因式以及分解因式的定义,熟练掌握相关公式是解题关键.11.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( ) A .1B .-1C .-8D .18- 【答案】A【解析】【分析】多项式3212x mx nx ++-的最高次数是3,两因式乘积的最高次数是2,所以多项式的最后一个因式的最高次数是1,可设为()x a +,再根据两个多项式相等,则对应次数的系数相等列方程组求解即可.【详解】解:多项式3212x mx nx ++-的最高次数是3,2(3)(2)6x x x x -+=--的最高次数是2,∵多项式3212x mx nx ++-含有因式()3x -和()2x +,∴多项式的最后一个因式的最高次数应为1,可设为()x a +,即3212(3)(2)()++-=--+x mx nx x x x a ,整理得:323212(1)(6)6++-=+--+-x mx nx x a x a x a , 比较系数得:1(6)612m a n a a =-⎧⎪=-+⎨⎪=⎩,解得:182m n a =⎧⎪=-⎨⎪=⎩,∴811-==n m ,故选:A .【点睛】此题考查了因式分解的应用,运用待定系数法设出因式进行求解是解题的关键.12.下列各式由左到右的变形中,属于分解因式的是( )A .x 2﹣16+6x =(x +4)(x ﹣4)+6xB .10x 2﹣5x =5x (2x ﹣1)C .a 2﹣b 2﹣c 2=(a ﹣b )(a +b )﹣c 2D .a (m +n )=am +an【答案】B【解析】【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A 、变形的结果不是几个整式的积,不是因式分解;B 、把多项式10x 2﹣5x 变形为5x 与2x ﹣1的积,是因式分解;C 、变形的结果不是几个整式的积,不是因式分解;D 、变形的结果不是几个整式的积,不是因式分解;故选:B .【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.13.下列等式从左到右的变形,属于因式分解的是A .8a 2b=2a ·4abB .-ab 3-2ab 2-ab=-ab (b 2+2b )C .4x 2+8x-4=4x 12-x x ⎛⎫+ ⎪⎝⎭ D .4my-2=2(2my-1)【答案】D【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、把一个多项式转化成几个整式积的形式,故D 符合题意;故选D .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.14.下列分解因式错误的是( ).A .()2155531a a a a +=+B .()()22x y x y x y --=-+- C .()()1ax x ay y a x y +++=++D .()()2a bc ab ac a b a c --+=-+ 【答案】B【解析】【分析】利用因式分解的定义判断即可.【详解】解:A. ()2155531a a a a +=+,正确; B. ()2222x y x y --=-+,所以此选项符合题意;C. ()()()1ax x ay y a x y x y a x y +++=+++=++ ,正确;D. ()()2()()a bc ab ac a a b c a b a b a c --+=-+-=-+,正确 故选:B.【点睛】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法是解本题的关键.15.将3a b ab -进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 【答案】C【解析】【分析】多项式3a b ab -有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】()()()32111a b ab ab a ab a a -=-=+-,故选:C .【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;16.将下列多项式因式分解,结果中不含因式x -1的是( )A .x 2-1B .x 2+2x +1C .x 2-2x +1D .x(x -2)+(2-x)【答案】B【解析】【分析】将各选项进行因式分解即可得以选择出正确答案.【详解】A. x 2﹣1=(x+1)(x-1);B. x 2+2x+1=(x+1)2 ;C. x 2﹣2x+1 =(x-1)2;D. x (x ﹣2)﹣(x ﹣2)=(x-2)(x-1);结果中不含因式x-1的是B ;故选B.17.下列由左到右边的变形中,是因式分解的是( )A .(x +2)(x ﹣2)=x 2﹣4B .x 2﹣1=1()x x x-C .x 2﹣4+3x =(x +2)(x ﹣2)+3xD .x 2﹣4=(x +2)(x ﹣2)【答案】D【解析】【分析】直接利用因式分解的意义分别判断得出答案.【详解】A 、(x+2)(x-2)=x 2-4,是多项式乘法,故此选项错误;B 、x 2-1=(x+1)(x-1),故此选项错误;C 、x 2-4+3x=(x+4)(x-1),故此选项错误;D 、x 2-4=(x+2)(x-2),正确.故选D .【点睛】此题主要考查了因式分解的意义,正确把握定义是解题关键.18.下列等式从左到右的变形,属于因式分解的是( )A .()21x x x x -=- B .()22121x x x x -+=-+ C .()()21323x x x x -+=+- D .()a b c ab ac -=-【答案】A【解析】【分析】根据因式分解的意义:把一个多项式转化成几个整式积的形式叫因式分解,可得答案.【详解】解:A 、把一个多项式转化成几个整式积的形式,符合题意;B 、右边不是整式积的形式,不符合题意;C 、是整式的乘法,不是因式分解,不符合题意;D 、是整式的乘法,不是因式分解,不符合题意;故选:A .【点睛】本题考查了因式分解的意义,掌握因式分解的意义是解题关键.19.若n ()是关于x 的方程的根,则m+n 的值为( ) A .1B .2C .-1D .-2 【答案】D【解析】【分析】将n 代入方程,提公因式化简即可.【详解】 解:∵是关于x 的方程的根, ∴,即n(n+m+2)=0, ∵∴n+m+2=0,即m+n=-2, 故选D.【点睛】本题考查了一元二次方程的求解,属于简单题,提公因式求出m+n 是解题关键.20.下列等式从左到右的变形,属于因式分解的是( )A .2(3)(2)6x x x x +-=+-B .24(2)(2)x x x -=+-C .2323824a b a b =⋅D .1()1ax ay a x y --=-- 【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A .是整式乘法,故A 错误;B .是因式分解,故B 正确;C .左边不是多项式,不是因式分解,故C 错误;D .右边不是整式积的形式,故D 错误.故选B .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.。
代数复习二-----------因式分解因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中起着重要的作用.是一种重要的基本技能.因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等.一)、公式法【例1】用立方和或立方差公式分解下列各多项式:(1) 38x +(2) 30.12527b -分析: (1)中,382=,(2)中3330.1250.5,27(3)b b ==. 解:(1) 333282(2)(42)x x x x x +=+=+-+ (2) 333220.125270.5(3)(0.53)[0.50.53(3)]b b b b b -=-=-+⨯+2(0.53)(0.25 1.59)b b b =-++说明:(1) 在运用立方和(差)公式分解因式时,经常要逆用幂的运算法则,如3338(2)a b ab =,这里逆用了法则()n n n ab a b =;(2) 在运用立方和(差)公式分解因式时,一定要看准因式中各项的符号. 【例2】分解因式:(1) 34381a b b -(2) 76a ab -分析:(1) 中应先提取公因式再进一步分解;(2) 中提取公因式后,括号内出现66a b -,可看着是3232()()a b -或2323()()a b -.解:(1) 3433223813(27)3(3)(39)a b b b a b b a b a ab b -=-=-++. (2) 76663333()()()a ab a a b a a b a b -=-=+-22222222()()()()()()()()a ab a ab b a b a ab b a a b a b a ab b a ab b =+-+-++=+-++-+二)、分组分解法 从前面可以看出,能够直接运用公式法分解的多项式,主要是二项式和三项式.而对于四项以上的多项式,如ma mb na nb +++既没有公式可用,也没有公因式可以提取.因此,可以先将多项式分组处理.这种利用分组来因式分解的方法叫做分组分解法.分组分解法的关键在于如何分组.1.分组后能提取公因式【例3】把2105-+-分解因式.ax ay by bx分析:把多项式的四项按前两项与后两项分成两组,并使两组的项按x的降幂排列,然后从两组分别提出公因式2a与b-,这时另一个因式正好都是5-,x y这样可以继续提取公因式.解:21052(5)(5)(5)(2)-+-=---=--ax ay by bx a x y b x y x y a b 说明:用分组分解法,一定要想想分组后能否继续完成因式分解,由此合理选择分组的方法.本题也可以将一、四项为一组,二、三项为一组,同学不妨一试.【例4】把2222---分解因式.ab c d a b cd()()分析:按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式.解:22222222---=--+ab c d a b cd abc abd a cd b cd()()2222=-+-abc a cd b cd abd()()=-+-=-+()()()()ac bc ad bd bc ad bc ad ac bd说明:由例3、例4可以看出,分组时运用了加法结合律,而为了合理分组,先运用了加法交换律,分组后,为了提公因式,又运用了分配律.由此可以看出运算律在因式分解中所起的作用.2.分组后能直接运用公式【例5】把22x y ax ay-++分解因式.分析:把第一、二项为一组,这两项虽然没有公因式,但可以运用平方差公式分解因式,其中一个因式是x y+;把第三、四项作为另一组,在提出公因式a 后,另一个因式也是x y+.解:22()()()()()x y ax ay x y x y a x y x y x y a-++=+-++=+-+【例6】把222++-分解因式.2428x xy y z分析:先将系数2提出后,得到222++-,其中前三项作为一组,x xy y z24它是一个完全平方式,再和第四项形成平方差形式,可继续分解因式.解:222222++-=++-24282(24)x xy y z x xy y z22=+-=+++-2[()(2)]2(2)(2)x y z x y z x y z说明:从例5、例6可以看出:如果一个多项式的项分组后,各组都能直接运用公式或提取公因式进行分解,并且各组在分解后,它们之间又能运用公式或有公因式,那么这个多项式就可以分组分解法来分解因式.三)、十字相乘法 1.2()x p q x pq +++型的因式分解这类式子在许多问题中经常出现,其特点是:(1) 二次项系数是1;(2) 常数项是两个数之积;(3) 一次项系数是常数项的两个因数之和.22()()()()()x p q x pq x px qx pq x x p q x p x p x q +++=+++=+++=++ 因此,2()()()x p q x pq x p x q +++=++ 运用这个公式,可以把某些二次项系数为1的二次三项式分解因式. 【例7】把下列各式因式分解:(1) 276x x -+(2) 21336x x ++解:(1) 6(1)(6),(1)(6)7=-⨯--+-=-2 76[(1)][(6)](1)(6)x x x x x x ∴-+=+-+-=--. (2)3649,4913=⨯+=2 1336(4)(9)x x x x ∴++=++说明:此例可以看出,常数项为正数时,应分解为两个同号因数,它们的符号与一次项系数的符号相同.【例8】把下列各式因式分解:(1) 2524x x +-(2) 2215x x --解:(1) 24(3)8,(3)85-=-⨯-+=2 524[(3)](8)(3)(8)x x x x x x ∴+-=+-+=-+ (2)15(5)3,(5)32-=-⨯-+=-2 215[(5)](3)(5)(3)x x x x x x ∴--=+-+=-+ 说明:此例可以看出,常数项为负数时,应分解为两个异号的因数,其中绝对值较大的因数与一次项系数的符号相同. 【例9】把下列各式因式分解:(1) 226x xy y +-(2) 222()8()12x x x x +-++分析:(1) 把226x xy y +-看成x 的二次三项式,这时常数项是26y -,一次项系数是y ,把26y -分解成3y 与2y -的积,而3(2)y y y +-=,正好是一次项系数.(2) 由换元思想,只要把2x x +整体看作一个字母a ,可不必写出,只当作分解二次三项式2812a a -+.解:(1) 222266(3)(2)x xy y x yx x y x y +-=+-=+- (2) 22222()8()12(6)(2)x x x x x x x x +-++=+-+-(3)(2)(2)(1)x x x x =+-+-2.一般二次三项式2ax bx c ++型的因式分解大家知道,2112212122112()()()a x c a x c a a x a c a c x c c ++=+++. 反过来,就得到:2121221121122()()()a a x a c a c x c c a x c a x c +++=++我们发现,二次项系数a 分解成12a a ,常数项c 分解成12c c ,把1212,,,a a c c 写成1122a c a c ⨯,这里按斜线交叉相乘,再相加,就得到1221a c a c +,如果它正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解成1122()()a x c a x c ++,其中11,a c 位于上一行,22,a c 位于下一行.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法.必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解. 【例10】把下列各式因式分解:(1) 21252x x --(2) 22568x xy y +-解:(1) 21252(32)(41)x x x x --=-+3241-⨯(2) 22568(2)(54)x xy y x y x y +-=+-1 254y y -⨯说明:用十字相乘法分解二次三项式很重要.当二次项系数不是1时较困难,具体分解时,为提高速度,可先对有关常数分解,交叉相乘后,若原常数为负数,用减法”凑”,看是否符合一次项系数,否则用加法”凑”,先”凑”绝对值,然后调整,添加正、负号.因式分解专练1.把下列各式分解因式: (1) 327a +(2) 38m -(3) 3278x -+2.把下列各式分解因式: (1) 34xy x +(2) 33n n x x y +-(3) 2232(2)y x x y -+ 3.把下列各式分解因式: (1) 232x x -+ (2) 2627x x --(3) 2245m mn n --4.把下列各式分解因式: (1) 5431016ax ax ax -+ (2) 2126n n n a a b a b +++- (3) 22(2)9x x -- (4) 2282615x xy y +- (5) 27()5()2a b a b +-+-5.把下列各式分解因式: (1) 233ax ay xy y -+- (2) 328421x x x +--(3) 251526x x xy y -+- (4) 22414xy x y +--(5) 432234ab b a b a b a --+ (6) 66321x y x --+ (7) 2(1)()x x y xy x +-+ 6.已知2,23a b ab +==,求代数式22222a b a b ab ++的值.7.证明:当n 为大于2的整数时,5354n n n -+能被120整除.8.已知0a b c ++=,求证:32230a a c b c abc b ++-+=.。
第二讲整式、因式分解列代数式及求代数式的值1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的__字母__连接起来的式子,叫做代数式.2.求代数式的值:用__数__代替字母,并按照运算关系求出结果.代数式求值的两种方法1.直接代入法:把已知字母的值代入代数式,并按原来的顺序计算求值.2.整体代入法:观察已知条件和所求代数式的关系,将所求代数式变形后与已知代数式成倍分关系,把已知代数式看成一个整体代入所求代数式中求值.整式的相关概念1.52的次数是2.(×)2.x3y2的系数是0,次数是5.(×)3.多项式3x2y-m2的次数是5.(×)1.同类项与系数无关,与字母的排列顺序无关.2.所有常数项都是同类项.3.只有同类项才能合并,如x2与x3不能合并.整式的运算1.整式的加减2.幂的运算3.整式的乘法4.整式的除法单项式除以单项式把系数、同底数幂分别相除作为商的因式,对于只在被除式中含有的字母,则连同它的指数作为商的一个因式多项式除以单项式 先用多项式的每一项分别除以这个单项式,再把所得的商相加5.整式混合运算的顺序先算__乘方__,再算__乘除__,最后算__加减__,同级运算按照从左到右的顺序计算.遇到幂的乘方时,需要注意:(1)当括号内有“-”号时,(-a m )n =⎩⎪⎨⎪⎧-a mn (n 为奇数)a mn (n 为偶数); (2)当含有系数时,一定也要给系数进行乘方运算.1.3a(5a -2b)=15a -6ab.(×)2.(1+x)(-1+x)=x 2-1.(√)3.(-3a -2)(3a -2)=9a 2-4.(×)1.6m÷3m=2m.(×)2.(6a 2b -4a 2c)÷(-2a 2)=-3b +2c.(√)3.(2a 3-a 2)÷(-a)2=2a -1.(√)因式分解的定义1.因式分解的定义:把一个多项式化成几个__整式__的乘积的形式,叫做把这个多项式因式分解.2.基本方法:(1)提公因式法:ma+mb+mc=__m(a+b+c)__.(2)公式法:a2-b2=(a+b)(a-b),a2±2ab+b2=(a±b)2.3.因式分解的步骤:(1)因式分解一定要分解到每个因式都不能再分解为止;(2)有数字因式时,不要忘记提取;(3)结果必须是乘积的形式.考点一列代数式及其求值【典例1】(2021·自贡中考)已知x2-3x-12=0,则代数式-3x2+9x+5的值是(B)A.31 B.-31C.41 D.-41【思路点拨】由已知可得:x2-3x=12,将代数式适当变形,利用整体代入的思想进行运算即可得出结论.【例题变式】(变换条件)(2020·连云港中考)按照如图所示的计算程序,若x=2,则输出的结果是__-26__.【思路点拨】把x=2代入程序中计算,当其值小于0时将所得结果输出即可.1.(2021·温州中考)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为(D)A.20a元 B.(20a+24)元C.(17a+3.6)元 D.(20a+3.6)元2.(2021·金华中考)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是(B)A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30% D.先提价25%,再降价25% 3.(2021·台州中考)已知(a+b)2=49,a2+b2=25,则ab=(C)A.24 B.48 C.12 D.2 6考点二整式的相关概念【典例2】(2021·青海中考)已知单项式2a4b-2m+7与3a2m b n+2是同类项,则m+n=__3__.【思路点拨】根据同类项的定义,列方程求解即可.1.单项式是表示省略了乘法符号的乘法运算.2.多项式是单项式之间的加减运算.1.(2020·日照中考)单项式-3ab的系数是(B)A.3 B.-3 C.3a D.-3a2.(2021·上海中考)下列单项式中,a2b3的同类项是(B)A.a3b2 B.3a2b3 C.a2b D.ab33.(2020·滨州中考)若8x m y与6x3y n的和是单项式,则(m+n)3的平方根为(D)A.4 B.8 C.±4 D.±84.(2020·绵阳中考)若多项式xy|m-n|+(n-2)x2y2+1是关于x,y的三次多项式,则mn=__0或8__.考点三整式的运算【典例3】(2021·自贡中考)下列运算正确的是(B)A.5a2-4a2=1 B.(-a2b3)2=a4b6C.a9÷a3=a3 D.(a-2b)2=a2-4b2【思路点拨】按照合并同类项的运算方法、整数指数幂的运算法则、完全平方公式逐个验证即可.【例题变式】(变化问法)(2021·北京中考)已知a2+2b2-1=0,求代数式(a-b)2+b(2a+b)的值.【思路点拨】直接利用乘法公式以及单项式乘多项式运算法则化简,进而把已知代入得出答案.【自主解答】原式=a2-2ab+b2+2ab+b2=a2+2b2,∵a2+2b2-1=0,∴a 2+2b 2=1,∴原式=1.1.幂的运算要注意区分幂的乘方和同底数幂的乘法.2.单项式的乘法是利用交换律和结合律转化为幂的运算.3.多项式的乘法是利用分配律转化为单项式的乘法.4.整式的除法与乘法互为逆运算.5.乘法公式中的字母可以表示数,也可以表示单项式或多项式.1.(2021·连云港中考)下列运算正确的是(D)A .3a +2b =5abB .5a 2-2b 2=3C .7a +a =7a 2D .(x -1)2=x 2+1-2x2.(2021·遂宁中考)若|a -2|+a +b =0,则a b=__14 __. 3.(2021·重庆中考A 卷)计算:(x -y)2+x(x +2y).【解析】(x -y)2+x(x +2y)=x 2-2xy +y 2+x 2+2xy =2x 2+y 2.4.(2021·长沙中考)先化简,再求值:(x -3)2+(x +3)(x -3)+2x(2-x),其中x =-12. 【解析】原式=x 2-6x +9+x 2-9+4x -2x 2=-2x , 当x =-12时, 原式=-2×⎝ ⎛⎭⎪⎫-12 =1. 考点四 因式分解【典例4】(2021·恩施中考)分解因式:a -ax 2=__a(1+x)(1-x)__.【思路点拨】直接提取公因式,再利用公式法分解因式.公因式的确定1.系数:取各项系数的最大公约数;2.字母:取各项相同的字母;3.指数:取各相同字母的最低次数.1.(2021·杭州中考)因式分解1-4y2=(A)A.(1-2y)(1+2y) B.(2-y)(2+y)C.(1-2y)(2+y) D.(2-y)(1+2y)2.(2021·盐城中考)分解因式:a2+2a+1=__(a+1)2__.3.(2021·北京中考)分解因式:5x2-5y2=__5(x+y)(x-y)__.4.(2020·内江中考)我们知道,任意一个正整数x都可以进行这样的分解:x=m×n(m,n是正整数,且m≤n),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是x的最佳分解.并规定:f(x)=mn .例如:18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的最佳分解,所以f(18)=36=12.(1)填空:f(6)=________;f(9)=________.(2)一个两位正整数t(t=10a+b,1≤a≤b≤9,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有符合条件的两位正整数;并求f(t)的最大值.(3)填空:①f(22×3×5×7)=________;②f(23×3×5×7)=________;③f(24×3×5×7)=________;④f(25×3×5×7)=________.【解析】(1)6可分解成1×6,2×3,∵6-1>3-2,∴2×3是6的最佳分解,∴f(6)=23 .9可分解成1×9,3×3,∵9-1>3-3,∴3×3是9的最佳分解,∴f(9)=33 =1.答案:23 1(2)设交换t 的个位上数与十位上的数得到的新数为t′,则t′=10b +a , 根据题意,得t′-t =(10b +a)-(10a +b)=9(b -a)=54, ∴b =a +6.∵1≤a≤b≤9,a ,b 为正整数,∴满足条件的t 为:17,28,39;∵f(17)=117 ,f(28)=47 ,f(39)=313 ,∵47 >313 >117 ,∴f(t)的最大值为47 .(3)①∵22×3×5×7的最佳分解为20×21,∴f(22×3×5×7)=2021 .答案:2021 ②∵23×3×5×7的最佳分解为28×30, ∴f(23×3×5×7)=2830 =1415 . 答案:1415③∵24×3×5×7的最佳分解是40×42,∴f(24×3×5×7)=4042 =2021 . 答案:2021④∵25×3×5×7的最佳分解是56×60,∴f(25×3×5×7)=5660 =1415. 答案:1415人教版七年级上册 P112 T4先化简,再求值:(2x +3y)2-(2x +y)(2x -y),其中x =13 ,y =-12 . 【思路点拨】利用平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【自主解答】原式=4x 2+12xy +9y 2-4x 2+y 2=10y 2+12xy ,当x =13 ,y =-12,原式=0.5.(变换条件)(2021·南充中考)先化简,再求值:(2x+1)(2x-1)-(2x-3)2,其中x=-1.【解析】原式=4x2-1-(4x2-12x+9)=4x2-1-4x2+12x-9=12x-10. ∵x=-1,∴12x-10=12×(-1)-10=-22.(变换条件与问法)(2020·邵阳中考)已知:|m-1|+n+2 =0,(1)求m,n的值;(2)先化简,再求值:m(m-3n)+(m+2n)2-4n2.【解析】(1)根据非负性得:m-1=0且n+2=0,解得:m=1,n=-2.(2)原式=m2-3mn+m2+4mn+4n2-4n2=2m2+mn,当m=1,n=-2,原式=2×1+1×(-2)=0.人教版七年级上册P120 T10观察下列式子:2×4+1=9=32;6×8+1=49=72;14×16+1=225=152;…你得出了什么结论?你能证明这个结论吗?【思路点拨】式子可以整理为:(22-2)×21+1+1=(22-1)2;(23-2)×22+1+1=(23-1)2;(24-2)×23+1+1=(24-1)2;…得到第n个式子的结论即可.【自主解答】(2n+1-2)·2n+1+1=(2n+1-1)2.证明:(2n +1-2)·2n +1+1=22n +2-2n +2+1=(2n +1)2-2×2n +1+1=(2n +1-1)2.(变换条件)(2020·青海中考)观察下列各式的规律:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1.请按以上规律写出第4个算式__4×6-52=24-25=-1__.用含有字母的式子表示第n 个算式为__n(n +2)-(n +1)2=-1__.(变换条件与问法)(2021·眉山中考)观察下列等式:x 1=1+112+122 =32 =1+11×2 ; x 2=1+122+132 =76 =1+12×3 ; x 3=1+132+142 =1312 =1+13×4 ; …根据以上规律,计算x 1+x 2+x 3+…+x 2 020-2 021=__-12 021 __.。
因式分解专项练习题一定要记住的公式大全:平方差公式:a^2-b^2=(a+b)(a-b);完全平方公式:a^2±2ab +b^2=(a ±b )^2;注意:能运用完全平方公式分解因式的多项式必须是三项式, 其中有两项能写成两个数(或式)的平方和的形式, 另一项是这两个数(或式)的积的2倍。
立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);完全立方公式:a^3±3a^2b +3ab^2±b^3=(a ±b)^3.公式:a+b+c-3abc=(a+b+c)(a+b+c-ab-bc-ca)*十字相乘法初步公式:x^2+(p+q)x+pq=(x+p)(x+q) .*(可不记)十字相乘法通用公式:如果有k=ac, n=bd, 且有ad+bc=m 时, 那么kx^2+mx+n=(ax+b)(cx+d).因式分解方法(重要: 因式分解法的结果一定是多个因式相乘): 方法一: 分组分解法步骤类型一 分组后能直接提取公因式1.分组后能直接提取公因式2.提完公因式之后, 每组之间应该还可以提公因式(此时, 应注意观察)。
类型二 分组后能直接运用上面的公式方法二: (当用方法一不行时, 这时可考虑用十字相乘法) 十字相乘法.(一)二次项系数为1的二次三项式类型一 直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。
类型二 **十字相乘法通用公式: 如果有k=ac, n=bd, 且有ad+bc=m 时, 那么kx^2+mx+n=(ax+b)(cx+d).总结:不管用什么方法, 最后的结果都是由多个因式相乘了, 因此, 当自己解完题后不是因式相乘了, 那么应该反回去再检察题目, 看看能不能用其他的方法来解决该题目。
因式分解练习 练习一 分组分解法类型一(用两种方法来解)1.bn bm an am +++2.bx by ay ax -+-51023.ay ax y x ++-22 4.1+--y x xy练习二 分组分解法类型二5.ay ax y x ++-22 6.2222c b ab a -+-.............8.练习三 十字相乘法9.652++x x10.672+-x x11.101132+-x x12.22672y xy x +-综合练习 1.3223220155y x y x y x ++ 2.23229123y x yz x y x -+-3.343232x y x -4.2236)(12)(z z y x y x ++-+5.a 2-b 2-2b-16.(a-b)2-1-2c(a-b)+c 27.a 6-10a 3+168.2233y xy x y x ----4.答案: 1. 2. 或3.5.)1(1--y x )(5))((a y x y x +-+6.))((c b a c b a +---7.()13)3(--+y x y x8.(x+y+z)(x-y-z) 9.)3)(2(++x x 10.)6)(1(--x x 11.)53)(2(--x x 综合练习答案1.)431(522y xy y x -+ 2.)1423(32+--xy y x 3.)14)(12)(12(223++-y y y x 4.(x+y-6z)2 5.(a-b-1)(a+b+1) 6.a-b-c+1)(a-b-c-1) 7.( a 3-2)(a-2)(a 2+2a+4) 8.)1)((22--++y x y xy x。
第2讲整式与因式分解一、知识清单梳理
数学选择题解题技巧
1、排除法。
是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。
排除法是解选择题的间接方法,也是选择题的常用方法。
2、特殊值法。
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
此类问题通常具有一个共性:题干中给出一些一般性的条件,而要求得出某些特定的结论或数值。
在解决时可将问题提供的条件特殊化。
使之成为具有一般性的特殊图形或问题,而这些特殊图形或问题的答案往往就是原题的答案。
利用特殊值法解答问题,不仅可以选用特别的数值代入原题,使原题得以解决而且可以作出符合条件的特殊图形来进行计算或推理。
3、通过猜想、测量的方法,直接观察或得出结果。
这类方法在近年来的中考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
《因式分解》单元分类总复习考点一因式分解知识总结:1.因式分解与整式乘法的关系:互为逆运算(故:将因式分解的结果乘出来可以用来检验因式分解的正误)2.因式分解基本步骤:一“提”→提取公因式(公因式可以是单独数字、单独字母、数字与字母乘积类的单项式;也可以是一个整体的多项式;提公因式一定要一次提完)二“套”→套用乘法公式(两项想平方差公式、三项想完全平方公式)3.分解因式时,一定要按照步骤,先观察能否提取公因式,再考虑用公式法分解,对于结果,一定要进行检查,看是否已分解彻底【例题典析】1.(2021春•拱墅区校级期中)下列各式由左边到右边的变形中,是因式分解的是()A.x3﹣xy2=x(x﹣y)2B.﹣x2﹣2x﹣1=﹣(x+1)2C.x2+4x﹣4=x(x+4)﹣4D.4x2+2xy+y2=(2x+y)2【分析】根据因式分解的概念进行逐项分析解答即可.(把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解)【解答】解:A、x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),是因式分解不完全,故这个选项不符合题意;B、﹣x2﹣2x﹣1=﹣(x+1)2,是因式分解,故这个选项符合题意;C、结果不是整式的积的形式,不是因式分解,故这个选项不符合题意;D、4x2+4xy+y2=(2x+y)2,左右两边不相等,所以因式分解错误,故这个选项不符合题意.故选:B.2.(2021春•罗湖区校级期末)下列各式从左到右因式分解正确的是()A.2x﹣6y+2=2(x﹣3y)B.x2﹣2x+1=x(x﹣2)+1C.x2﹣4=(x﹣2)2D.x3﹣x=x(x+1)(x﹣1)【分析】直接利用公式法以及提取公因式法分解因式进而得出答案.【解答】解:A、2x﹣6y+2=2(x﹣3y+1),故原式分解因式错误,不合题意;B、x2﹣2x+1=(x﹣1)2,故原式分解因式错误,不合题意;C、x2﹣4=(x+2)(x﹣2),故原式分解因式错误,不合题意;D、x3﹣x=x(x+1)(x﹣1),正确.故选:D.3.(2020春•绍兴期中)下列多项式可以用平方差公式进行因式分解的有()①﹣a2+b2;②x2+x+;③x2﹣4y2;④(﹣m)2﹣(﹣n)2;⑤﹣121a2+36b2;⑥﹣s2+2s.A.2个B.3个C.4个D.5个【分析】直接利用平方差公式分别分解因式得出答案.【解答】解:①﹣a2+b2=(b+a)(b﹣a),可以用平方差公式进行因式分解;②x2+x+=(x+)2,不可以用平方差公式进行因式分解;③x2﹣4y2=(x+2y)(x﹣2y),可以用平方差公式进行因式分解;④(﹣m)2﹣(﹣n)2=(m+n)(m﹣n),可以用平方差公式进行因式分解;⑤﹣121a2+36b2=(6b﹣11a)(6b+11a),可以用平方差公式进行因式分解;⑥﹣s2+2s=﹣s(s﹣4),不可以用平方差公式进行因式分解;故选:C.4.下列多项式能分解因式的是()A.﹣m2﹣n2B.m2+2m+1C.m2﹣m+D.m2﹣n【分析】根据因式分解的方法逐个判断即可.【解答】解:A.不能分解因式,故本选项不符合题意;B.能用完全平方公式分解因式,故本选项符合题意;C.不能分解因式,故本选项不符合题意;D.不能分解因式,故本选项不符合题意;故选:B.5.(2021秋•十堰期末)下列多项式中,不能在有理数范围进行因式分解的是()A.﹣a2+b2B.﹣a2﹣b2 C.a3﹣3a2+2a D.a2﹣2ab+b2﹣1【分析】根据提公因式法,公式法进行分解即可判断.【解答】解:A.﹣a2+b2=(b﹣a)(b+a),故A不符合题意;B.﹣a2﹣b2在有理数范围不能进行因式分解,故B符合题意;C.a3﹣3a2+2a=a(a﹣1)(a﹣2),故C不符合题意;D.a2﹣2ab+b2﹣1=(a﹣b+1)(a﹣b﹣1),故D不符合题意;故选:B.6.(2021秋•黄石港区期末)如图1,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下部分拼成一个梯形(如图2),利用这两幅图形面积,可以验证的公式是()A.a2+b2=(a+b)(a﹣b)B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.(a﹣b)2=a2﹣2ab+b2【分析】根据左图中阴影部分的面积是a2﹣b2,右图中梯形的面积是(2a+2b)(a﹣b)=(a+b)(a﹣b),利用面积相等即可解答.【解答】解:∵左图中阴影部分的面积是a2﹣b2,右图中梯形的面积是(2a+2b)(a ﹣b)=(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b).故选:B.7.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1B.a2+a C.(a﹣1)2﹣a+1D.(a+2)2﹣2(a+2)+1【分析】根据因式分解的意义求解即可.【解答】解:A、原式=(a+1)(a﹣1),故A不符合题意;B、原式=a(a+1),故B不符合题意;C、原式=(a﹣1)(a﹣1﹣1)=(a﹣2)(a﹣1),故C符合题意;D、原式=(a+1)2,故D不符合题意;故选:C.8.(2021春•拱墅区校级期中)因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.【分析】(1)运用平方差公式进行因式分解.(2)先提公因式,再运用完全平方公式.(3)先运用平方差公式,再提公因式.(4)运用十字相乘法进行因式分解,注意分解彻底.【解答】解:(1)﹣a2+1=(1+a)(1﹣a).(2)2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2.(3)4(x+2y)2﹣25(x﹣y)2=[2(x+2y)+5(x﹣y)][2(x+2y)﹣5(x﹣y)]=(2x+4y+5x﹣5y)(2x+4y﹣5x+5y)=(7x﹣y)(﹣3x+9y)=﹣3(7x﹣y)(x﹣3y).(4)(a2+a)2﹣8(a2+a)+12=(a2+a﹣2)(a2+a﹣6)=(a+2)(a﹣1)(a+3)(a﹣2).9.(2021春•长清区期末)因式分解:(1)mx2﹣my2;(2)2m(a﹣b)﹣3n(b﹣a).【分析】(1)直接提取公因式m,再利用平方差公式分解因式得出答案;(2)直接提取公因式(a﹣b),进而分解因式即可.【解答】解:(1)mx2﹣my2=m(x2﹣y2)=m(x+y)(x﹣y);(2)2m(a﹣b)﹣3n(b﹣a)=2m(a﹣b)+3n(a﹣b)=(a﹣b)(2m+3n).10.(2021春•北仑区期中)分解因式:(1)4x2﹣;(2)3a﹣6a2+3a3.【分析】(1)直接利用平方差公式分解因式得出答案;(2)直接提取公因式3a,再利用完全平方公式分解因式即可.【解答】解:(1)4x2﹣=(2x﹣)(2x+);(2)3a﹣6a2+3a3=3a(1﹣2a+a2)=3a(1﹣a)2.考点二因式分解方法拓展知识总结:分组分解因式:当多项式有四项及以上时常需要分组。
专题05 因式分解一、因式分解及其方法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
1.提公因式法:一般地,如果多项式的各项有公因式可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.比如:am+an=a (m+n )2.运用公式法:如果把乘法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.(1)平方差公式两数平方差,等于这两数的和乘以这两数的差,字母表达式:()()22a b a b a b -=+- (2)完全平方公式两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.字母表达式:()2222a ab b a b ±+=±(3)立方和与立方差公式两个数的立方和(或者差)等于这两个数的和(或者差)乘以它们的平方和与它们积的差(或者和).a 3+b 3=(a+b )(a 2-ab+b 2)a 3﹣b 3=(a-b )(a 2+ab+b 2)3.十字相乘法分解因式:利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.(1)对于二次三项式,若存在 ,则 (2)首项系数不为1的十字相乘法在二次三项式(≠0)中,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把排列如下:按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,即,那么二次三项式就可以分解为两个因式与之积,即.4.分组分解法:对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.比如:am ﹣an ﹣bm+bn=(am ﹣an )﹣(bm ﹣bn )=a (m ﹣n )﹣b (m ﹣n )=(m ﹣n )(a ﹣b ).二、因式分解策略1.因式分解的一般步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.2x bx c ++pq c p q b=⎧⎨+=⎩()()2x bx c x p x q ++=++2ax bx c ++a a 12a a a =c 12c c c =1212a a c c ,,,1221a c a c +2ax bx c ++b 1221a c a c b +=11a x c +22a x c +()()21122ax bx c a x c a x c ++=++若有公因式,先提公因式;然后再考虑用公式法(平方差公式a2-b2=(a+b)(a-b),完全平方公式a2±2ab+b2=(a±b)2)或其它方法分解;直到每个因式都不能再分解为止.2.从多项式的项数来考虑用什么方法分解因式.(1)如果是两项,应考虑用提公因式法,平方差公式,立方和或立方差公式来分解因式.(2)如果是二次三项式,应考虑用提公因式法,完全平方公式,十字相乘法.(3)如果是四项式或者大于四项式,应考虑提公因式法,分组分解法.3.因式分解要注意的几个问题:(1)每个因式分解到不能再分为止.(2)相同因式写成乘方的形式.(3)因式分解的结果不要中括号.(4)如果多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数为正数.(5)因式分解的结果,如果是单项式乘以多项式,把单项式写在多项式的前面.【例题1】(2019•江苏无锡)分解因式4x2-y2的结果是()A.(4x+y)(4x﹣y) B.4(x+y)(x﹣y)C.(2x+y)(2x﹣y) D.2(x+y)(x﹣y)【答案】C【解析】此题主要考查了公式法分解因式,正确应用公式是解题关键.直接利用平方差公式分解因式得出答案. 4x2-y2=(2x)2-y2 =(2x+y)(2x﹣y).【对点练习】(2019广西贺州)把多项式2a-分解因式,结果正确的是()41A.(41)(41)+-a a+-B.(21)(21)a aC .2(21)a -D .2(21)a +【答案】B【解析】运用公式法 241(21)(21)a a a -=+-,故选:B .【例题2】(2020贵州黔西南)多项式34a a -分解因式的结果是______.【答案】(2)(2)a a a +-【解析】先提出公因式a ,再利用平方差公式因式分解.解:a 3-4a=a (a 2-4)=a (a+2)(a-2).【点拨】本题考查提公因式法和公式法进行因式分解,解题的关键是熟记提公因式法和公式法.【对点练习】(2019宁夏)分解因式:2a 3﹣8a = .【答案】2a (a +2)(a ﹣2)【解析】先提取公因式,再利用二数平方差公式。
最新初中数学因式分解知识点总复习有答案(2)一、选择题1.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2 【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B2.下列各式从左到右的变形中,是因式分解的为( ).A .()x a b ax bx -=-B .()()222111x y x x y -+=-++C .()()2111x x x -=+-D .()ax bx c x a b c ++=+【答案】C【解析】【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【详解】解:A 、是整式的乘法运算,故选项错误;B 、右边不是积的形式,故选项错误;C 、x 2-1=(x+1)(x-1),正确;D 、等式不成立,故选项错误.故选:C .【点睛】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.3.把32a 4ab -因式分解,结果正确的是( )A .()()a a 4b a 4b ?+-B .()22a a 4b ?-C .()()a a 2b a 2b +-D .()2a a 2b - 【答案】C【解析】【分析】当一个多项式有公因式,将其分解因式时应先提取公因式a,再对余下的多项式继续分解.【详解】a3-4ab2=a(a2-4b2)=a(a+2b)(a-2b).故选C.【点睛】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.4.下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.x2﹣1=(x+1)(x﹣1)C.x2﹣x+2=x(x﹣1)+2D.x2+2x﹣1=(x﹣1)2【答案】B【解析】试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),故本选项错误;B、x2﹣1=(x+1)(x﹣1),故本选项正确;C、x2﹣x+2=x(x﹣1)+2右边不是整式积的形式,故本选项错误;D、应为x2﹣2x+1=(x﹣1)2,故本选项错误.故选B.考点:提公因式法与公式法的综合运用.5.下列各式中,由等式的左边到右边的变形是因式分解的是()A.(x+3)(x-3)=x2-9 B.x2+x-5=(x-2)(x+3)+1C.a2b+ab2=ab(a+b) D.x2+1=x1 () xx【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、是整式的乘法,故A错误;B、没有把一个多项式转化成几个整式积的形式,故B错误;C、把一个多项式转化成了几个整式积的形式,故C正确;D、没有把一个多项式转化成几个整式积的形式,故D错误;故选:C.【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.6.若三角形的三边长分别为a 、b 、c ,满足22230a b a c b c b -+-=,则这个三角形是( )A .直角三角形B .等边三角形C .锐角三角形D .等腰三角形 【答案】D【解析】【分析】首先将原式变形为()()()0b c a b a b --+=,可以得到0b c -=或0a b -=或0a b +=,进而得到b c =或a b =.从而得出△ABC 的形状.【详解】∵22230a b a c b c b -+-=,∴()()220a b c b c b -+-=,∴()()220b c a b --=,即()()()0b c a b a b --+=,∴0b c -=或0a b -=或0a b +=(舍去),∴b c =或a b =,∴△ABC 是等腰三角形.故选:D .【点睛】本题考查了因式分解-提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.7.把代数式2x 2﹣18分解因式,结果正确的是( )A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)【答案】C【解析】试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运用.8.下列分解因式,正确的是( )A .()()2x 1x 1x 1+-=+B .()()29y 3y y 3-+=+-C .()2x 2x l x x 21++=++D .()()22x 4y x 4y x 4y -=+- 【答案】B【解析】【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【详解】A. 和因式分解正好相反,故不是分解因式;B. 是分解因式;C. 结果中含有和的形式,故不是分解因式;D. x 2−4y 2=(x+2y)(x−2y),解答错误.故选B.【点睛】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.9.下列各式中从左到右的变形,是因式分解的是( )A .(a +3)(a -3)=a 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b +ab 2=ab (a +b )D .x 2+1=x (x +1x) 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、没把一个多项式转化成几个整式积的形式,故B 错误;C 、因式分解是把一个多项式转化成几个整式积的形式,故C 正确;D 、因式中含有分式,故D 错误;故选:C .【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.10.下列因式分解结果正确的是( ).A .10a 3+5a 2=5a(2a 2+a)B .4x 2-9=(4x+3)(4x-3)C .a 2-2a-1=(a-1)2D .x 2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A 可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A 作出判断;而B 符合平方差公式的结构特点,因此可对B 作出判断;C 不符合完全平方公式的结构特点,因此不能分解,而D 可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A 、原式=5a 2(2a+1),故A 不符合题意;B 、原式=(2x+3)(2x-3),故B 不符合题意;C 、a 2-2a-1不能利用完全平方公式分解因式,故C 不符合题意;D 、原式=(x-6)(x+1),故D 符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.11.已知a b >,a c >,若2M a ac =-,N ab bc =-,则M 与N 的大小关系是( ) A .M N <B .M N =C .M N >D .不能确定 【答案】C【解析】【分析】计算M-N 的值,与0比较即可得答案.【详解】∵2M a ac =-,N ab bc =-,∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),∵a b >,a c >,∴a-b >0,a-c >0,∴(a-b)(a-c)>0,∴M >N ,故选:C .【点睛】本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.12.下面的多项式中,能因式分解的是( )A .2m n +B .221m m -+C .2m n -D .21m m -+【答案】B【解析】【分析】完全平方公式的考察,()2222a b a ab b -=-+【详解】A 、C 、D 都无法进行因式分解B 中,()2222212111m m m m m -+=-⋅⋅+=-,可进行因式分解故选:B【点睛】本题考查了公式法因式分解,常见的乘法公式有:平方差公式:()()22a b a b a b -=+- 完全平方公式:()2222a b a ab b ±=±+13.将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .221a a ++C .2a a +D .22a a +-【答案】D【解析】【分析】先把各个多项式分解因式,即可得出结果.【详解】解:21(1)(1)a a a -=+-Q ,()2221=1a a a +++2(1)a a a a +=+,22(2)(1)a a a a +-=+-,∴结果中不含有因式1a +的是选项D ;故选:D .【点睛】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.14.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=-C .()()22x 22x 1x 1=-+-D .()2212x x x x -+=-+【答案】C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解;选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确.故选C .【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.15.下列各式由左到右的变形中,属于分解因式的是( )A .x 2﹣16+6x =(x +4)(x ﹣4)+6xB .10x 2﹣5x =5x (2x ﹣1)C .a 2﹣b 2﹣c 2=(a ﹣b )(a +b )﹣c 2D .a (m +n )=am +an【答案】B【解析】【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A 、变形的结果不是几个整式的积,不是因式分解;B 、把多项式10x 2﹣5x 变形为5x 与2x ﹣1的积,是因式分解;C 、变形的结果不是几个整式的积,不是因式分解;D 、变形的结果不是几个整式的积,不是因式分解;故选:B .【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.16.下列各式中,能用完全平方公式分解因式的是( )A .2161x +B .221x x +-C .2224a ab b +-D .214x x -+ 【答案】D【解析】【分析】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数的平方和的形式,另一项是这两个数的积的2倍,对各选项分析判断后利用排除法求解.【详解】A. 2161x +只有两项,不符合完全平方公式;B. 221x x +-其中2x 、-1不能写成平方和的形式,不符合完全平方公式;C. 2224a ab b +-,其中2a 与24b - 不能写成平方和的形式,不符合完全平方公式;D. 214x x -+符合完全平方公式定义, 故选:D.【点睛】此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键. 17.下列等式从左边到右边的变形,属于因式分解的是( )A.2ab(a-b)=2a2b-2ab2B.x2+1=x(x+1 x )C.x2-4x+3=(x-2)2-1 D.a2-b2=(a+b)(a-b)【答案】D【解析】【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B.不是因式分解,等式左边的x是取任意实数,而等式右边的x≠0C.不是因式分解,原式=(x-3)(x-1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法、分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法.18.下列由左到右边的变形中,是因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣1=1 () x xxC.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2﹣4=(x+2)(x﹣2)【答案】D【解析】【分析】直接利用因式分解的意义分别判断得出答案.【详解】A、(x+2)(x-2)=x2-4,是多项式乘法,故此选项错误;B、x2-1=(x+1)(x-1),故此选项错误;C、x2-4+3x=(x+4)(x-1),故此选项错误;D、x2-4=(x+2)(x-2),正确.故选D.【点睛】此题主要考查了因式分解的意义,正确把握定义是解题关键.19.下列等式从左到右的变形,属于因式分解的是( )A .()21x x x x -=- B .()22121x x x x -+=-+ C .()()21323x x x x -+=+- D .()a b c ab ac -=-【答案】A【解析】【分析】根据因式分解的意义:把一个多项式转化成几个整式积的形式叫因式分解,可得答案.【详解】解:A 、把一个多项式转化成几个整式积的形式,符合题意;B 、右边不是整式积的形式,不符合题意;C 、是整式的乘法,不是因式分解,不符合题意;D 、是整式的乘法,不是因式分解,不符合题意;故选:A .【点睛】本题考查了因式分解的意义,掌握因式分解的意义是解题关键.20.把x 2-y 2-2y -1分解因式结果正确的是( ).A .(x +y +1)(x -y -1)B .(x +y -1)(x -y -1)C .(x +y -1)(x +y +1)D .(x -y +1)(x +y +1)【答案】A【解析】【分析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.【详解】解:原式=x 2-(y 2+2y+1),=x 2-(y+1)2,=(x+y+1)(x-y-1).故选A .。
Albert Einstein: Logic will get you from A to B. Imagination will take you everywhere.精品模板助您成功!(页眉可删)初中数学函数与因式分解的知识点归纳对于函数的知识点,同学们需要掌握下面的内容。
函数变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B (B为常数,K不等于0)的形式,则称Y是X的一次函数。
②当B=0时,称Y是X的正比例函数。
一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数Y=KX的图象是经过原点的一条直线。
③在一次函数中,当K 〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。
④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。
通过上面对函数知识点的归纳学习,相信同学们对函数的知识已经很好的掌握了,后面我们将学习更多的数学知识点。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
初中数学之因式分解知识点汇总因式分解1. 因式分解的概念:把一个多项式化成几个整式的积的形式,这样的式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
2. 因式分解与整式乘法的关系因式分解与整式乘法都是整式变形,两者互为逆变形。
因式分解是将“和差”的形式化为“积”的形式,而整式乘法是将“积”化为“和差”的形式。
注:分解因式必须进行到每一个多项式的因式都不能再分解为止,即分解因式要彻底。
3. 公因式多项式的各项都含有的公共因式叫做这个多项式各项的公因式。
系数——取各项系数的最大公约数;字母——取各项都含有的字母;指数——取相同字母的最低次幂。
例如:多项式pa+pb+pc 中因式p 即为多项式各项的公因式。
因式分解九大方法:(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项。
新初中数学因式分解知识点总复习含答案解析(2)一、选择题1.将2x 2a -6xab +2x 分解因式,下面是四位同学分解的结果:①2x (xa -3ab ), ②2xa (x -3b +1), ③2x (xa -3ab +1), ④2x (-xa +3ab -1). 其中,正确的是( )A .①B .②C .③D .④【答案】C【解析】【分析】直接找出公因式进而提取得出答案.【详解】2x 2a-6xab+2x=2x (xa-3ab+1).故选:C .【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.2.已知4821-可以被在60~70之间的两个整数整除,则这两个数是( )A .61、63B .61、65C .61、67D .63、65 【答案】D【解析】【分析】由()()()()()()24242412686421212121221121=+-=+++--,多次利用平方差公式化简,可解得.【详解】解:原式()()24242121=+-,()()()()()()()()()24121224126624122121212121212163652121=++-=+++-=⨯⨯++ ∴这两个数是63,65.选D.【点睛】本题考查的是因式分解的应用,熟练掌握平方差公式是解题的关键.3.若三角形的三边长分别为a 、b 、c ,满足22230a b a c b c b -+-=,则这个三角形是( )A .直角三角形B .等边三角形C .锐角三角形D .等腰三角形【答案】D【解析】【分析】首先将原式变形为()()()0b c a b a b --+=,可以得到0b c -=或0a b -=或0a b +=,进而得到b c =或a b =.从而得出△ABC 的形状.【详解】∵22230a b a c b c b -+-=,∴()()220a b c b c b -+-=,∴()()220b c a b --=,即()()()0b c a b a b --+=,∴0b c -=或0a b -=或0a b +=(舍去),∴b c =或a b =,∴△ABC 是等腰三角形.故选:D .【点睛】本题考查了因式分解-提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.4.下列各式分解因式正确的是( )A .22()()()(1)a b a b a b a b +-+=++-B .236(36)x xy x x x y --=-C .223311(4)44a b ab ab a b -=- D .256(1)(6)x x x x --=+- 【答案】D【解析】【分析】 利用提公因式法、十字相乘法法分别进行分解即可.【详解】A. 22()()()(1)+-+≠++-a b a b a b a b ,故此选项因式分解错误,不符合题意;B. 23-6-(3-6-1)=x xy x x x y ,故此选项因式分解错误,不符合题意;C. 223211(4)44-=-a b ab ab a b ,故此选项因式分解错误,不符合题意; D. 256(1)(6)x x x x --=+-,故此选项因式分解正确,符合题意.故选:D【点睛】本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用其他方法进行分解.5.若a2-b2=14,a-b=12,则a+b的值为()A.-12B.1 C.12D.2【答案】C【解析】【分析】已知第二个等式左边利用平方差公式分解后,将第一个等式变形后代入计算即可求出.【详解】∵a2-b2=(a+b)(a-b)=12(a+b)=14∴a+b=1 2故选C.点睛:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.6.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4 D.4x【答案】A【解析】【分析】分别将四个选项中的式子与多项式4x2+1结合,然后判断是否为完全平方式即可得答案.【详解】A、4x2+1+2x,不是完全平方式,不能利用完全平方公式进行因式分解,故符合题意;B、4x2+1-4x=(2x-1)2,能利用完全平方公式进行因式分解,故不符合题意;C、4x2+1+4x4=(2x2+1)2,能利用完全平方公式进行因式分解,故不符合题意;D 、4x2+1+4x=(2x+1)2,能利用完全平方公式进行因式分解,故不符合题意,故选A.【点睛】本题考查了完全平方式,熟记完全平方式的结构特征是解题的关键.7.把代数式2x2﹣18分解因式,结果正确的是()A.2(x2﹣9)B.2(x﹣3)2C.2(x+3)(x﹣3)D.2(x+9)(x﹣9)【答案】C【解析】试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3).故选C.考点:提公因式法与公式法的综合运用.8.下列等式从左到右的变形,属于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x12-xx⎛⎫+⎪⎝⎭D.4my-2=2(2my-1)【答案】D【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选D.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.9.下列因式分解正确的是()A.x2﹣y2=(x﹣y)2B.a2+a+1=(a+1)2C.xy﹣x=x(y﹣1)D.2x+y=2(x+y)【答案】C【解析】【分析】【详解】解:A、x2﹣y2=(x+y)(x﹣y),故此选项错误;B、a2+a+1无法因式分解,故此选项错误;C、xy﹣x=x(y﹣1),故此选项正确;D、2x+y无法因式分解,故此选项错误.故选C.【点睛】本题考查因式分解.10.下列各式中不能用平方差公式分解的是( )A .22a b -+B .22249x y m -C .22x y --D .421625m n -【答案】C【解析】A 选项-a 2+b 2=b 2-a 2=(b+a )(b-a );B 选项49x 2y 2-m 2=(7xy+m )(7xy-m );C 选项-x 2-y 2是两数的平方和,不能进行分解因式;D 选项16m 4-25n 2=(4m)2-(5n)2=(4m+5n )(4m-5n ),故选C .【点睛】本题考查了利用平方差公式进行因式分解,解题的关键是要熟记平方差公式的特征.11.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .x 2+4x+4=(x+2)2C .(a+b )(a ﹣b )=a 2﹣b 2D .ax 2﹣a=a (x 2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.12.下列因式分解结果正确的是( ).A .10a 3+5a 2=5a(2a 2+a)B .4x 2-9=(4x+3)(4x-3)C .a 2-2a-1=(a-1)2D .x 2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A 可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A 作出判断;而B 符合平方差公式的结构特点,因此可对B 作出判断;C 不符合完全平方公式的结构特点,因此不能分解,而D 可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A 、原式=5a 2(2a+1),故A 不符合题意;B 、原式=(2x+3)(2x-3),故B 不符合题意;C 、a 2-2a-1不能利用完全平方公式分解因式,故C 不符合题意;D 、原式=(x-6)(x+1),故D 符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.13.下列各因式分解的结果正确的是( )A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+-【答案】C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】 ()321a a a a -=-=a (a+1)(a-1),故A 错误; 2(1)b ab b b b a ++=++,故B 错误;2212(1)x x x -+=-,故C 正确;22x y +不能分解因式,故D 错误,故选:C .【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.14.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+1【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a 2﹣1=(a+1)(a ﹣1),a 2+a=a (a+1),a 2+a ﹣2=(a+2)(a ﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C ;故答案选C .考点:因式分解.15.把多项式分解因式,正确的结果是( )A .4a 2+4a +1=(2a +1)2B .a 2﹣4b 2=(a ﹣4b )(a +b )C .a 2﹣2a ﹣1=(a ﹣1)2D .(a ﹣b )(a +b )=a 2﹣b 2【答案】A【解析】【分析】直接利用平方差公式和完全平方公式进行分解因式,进而判断得出答案.【详解】A .4a 2+4a +1=(2a +1)2,正确;B .a 2﹣4b 2=(a ﹣2b )(a +2b ),故此选项错误;C .a 2﹣2a ﹣1在有理数范围内无法运用公式分解因式,故此选项错误;D .(a ﹣b )(a +b )=a 2﹣b 2,是多项式乘法,故此选项错误.故选:A .【点睛】此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.16.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( ) A .1B .-1C .-8D .18- 【答案】A【解析】【分析】多项式3212x mx nx ++-的最高次数是3,两因式乘积的最高次数是2,所以多项式的最后一个因式的最高次数是1,可设为()x a +,再根据两个多项式相等,则对应次数的系数相等列方程组求解即可.【详解】解:多项式3212x mx nx ++-的最高次数是3,2(3)(2)6x x x x -+=--的最高次数是2,∵多项式3212x mx nx ++-含有因式()3x -和()2x +,∴多项式的最后一个因式的最高次数应为1,可设为()x a +,即3212(3)(2)()++-=--+x mx nx x x x a ,整理得:323212(1)(6)6++-=+--+-x mx nx x a x a x a ,比较系数得:1(6)612m a n a a =-⎧⎪=-+⎨⎪=⎩,解得:182m n a =⎧⎪=-⎨⎪=⎩,∴811-==n m ,故选:A .【点睛】此题考查了因式分解的应用,运用待定系数法设出因式进行求解是解题的关键.17.下列各式从左到右的变形中,是因式分解的为( )A .ab+ac+d =a (b+c )+dB .(x+2)(x ﹣2)=x 2﹣4C .6ab =2a ⋅3bD .x 2﹣8x+16=(x ﹣4)2【答案】D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C 、等式左边是单项式,不是因式分解,故本选项错误;D 、符合因式分解的定义,故本选项正确.故选D .【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.18.已知a 、b 、c 为ABC ∆的三边长,且满足222244a c b c a b -=-,则ABC ∆是( )A .直角三角形B .等腰三角形或直角三角形C .等腰三角形D .等腰直角三角形【答案】B【解析】【分析】移项并分解因式,然后解方程求出a 、b 、c 的关系,再确定出△ABC 的形状即可得解.【详解】移项得,a 2c 2−b 2c 2−a 4+b 4=0,c 2(a 2−b 2)−(a 2+b 2)(a 2−b 2)=0,(a 2−b 2)(c 2−a 2−b 2)=0,所以,a 2−b 2=0或c 2−a 2−b 2=0,即a =b 或a 2+b 2=c 2,因此,△ABC 等腰三角形或直角三角形.故选B .【点睛】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a 、b 、c 的关系式是解题的关键.19.下列等式从左到右的变形,属于因式分解的是( )A .()21x x x x -=- B .()22121x x x x -+=-+ C .()()21323x x x x -+=+- D .()a b c ab ac -=-【答案】A【解析】【分析】根据因式分解的意义:把一个多项式转化成几个整式积的形式叫因式分解,可得答案.【详解】解:A 、把一个多项式转化成几个整式积的形式,符合题意;B 、右边不是整式积的形式,不符合题意;C 、是整式的乘法,不是因式分解,不符合题意;D 、是整式的乘法,不是因式分解,不符合题意;故选:A .【点睛】本题考查了因式分解的意义,掌握因式分解的意义是解题关键.20.下列不是多项式32633x x x +-的因式的是( )A .1x -B .21x -C .xD .3+3x【答案】A【解析】【分析】将多项式32633x x x +-分解因式,即可得出答案.【详解】解:∵32633x x x +-=23(21)3(21)(1)x x x x x x +-=-+又∵3+3x =3(x+1)∴21x -,x ,3+3x 都是32633x x x +-的因式,1x -不是32633x x x +-的因式. 故选:A【点睛】此题主要考查了提公因式法与十字相乘法的综合运用,熟练应用十字相乘法分解因式是解题关键.。
【初中数学】初中数学关于因式分解知识点整理(1)因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.(2)公因子:多项式的每个项中包含的相同因子称为多项式的公因子(3)确定公因式的方法:公因数的系数应取各项系数的最大公约数;字母取各项的相同字母,而且各字母的指数取次数最低的.(4)公因子法:一般来说,如果一个多项式的项有公因子,你可以把公因子放在括号外,以因子积的形式写出多项式。
这种分解因子的方法称为公因子法(5)提出多项式的公因式以后,另一个因式的确定方法是:用原来的多项式除以公因式所得的商就是另一个因式.(6)如果多项式第一项的系数为负,通常需要提出“-”号,使括号中第一项的系数为正。
当提出“-”号时,多项式的所有项都必须改变(7)因式分解和整式乘法的关系:因式分解和整式乘法是整式恒等变形的正、逆过程,整式乘法的结果是整式,因式分解的结果是乘积式.(8)使用公式法:如果乘法公式是反的,它可以用来将一些多项式分解成因子。
这种分解因子的方法叫做公式法(9)平方差公式:两数平方差,等于这两数的和乘以这两数的差,字母表达式:a2-b2=(a+b)(a-b)(10)用平方差公式分解因子的二项式公式有什么特点①系数能平方,(指的系数是完全平方数)② 字母索引应该成对排列③两项符号相反.(指的两项一正号一负号)(11)用平方差公式进行因式分解的关键是把每一项都写成平方的形式,并正确判断a和B分别等于什么(l2)完全平方公式:两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.字母表达式:a2±2ab+b2=(a±b)2(13)完全平方公式的特点:①它是一个三项式.② 其中两个是两个数的平方和③第三项是这两数积的正二倍或负二倍.④ 有了以上三个特征,它等于两个数之和(或差)的平方(14)立方和与立方差公式:两个数的立方和(或者差)等于这两个数的和(或者差)乘以它们的平方和与它们积的差(或者和).(15)使用立方和和立方差分解的关键是能够将这两项写成两个数的立方(16)具备什么条件的多项式可以用分组分解法来进行因式分解:如果一个多项式的项分组并提出公因式后,各组之间又能继续分解因式,那么这个多项式就可以用分组分解法来分解因式.(17)小组分解法的前提:掌握公因子法和公式法是学好小组分解法的前提(18)分组分解法的原则:分组后可以直接提出公因式,或者分组后可以直接运用公式.(19)分组时,我们应该考虑分组后是否可以继续分解,关键是选择合理的分组方法。
3
22281224y xy y x +--()()2
216y x y x --+a
a -3第二章 因式分解复习(编号:复02)
知识点回顾
1、因式分解的定义;把一个多项式化成几个整式的 的形式。
2、因式分解与整式乘法的关系: 。
根据箭头指向写出属于什么变形。
3、因式分解的方法;
(1)提公因式法,如:ma+mb+mc= 。
(2)公式法,平方差公式: 。
完全平方公式: 。
一、课堂练习(A 组题)
1、下列从左到右是因式分解的是( )
A. x(a -b)=ax -bx
B. x 2 -1+y 2=(x -1)(x+1)+y 2
C. x 2-1=(x+1)(x -1)
D. ax+bx+c=x(a+b)+c
2、下列因式分解中,正确的是( )
A .3m 2-6m=m(3m -6)
B .a 2b+ab+a=a(ab+b)
C .-x 2+2xy -y 2=-(x -y)2
D .x 2+y 2=(x+y)2
3、下列多项式,不能运用平方差公式分解的是( )
A 、42+-m
B 、22y x --
C 、122-y x
D 、()()2
2
a m a m +--
4.若x 2
+2(m-3)x+16是完全平方式,则m=( )
A.3
B.-5
C.7.
D.7或-1 5、若9x 2+axy+4y 2是完全平方式,则a= 6、 把下列各式因式分解.
(1) (2)
(3) (4)4p(1-q)3
+2(q -1)2
二、课堂练习(B 组题) 3、因式分解
(1) (2))(2)(3x y y x a --- (3)
(4) (5)
4.已知x -y=1,xy=2, 5、利用因式分解说明:
求x 3y -2x 2y 2+xy 3的值. 127636-能被140整除。
6.计算:(1)(-2)101+(-2)100 (1) 32004+32003
32232ab b a b a ++22==+ab b a
课后作业
1、下列各式从左到右的变形,是因式分解的是:( )
A 、()2
2
4168-=+-x x x B 、()()103252
-+=-+x x x x
C 、x x x x x 6)3)(3(692
+-+=+- D 、()()()()2332-+=+-x x x x
2、下列多项式中能用平方差公式分解因式的是( )
A 、22)(b a -+;
B 、mn m 2052
-; C 、2
2y x --,D 、92
+-x ;
3、若x 2-8x+m 是完全平方式,则m= .
4、若9x 2+axy+4y 2是完全平方式,则a= . .c o m
5、
22
3,1,x y xy x y +=-=+=则 6、因式分解
(1) (2) (3)
(4) 2
1
222++x x (5)(m+n)2-6(m+n)+9
(6)4x 2-(y+z)2 (7)
7.
8、已知 求 的值.
9、
10、 11、
(4)你能根据所学知识找到上面算式的简便运算吗?请你利用你找到的简便方法计算下式:
()y x y x m +--2。