2019-2020年中考数学二模考试试题
- 格式:doc
- 大小:168.52 KB
- 文档页数:13
2019-2020年中考二模数学试题(WORD版,含答案)(I)xx.4考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.下列实数中,无理数是A.0 ;B.;C.;D. .2.下列运算中,正确的是A.;B.;C.;D..3.下列一元二次方程中,有两个相等实数根的方程是A.;B.;C.;D..4.“上海地区明天降水概率是15%”,下列说法中,正确的是A.上海地区明天降水的可能性较小;B.上海地区明天将有15%的时间降水;C.上海地区明天将有15%的地区降水;D.上海地区明天肯定不降水.5.如图,在△ABC中,D是边BC上一点,,,,那么等于A.;B.;C.;D..6.下列命题中,真命题是A. 没有公共点的两圆叫两圆外离;B. 相交两圆的交点关于这两个圆的连心线对称;C. 联结相切两圆圆心的线段必经过切点;D. 内含两圆的圆心距大于零.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.计算:= ▲.第5题图①② 8.分解因式:= ▲ . 9. 不等式组的解集是 ▲ . 10.方程的根是 ▲ .11.已知一次函数的图像交轴于正半轴,且随的增大而减小,请写出一个..符合上述条件的一次函数解析式为 ▲ . 12.已知点、在双曲线上,若,则 ▲ (用“>”或“<”或“=”号表示).13. 如果将抛物线向下平移3个单位,那么所得新抛物线的表达式是 ▲ . 14. 对某次会议所用矿泉水的浪费情况进行调查,会议中每人发一瓶500毫升的矿泉水,会后对所发矿泉水喝的情况进行统计,分为四种情况:A .全部喝完;B .喝剩约;C .喝剩约一半;D .开瓶但基本未喝.根据统计结果绘制如下的两个统计图(不完整),则情况“C ”所在扇形的圆心角度数为 ▲ .形”.在 Rt △ABC 中,∠C =90°,若Rt △ABC 是“好玩三角形”,则tanA = ▲ . 18.在锐角△ABC 中,AB =5,BC =6,∠ACB =45°(如图),将△ABC 绕点B 按逆时针方向旋转得到△A ′BC ′(顶点A 、C 分别与A ′、C ′对应),当点C ′在线段CA 的延长线上时,则AC ′的长度为 ▲ .三、解答题(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:⎪⎭⎫⎝⎛+---÷--11211222x x x x x x ,其中.20.(本题满分10分) 解方程组:21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,CD 为⊙O 的直径,CD ⊥AB ,垂足为点F ,AO ⊥BC ,垂足为点E ,.(1)求AB 的长;(2)求⊙O 的半径.ABC O FE22.(本题满分10分,第(1)小题4分,第(2)小题6分)某文具店店主到批发中心选购甲、乙两种品牌的文具盒,预计购进乙品牌文具盒的数量y (个)与甲品牌文具盒的数量x (个)之间的函数关系如图所示.(1)求y 关于x 的函数解析式(不必写出自变量x 的取值范围);(2)该店主用3000元选购了甲品牌的文具盒,用同样的钱选购了乙品牌的文具盒,乙品牌文具盒的单价比甲品牌的单价贵15元,求所选购的甲、乙文具盒的数量.23.(本题满分12分,第(1)小题5分,第(2)小题7分)已知:如图,在□ABCD 中,AE 是BC 边上的高,将△ABE 沿BC 方向平移,使点E 与点C 重合,得△GFC . (1)求证:BE=DG ;(2)若∠BCD =120°,当AB 与BC 满足什么数量关系时, 四边形ABFG 是菱形?证明你的结论.24.(本题满分12分,第(1)小题4分,第(2)小题5分,第(3)小题3分)已知:如图,在平面直角坐标系中,直线与x 轴、y 轴分别交于点A 、B ,点C 在线段AB 上,且.(1)求点C 的坐标(用含有m 的代数式表示);(2)将△AOC 沿x 轴翻折,当点C 的对应点C ′恰好落在抛物线上时,求该抛物线的表达式;(3)设点M 为(2)中所求抛物线上一点,当以A 、O 、C 、M为顶点的四边形为平行四边形时,请直接写出所有满足条件的点M的坐标.(甲品牌/第24题图ADG C B F E 第23题图25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,扇形OAB的半径为4,圆心角∠AOB=90°,点C是上异于点A、B的一动点,过点C作CD⊥OB于点D,作CE⊥OA于点E,联结DE,过O点作OF⊥DE于点F,点M为线段OD上一动点,联结MF,过点F作NF⊥MF,交OA于点N.(1)当tan时,求的值;(2)设OM=x,ON=y,当时,求y关于x的函数解析式,并写出它的定义域;(3)在(2)的条件下,联结CF,当△ECF与△OFN相似时,求OD的长.xx年虹口初三数学中考练习题答案要点与评分标准xx.4一、选择题:(本大题共6题,满分24分)1.D ; 2.C; 3.C; 4.A; 5.B; 6.B.二、填空题:(本大题共12题,满分48分)7.2; 8.; 9.; 10.;11.答案不惟一,满足且即可,如, 12. >;13.; 14.; 15.; 16.7;17.或;18..三、解答题:(本大题共7题,满分78分)19.解:原式=把代入上式,得:原式=20.解:由①得:,∴或把上式同②联立方程组得:分别解这两个方程组得:,∴原方程组的解为,.(注:代入消元法参照给分)21.解:(1)∵CD⊥AB,AO⊥BC,∴∠AFO =∠CEO=90°.∵∠COE=∠AOF,CO=AO ,∴△COE≌△AOF .∴CE=AF ∵CD过圆心O,且CD⊥AB∴AB=2AF同理可得: BC=2CE∴AB=BC=(2)在Rt△AEB中,由(1)知:AB=BC=2BE,∠AEB=90°,∴∠A=30°,又在Rt△AOF中,∠AFO=90°,AF=,∴2cos30AFAO===︒,∴圆O的半径为2.22.解:(1)设所求函数解析式为y=kx+b().由题意得:解得:∴所求的y关于x的函数解析式为y=-x+300.(2)由题意得:整理得,解得:经检验,均为原方程的解,不符合题意舍去∴∴答:所选购的甲、乙文具盒的数量分别为200个、100个.23.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD , AD//BC∵AE是BC边上的高,且CG是由AE沿BC方向平移而成.∴GC⊥BC, ∴CG⊥AD. ∴∠AEB=∠CGD=90⁰.∵AE=CG,∴Rt△ABE≌Rt△CDG.∴BE=DG.(2)解:当时,四边形ABFG是菱形.证明:∵GF是由AB沿BC方向平移而成,∴AB//GF,且AB=GF,∴四边形ABFG是平行四边形.∵在□ABCD中,∠BCD=120°,∴∠B=60°.∴Rt△ABE中,.又∵13,,22CF BE AB BC AB===∴3122BF BC CF AB AB AB=-=-=.∴四边形ABFG是菱形.24.解:(1)由题意,得:点A(6,0),点B(0,-4m)由知,点C是AB的中点∴C(3,)(2)由题意,得:C′(3,)把C′(3,)代入,得:,解得∴该抛物线的表达式为(3)点M的坐标为或或25.解:(1)由题意,得:∠MOF+∠FOE=90°,∠FEN+∠FOE=90°∴∠MOF=∠FEN 由题意,得:∠MFO+∠OFN=90°,∠EFN+∠OFN=90°∴∠MFO=∠NFE∴△MFO∽△NFE ∴由∠FEN=∠MOF可得:,∴, ∴.(2)法1:∵△MFO∽△NFE ,∴.又易证得:△ODF∽△EOF,∴,∴,∴. 联结MN, .由题意,得四边形ODCE为矩形,∴DE=OC=4 ,∴MN=2在Rt△MON中,,即∴(法2:易证:, ∴,∴,∴OF==又易证:△DMF∽△OFN, ∴, ∴,∴((3)法1:由题意,可得: OE=2y,CE=OD=2x.∴由题意,可得:,∴.,∴,∴.由题意,可得:∠NOF=∠FEC ,∴由△ECF与△OFN相似,可得:或.①当时,,∴,又,∴,解得:,(舍去)∴②当时,,∴,又,∴,∴解得:,(舍去)∴综上所述,.法2:由题意,可得:OE=2y,CE=OD=2x, ,∴.又由题意,可得:∠NFO=∠NOF=∠FEC,∴由△ECF与△OFN相似,可得∠FEC=∠FCE或∠FEC=∠EFC.①当∠FEC=∠FCE时,可证:∠FDC=∠FCD, ∴FD=FC,∴FD=FE,即DE=2EF,∴,又∴,∴解得:,(舍去)∴②当∠FEC=∠EFC时,有CF=CE时,过点C作CG⊥EF于点G,∴.易证得:,∴,即,又,∴,解得:,(舍去)∴综上所述,.j29291 726B 牫/39114 98CA 飊g34649 8759 蝙eFgZ33478 82C6 苆28929 7101 焁S24464 5F90 徐24548 5FE4 忤。
2019-2020年中考数学二模试卷(含答案)注意事项:1.本试卷的选择题和非选择题都在答题卡上作答,不能..答在试卷上. 2.答卷前,考生务必将自己的姓名、考生号、试室号、座位号、考卷类型用铅笔涂写在答题卡上.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.4.非选择题必须在指定的区域内,用黑色字迹的签字笔或钢笔作答,不能超出指定区域或在非指定区域作答,否则答案无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰.有一项...是符合题目要求的, 1.在两个不同时刻,对同一水池中的水位进行测量,记录如下:上升3cm ,下降6cm . 如 果上升3cm 记为+3cm ,那么下降6cm 记为A .6cmB .+6cmC .-6cmD .-6 2.25的算术平方根是A . 5B .±5C .5D .±5 3.计算432)2(b a -的结果是A .12816b a B .1288b a C .1288b a - D .12816b a -4.已知∠α与∠β互余,若∠α=43°26′,则∠β的度数是 A .56°34′ B .47°34′ C .136°34′ D .46°34′ 5.如图(1)放置的一个机器零件,若其主视图如图(2),则其俯视图是6.如图,将两根钢条'AA 、'BB 的中点O连在一起,使'AA 、'BB 可以绕着点0自由转动,就做成了一个测量工件,则 ''A B 的长等于内槽宽AB ,那么判定△AOB ≌△''A OB 的 理由是A .边角边B .角边角C .边边边D .角角边7.两圆有多种位置关系,图中不存在的位置关系是A .相切B .外离C .相交D .内含 8.一个口袋中装有 4个白球,1个红球,7个黄球,(第7题)(第6题)A B CD(2)(1) (第5题)搅匀后随机从袋中摸出 1个球是白球的概率是A .21 B . 31 C . 41 D . 51 9.已知某村今年的荔枝总产量是p 吨(p 是常数),设该村荔枝的人均产量为y (吨),人口总数为x (人),则y 与x 之间的函数图象是10.如图,是一个工件的三视图,则此工件的全面积是A .85πcm 2B .90πcm 2C .155πcm 2D .165πcm 2二、填空题:共8小题,每小题3分,共30分.11.比较大小:-3.(填“>,=或<”)12.水星的半径为2 440 000m ,用科学记数法表示水星的半径是 ▲ m . 13.方程112=-x 的解为 ▲ . 14.如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,已知DE =6cm ,则BC =___▲___cm . 15.分解因式:x x +-3= ▲ .16.摩托车生产是某市的支柱产业之一,不少品牌的摩托车畅销国内外.下表是该市某摩托车厂今年1则这5个月销售量的中位数是 ▲ 辆.17.为了测量一个圆形铁环的半径,某同学采用了如下办法:将 铁环平放在水平桌面上,用一个锐角为30°的三角板和一 个刻度尺,按如图所示的方法得到相关数据,进而可求得铁 环的半径,若测得P A =5cm ,则铁环的半径是 ▲ cm . 18.在Rt ABC △中,∠BAC =90°,AB =3,M 为边BC 上的点,连接AM (如图所示).如果将 ABM △沿直线AM 翻折后,点B 恰好落在边 AC 的中点处,那么点M 到AC 的距离是 ▲ .(第18题)(第14题)(第10题)(第17题)三、解答题:本大题共10小题,共96分.解答时应写出文字说明、证明过程或演算步骤. 19.(本小题10分) (1)计算:25)4080(-+÷-;(2)化简:)2(2ab ab a a b a --÷-. 20.(本小题8分)解方程:0)32()32)(32(=+--+x x x x 。
2019-2020学年中考数学二模考试试卷I卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,1 (共16题;共42分)1. (3分)在3,-1,0,这四个数中,最小的数是()A . 3B . 0C . -1D .2. (3分)如图,如果直线m是多边形ABCDE的对称轴,其中∠A=130°,∠B=110°,那么∠BCD的度数为()A . 40°B . 50°C . 60°D . 70°3. (3分)下列运算正确的是()A . (ab3)2=a2b6B . 2a+3b=5abC . 5a2﹣3a2=2D . (a+1)2=a2+14. (3分)据有关资料显示,2016年某区全年财政总收入820亿,用科学记数法表示为()A .B .C .D .5. (3分)下列立体图形中,俯视图与主视图不同的是()A .B .C .D .6. (3分)一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A .B .C .D .7. (3分)已知关于x、y的方程组,解是,则2m+n的值为()A . ﹣6B . 2C . 1D . 08. (3分)如图所示,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N,下列结论:①AF⊥B G;②BN= NF;③ ;④S四边形CGNF= S四边形ANGD .其中正确的结论的序号是()A . ①③B . ②④C . ①②D . ③④9. (3分)如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则的值是()A . 1B .C .D .10. (3分)如图,在△ABC中,点D、E分别是边AC,AB的中点,BD,CE相交于点O,连接AO,在AO上取一点F,使得OF= AF若S△ABC =12,则四边形OCDF的面积为()A . 2B .C . 3D .11. (2分)若一个直角三角形的两条直角边各扩大一倍,则其斜边()A . 不变B . 扩大一倍C . 扩大两倍D . 扩大四倍12. (2分)如图是根据某班50名同学一周的体育锻炼情况绘制的条形统计图,则这个班50名同学一周参加体育锻炼时间的众数与中位数分别为()A . 9,8B . 8,9C . 8,8.5D . 19,1713. (2分)如图,所有圆柱体的质量均相等,且两架天平都保持平衡,则 5 个小球的质量相当于()正方体的质量A . 2 个B . 3 个C . 4 元D . 5 个14. (2分)如图,A,B,C表示三个小城,相互之间有公路相连,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址可以是()A . 三边中线的交点处B . 三条角平分线的交点处C . 三边上高的交点处D . 三边的中垂线的交点处15. (2分)下列说法:①三点确定一个圆,②平分弦(不是直径)的直径垂直于弦,③相等的圆心角所对的弦相等,④三角形的内心到三边的距离相等,其中正确的有()A . 1个B . 2个C . 3个D . 4个16. (2分)在同一直角坐标系中,一次函数y=ax+c和二次函数y=a(x+c)2的图象大致为()A .B .C .D .二、填空题(本大题有3个小题,共12分,17-18小题各3分;1 (共3题;共12分)17. (3分)已知矩形的面积为S,相邻两边长分别为a,b,已知S=2 ,a= ,则b=________.18. (3分)一个n边形的内角和为1080°,则n=________.19. (6分)如图,已知Rt△ABC中,∠ACB=90° AC=6,BC=4,将△ABC绕直角顶点C 顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=________.三、解答题(本大题有7个小题,共66分,解答应写出文字说明、证明 (共7题;共65分)20. (8分)如图,菱形ABCD的对角线AC和BD相交于点O , AB=,OA=a , OB =b ,且a , b满足:.(1)求菱形ABCD的面积;(2)求的值.21. (9.0分)某市为了解“每天锻炼一小时,幸福生活一辈子”活动的开展情况,某调查统计公司准备采用以下调查方式中的一种进行调查:.从一个社区随机选取名居民;.从一个城镇的不同住宅楼中随机选取名居民;.从该市公安局户籍管理处随机抽取名城乡居民作为调查对象,然后进行调查.(1)在上述调查方式中,你认为比较合理的一个是________(选择).(2)由一种比较合理的调查方式所得到的数据制成了如图所示的频数分布直方图,在这个调查中,这名居民每天锻炼小时的人数是多少?(3)若该市有万人,请你利用中的调查结果,估计该市每天锻炼小时及以上的人数是多少?22. (8.0分)计算:(直接写出结果)(1)(﹣6)+(﹣14)=________(2)﹣8﹣(﹣8)=________(3)12+(﹣15)=________(4)+(+16)﹣(+4)=________(5)0﹣(﹣7)=________(6)﹣4×(﹣5)=________(7)0×(﹣15)=________(8)﹣15÷(﹣)=________(9)(﹣3)3=________(10)﹣52=________23. (9分)如图,∠BCA=90°,AC=BC,BE⊥CF于点E,AF⊥CF于点F,其中0<∠ACF<45°.(1)求证:△BEC≌△CFA;(2)若AF=5,EF=8,求BE的长.24. (9分)已知一次函数。
2019-2020年中考数学二模试题含答案一、填空题(本大题共有12小题,每小题2分,共计24分)1. 的倒数是______. 2.计算:=______.3.分解因式:2x 2﹣12x +18=______.4.函数中,自变量x 的取值范围是 .5.若一个多边形的内角和等于,则这个多边形的边数是 . 6.关于的方程有两个实数根,则的取值范围是 .7.△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD =1,BD=3,则△ADE 与△ABC 的面积之比为 .8.如图,四边形ABCD 是⊙O 的内接四边形,∠B =148°24′,则∠AOC 的角度为 .(第7题) (第8题)9.如图,PA 、PB 切⊙O 于点A 、B ,已知⊙O 半径为2,且∠APB = 60o ,则AB = .10.圆锥底面圆的半径为3,高长为4,它的表面积等于______(结果保留π). 11.如图,已知点C (1,0),直线y = -x +7与两坐标轴分别交于A 、B 两点,D 、E 分别是AB ,OA 上的动点,当△CDE 周长最小时,点D 坐标为 .ED第11题12.抛物线过A (4,4),B (2,m )两点,点B 到抛物线对称轴的距离记为d ,满足,则实数m 的取值范围是 .二、选择题(本大题共有5小题,每小题3分,共计15分)13.下图是一些完全相同的小正方体搭成的几何体的三视图 ,这个几何体只能是( )14.如图,数轴上的四个点、、、位置如图所示,它们分别对应四个实数a 、b 、c 、d ,若a +c =0,AB <BC ,则下列各式正确的是( )A .B .C .D .15.如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,顶点C 的坐标为(-3,3),反比例函数的图像与菱形对角线AO 交于D 点,连接BD ,当BD ⊥x 轴时,k 的值是( ) A .4 3B .-4 3C .2 3D .-2 316.已知二次函数 ,函数与自变量的部分对应值如下表:… —4 —3 —2 —1 0 ……3—2—5—6—5…(第14题)(第15题)第13题则下列判断中正确的是( )A .抛物线开口向下B .抛物线与轴交于正半轴C .方程的正根在1与2之间D . 当时的函数值比时的函数值大17.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 10B 10C 10D 10E 10F 10的边长为( )A .B .C .D .三、解答题(本大题共有11小题,共计81分) 18(本题满分8分)(1)计算: (2)化简:19(本题满分10分)(1)解方程:22)145(sin 230tan 3121-︒+︒--(2)解不等式组 ,并把它们的解集在数轴上表示出来.20.(本题6分) 王华、张伟两位同学分别将自己10次数学自我检测的成绩绘制成如下统计图:⎪⎩⎪⎨⎧<+-+--≤+137621)3(410)8(2x x x x(1)根据上图中提供的数据列出如下统计表:则a = ,b = ,c = ,d = ,(2)将90分以上(含90分)的成绩视为优秀,则优秀率高的是 .(3)现在要从这两个同学选一位去参加数学竞赛,你可以根据以上的数据给老师哪些建议?21.(本题6分)如图,在和△BC D 中,、交于点M. (1)求证:≌△DCB ;(2)作交于点N ,求证:四边形BNCM 是菱形.22. (本题6分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉当前题的一个错误选项,然后选手在剩下选项中作答).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是__________. (2)如果小明将“求助”留在第二题使用,请用树状图或者列表分析小明顺利通关..的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)23.(本小题满分6分)NBC如图,已知的三个顶点的坐标分别为、、,P (a ,b )是△ABC 的边AC 上一点:(1)将绕原点逆时针旋转90°得到,请在网格中画出,旋转过程中点A 所走的路径长为 .(2)将△ABC 沿一定的方向平移后,点P 的对应点为P 2(a +6,b +2),请在网格画出上述平移后的△A 2B 2C 2,并写出点A 2、的坐标:A 2( ).(3)若以点O 为位似中心,作△A 3B 3C 3与△ABC 成2:1的位似,则与点P 对应的点P 3位似坐标为 (直接写出结果).24.(本小题满分7分)如图,一次函数与反比例函数的图象交于点 和,与y 轴交于点C .(1)m = ,= ;(2)当x 的取值是 时,>;(3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点.设直线OP与线段AD 交于点E ,当:=3:1时,求点P 的坐标.25. (本小题满分6分)如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的OxyAC B眼睛与地面的距离AB =1.7m ,看旗杆顶部的仰角为;小红的眼睛与地面的距离CD =1.5m ,看旗杆顶部的仰角为.两人相距28米且位于旗杆两侧(点B 、N 、D 在同一条直线上). 请求出旗杆的高度.(参考数据:,,结果保留整数)26.(本小题满分7分)如图,AB 是⊙O 直径,OD ⊥弦BC 与点F ,且交⊙O 于点E , 且∠AEC =∠ODB .(1)判断直线BD 和⊙O 的位置关系,并给出证明;(2)当tan ∠AEC= ,BC =8时,求OD 的长.27.(本小题满分9分)已知直线m ∥n ,点C 是直线m 上一点,点D 是直线n 上一点,CD 与直线m 、n 不垂直,点P 为线段CD 的中点.MN BOADOC30° 45°DBOAC E F (第26题)(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:.(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA 与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•A B.28.(本小题满分10分)已知抛物线的顶点为P,与y轴交于点A,与直线OP交于点B. (1)如图1,若点P的横坐标为1,点,,试确定抛物线的解析式;(2)在(1)的条件下,若点M是直线AB下方抛物线上的一点,且S△ABM=3,求点M的坐标;(3)如图2,若P在第一象限,且,过点P作轴于点D,将抛物线平移,平移后的抛物线经过点A、D,该抛物线与轴的另一个交点为C,请探索四边形OABC的形状,并说明理由.AyxPOBAyxPO图1 图2数学试卷参考答案 一、填空题二、选择题三、解答题(共5道小题,共25分) 18. 解(1) 原式 ……3分=2……4分(2) 原式 = ……2分= ……4分 19.解(1) ……1分 化简得 ……3分……4分经检验 是原方程的根……5分 (2) (1)(2) 221⎛+ ⎝⎭⎝⎭⎪⎩⎪⎨⎧<+-+--≤+137621)3(410)8(2x x x x不等式(1)的解集为 ……1分 不等式(2)的解集为 ……3分∴原不等式组的解集为 ……4分 数轴表示正确……5分20.(1)a= 80 ,b= 80 ,c= 90 ,d= 60 ,……4分 (2)____张伟____。
2019-2020学年中考数学二模考试试卷新版一、选择题(本大题有16个小题,共42分.1~10小题各3分,1 (共16题;共42分)1. (3分)若<a<则下列结论正确的是()A . 1< a < 3B . 1< a < 4C . 2 < a < 3D . 2 < a < 42. (3分)下列图形中是轴对称图形但不是中心对称图形的是()A .B .C .D .3. (3分)下列计算正确的是()A . (-2)0=0B . (-2)-1=2C . 6a-5a=1D . (2a)3=8a34. (3分)光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数表示是()A . 0.95×1013kmB . 950×1010kmC . 95×1011kmD . 9.5×1012km5. (3分)一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是()A .B .C .D .6. (3分)如图,利用三个面积分别为5,x,y的正方形拼成一个直角三角形,则y 关于x之间的函数图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. (3分)已知是二元一次方程组的解,则2m﹣n的值是()A . 3B . 5C . -3D . -58. (3分)如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论:①BD=CD;②AD+CF=BD;③CE= BF;④AE=BG.其中正确的是()A .B .C .D .9. (3分)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A . 4B . 2C . 3D . 2.510. (3分)如图,在△ABC中.∠ACB=90°,AC=4,,点D在AB上,将△ACD沿CD折叠,点A落在点A1处,A1C与AB相交于点E,若A1D∥BC,则A1E的长为()A .B .C .D .11. (2分)如图,菱形ABCD中,对角线BD与AC交于点O, BD=8cm,AC=6cm,过点O作OH⊥CB于点H,则OH的长为()A . 5cmB . cmC . cmD . cm12. (2分)一组数据:1,3,6,1,3,1,2,这组数据的众数和中位数分别是()A . 1和1B . 1和3C . 2和3D . 1和213. (2分)如果关于的一元一次方程3(+4)=2 +5的解大于关于的方程的解,那么的取值是().A .B .C .D .14. (2分)如图,内心为 ,连接并延长交的外接圆于 ,则线段与的关系是()A .B .C .D . 不确定15. (2分)如图,点O在△ABC内,且到三边的距离相等,若∠A=60 ,则∠BOC 的大小为()A .B .C .D . 6016. (2分)若A(-4,y1),B(-1,y2),C(2,y3)为二次函数y=-(x+2)2+3的图象上的三点,则y1 , y2 , y3小关系是()A .B .C .D .二、填空题(本大题有3个小题,共12分,17-18小题各3分;1 (共3题;共12分)17. (3分)计算的结果是________.18. (3分)一个多边形的内角和为720 ,则这个多边形的边数为 ________.19. (6分)如图,等边△ABC中,过点B作BP⊥AC于点P,将△ABP绕点B顺时针旋转一定角度后得到△CBP′,连接PP′与BC边交于点O,若AB=2,则线段BO的长度为________.三、解答题(本大题有7个小题,共66分,解答应写出文字说明、证明 (共7题;共65分)20. (8分)A、B两地果园分别有橘子40吨和60吨,C、D两地分别需要橘子30吨和70吨;已知从A、B到C、D的运价如表:到C地到D地A果园每吨15元每吨12元B果园每吨10元每吨9元(1)若从A果园运到C地的橘子为x吨,则从A果园运到D地的橘子为________吨,从A果园将橘子运往D地的运输费用为________元.(2)用含x的式子表示出总运输费(要求:列式、化简).(3)求总运输费用的最大值和最小值.(4)若这批橘子在C地和D地进行再加工,经测算,全部橘子加工完毕后总成本为w 元,且w=-(x-25)2+4360.则当x=________时,w有最________值(填“大”或“小”).这个值是________.21. (9.0分)云峰中学为了解学生上学的交通方式,提高学生交通安全意识,开展了以“我上学的主要交通方式”为主题的调查活动,围绕“在乘公交车、乘私家车、乘送子车、步行、骑自行车共五种方式中,你上学的主要交通方式是哪种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图.请你根据统计图的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若云峰中学共有1200名学生,请你估计该中学步行上学的学生有多少名?22. (8.0分)计算:﹣14﹣16÷(﹣2)3+|﹣|×(1﹣0.5)23. (9分)如图,在中,,,为延长线上一点,点在上,且 .(1)求证:;(2)若,求的度数.24. (9分)已知y与x﹣1成正比例,且当x=3时,y=4.(1)求y与x之间的函数表达式;(2)当x=﹣1时,求y的值;(3)当﹣3<y<5时,求x的取值范围.25. (11.0分)如图,足球场上守门员徐杨在O处抛出一高球,球从离地面1m处的点A飞出,其飞行的最大高度是4m,最高处距离飞出点的水平距离是6m,且飞行的路线是抛物线一部分.以点O为坐标原点,竖直向上的方向为y轴的正方向,球飞行的水平方向为x 轴的正方向建立坐标系,并把球看成一个点.(参考数据:4 ≈7)(1)求足球的飞行高度y(m)与飞行水平距离x(m)之间的函数关系式;(2)在没有队员干扰的情况下,球飞行的最远水平距离是多少?(精确到个位)(3)若对方一名1.7m的队员在距落点C 3m的点H处,跃起0.3m进行拦截,则这名队员能拦到球吗?26. (11.0分)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BE(1)若∠CBD=35°,求∠BAC及∠BEC的度数(2)求证:DE=DB参考答案一、选择题(本大题有16个小题,共42分.1~10小题各3分,1 (共16题;共42分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题(本大题有3个小题,共12分,17-18小题各3分;1 (共3题;共12分)17-1、18-1、19-1、三、解答题(本大题有7个小题,共66分,解答应写出文字说明、证明 (共7题;共65分)20-1、20-2、20-3、20-4、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、。
2019—2020学年度(上)学期教学质量检测九年级数学试卷(二)参考答案考试时间:120分钟 试卷满分:150分一、选择题(每小题3分,共30分)1.A2.B3.A4.D5.D6.C7.B8.C9.B 10.C二、填空题(每小题3分,共24分)11.26 12.67° 13.154 14.1,221=-=x x 15.c <4且c ≠0 16.8 17.1 18.)31,0(1010-三、解答题(第19题10分,第20题12分,共22分)19.解:(1)如图所示,△A ′B ′C 即为所求;-------------------------------------------------------------------------4(2)①;------------------------------------------------------------------------------8②(﹣1,3),---------------------------------------------------------------------10 20.解:(1)60;------------------------------------------------------------------------------------------3(2)画树状图得:-------------------------------------------------------------------------------------------------------------------8∵所有可能出现的结果共有9,这些结果出现的可能性相等,该顾客所获得购物券的金额不低于40元的有6种情况,-----------------------------------------------------------------------------------------------------------10∴该顾客所获得购物券的金额不低于40元的概率为.---------------------------12四、(每题12分,共24分)21(1)证明:连接O C.------------------------------------------------------------------------------1∵CD是⊙O的切线,∴∠OCD=90°,-----------------------------------------------------------------------------------------2∵∠AEC=90°,∴∠OCD=∠AEC,-----------------------------------------------------------------------------------3∴AE∥OC,-----------------------------------------------------------------------------------------------4∴∠EAC=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,-------------------------------------------------------------------------------------5∴AC平分∠DAE.---------------------------------------------------------------------------------------6(2)作CF⊥AB于F.-------------------------------------------------------------------------------7在Rt△OCD中,∵OC=3,OD=5,∴CD==4,--------------------------------------------------------------------------------8∵•OC•CD=•OD•CF,------------------------------------------------------------------------9∴CF=,--------------------------------------------------------------------------------------------10∵AC平分∠DAE,CE⊥AE,CF⊥AD,∴CE=CF=.------------------------------------------------------------------------------------1221.解:(1)如图所示:----------------------------------------------------------------------------------------------------------------------6 共有12种结果,每种结果出现的可能性相同,至少有一个红球的结果有10种------------------------------------------------------------------------9所以“取出至少一个红球”的概率为=.-----------------------------------------------------12 五、(本题12分)23.(1)证明:连接OA ,OE ,OC-------------------------------------------------------------------1∵△ABC 是等边三角形∴∠B=∠ACB =60°-------------------------------------------------------------------------------2 ∴∠AOC =2∠B=120°---------------------------------------------------------------------------3 又OA=OC∴∠OAC =∠ACO =︒=︒-︒302120180----------------------------------------------------4 又AD ∥BC∴∠DAC =∠ACB=60°-------------------------------------------------------------------------5 ∴∠OAD =∠DAC+∠OAC=60°+30°=90°∴AD 是⊙O 的切线----------------------------------------------------------------------------6(2)作EH ⊥OA ,垂足为H----------------------------------------------------------------------7∴∠EHA =∠OAD=∠ADC =90°∴ 四边形ADEH 为矩形∴AH=DE=2-----------------------------------------------------------------------------------8 ∵∠ACD=90°-∠ADC=90°-60°=30°∴∠AOE =2⨯30°=60°-----------------------------------------------------------------------9 ∴∠OEH =30°∴OH=21OE=21(OH+2) ∴OH=2,OE=4,HE=322422=---------------------------------------------------10S 阴影部分=3831836046032)42(212ππ-=⨯-⨯+------------------------------------12 六、(本题12分)24.解:(1)请根据以上信息完善下表:---------------------------------------------------------------------------------------------------------------4(2)y =18×20x +12(30﹣x )(20+x )=﹣12x 2+480x +7 200;-------------------------------7(3)y =﹣12x 2+480x +7 200=﹣12(x ﹣20)2+12 000,---------------------------------------9∵=-12<0,抛物线开口向下,∴当x =20时,y 取得最大值,最大值为12 000,---------------------------------------------11 答:分配20个人生产甲玩具,10人生产乙玩具时,可以获得最大利润12 000元.----12七、解答题:(12分)25.证明:(1)作AF ⊥AC ,AF 交BC 于F--------------------------------------1 ∴∠FAC=90°∴∠FAD=∠CAE=90°-∠DAC ,∴∠AFC=90°-∠ACB=90°-45°=45°=∠ACB ∴AF=AC-------------------------------------------------------------------------------------------2 又AD=AE∴△DAF ≌△EAC (SAS )-----------------------------------------------------------------------------3 ∴∠AFD=∠ACE---------------------------------------------------------------------------------4 ∴∠BCE=∠ACB+∠ACE=∠ACB+∠AFD=90°----------------------------------------5 ∴CE ⊥BC -----------------------------------------------------------6(2)①-------------------------------------7连接NC ,NA 第25题图a∵∠DAE=∠DCE=90°,N 为DE 的中点∴NA=NC=DE----------------------------------------------------------------------------------8 又M 为AC 的中点∴NM ⊥AC-------------------------------------------------------------------------------------------9 ∴222CN CM MN =+ ∴222DE 21AC 21MN )()(=+ ∴222MN 4AC -DE =------------------------------------------------10 ②当BD =2时,M ,E 两点之间的距离最小,最小值是1.---------------------------12八、(本题14分) 26.(1)设抛物线的解析式为k x a y +-=2)1(-----------------------------1∵抛物线经过A (-1,0),B (2,-3)两点. ∴⎩⎨⎧-=+=+304k a k a --------------------------------------------------------------------------3 解得⎩⎨⎧-==41k a ----------------------------------------------------------------------------4 ∴抛物线的解析式为324)1(22--=--=x x x y ------------------5(2)如图,作PM ∥OA 交AB 于M∴∠QAO=∠QPM ,∠QOA=∠QPM又OQ=PQ∴△AQO ≌△MQP (AAS )∴PM=OA=1设P 点坐标为(x,y ),则M (x+1,y )---------------------------------------6 设AB 解析式为b kx y +=则⎩⎨⎧-=+=+-320b k b k 解得⎩⎨⎧-=-=11b k ∴1--=x y -----------------------------------------------------------------------------------------7 ∴1)1(322-+-=--x x x --------------------------------------------------------------------8 解得251,25121-=+=x x ----------------------------------------------------------------92552251,255225121+-=---=--=-+-=y y ∴点P 的坐标是-------------------------10 (3)------------------------------------------14。
2019-2020年初三数学二模试题及答案一、选择题(本题共30分,每小题3分)1.13的倒数是A .3B .3-C .13D .13-2.一根头发丝的直径约为0.00 006纳米,用科学记数法表示0.00 006,正确的是 A .6×10-6B . 6×10-5C . 6×10-4D . 0.6×10-43.下面的几何体中,主视图为三角形的是A B C D4.函数y=x 的取值范围是A .2x ≠ B . 2x > C . 2x ≥ D .2x ≤5.妈妈在端午节煮了10个粽子,其中5个火腿馅,3个红枣馅,2个豆沙馅(除馅料不同外,其它都相同).煮好后小明随意吃一个,吃到红枣馅粽子的概率是 A .110 B .15 C .310 D . 126. 下面的几何图形中,既是轴对称图形又是中心对称图形的是A B C D7.如图,A ,B 是函数2=y x的图象上关于原点对称的任意两点, BC ∥x 轴, AC ∥y 轴,如果△ABC 的面积记为S ,那么 A .4S = B .2S = C .24S << D .4S >菱形扇形平行四边形等边三角形A .甲B .乙C .丙D .丁9.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =AE =1.2米, 那么适合该地下车库的车辆限高标志牌为(参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75)A B C D10.如图,点N 是以O 为圆心,AB 为直径的半圆上的动点,(不与点A ,B重合),AB =4,M 是OA 的中点,设线段MN 的长为x ,△MNO 的面积为y ,那么下列图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题(本题共18分,每小题3分) 11.分解因式:34a a -= .12.如图,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E , 如果35AD DB =,AE =6,那么EC 的长为 .13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知AB 的长是_________m .FCBAE CA B EDAOBMN图3图1 图214.将二次函数245y x x =-+化为2()y x h k =-+的形式,那么=h k + . 15.在四边形ABCD 中,如果AB AD =,AB CD ∥,请你添加一个..条件,使得该四边形是菱形,那么这个条件可以是 . 16.如图,在平面直角坐标系xOy 中,直线l 的表达式是y=3x ,点A 1坐标为(0,1),过点A 1作y 轴的垂线交直线l 于点B 1,以原点O 为圆心,OB 1长为半径画弧交y 轴于点A 2;再过点A 2作y 轴的垂线交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画弧交y 轴于点A 3,…,按此做法进行下去,点B 4的坐标为 ,2015OA = .三、解答题(本题共30分,每小题5分) 17.计算:20152cos45-+︒(-1).18.已知:如图,AB =AE ,∠1=∠2 ,∠B =∠E .求证:BC =ED .19.解不等式组:240,321 5.x x +⎧⎨-->⎩≤()20.已知3=y x ,求代数式22212y x y x xy y x ⎛⎫--⋅ ⎪-+⎝⎭的值. 21.已知关于x 的方程2(3)30(0)mx m x m -++=≠.(1)求证:方程总有两个实数根;(2)如果方程的两个实数根都是整数,且有一根大于1,求满足条件的整数m 的值.图1图221ABCED33x22.列方程或方程组解应用题:为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?四、解答题(本题共20分,每小题5分)23.如图,在□ABCD 中,E 为BC 边上的一点,将△ABE 沿AE 翻折得到△AFE ,点F 恰好落在线段DE 上.(1)求证:∠FAD =∠CDE ;(2)当AB =5,AD =6,且tan 2ABC ∠=时,求线段EC 的长.24.某校九年级有200名学生参加《中小学生国家体质健康标准》测试赛活动.为了解本次测试的成绩分布情况,从中抽取了20名学生的成绩进行分组整理.现已完成前15个数据的整理,还有后5个数据尚未累计:62,83,76,87,70,学生测试成绩频数分布表 学生测试成绩频数分布直方图B FACE D(1)请将剩余的5个数据累计在“学生测试成绩频数分布表”中,填上各组的频数与频率,并补全“学生测试成绩频数分布直方图”;(2)这20个数据的中位数所在组的成绩范围是 ;(3)请估计这次该校九年级参加测试赛的学生中约有多少学生成绩不低于80分.25.如图,AB 是⊙O 的直径,以AB 为边作△ABC ,使得AC = AB ,BC 交⊙O 于点D ,联结OD ,过点D 作⊙O 的切线,交AB 延长线于点E ,交AC 于点F . 26.问题背景:在△ABC 中,AB ,BC ,AC 积.小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC 的高,借用网格就能计算出它的面积.CBA图1 图2 (1)请你直接写出△ABC 的面积________; 思维拓展:(2)如果△MNP,请利用图2的正方形网格(每个小正方形的边长为1)画出相应的格点△MNP ,并直接写出△MNP 的面积.五、解答题(本题共22分,第27题7分,第28题7分,第2927.在平面直角坐标系xOy 中,抛物线21y ax bx =++经过(13)A ,,(21)B ,两点.(1)求抛物线及直线AB 的解析式;(2)点C 在抛物线上,且点C 的横坐标为3.将抛物线在 点A ,C 之间的部分(包含点A ,C )记为图象G ,如 果图象G 沿y 轴向上平移t (0t >)个单位后与直线 AB 只有一个公共点,求t 的取值范围.28. 已知△ABC 是锐角三角形,BA =BC ,点E 为AC 边的中点,点D 为AB 边上一点,且∠ABC =∠AED =α.(1)如图1,当α=40°时,∠ADE = °;(2) 如图2,取BC 边的中点F ,联结FD ,将∠AED 绕点E 顺时针旋转适当的角度β(β<α),得到∠MEN ,EM 与BA 的延长线交于点M , EN 与FD 的延长线交于点N .①依题意补全图形;②猜想线段EM 与EN 之间的数量关系,并证明你的结论.EC图1 图229.对某一个函数给出如下定义:如果存在实数M ,对于任意的函数值y ,都满足y M ≤,那么称这个函数是有上界函数,在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,图中的函数是有上界函数,其上确界是2.(1)分别判断函数1y x=- (0x <)和23y x =-(2x <)是不是有上界函数?如果是有上界函数,求其上确界; (2)如果函数2y x =-+ (,a x b b a ≤≤>)的上确界是b ,且这个函数的最小值不超过21a +,求a 的取值范围; (3)如果函数222y x ax =-+(15x ≤≤)是以3为上确界的 有上界函数,求实数a 的值.丰台区2015年度初三统一练习(二)参考答案二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分)17.解:原式=12-+…4分=1....5分18.证明:∵∠1=∠2,∴∠1+∠BAD =∠2+∠BAD . 即∠BAC =∠E AD .......1分 ∵AB =AE ,∠B =∠E , (2)分∴ △ABC ≌△AED .……4分 ∴BC =ED .……5分19.解:240,321 5.x x +⎧⎨-->⎩≤(②)①由①得: 2.x -≤…1分分….4分∴ 2.x ≤-…….5分20. 解:原式=2222222x xy y y x yx xy y x-+--⋅-+…1分=2(2)()x x y x yx y x--⋅-……2分 =2x y x y--……3分 ∵3xy=,∴3x y =.……4分 ∴原式=321322y y y y y y -==-. …….5分21.(1)证明:2=343m m +-⨯⨯△(),……1分=26+9m m - =23m -()≥0. ∴方程总有两个实根. ……2分(2)解:x = . ……3分解得1231,.x x m==……4分 ∵方程的两个实数根都是整数,且有一根大于1,∴31,.m m为大于的整数且为整数∴=1.m …….5分22. 解:设小张用骑公共自行车方式上班平均每小时行驶x 千米,根据题意列方程得:…1分1010445x x =⨯+………3分 解得:15x = ………4分经检验15x =是原方程的解且符合实际意义. 答:小张用骑公共自行车方式上班平均每小时行驶15千米. ………5分四、解答题(本题共20分,每小题5分) 23.(1)证明:∵四边形ABCD 是平行四边形,∴∠B =∠ADC . …….1分∵将△BAE 沿AE 翻折得到△FAE ,点F 恰好落在线段DE 上, ∴△ABE ≌△AFE .∴∠B =∠AFE . …….2分∴∠AFE =∠ADC .∵∠FAD =∠AFE -∠1,∠CDE =∠ADC -∠1, ∴∠FAD =∠CDE .…….3分(2)过点D 作DG ⊥BE 的延长线于点G .∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,CD =AB =5. ∴∠2=∠B ,∠3=∠EAD .由(1)可知,△ABE ≌△AFE,∴∠B =∠AFE , ∠3=∠4.∴∠4=∠EAD .∴ED =AD =6. 在Rt△CDG 中,∴tan∠2= tan∠ABC =2DGCG=.∴DG =2CG .…….4分 ∵222DG CG CD += ,∴()22225CG CG +=.∴CG DG 在Rt△EDG 中, ∵222EG DG DE += ,∴EG =4.∴EC =4-分 24.(1)如下表和图:…3分(2)80≤x <90;…4分(3)200×(0.30+0.25)=110.…5分 25.(1)证明:联结AD .∵AB 是⊙O 的直径,∴∠ADB =90°,AD ⊥BC . ∵AC = AB ,∴12∠=∠.…….1分 ∵OA OD =,∴13∠=∠. ∴23∠=∠,∴OD ∥AC .…….2分(2)∵AC = AB =10,0.20 321DF CE BA O4321GBFACED∴B C ∠=∠.∴cos C=cos ABC ∠=. 在Rt△ABD 中,∠ADB =90°,cos 5BD ABC AB ∠==, ∴BDCD = BD分∵EF 为⊙O 的切线,∴OD ⊥EF ,由∵OD ∥AC ,∴∠DFC =90°. …….4分 在Rt△CDF 中,cos C=5CF CD =,∴CF =2.∴AF =8. ∵OD ∥AC ,∴ODE ∆∽AFE ∆.∴OE OD AE AF =.∴OB BE OD AB BE AF+=+. ∵152OB OA OD AB ====,∴103BE =.…….5分 26. 解:(1)△ABC 的面积是4.5;…….2分(2)如右图: …….4分△MNP 的面积是7. …….5分 五、解答题(本题共22分,第27题7分,第28题7分,第29题827 . 解:(1)∵抛物线21y ax bx =++过(13)A ,,(21)B ,两点.∴134211a b a b ++=⎧⎨++=⎩.…….1分 解得,24a b =-⎧⎨=⎩. ∴抛物线的表达式是224+1y x x =-+.…….2分设直线AB 的表达式是y mx n =+ ,∴321m n m n +=⎧⎨+=⎩ ,解得,25m n =-⎧⎨=⎩.…….3分 ∴直线AB 的表达式是25y x =-+.…….4分(2)∵点C 在抛物线上,且点C 的横坐标为3.∴C (3,-5).…….5分点C 平移后的对应点为点'(3,5)C t -代入直线表达式25y x =-+,解得4t =.…….6分结合图象可知,符合题意的t 的取值范围是04t <≤. …….7分28. 解:(1)°70ADE ∠=;…….1分(2)①见右图;…….2分②EM EN =.…….3分证明:∵ABC AED α∠=∠=,BAC BAC ∠=∠. ∴°902EDA ACB α∠=∠=-.∵BA BC =,∴ACB BAC ∠=∠,即EDA BAC ∠=∠.∴EA ED = . …….4分∵E 是AC 中点,∴EA EC =.∴EA EC ED ==.∴点,,A D C 在以AC 为直径的圆上.∴°90ADC ∠=.. …….5分 而°°°°180180(90)9022EAM EAD αα∠=-∠=--=+.∵点F 是BC 中点,∴FD FB =.∴FDB ABC α∠=∠=. ∴°°909022EDN EDA ADN EDA FDB ααα∠=∠+∠=∠+∠=-+=+.∴EAM EDN ∠=∠.…….6分∵ ∠AED 绕点E 顺时针旋转适当的角度,得到∠MEN ,∴ ∠AED=∠MEN ,∴∠AED - ∠AEN=∠MEN -∠AEN ,即 ∠MEA=∠NED .∴ ΔEAM ≌ΔEPN .∴ EM=EN .…….7分29. 解:(1)1y x=- (0x <)不是有上界函数;…….1分 23y x =- (2x <)是有上界函数,上确界是1. …….2分(2)∵在y =-x +2中,y 随x 的增大而减小,∴上确界为2a -,即2a b -=. 3分又b a >,所以2a a ->,解得1a <. …….4分∵函数的最小值是2b -,∴221b a -≤+,得21a a ≤+,解得1a ≥-. 综上所述:11a -≤<.…….5分(3)函数的对称轴为x a =.…….6分①当3a ≤时,函数的上确界是251022710a a -+=-.∴27103a -=,解得125a =,符合题意. …….7分 ②当3a >时,函数的上确界是12232a a -+=-.∴323a -=,解得0a =,不符合题意.综上所述:125a .…….8分。
浙江省温州市中考数学二模试卷一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.在﹣4,﹣2,﹣1,0这四个数中,比﹣3小的数是()A.﹣4 B.﹣2 C.﹣1 D.02.如图是由5个完全相同的小正方体组成的几何体.则这个几何体的主视图是()A.B.C.D.3.一次函数y=2x+4交y轴于点A,则点A的坐标为()A.(0,4)B.(4,0)C.(﹣2,0)D.(0,﹣2)4.不等式3x≤2(x﹣1)的解集为()A.x≤﹣1 B.x≥﹣1 C.x≤﹣2 D.x≥﹣25.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的值可以是下列选项中的()A.3 B.4 C.5 D.66.解方程,去分母正确的是()A.2﹣(x﹣1)=1 B.2﹣3(x﹣1)=6 C.2﹣3(x﹣1)=1 D.3﹣2(x﹣1)=67.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连结CF.若∠A=60°,∠ACF=45°,则∠ABC的度数为()A.45°B.50°C.55°D.60°8.如图,直线y=2x+4与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移4个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为()A.(5,2)B.(4,2)C.(3,2)D.(﹣1,2)9.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次打7折,现售价为b元,则原售价为()A.a+B.a+C.b+D.b+10.如图,给定的点A,B分别在y轴正半轴、x轴正半轴上,延长OB至点C,使BC=OB,以AB,BC为邻边构造▱ABCD,点P从点D出发沿边DC向终点C运动(点P不与点C重合),反比例函数的图象y=经过点P,则k的值的变化情况是()A.先增大后减小B.一直不变C.一直增大D.一直减小二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:a2﹣2a+1﹣b2= .12.某校为纪念世界反法西斯战争胜利70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为:8.6,9.5,9.7,8.8,9,则这5个数据中的中位数是.13.如图,以△ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连结OD,OE,若∠DOE=40°,则∠A的度数为.14.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为个.15.如图,在△ABC中,∠ACB=90°BC=2,将△ACB绕点C逆时针旋转60°得到△DCE(A和D,B和E分别是对应顶点),若AE∥BC,则△ADE的周长为.16.如图,已知点A的坐标为(m,0),点B的坐标为(m﹣2,0),在x轴上方取点C,使CB ⊥x轴,且CB=2AO,点C,C′关于直线x=m对称,BC′交直线x=m于点E,若△BOE的面积为4,则点E的坐标为.三、解答题(本题有8小题,共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.(1)计算:(﹣2)2+2×(﹣3)+20160.(2)化简:(m+1)2﹣(m﹣2)(m+2).18.如图,在⊙O中,弦AB=弦CD,AB⊥CD于点E,且AE<EB,CE<ED,连结AO,DO,BD.(1)求证:EB=ED.(2)若AO=6,求的长.19.如图,在平面直角坐标系中,已知点A(3,4),B(﹣3,0).(1)只用直尺(没有刻度)和圆规按下列要求作图.(要求:保留作图痕迹,不必写出作法)Ⅰ)AC⊥y轴,垂足为C;Ⅱ)连结AO,AB,设边AB,CO交点E.(2)在(1)作出图形后,直接判断△AOE与△BOE的面积大小关系.20.某校举办初中生演讲比赛,每班派一名学生参赛,现某班有A,B,C三名学生竞选,他们的笔试成绩和口试成绩分别用两种方式进行了统计,如表和图1:学生A B C笔试成绩(单位:分)859590口试成绩(单位:分)8085(1)请将表和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由本年级段的300名学生代表进行投票,每票计1分,三名候选人的得票情况如图2(没有弃权票,每名学生只能推荐一人),若将笔试、口试、得票三项测试得分按3:4:3的比例确定最后成绩,请计算这三名学生的最后成绩,并根据最后成绩判断谁能当选.21.如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作CE⊥AC,且使AE∥BD,连结DE.(1)求证:AD=CE.(2)若DE=3,CE=4,求tan∠DAE的值.22.某校准备去楠溪江某景点春游,旅行社面向学生推出的收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908070已知该校七年级参加春游学生人数多于100人,八年级参加春游学生人数少于100人.经核算,若两个年级分别组团共需花费17700元,若两个年级联合组团只需花费14700元.(1)两个年级参加春游学生人数之和超过200人吗?为什么?(2)两个年级参加春游学生各有多少人?23.实验室里,水平桌面上有甲、乙两个圆柱形容器(容器足够高),底面半径之比为1:2,用一个管子在甲、乙两个容器的15厘米高度处连通(即管子底端离容器底15厘米).已知只有乙容器中有水,水位高2厘米,如图所示.现同时向甲、乙两个容器注水,平均每分钟注入乙容器的水量是注入甲容器水量的k倍.开始注水1分钟,甲容器的水位上升a厘米,且比乙容器的水位低1厘米.其中a,k均为正整数,当甲、乙两个容器的水位都到达连通管子的位置时,停止注水.甲容器的水位有2次比乙容器的水位高1厘米,设注水时间为t分钟.(1)求k的值(用含a的代数式表示).(2)当甲容器的水位第一次比乙容器的水位高1厘米时,求t的值.(3)当甲容器的水位第二次比乙容器的水位高1厘米时,求a,k,t的值.24.如图,在平面直角坐标系中,点A,B分别是y轴正半轴,x轴正半轴上两动点,OA=2k,OB=2k+3,以AO,BO为邻边构造矩形AOBC,抛物线y=﹣x2+3x+k交y轴于点D,P为顶点,PM⊥x轴于点M.(1)求OD,PM的长(结果均用含k的代数式表示).(2)当PM=BM时,求该抛物线的表达式.(3)在点A在整个运动过程中.①若存在△ADP是等腰三角形,请求出所有满足条件的k的值.②当点A关于直线DP的对称点A′恰好落在抛物线y=﹣x2+3x+k的图象上时,请直接写出k 的值.浙江省温州市中考数学二模试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.在﹣4,﹣2,﹣1,0这四个数中,比﹣3小的数是()A.﹣4 B.﹣2 C.﹣1 D.0【考点】有理数大小比较.【分析】根据两个负数比较大小,绝对值大的数反而小,可得答案.【解答】解:由|﹣4|>|﹣3|,得﹣4<﹣3,故选:A.2.如图是由5个完全相同的小正方体组成的几何体.则这个几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,故选:B.3.一次函数y=2x+4交y轴于点A,则点A的坐标为()A.(0,4)B.(4,0)C.(﹣2,0)D.(0,﹣2)【考点】一次函数图象上点的坐标特征.【分析】在一次函数y=2x+4中,令x=0,求出y的值,即可得到点A的坐标.【解答】解:在一次函数y=2x+4中,当x=0时,y=0+4解得y=4∴点A的坐标为(0,4)4.不等式3x≤2(x﹣1)的解集为()A.x≤﹣1 B.x≥﹣1 C.x≤﹣2 D.x≥﹣2【考点】解一元一次不等式.【分析】根据解一元一次不等式的步骤:去括号、移项、合并同类项计算,即可得到答案.【解答】解:去括号得,3x≤2x﹣2,移项、合并同类项得,x≤﹣2,故选:C.5.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的值可以是下列选项中的()A.3 B.4 C.5 D.6【考点】点与圆的位置关系;矩形的性质.【分析】根据点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内,可得答案.【解答】解:由勾股定理,得BD==5.在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,得3<r<5,故选:B.6.解方程,去分母正确的是()A.2﹣(x﹣1)=1 B.2﹣3(x﹣1)=6 C.2﹣3(x﹣1)=1 D.3﹣2(x﹣1)=6【考点】解一元一次方程.【分析】等式的两边同时乘以公分母6后去分母.【解答】解:在原方程的两边同时乘以6,得2﹣3(x﹣1)=6;7.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连结CF.若∠A=60°,∠ACF=45°,则∠ABC的度数为()A.45°B.50°C.55°D.60°【考点】线段垂直平分线的性质;三角形内角和定理;等腰三角形的性质.【分析】设∠ABD=∠CBD=x°,则∠ABC=2x°,根据线段垂直平分线性质求出BF=CF,推出∠FCB=∠CBD,根据三角形内角和定理得出方程,求出方程的解即可.【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD,设∠ABD=∠CBD=x°,则∠ABC=2x°,∵EF是BC的垂直平分线,∴BF=CF,∴∠FCB=∠CBD=x°,∵∠A=60°,∠ACF=45°,∴60°+45°+x°+2x°=180°,解得:x=25,∴∠ABC=2x°=50°,故选B.8.如图,直线y=2x+4与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移4个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为()A.(5,2)B.(4,2)C.(3,2)D.(﹣1,2)【考点】一次函数图象上点的坐标特征;坐标与图形变化-平移.【分析】先求出直线y=2x+4与y轴交点B的坐标为(0,4),再由C在线段OB的垂直平分线上,得出C点纵坐标为2,将y=2代入y=2x+4,求得x=﹣1,即可得到C′的坐标为(﹣1,2).【解答】解:∵直线y=2x+4与y轴交于B点,∴x=0时,得y=4,∴B(0,4).∵以OB为边在y轴右侧作等边三角形OBC,∴C在线段OB的垂直平分线上,∴C点纵坐标为2.将y=2代入y=2x+4,得2=2x+4,解得x=﹣1.则C′(﹣1,2),将其向右平移4个单位得到C(3,2).故选:C.9.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次打7折,现售价为b元,则原售价为()A.a+B.a+C.b+D.b+【考点】列代数式.【分析】可设原售价是x元,根据降价a元后,再次下调了30%后是b元为相等关系列出方程,用含a,b的代数式表示x即可求解.【解答】解:设原售价是x元,则(x﹣a)70%=b,解得x=a+b,故选:A.10.如图,给定的点A,B分别在y轴正半轴、x轴正半轴上,延长OB至点C,使BC=OB,以AB,BC为邻边构造▱ABCD,点P从点D出发沿边DC向终点C运动(点P不与点C重合),反比例函数的图象y=经过点P,则k的值的变化情况是()A.先增大后减小B.一直不变C.一直增大D.一直减小【考点】反比例函数图象上点的坐标特征;平行四边形的性质.【分析】根据反比例函数的性质和二次函数的性质,从而可以解答本题.【解答】解:如右图所示,设点P的坐标为(x,y),OB=a,OA=b,则S△OPE =S梯形OADC﹣S△梯形EADP﹣S△OPC,即化简,得k=﹣,∵x≥a,∴k的值随x的变大而变小,故选D.二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:a2﹣2a+1﹣b2= (a﹣1+b)(a﹣1﹣b).【考点】因式分解-分组分解法.【分析】原式前三项结合,利用完全平方公式变形,再利用平方差公式分解即可.【解答】解:原式=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b),故答案为:(a﹣1+b)(a﹣1﹣b)12.某校为纪念世界反法西斯战争胜利70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为:8.6,9.5,9.7,8.8,9,则这5个数据中的中位数是9 .【考点】中位数.【分析】把这组数按从大到小(或从小到大)的顺序排列,因为数的个数是奇数个,所以中间哪个数就是中位数.【解答】解:按照从小到大的顺序排列为:8.6,8.8,9,9.5,9.7,中位数为:9.故答案为:9.13.如图,以△ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连结OD,OE,若∠DOE=40°,则∠A的度数为70°.【考点】圆周角定理.【分析】连接BE,根据圆周角定理求出∠ABE的度数,由BC为直径得∠BEC=90°,再利用互余得到∠A的度数.【解答】解:连接BE,如图,∵∠DOE=40°,∴∠ABE=20°,∵BC为直径,∴∠BEC=90°,∴∠A=90°﹣∠ABE=90°﹣20°=70°,故答案为70°.14.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为24 个.【考点】概率公式.【分析】首先设黄球的个数为x个,根据题意得: =,解此分式方程即可求得答案.【解答】解:设黄球的个数为x个,根据题意得: =,解得:x=24,经检验:x=24是原分式方程的解;∴黄球的个数为24.故答案为:24;15.如图,在△ABC中,∠ACB=90°BC=2,将△ACB绕点C逆时针旋转60°得到△DCE(A和D,B和E分别是对应顶点),若AE∥BC,则△ADE的周长为1+.【考点】旋转的性质.【分析】根据旋转的性质得到∴CE=BC=2,AC=CD,∠BCE=∠ACD=60°,∠DCE=∠ACB=90°,推出△ACD是等边三角形,得到AD=AC,解直角三角形到底AE=CE=1,AC=CD=CE=,由勾股定理到底DE==,即可得到结论.【解答】解:∵将△ACB绕点C逆时针旋转60°得到△DCE,∴CE=BC=2,AC=CD,∠BCE=∠ACD=60°,∠DCE=∠ACB=90°,∴△ACD是等边三角形,∴AD=AC,∵AE∥BC,∴∠EAC=90°,∠AEC=∠BCE=60°,∴AE=CE=1,AC=CD=CE=,∴DE==,∴△ADE的周长=AE+AC+CE=1+,故答案为:1+.16.如图,已知点A的坐标为(m,0),点B的坐标为(m﹣2,0),在x轴上方取点C,使CB ⊥x轴,且CB=2AO,点C,C′关于直线x=m对称,BC′交直线x=m于点E,若△BOE的面积为4,则点E的坐标为(﹣2,2).【考点】坐标与图形变化-对称.【分析】先根据矩形的性质与轴对称的性质得出AB=C′D,再利用AAS证明△ABE≌△DC′E,得出AE=DE=﹣m.根据△BOE的面积为4,列出方程(2﹣m)(﹣m)=4,解方程即可.【解答】解:如图,设AE与CC′交于点D.∵点A的坐标为(m,0),在x轴上方取点C,使CB⊥x轴,且CB=2AO,∴CB=﹣2m.∵点C,C′关于直线x=m对称,∴CD=C′D,∵ABCD是矩形,AB=CD,∴AB=C′D.又∵∠BAE=∠C′DE=90°,∠AEB=DEC′,∴△ABE≌△DC′E,∴AE=DE,∴AE=AD=BC=﹣m.∵△BOE的面积为4,∴(2﹣m)(﹣m)=4,整理得,m2﹣2m﹣8=0,解得m=4或﹣2,∵在x轴上方取点C,∴﹣2m>0,∴m<0,∴m=4不合题意舍去,∵点E的坐标为(m,﹣m),∴点E的坐标为(﹣2,2).故答案为(﹣2,2).三、解答题(本题有8小题,共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.(1)计算:(﹣2)2+2×(﹣3)+20160.(2)化简:(m+1)2﹣(m﹣2)(m+2).【考点】整式的混合运算;零指数幂.【分析】(1)原式先计算乘方运算,再计算乘法及零指数幂运算即可得到结果;(2)原式利用完全平方公式,平方差公式计算即可得到结果.【解答】解:(1)原式=4﹣6+1=﹣1;(2)原式=m2+2m+1﹣m2+4=2m+5.18.如图,在⊙O中,弦AB=弦CD,AB⊥CD于点E,且AE<EB,CE<ED,连结AO,DO,BD.(1)求证:EB=ED.(2)若AO=6,求的长.【考点】弧长的计算;圆周角定理.【分析】(1)由AB=CD,根据圆心角、弧、弦的关系定理得出=,即+=+,那么=,根据圆周角定理得到∠CDB=∠ABD,利用等角对等边得出EB=ED;(2)先求出∠CDB=∠ABD=45°,再根据圆周角定理得出∠AOB=90°.又AO=6,代入弧长公式计算即可求解.【解答】(1)证明:∵AB=CD,∴=,即+=+,∴=,∵、所对的圆周角分别为∠CDB,∠ABD,∴∠CDB=∠ABD,∴EB=ED;(2)解:∵AB⊥CD,∴∠CDB=∠ABD=45°,∴∠AOD=90°.∵AO=6,∴的长==3π.19.如图,在平面直角坐标系中,已知点A(3,4),B(﹣3,0).(1)只用直尺(没有刻度)和圆规按下列要求作图.(要求:保留作图痕迹,不必写出作法)Ⅰ)AC⊥y轴,垂足为C;Ⅱ)连结AO,AB,设边AB,CO交点E.(2)在(1)作出图形后,直接判断△AOE与△BOE的面积大小关系.【考点】作图—复杂作图;坐标与图形性质.【分析】(1)过点A作AC⊥y轴于C,连接AB交y轴于E,如图,(2)证明△ACE≌△BOE,则AE=BE,于是根据三角形面积公式可判断△AOE的面积与△BOE的面积相等.【解答】解:(1)如图,(2)∵A(3,4),B(﹣3,0),∴AC=OB=3,在△ACE和△BOE中,,∴△ACE≌△BOE,∴AE=BE,∴△AOE的面积与△BOE的面积相等.20.某校举办初中生演讲比赛,每班派一名学生参赛,现某班有A,B,C三名学生竞选,他们的笔试成绩和口试成绩分别用两种方式进行了统计,如表和图1:学生A B C笔试成绩(单位:分)859590口试成绩(单位:分)90 8085(1)请将表和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由本年级段的300名学生代表进行投票,每票计1分,三名候选人的得票情况如图2(没有弃权票,每名学生只能推荐一人),若将笔试、口试、得票三项测试得分按3:4:3的比例确定最后成绩,请计算这三名学生的最后成绩,并根据最后成绩判断谁能当选.【考点】条形统计图;扇形统计图;加权平均数.【分析】(1)根据条形统计图找出A的口试成绩,填写表格即可;找出C的笔试成绩,补全条形统计图即可;(2)由300分别乘以扇形统计图中各学生的百分数即可得到各自的得分,再根据加权平均数的计算方法计算可得.【解答】解:(1)由条形统计图得:A同学的口试成绩为90;补充直方图,如图所示:A B C笔试859590口试908085(2)三名同学得票情况是,A:300×35%=105;B:300×40%=120;C:300×25%=75,∴==93, ==96.5,==83.5,∵>>,∴B学生能当选.21.如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作CE⊥AC,且使AE∥BD,连结DE.(1)求证:AD=CE.(2)若DE=3,CE=4,求tan∠DAE的值.【考点】全等三角形的判定与性质;平行四边形的判定与性质.【分析】(1)利用已知条件证明△BAD≌△ACE,根据全等三角形的对应边相等即可解答;(2)由△BAD≌△ACE,得到BD=AE,AD=CE,从而证明四边形ABDE为平行四边形,再证明∠EDA=∠BAD=90°,最后根据三角函数即可解答.【解答】解:(1)∵AB=AC,∴∠B=∠BCA,∵AE∥BD,∴∠CAE=∠BCA,∴∠B=∠CAE,又∵AD⊥AB,CE⊥AC,∴∠BAD=∠ACE=90°,在△BAD和△ACE中,,∴△BAD≌△ACE.∴AD=CE.(2)∵△BAD≌△ACE,∴BD=AE,AD=CE,∵AE∥BD,∴四边形ABDE为平行四边形.∴DE∥AB,∴∠EDA=∠BAD=90°,∴.又∵AD=CE=4,DE=3,∴tan∠DAE=.22.某校准备去楠溪江某景点春游,旅行社面向学生推出的收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908070已知该校七年级参加春游学生人数多于100人,八年级参加春游学生人数少于100人.经核算,若两个年级分别组团共需花费17700元,若两个年级联合组团只需花费14700元.(1)两个年级参加春游学生人数之和超过200人吗?为什么?(2)两个年级参加春游学生各有多少人?【考点】二元一次方程组的应用.【分析】(1)设两个年级参加春游学生人数之和为a人,分两种情况讨论,即a>200和100<a≤200,即可得出答案;(2)设七年级参加春游学生人数有x人,八年级参加春游学生人数有y人,根据两种情况的费用,即100<x≤200和x>200分别列方程组求解,即可得出答案.【解答】解:(1)设两个年级参加春游学生人数之和为a人,若a>200,则a=14700÷70=210(人).若100<a≤200,则a=14700÷80=183(不合题意,舍去).则两个年级参加春游学生人数之和等于210人,超过200人.(2)设七年级参加春游学生人数有x人,八年级参加春游学生人数有y人,则①当100<x≤200时,得,解得.②当x>200时,得,解得(不合题意,舍去).则七年级参加春游学生人数有120人,八年级参加春游学生人数有90人.23.实验室里,水平桌面上有甲、乙两个圆柱形容器(容器足够高),底面半径之比为1:2,用一个管子在甲、乙两个容器的15厘米高度处连通(即管子底端离容器底15厘米).已知只有乙容器中有水,水位高2厘米,如图所示.现同时向甲、乙两个容器注水,平均每分钟注入乙容器的水量是注入甲容器水量的k倍.开始注水1分钟,甲容器的水位上升a厘米,且比乙容器的水位低1厘米.其中a,k均为正整数,当甲、乙两个容器的水位都到达连通管子的位置时,停止注水.甲容器的水位有2次比乙容器的水位高1厘米,设注水时间为t分钟.(1)求k的值(用含a的代数式表示).(2)当甲容器的水位第一次比乙容器的水位高1厘米时,求t的值.(3)当甲容器的水位第二次比乙容器的水位高1厘米时,求a,k,t的值.【考点】二元一次方程的应用;一元一次方程的应用.【分析】(1)根据“开始注水1分钟,甲容器的水位上升a厘米,且比乙容器的水位低1厘米”,即可得出a、k之间的关系式,变形后即可得出结论;(2)根据两容器水位间的关系列出a、k、t的代数式,将(1)的结论代入其内整理后即可得出结论;(3)由(1)中的k=4﹣结合a、k均为正整数即可得出a、k的值,经检验后可得出a、k 值合适,再将乙容器内水位上升的高度转换成甲容器内水位上升的高度结合水位上升的总高度=单位时间水位上升的高度×注水时间即可得出关于t的一元一次方程,解之即可得出结论.【解答】解:(1)根据题意得:a+1=2+,解得;k=4﹣.(2)根据题意得:at=1+2+,∵k=4﹣,∴at=3+(4﹣)=3+at﹣t,∴t=3.(3)∵k=4﹣,且a、k均为正整数,∴或.∵a<=5,k<4,∴或符合题意.①当时,15+(14﹣2)×4=at+akt=2t+4t,解得:t=;②当时,15+(14﹣2)×4=at+akt=4t+12t,解得:t=.综上所述:a、k、t的值为2、2、或4、3、.24.如图,在平面直角坐标系中,点A,B分别是y轴正半轴,x轴正半轴上两动点,OA=2k,OB=2k+3,以AO,BO为邻边构造矩形AOBC,抛物线y=﹣x2+3x+k交y轴于点D,P为顶点,PM⊥x轴于点M.(1)求OD,PM的长(结果均用含k的代数式表示).(2)当PM=BM时,求该抛物线的表达式.(3)在点A在整个运动过程中.①若存在△ADP是等腰三角形,请求出所有满足条件的k的值.②当点A关于直线DP的对称点A′恰好落在抛物线y=﹣x2+3x+k的图象上时,请直接写出k 的值.【考点】二次函数综合题.【分析】(1)点D在y=﹣x2+3x+k上,且在y轴上,即y=0求出点D坐标,根据抛物线顶点公式,求出即可;(2)先用k表示出相关的点的坐标,根据PM=BM建立方程即可;(3)①先用k表示出相关的点的坐标,根据△ADP是等腰三角形,分三种情况,AD=AP,DA=DP,PA=PD计算;②由点P,D坐标求出直线PD解析式,根据PD⊥AA′,且A(0,2k),确定出AA′解析式,继而求出交点,再求出A′的坐标即可.【解答】解:(1)把x=0,代入,∴y=k.∴OD=k.∵,∴PM=k+3.(2)∵,∴OM=2,BM=OB﹣OM=2k+3﹣2=2k+1.又∵PM=k+3,PM=BM,∴k+3=2k+1,解得k=2.∴该抛物线的表达式为.(3)①Ⅰ)当点P在矩形AOBC外部时如图1,过P作PK⊥OA于点K,当AD=AP时,∵AD=AO﹣DO=2k﹣k=k,∴AD=AP=k,KA=KO﹣AO=PM﹣AO=k+3﹣2k=3﹣k KP=OM=2,在Rt△KAP中,KA2+KP2=AP2∴(3﹣k)2+22=k2,解得.Ⅱ)当点P在矩形AOBC内部时当PD=AP时,过P作PH⊥OA于H,AD=k,HD=,又∵HO=PM=k+3,∴,解得k=6.当DP=DA时,过D作PQ⊥PM于Q,PQ=PM﹣QM=PM﹣OD=k+3﹣k=3DQ=OM=2,DP=DA=k,在Rt△DQP中,.∴.即:,k=6,k=.②∵P(2,k+3),D(0,k)∴直线PD解析式为y=x+k,∵A(0,2k),∴直线AA′的解析式为y=﹣x+2k,∴直线PD和直线AA′的交点为(k, k),∴A′(k, k),∵A′在抛物线y=﹣x2+3x+k上,∴﹣×(k)2+3×k+k=k,∴k=或k=0(舍)。
2019-2020年九年级中考数学二模试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.实数a的相反数是()A.a B.﹣a C. D.|a|2.计算a3•()2的结果是()A.a B.a5C.a6D.a83.体积为90的正方体的棱长在()A.3与4之间B.4与5之间C.5与6之间D.6与7之间4.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是()A.平均数B.中位数C.众数 D.方差5.如图,以O为圆心,任意长为半径画弧,与射线OA交于点B,再以B为圆心,BO长为半径画弧,两弧交于点C,画射线OC,则sin∠AOC的值为()A. B. C. D.6.小明乘坐摩天轮转一圈,他距离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经侧试得部分数据如下表:x/分… 2.66 3.23 3.46 …y/米…69.16 69.62 68.46 …下列选项中,最接近摩天轮转一圈的时间的是()A.7分B.6.5分C.6分D.5.5分二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.在函数中,自变量x的取值范围是.8.已知是方程3x+ay=5的解,则a= .9.据统计,江苏省参加高考学生人数持续减少,今年再创历史新低,xx年江苏省高考报名人数约360 400人.将360 400用科学记数法表示为.10.已知扇形的圆心角为120°,弧长为2π,则它的半径为.11.如图,一束平行太阳光照射到等边三角形上,若∠α=28°,则∠β=°.12.如图,在平面直角坐标系中,点A(0,1)、B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴于点C、D,则CD的长是.13.若关于x的方程x2﹣2x+1=0的一个根为x1=+2,则另一个根x2= .14.在平面直角坐标系xOy中,A(1,2),B(3,2),连接AB.写出一个函数y=(k≠0),使它的图象与线段AB有公共点,那么这个函数的表达式为.15.如图,AB=5,P是线段AB上的动点,分别以AP、BP为边,在线段AB的同侧作正方形APCD和正方形BPEF,连接CF,则CF的最小值是.16.如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD外的两点,且AE=FC=3,BE=DF=4,则EF的长为.三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.解不等式组并把它的解集在数轴上表示出来.18.先化简,再求值:÷(a+2﹣),其中a=xx.19.某校有A、B两个食堂,甲、乙、丙三位同学各自随机选择其中的一个食堂就餐,求三位同学在相同食堂就餐的概率.(2)甲、乙、丙、丁四位同学分别站在正方形场地的四个顶点A、B、C、D处,每个人都以相同的速度沿着正方形的边同时出发随机走向相邻的顶点处,那么甲、乙、丙、丁四位同学互不相遇的概率是.20.“慈母手中线,游子身上衣”,为了解某校1000名学生在5月8日“母亲节”期间对母亲表达感谢的方式,某班兴趣小组随机抽取了部分学生进行问卷调查,并将问某校抽取学生“母亲节”期间对母亲表达感谢的方式的统计表卷调查的结果绘制成如下不完整的统计表:方式频数百分比送母亲礼物23 46%帮母亲做家务给母亲一个爱的拥抱8%其他15合计100%(1)本次问卷调查抽取的学生共有人,其中通过给母亲一个爱的拥抱表达感谢的学生有人;(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示;(3)根据抽样的结果,估计该校学生通过帮母亲做家务表达感谢的约有多少人?21.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?22.如图,矩形ABCD的对角线AC、BD相交于点O,过点B作BE∥AC,交DC的延长线于点E.(1)求证:△BDC≌△BEC;(2)若BE=10,CE=6,连接OE,求OE的值.23.如图,在△ABC中,∠C=90°,∠A=α,D是边AC上一点,且∠BDC=β,AD=a,求BC 的长.(用含a、α、β的式子表示)24.小明从家骑车出发,沿一条直路到相距2400m的书店买书,同时,小明的爸爸以80m/min 速度从书店沿同一条路步行回家,小明在书店停留3分钟后沿原路以原速返回.设他们出发x min后,小明与爸爸分别到达离家y1m、y2m的地方,图中的折线OABC、线段DE分别表示y1、y2与x之间的函数关系.(1)求点P的坐标,并解释点P的实际意义;(2)求线段BC所在直线的函数表达式;(3)小明从书店返回,从开始到追上爸爸需要多长时间?这时他与爸爸离家还有多远?25.已知二次函数y=x2+(m﹣3)x+1﹣2m.求证:(1)此二次函数的图象与x轴有两个交点;(2)当m取不同的值时,这些二次函数的图象都会经过一个定点,求此定点的坐标.26.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,交CA的延长线于点F.(1)求证:DF是⊙O的切线;(2)若∠C=30°,EF=,求EB的长.27.定义:如图①,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.(1)已知点M、N是线段AB的勾股分割点,若AB=12,AM=3,求BN的长.(2)如图②,在菱形ABCD中,点E、F分别在BC、CD上,BE=BC,DF=CD,AE、AF分别交BD于点M、N.求证:M、N是线段BD的勾股分割点.(3)如图3,点M、N是线段AB的勾股分割点,MN>AM≥BN,△ABC、△MN分别是以AB、MN为斜边的等腰直角三角形,且点C与点D在AB的同侧,若MN=4,连接CD,则CD= .xx年江苏省南京市新城教育集团中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.实数a的相反数是()A.a B.﹣a C. D.|a|【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:a的相反数是﹣a,故选:B.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.2.计算a3•()2的结果是()A.a B.a5C.a6D.a8【考点】分式的乘除法.【专题】计算题.【分析】原式先计算乘方运算,再计算乘法运算即可得到结果.【解答】解:原式=a3•=a,故选A【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.3.体积为90的正方体的棱长在()A.3与4之间B.4与5之间C.5与6之间D.6与7之间【考点】估算无理数的大小;立方根.【分析】根据估算无理数的大小,即可解答.【解答】解:∵,∴4<<5,故选:B.【点评】本题考查了估算无理数的大小,解决本题的关键是熟记公式无理数的大小.4.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是()A.平均数B.中位数C.众数 D.方差【考点】统计量的选择.【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选B.【点评】本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.5.如图,以O为圆心,任意长为半径画弧,与射线OA交于点B,再以B为圆心,BO长为半径画弧,两弧交于点C,画射线OC,则sin∠AOC的值为()A. B. C. D.【考点】特殊角的三角函数值.【分析】根据作图的方法得出△OBC是等边三角形,进而利用特殊角的三角函数值求出答案.【解答】解:连接BC,由题意可得:OB=OC=BC,则△OBC是等边三角形,故sin∠AOC=sin60°=.故选:D.【点评】此题主要考查了特殊角的三角函数值以及基本作图方法,正确得出△OBC是等边三角形是解题关键.6.小明乘坐摩天轮转一圈,他距离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经侧试得部分数据如下表:x/分… 2.66 3.23 3.46 …y/米…69.16 69.62 68.46 …下列选项中,最接近摩天轮转一圈的时间的是()A.7分B.6.5分C.6分D.5.5分【考点】二次函数的应用.【分析】由题意,最值在自变量大于2.945小于3.06之间,由此不难找到答案.【解答】解:最值在自变量大于2.945小于3.06之间,所以最接近摩天轮转一圈的时间的是6分钟.故选C.【点评】此题考查二次函数的实际运用,利用表格得出函数的性质,找出最大值解决问题.二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.在函数中,自变量x的取值范围是x≠1 .【考点】函数自变量的取值范围.【分析】根据分式的意义,分母不等于0,就可以求解.【解答】解:根据题意得:1﹣x≠0,解得x≠1.故答案为:x≠1.【点评】本题考查的知识点为:分式有意义,分母不为0;8.已知是方程3x+ay=5的解,则a= ﹣1 .【考点】二元一次方程的解.【分析】根据方程的解的概念,可将x、y的值代入方程,得到一个含有未知数a的一元一次方程,从而可以求出a的值.【解答】解:把代入方程3x+ay=5,得:6+a=5,解得:a=﹣1,故答案为:﹣1.【点评】此题考查二元一次方程的解,解题关键是把方程的解代入原方程,使原方程转化为以系数a为未知数的方程,一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.9.据统计,江苏省参加高考学生人数持续减少,今年再创历史新低,xx年江苏省高考报名人数约360 400人.将360 400用科学记数法表示为 3.604×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:360 400=3.604×105.故答案为:3.604×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.已知扇形的圆心角为120°,弧长为2π,则它的半径为 3 .【考点】弧长的计算.【分析】根据弧长公式代入求解即可.【解答】解:∵l=,∴R==3.故答案为:3.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=.11.如图,一束平行太阳光照射到等边三角形上,若∠α=28°,则∠β=32 °.【考点】等边三角形的性质;平行线的性质.【分析】直接利用等边三角形的性质得出∠1=∠4=60°,再结合平行线的性质以及三角形外角的性质、三角形内角和定理得出答案.【解答】解:∵已知三角形是等边三角形,∴∠1=∠4=60°,由题意可得:∵∠α=28°,∴∠2=∠3=88°,∴∠β=180°﹣88°﹣60°=32°.故答案为:32.【点评】此题主要考查了等边三角形的性质和平行线的性质、三角形外角的性质、三角形内角和定理等知识,正确应用等边三角形的性质是解题关键.12.如图,在平面直角坐标系中,点A(0,1)、B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴于点C、D,则CD的长是 2 .【考点】垂径定理;坐标与图形性质;勾股定理.【分析】根据同圆的半径相等得到AC=AD=AB=2,AO=1,由AB⊥CD,根据垂径定理得到OC=OD,由勾股定理求得OC即可求得结论.【解答】解:∵点A(0,1)、B(0,﹣1),∴AC=AD=AB=2,AO=1,∵AB⊥CD,∴OC=OD,OC===2,故答案为:2.【点评】本题主要考查了圆的半径相等,垂径定理,勾股定理,熟练掌握垂径定理是解题的关键.13.若关于x的方程x2﹣2x+1=0的一个根为x1=+2,则另一个根x2= ﹣2 .【考点】根与系数的关系.【专题】计算题.【分析】根据根与系数的关系得到x1+x2=2,然后把x1=+2代入可计算出x2的值.【解答】解:根据题意得x1+x2=2,∵x1=+2,∴x2=﹣2.故答案为﹣2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.14.在平面直角坐标系xOy中,A(1,2),B(3,2),连接AB.写出一个函数y=(k≠0),使它的图象与线段AB有公共点,那么这个函数的表达式为y= .【考点】反比例函数图象上点的坐标特征.【分析】把线段AB上的任意一点的坐标代入y=可求出k,从而得到满足条件的反比例函数解析式.【解答】解:把A(1,2)代入y=得k=1×2,所以经过点A的反比例函数解析式为y=.故答案为y=.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.15.如图,AB=5,P是线段AB上的动点,分别以AP、BP为边,在线段AB的同侧作正方形APCD和正方形BPEF,连接CF,则CF的最小值是.【考点】正方形的性质;二次函数的最值;勾股定理.【分析】设CF=y,EC=x,根据正方形的性质和勾股定理列出y2关于x的二次函数关系式,求二次函数的最值即可.【解答】解:FM=y,EC=x,则y2=(5﹣x)2+(5﹣2x)2=5(x﹣3)2+5.∵0≤x≤5,∴当x=3式,y2最小值=5,∴y最小值=.故答案是:【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.16.如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD外的两点,且AE=FC=3,BE=DF=4,则EF的长为7 .【考点】正方形的性质.【分析】延长EA交FD的延长线于点M,可证明△EMF是等腰直角三角形,而EM=MF=AE+DF=7,所以利用勾股定理即可求出EF的长.【解答】解:延长EA交FD的延长线于点M,∵四边形ABCD是正方形,∴AB=BC=DC=AD=5,∵AE=3,BE=4,∴AE2+BE2=AB2=25,∴△AEB是直角三角形,同理可证△CDF是直角三角形,∴∠EAB=∠DCF,∠EBA=∠CDF,∠EAB+∠EBA=90°,∠CDF+∠FDC=90°,∴∠EAB+∠CDF=90°又∵∠EAB+∠MAD=90°,∠MDA+∠CDF=90°,∴∠MAD+∠MDA=90°,∴∠M=90°∴△EMF是直角三角形,∵∠EAB+∠MAD=90°,∴∠EAB=∠MDA,在△AEB和△DMA中,,∴△AEB≌△DMA,∴AM=BE=4,MD=AE=3,∴EM=MF=7,∴EF==7.故答案为:7.【点评】本题考查了正方形的性质、全等三角形的判定和性质以及勾股定理的运用,题目的综合性较强,难度中等,是一道非常不错的中考题目,证明出三角形△EMF是等腰直角三角形是解题的关键.三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.解不等式组并把它的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【专题】计算题.【分析】分别解两个不等式得到x>﹣2和x≤3,再利用数轴表示解集,然后根据大小小大中间找确定不等式组的解集.【解答】解:解不等式①得x>﹣2,解不等式②得x≤3,数轴表示解集为:所以不等式组的解集是﹣2<x≤3.【点评】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.先化简,再求值:÷(a+2﹣),其中a=xx.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把a=xx代入进行计算即可.【解答】解:原式=÷=•=.当a=xx时,原式==.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.19.(1)某校有A、B两个食堂,甲、乙、丙三位同学各自随机选择其中的一个食堂就餐,求三位同学在相同食堂就餐的概率.(2)甲、乙、丙、丁四位同学分别站在正方形场地的四个顶点A、B、C、D处,每个人都以相同的速度沿着正方形的边同时出发随机走向相邻的顶点处,那么甲、乙、丙、丁四位同学互不相遇的概率是.【考点】列表法与树状图法.【分析】(1)此题需要三步完成;因为有三名学生选择餐厅,可以看做需三次完成的事件,所以需要采用树状图法,再根据概率公式计算可得;(2)由乘法公式可得共有2×2×2×2=16(种)等可能的结果,其中甲、乙、丙、丁四位同学互不相遇的有2种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:由树状图可知共有8种等可能结果,其中甲、乙、丙三名学生在同一个餐厅用餐有2种结果,∴甲、乙、丙三名学生在同一个餐厅用餐的概率为=;(2)∵甲、乙、丙、丁四位同学分别站在正方形场地的四个顶点A、B、C、D处,每个人都以相同的速度沿着正方形的边同时出发随机走向相邻的顶点处,共有2×2×2×2=16(种)等可能的结果,其中甲、乙、丙、丁四位同学互不相遇的有2种情况,∴甲、乙、丙、丁四位同学互不相遇的概率是=,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率,树状图法适用于两步或两步以上完成的事件,用到的知识点为:概率=所求情况数与总情况数之比.20.“慈母手中线,游子身上衣”,为了解某校1000名学生在5月8日“母亲节”期间对母亲表达感谢的方式,某班兴趣小组随机抽取了部分学生进行问卷调查,并将问某校抽取学生“母亲节”期间对母亲表达感谢的方式的统计表卷调查的结果绘制成如下不完整的统计表:方式频数百分比送母亲礼物23 46%帮母亲做家务给母亲一个爱的拥抱8%其他15合计100%(1)本次问卷调查抽取的学生共有50 人,其中通过给母亲一个爱的拥抱表达感谢的学生有 4 人;(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示;(3)根据抽样的结果,估计该校学生通过帮母亲做家务表达感谢的约有多少人?【考点】统计图的选择;用样本估计总体;频数(率)分布表.【专题】常规题型.【分析】(1)由问卷调查的学生总人数=送母亲礼物的人数÷该项人数所占的百分比;给母亲一个爱的拥抱的人数=问卷调查的学生总人数×该项人数所占的百分比.(2)可选择条形图或者扇形图;(3)该校学生帮母亲做家务的人数=该校学生数×该项所占的百分数.【解答】解:(1)23÷46%=50(人),50×8%=4(人)故答案为50,4.(2)选择条形图或扇形统计图,如下图,条形图.(3)∵15÷50=30%,∴1﹣30%﹣8%﹣46%=16%.∴1 000×16%=160(人).答:估计该校1 000名学生中通过帮母亲做家务表达感谢的约有160人.【点评】(1)本题考查了频数、频率及总数间的关系,统计图的选择和用样本估计总数.(2)频率=,频数=频率×总数,总数=.21.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?【考点】分式方程的应用.【分析】设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据数量关系消耗能量千卡数=行走步数÷每消耗1千卡能量需要行走步数结合小明步行12 000步与小红步行9 000步消耗的能量相同,即可得出关于x的分式方程,解之后经检验即可得出结论.【解答】解:设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据题意,得=,解得x=30.经检验:x=30是原方程的解.答:小红每消耗1千卡能量需要行走30步.【点评】本题考查了分式方程的应用,根据数量关系消耗能量千卡数=行走步数÷每消耗1千卡能量需要行走步数列出关于x的分式方程是解题的关键.22.如图,矩形ABCD的对角线AC、BD相交于点O,过点B作BE∥AC,交DC的延长线于点E.(1)求证:△BDC≌△BEC;(2)若BE=10,CE=6,连接OE,求OE的值.【考点】矩形的性质;全等三角形的判定与性质.【分析】(1)根据矩形的性质得出AB=CD,AB∥DC,∠BCD=∠BCE=90°,求出四边形ABEC 为平行四边形,求出DC=EC,根据SAS推出全等即可;(2)过点O作OF⊥CD于点F,根据平行四边形的性质得出AC=BE,求出OF和EF的长,最后根据勾股定理求出EF即可.【解答】(1)证明:∵四边形ABCD为矩形,∴AB=CD,AB∥DC,∠BCD=∠BCE=90°,∵AC∥BE,∴四边形ABEC为平行四边形,∴AB=CE,∴DC=EC,在△BCD和△BCE中,∴△BCD≌△BCE;(2)解:过点O作OF⊥CD于点F,∵由(1)知:四边形ABEC为平行四边形,∴AC=BE,∴BE=BD=10,∵△BCD≌△BCE,∴CD=CE=6,∵四边形ABCD是矩形,∴DO=OB,∠BCD=90°,∵OF⊥CD,∴OF∥BC,∴CF=DF=CD=3,∴EF=6+3=9,在Rt△BCE中,由勾股定理可得BC=8,∵OB=OD,∴OF为△BCD的中位线,∴OF=BC=4.∴在Rt△OEF中,由勾股定理可得OE===.【点评】本题考查了勾股定理,全等三角形的性质和判定,矩形的性质,平行四边形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键,题目综合性比较强,难度偏大.23.如图,在△ABC中,∠C=90°,∠A=α,D是边AC上一点,且∠BDC=β,AD=a,求BC 的长.(用含a、α、β的式子表示)【考点】解直角三角形.【分析】直接利用锐角三角函数关系表示出AC,DC的长,进而得出答案.【解答】解:在Rt△ABC中,由tanα=,得AC=,在Rt△DBC中,由tanβ=,得DC=,∵AD=a,∴﹣=a,∵BC=.【点评】此题主要考查了解直角三角形,正确表示出AC,DC的长是解题关键.24.小明从家骑车出发,沿一条直路到相距2400m的书店买书,同时,小明的爸爸以80m/min 速度从书店沿同一条路步行回家,小明在书店停留3分钟后沿原路以原速返回.设他们出发x min后,小明与爸爸分别到达离家y1m、y2m的地方,图中的折线OABC、线段DE分别表示y1、y2与x之间的函数关系.(1)求点P的坐标,并解释点P的实际意义;(2)求线段BC所在直线的函数表达式;(3)小明从书店返回,从开始到追上爸爸需要多长时间?这时他与爸爸离家还有多远?【考点】一次函数的应用.【专题】一次函数及其应用.【分析】(1)点P的横坐标代表了爸爸出发的时间,用书店距家的距离减去爸爸出发后走过的距离就能求出点P的纵坐标了;(2)小明返回的速度没有改变,则所用的时间也为12分钟,从而得出点C坐标为(27,0),将B、C的坐标代入直线BC解析式就可以求出;(3)小明追上爸爸的时间点即为线段BC与线段DE的交点,利用两条线段解析式可以求出点坐标.【解答】解:(1)∵2400﹣80×12=2400﹣960=1440,∴点P的坐标为(12,1440),P的实际意义:小明的爸爸从书店出发12分钟后,离家1440米;(2)∵小明骑车去书店和从书店返回的速度相同,∴小明从书店返回的时间也为12分钟,∴C点坐标为(27,0),设线段BC所在直线的函数表达式为y=kx+b,把点B(15,2400)、点C(27,0)代入得∴解得∴线段BC所在直线的函数表达式为y=﹣200x+5400(15≤x≤27);(3)设线段DE所在直线的函数表达式为y=kx+b,把点D(0,2400)、P(12,1440)代入得∴解得∴线段DE所在直线的函数表达式为y﹣80x+2400(0≤x≤30),∵小明追上爸爸时两人距家距离相等∴解得∴25﹣15=10.答:小明从书店返回,从开始到追上爸爸需要10分钟.这时他与爸爸离家还有400米.【点评】本题考查了一次函数的应用及一次函数解析式的求法,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息.25.已知二次函数y=x2+(m﹣3)x+1﹣2m.求证:(1)此二次函数的图象与x轴有两个交点;(2)当m取不同的值时,这些二次函数的图象都会经过一个定点,求此定点的坐标.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)利用根的判别式,可得结论;(2)首先分离出m,令m的系数为0,求出x,再求出y,也就是说这个定点与m的值无关.【解答】证明:(1)b2﹣4ac=(m﹣3)2﹣4(1﹣2m)=m2+2m+5=(m+1)2+4,∵(m+1)2≥0,∴(m+1)2+4>0,∴二次函数图象与x轴有两个交点;(2)y=x2+(m﹣3)x+1﹣2m=x2+(x﹣2)m﹣3x+1,∵当m取不同的值时,这些二次函数的图象都会经过一个定点,∴这个定点与m的值无关,∴x﹣2=0,解得:x=2,∴y=22﹣3×2+1=﹣1,∴当m取不同的值时,这些二次函数的图象都会经过(2,﹣1).【点评】此题主要考查了抛物线与x轴的交点,熟记二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系,△=b2﹣4ac决定抛物线与x轴的交点个数;△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点是解答此题的关键.26.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,交CA的延长线于点F.(1)求证:DF是⊙O的切线;(2)若∠C=30°,EF=,求EB的长.【考点】切线的判定.【专题】证明题.【分析】(1)连接OD,如图,先证明OD∥AB,再利用DE⊥AB得到OD⊥DF,然后根据切线的判定定理得到结论;(2)由∠C=30°得到∠AOD=60°,在Rt△ODF中利用含30°的直角三角形三边的关系得到OD=OF,则AF=OA=OD,再在Rt△AEF中计算出AE=EF=1,AF=2AE=2,于是得到BC=AC=2OA=4,然后计算AB﹣AE即可.【解答】(1)证明:连接OD,如图,∵AC为⊙O的直径,∴∠ADC=90°,又∵AB=AC,∴∠B=∠C,∵CO=OD,∴∠C=∠CDO,∴∠CDO=∠B,∴OD∥AB,∵DE⊥AB,∴OD⊥DF,又∵OD为⊙O的半径,∴DF是⊙O的切线;(2)解:∵∠C=30°,∴∠AOD=60°,在Rt△ODF中,∠ODF=90°,∴∠F=30°,∴OD=OF,∴AF=OA=OD,在Rt△AEF中,∠AEF=90°,∵EF=,∴AE=EF=1,∴AF=2AE=2,∴AC=2OA=4,∴AB=AC=4,∴BE=AB﹣AE=4﹣1=3.。
2019-2020年中考二模数学试题(WORD版)一、选择题(本大题共16小题,1-6小题,每小题2分,7-16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在一条东西向的跑道上,小明先向西走了10米,记作“﹣10米”,又向东走了8米,此时他的位置可记作()2.下列运算中,结果正确的是()3.我国雾霾天气多发,PM2.5颗粒物被称为大气的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米()4.下列因式分解正确的是()5.下列图形哪一个是正方体的表面展开图()6.在一次数学竞赛中,10名学生的成绩如下所示:78,82,75,88,97,82,82,67,78,71.则这10名学生成绩的众数和中位数是()7.定义一种运算☆,其规则为a☆b=+,根据这个规则,计算2☆3的值是()8.已知a2﹣3a﹣1=0,则4++a2的值为()9.等腰三角形的两条边长分别为2和5,那么这个三角形的周长为()+52+10+5+10+1010.把夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,它的每行、每列、每条对角线上三个数之和均相等,则幻方中的a﹣b的值是()11.如图,在⊙O,直径AB⊥弦CD于E点,⊙O半径等于5cm,OE=3cm,则CD的值是()cm12.关于x的方程=1的解是正数,则a的取值范围是()13.如图,菱形OABC的顶点O在坐标系原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点O顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()﹣)(,﹣,﹣)14.函数的图象在()15.二次函数y=ax2+bx+c的图象如图所示,那么下面结论:①abc>0,②2a+b=0;③a+b+c >0;④x=3时,9a+3b+c=0,正确的有()16.如图,直角梯形ABCD中,∠A=90°,∠B=45°,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EM⊥AB于M,EN⊥AD于N,设BM=x,矩形AMEN的面积为y,那么y与x 之间的函数关系的图象大致是()二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.已知:+(b+5)2=0,那么a+b的值为_________ .18.如图,Rt△ABC,AC=BC,将Rt△ABC沿过B的直线折叠,使点C落在AB边上点F处,折痕为BE,这样可以求出22.5°的正切值是_________ .19.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为_________ .20.对于正数x,规定f(x)=,例如f(4)═=,f()==,则f(2014)+f(2013)+…+f(2)+f(1)+f()+f()+…+f()= _________ .三、解答题(本大题共6小题,共72分,解答应写出文字说明、证明过程或演算步骤)21.(9分)有一项工程,甲单独做恰好如期完成,乙单独做则需延期三天方可完成;现在甲、乙合作施工2天后,甲另有其他任务去执行,剩下的工作由乙单独做,恰好如期完成,问此项工程的规定日期是几天.22.(10分)中小学生的视力状况越来越受到全社会的广泛关注.某市有关部门对全市5万名初中生的视力情况进行了一次抽样调查,统计人员利用所得数据绘制的尚不完整的扇形统计图(图1)和频数分布直方图(图2)(长方形的高表示该组人数),根据图中所提供的信息回答下列问题;(1)本次调查共抽测了多少名学生;(2)补全图2的频数分布直方图;(3)在扇形统计图(图1)中,视力在5.2~5.5所在扇形占的百分比为多少;(4)在这个问题中的样本指的是什么;(5)求全市有多少名初中生的视力在4.9~5.2(含4.9,不含5.2)范围内.23.(10分)如图,矩形ABCD在第一象限,AB在x轴正半轴上;AB=m,BC=1,直线y=x ﹣1经过点C交x轴与点F,与双曲线y=(x>0)交于点P(+1,n),(1)求k的值;(2)求点C的坐标;(3)m为多少时,双曲线y=(x>0)过点D.24.(11分)如图,已知P是正方形ABCD对角线AC上的一点,不与A,C重合,PE⊥DA,PF⊥CD,E、F为垂足,(1)求证:四边形EPFD为矩形;(2)求证:BP=EF;(3)过E,P,F三点作⊙O,设正方形ABCD的边长为4,当AC与⊙O相切时,求BP的长.25.(12分)如图1,在直线l同侧有A,E两点(1)通过画图,在直线l上找到一点P,使得AP+EP的值最小;(2)如图2,分别过点A,E作AB⊥BD,ED⊥BD,C为线段BD上一动点,连接AC,EC.已知AB=9,DE=1,AE=17,设CD=x,用含x的代数式表示AC+CE的长;(3)应用A:如图3,若直线l是一条河流,A、E代表河流同侧的两个工厂,欲在河岸上建一供水站,供A、E两个工厂的用水,为了节省费用,使通水管道到两个工厂的距离之和最短;已知工厂A到河岸的距离为9千米,工厂E到河岸的距离为1千米,A、E两个工厂之间的距离为17千米,请你求出通水管道的最短长度;(4)应用B:借助上面的思考过程与几何模型,求代数式+的最小值(0<x<16)26.(14分)某化工产品C是由A,B两种原料加工而成的,每个C产品的质量为50kg,经测定加工费与A的质量的平方成正比例;A原料的成本10元/kg,B原料的成本:40元/kg;C产品中A的含量不能低于10%,又不能高于60%;(1)设每个C产品的成本为y(元),每个C产品含A的质量为x(kg),当一个C产品含A 种原料10%时,成本价是1875元,求y与x之间的函数关系式,并写出x的范围;(每个C 成本=A的成本+B的成本+加工费用)(2)C产品出厂价经核算是所含B的质量的一次函数,且满足如下数表:①求C产品的出厂价z(元)与含A的质量x(kg)之间的函数关系式;②求每个C产品的利润w(元)与含A的质量x(kg)之间的函数关系式;(利润=出厂价﹣成本)(3)若生产的产品都能销售出去,工厂生产哪一种含量的C产品获利最高,最高为多少;(4)某客户买了100个相同的C产品,厂家获利50000元,问这种C产品中含A原料的百分比是多少.。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1.下列各数中,最大的数是A.0 B.-2 C.2 D.2.若三角形的三边长分别为3,4,x,则x的值可能是A.1 B.6 C.7 D.103.某几何体的三视图如图所示,则这个几何体是A.球 B.圆柱C.圆锥D.正方体4.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为A.0.25×10-5 B.0.25×10-6 C.2.5×10-5D.2.5×10-6 5.某校九年级6个班合作学习小组的个数分别是:8,7,9,7,8,7,这组数据的众数和中位数分别是A.7和7.5 B.7和8 C.9和7.5 D.7.5和7 6.下列运算中,正确的是A.3a+2a2=5a3B.C. D.7.如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠ABC=70°,则∠BDC的度数为A.40° B.30°C.20° D.10°8.若关于x的一元一次不等式组有解,则a的取值范围是A. a>1B.a≥1C.a<1 D.a≤1B(第3题)主视图左视图俯视图9. 若关于x 的方程 无解,则m 的值为A .-1.5B .1C .-1.5或2D .-0.5或-1.510. 如图是一张边长为8的正方形纸片,在正方形纸片上剪下一个腰长为5的等腰三角形(要求:等腰三角形的一个顶点与正方形的一个顶点重合,其余两个顶点在正方形的边上),则剪下的等腰三角形的底边长是A .B .C . 或D . 或二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.若在实数范围内有意义,则的取值范围是 ▲ . 12.已知∠α=20°,则∠α的补角等于 ▲ 度.13.在平面直角坐标系中,将点A (-2,3)向右平移2个单位长度,再向下平移6个单位长度得点B ,则点B 的坐标是 ▲ . 14.已知x ,y 满足则x -y 的值是 ▲ .15.若关于x 的方程x 2+2x +m =0有实数根,则m 的取值范围是 ▲ .16.如图,圆锥的底面半径为5 cm ,侧面积为55π cm 2的夹角为α,则sin α的值为 ▲ .17.如图,四边形ABCD 是菱形,∠DAB =50°,对角线AC ,BD 相交于点O ,接OH ,则∠DHO = ▲ 度.18.对于二次函数y=x 2-2mx -3,有下列说法:①如果当x ≤1时随的增大而减小,则m ≥1;②如果它的图象与x 轴的两交点的距离是4,则m =±1;③如果将它的图象向左平移3个单位后的函数的最小值是-4,则m =-1;④如果当x =1时的函数值与x =xx 时的函数值相等,则当x =xx 时的函数值为-3. 其中正确的说法是 ▲三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)(第17题)BADOCH(第10题)19.(本小题满分10分)(1)计算101()1(3)2-+-π- (2)化简.20.(本小题满分8分)学校准备购买一批课外读物.学校就“我最喜爱的课外读物”从“文学”“艺术”“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅请你根据统计图提供的信息,解答下列问题: (1)条形统计图中,m = ▲ ,n = ▲ ;(2)扇形统计图中,艺术类读物所在扇形的圆心角是 ▲ 度;(3)学校计划购买课外读物8000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?21.(本小题满分8分)如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于点F ,且AF =BD ,连接BF . (1)求证D 是BC 的中点;(2)如果AB =AC ,试判断四边形AFBD 是什么四边形,并证明你的结论.22.(本小题满分8分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.请用列表或画树状图的方法求一次打开锁的概率.23.(本小题满分8分)CABDEF (第21题)(第20题)如图,湖中有一小岛,湖边有一条笔直的观光小道AB ,现决定从小岛架一座与观光小道垂直的小桥PD ,在小道上测得如下数据:AB =60米,∠PAB =45°,∠PBA =30°.请求出小桥PD 的长.24.(本小题满分8分)如图,抛物线的对称轴为直线x =,与轴交于A ,B 两点,与y 轴交于点C (0,4).(1)求抛物线的解析式,结合图象直接写出当0≤x ≤4时y 的取值范围;(2)已知点D (m ,m +1)在第一象限的抛物线上,点D 关于直线BC 的对称点为点E ,求点E的坐标.25.(本小题满分10分)如图,AB 是⊙O 的直径,D 为⊙O 上一点,过BD ⌒上一点T 作⊙O 的切线TC ,且TC ⊥AD 于点C .(1)若∠DAB =50°,求∠ATC 的度数; (2)若⊙O 半径为2,CT =,求AD 的长.(第25题)B(第23题)(第24题)26.(本小题满分10分)小刚和小强相约晨练跑步,小刚比小强早1分钟离开家门,3分钟后迎面遇到从家跑来的小强.两人同路并行跑了2分钟后,决定进行长跑比赛,比赛时小刚的速度始终是180米/分,小强的速度始终是220米/分.下图是两人之间的距离.......y (米)与小刚离开家的时间x (分钟)之间的函数图象,根据图象回答下列问题:(1)两人相遇之前,小刚的速度是 ▲ 米/分,小强的速度是 ▲ 米/分; (2)求两人比赛过程中y 与x 之间的函数关系式;(3)若比赛开始10分钟后,小强按原路以比赛时的速度返回,则再经过多少分钟两人相遇?27.(本小题满分13分)(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方作等边△DCF ,连接AF .直接写出线段AF 与BD 之间的数量关系. (2)类比猜想:如图②,当△ABC 为以BC 为斜边的等腰直角三角形,D 是△ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为斜边在BC 上方作等腰直角△FDC ,连接AF . 请直接写出它们的数量关系.(3)深入探究:Ⅰ.如图③,当△ABC 为以BC 为底边的等腰三角形,D 是△ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为底边在BC 上方作等腰△FDC ,∠BC A =∠DCF ,且∠BA C =,连接AF .线段AF 与BD 之间的有什么数量关系?证明你发现的结论;Ⅱ.如图④,当△ABC 为任意三角形,D 是△ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方作△FDC ∽△ABC ,且,连接AF .线段AF 与BD 之间的有什么数量关系?直接写出你发现的结论.(第26题)28.(本小题满分13分)如图,矩形OABC 的顶点A 、C 分别在x 轴和y 轴上,点B 的坐标为(2,3),双曲线,的图像经过BC 上的点D 与AB 交于点E ,连接DE ,若若E 是AB 的中点﹒ (1)求D 点的坐标;(2)点F 是OC 边上一点,若△FBC 和△DEB 相似,求BF 的解析式;(3)若点P (m ,3m +6)也在此反比例函数的图像上(其中m >0),过p 点作x 轴的垂线,交x 轴于点M ,若线段PM 上存在一点Q ,使得△OQM 的面积是,设Q 点的纵坐标为n ,求n 2-2n +9的值.AFDB(第27题图②)FA CBD(第27题图③)BFAD(第27题图④)FA BCD (第27题图①)初中毕业、升学模拟考试 数学试题参考答案与评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分. 一、选择题(本大题共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 选项CBBDADCCDD二、填空题:本大题共8小题,每小题3分,共24分.11.x ≤3; 12.160; 13.(0,-3); 14.-5; 15.m ≤1; 16.; 17. 25; 18.①②④. 三、解答题:本大题共10小题,共96分. 19.(本小题满分10分) (1)解:原式=……………………………………………………… 4分=-2 ………………………………………………………………………5分(2)解:原式=·()()11)1()2)(2(2-+⋅--+a a a a a …………………………………3分 = ……………………………………………………………4分 = ………………………………………………………………5分20.(本小题满分8分)解:(1)40,60; …………………………………………………………………………4分(2)72; ………………………………………………………………………………6分(3)由题意,得(册).∴学校购买其他类读物1200册比较合理. ………………………………………8分 21.(本小题满分8分)(1)证明:∵AF ∥BD ,∴∠AFE =∠DCE .∵E 是AD 的中点,∴AE =DE .又∵∠AEF =∠DEC ,∴△AEF ≌△DEC (AAS). ………………………………2分∴DC =AF . ………………………………………………………………………………3分又∵AF =BD ,∴BD =DC .∴D 是BC 的中点. ……………………………………………4分(2)答:四边形AFBD 是矩形. …………………………………5分证明:∵AF =BD ,AF ∥BD , ∴四边形AFBD 是平行四边形. …………………………………6分∵AB =AC ,D 是BC 的中点,∴AD ⊥BC ,∴∠ADB =90°. ……………………………………7分∴四边形AFBD 是矩形. (8)分22.(本小题满分8分)23.(本小题满分8分)解:设PD =x 米, ………………………………………………………………………………1分∵PD ⊥AB ,∴∠ADP =∠BDP =90°. 在Rt△PAD 中,tan∠PAD =,∴AD ==x . ………………………………………………………………………3分 在Rt△PBD 中,tan∠PBD =,CABDEF (第21题)∴DB ===. ………………………………………………………………5分 又∵AB =60米,∴ …………………………………………………………………………7分 解得:即PD 米.答:小桥PD 的长度约为米. ………………………8分 24.(本小题满分8分)解:(1)将C (0,4)代入中得a =-1 又∵对称轴为直线x =,∴,得b =3.抛物线的解析式为. ………………………………………………3分 当0≤x ≤4时y 的取值范围是0≤y ≤. ………………………………………4分(2)∵点D (m ,m +1)在抛物线上,∴m +1=.∴m =-1或m =3.∵点D 在第一象限,∴点D 的坐标为(3,4). ……………6又∵C (0,4),所以CD ∥AB ,且CD =3.由得B (4,0)∴∠OCB =∠DCB =45°. ………………………………7分∴点E 在轴上,且CE =CD =3,∴OE =1.即点E 的坐标为(0,1). ………………………………8分25.(本小题满分10分)解:(1)证明:连接OT ,∵CT 为⊙O 的切线,∴OT ⊥CT . ……………………………………………………又∵CT ⊥AC , ∴OT ∥AC ,∴∠DAT =∠OTA . ……………………………………………………2(第25题)B∵OA=OT,∴∠OAT=∠OTA, (3)分∴∠DAT=∠OAT=∠DAB=25°. (4)分又∵CT⊥AC,∴∠ATC=90°-∠DAT=65°.……………………5分(2)解:过O作OE⊥AD于E,则E为AD中点,…………………………………………6分又∵CT⊥AC,CT⊥OT,∴四边形OTCE为矩形,…………………………………………………………7分∵CT=,∴OE=,又∵OA=2,∴在Rt△OAE中,AE=………………………………………9分∴AD=2AE=2.…………………………………………………………………10分26.(本小题满分10分)解:(1)小刚比赛前的速度米/分,…………………………1分小强比赛前的速度,由2×(v1+v2)=440,得v2=120米/分.…………3分(2)解法一:当x=5时,y=0;当x=6时,y=40,…………………………………4分由(5,0)和(6,40)可求得y与x之间的函数关系式为y=40x-200.……………………………………………………………………6分解法二:∵小刚的速度始终是180米/分,小强的速度始终是220米/分,他们的速度之差是40米/分,∴可设y与x之间的函数关系式为y=40x+b.………………………………4分将(5,0)代入得b=-200∴y=40x-200.…………………………………………………………………6分(3)当x =5+10=15时,y =400. ……………………………………………………7分设再经过t 分钟两人相遇,180t +220t =400 ……………………………………………………………9分解得:t =1答:再经过1分钟两人相遇.……………………………………………………10分27.(本小题满分13分)解:(1)BD =AF (1)分(2)不成立.BD =AF ………………………………………4分(3)Ⅰ.∵△ABC 为以BC 为底边的等腰三角形,△FDC 为以DC 为底边的等腰三角形,∠BC A =∠DCF ,∴△ABC ∽△FDC∴△BCD ∽△ACF ,作AP ⊥BC ,α21sin 221sin 22=∠==BAC AC CP AC BC ∴∴BD =﹒AF ………………………………………10分Ⅱ. BD =AF (13)分28.(本小题满分13分)解:(1)连接OD、OE、OB,∵E为AB的中点,∴由反比例函数的性质得由矩形的性质得∴∴D是BC边的中点.∴D为(1,3). ………………………………………2分(2)∵△FBC和△DEB相似∴∵D(1,3),E(2,1.5)∴DB=1,DE=1.5∴∴∴BF的解析式是:………………………………………8分(3)由(1)得:y=∵点P(m,3m+6)在反比例函数y= 的图像上,∴ m (3m +6 )=3∴012,036322=-+=-+m m m m 即 ∵PQ ⊥x 轴 ∴Q 点的坐标(m ,n ) ∵ △OQM 的面积为∴OM .QM =∴OM .QM =1∵ m >0 ∴ m .n =1∴ 代入得:,012,012122=--=-+n n n n即 ∴ ∴………………………………………13分。