专题05 导数的概念(重难点突破)解析版
- 格式:docx
- 大小:296.11 KB
- 文档页数:8
《导数的概念》教学重难点《《导数的概念》教学重难点》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!学习主题介绍学习主题名称:导数的概念主题内容简介:本节课是人教A版选修2-2第一章第一单元第三课时,在老师的主导下,学生通过微课的引导,观看视频,填写表格等活动,经过自主探究、观察发现、合作交流,从而归纳总结出导数的概念,并能求出在某一点的导数以及求出函数的余数,在这过程中充分体现了教师的主导作用,充分实现了学生的主体性地位。
在整个教学中始终着眼于培养学生的思维能力,探究意识,体现了素质教育的要求。
学习目标分析1.知识与技能: (1)了解导数的历史背景,体会导数定义的探索过程。
(2)掌握导数的内容,初步会用它进行有关的计算求解。
(3)使学生深刻理解导数的概念,理解导数在几何、物理上的意义,能够根据导数的定义求出数在区间上的导数。
2.过程与方法:(1)在导数定义的过程中,用形象直观的两个实际例子作为引例,培养学生的观察能力,抽象思维能力,体会数形结合的思想。
(2)通过探究导数定义的过程体会数学思维的严谨性。
3.情态与价值:(1)了解导数发展的历史,感受数学知识所蕴含的数学文化,培养学生学习数学,探究数学的兴趣和本领。
(2)在探究过程中,体验用极限方法解决平均变化率逼近某处的变化率的思想,培养学生的探究精神。
学情分析前需知识掌握情况:1、学生已学习掌握了平均变化率以及高台跳水运动中运动员在不同时刻的速度是不同的物理现象的有关内容。
2、学生有一定的自主学习、相互交流、主动构建新知识的能力。
对微课的认识:学生对微课有初步的接触,对于如何使用微课来提高学习效率还不熟练,虽然还不太明白,但比较感兴趣,乐于尝试。
学生特征分析学习态度:大多数学生的基础薄弱,学习缺乏积极性,在传统的教学模式中,很难实现以教师为主导,学生为主体的教学模式,微课作为一种新的形式,增强了学生的学习兴趣,提高学生主动参与学习的积极性,也有利于反复观看、学习,不断加深巩固。
十年(2014-2023)年高考真题分项汇编导数选择、填空目录题型一:导数的概念及其几何意义 ..................................... 1 题型二:导数与函数的单调性 ......................................... 8 题型三:导数与函数的极值、最值 ..................................... 9 题型四:导数与函数的零点 .......................................... 14 题型五:导数的综合应用 ............................................ 16 题型六:定积分 (20)题型一:导数的概念及其几何意义一、选择题1.(2021年新高考Ⅰ卷·第7题)若过点(),a b 可以作曲线e x y =的两条切线,则( )A .e b a <B .e a b <C .0e b a <<D .0e a b <<【答案】D解析:在曲线x y e =上任取一点(),tP t e ,对函数x y e =求导得e x y ′=,所以,曲线x y e =在点P 处的切线方程为()t t y e e x t −=−,即()1t ty e x t e +−, 由题意可知,点(),a b 在直线()1t t y e x t e +−上,可得()()11t tt b ae t e a t e =+−=+−,令()()1t f t a t e =+−,则()()t f t a t e ′=−.当t a <时,()0f t ′>,此时函数()f t 单调递增, 当t a >时,()0f t ′<,此时函数()f t 单调递减,所以,()()max a f t f a e ==, 由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max a b f t e <=, 当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点,故选D .2.(2020年高考课标Ⅰ卷理科·第0题)函数43()2f xx x =−的图像在点(1(1))f ,处的切线方程为( )A .21y x =−− B .21y x =−+ C .23y x =− D .21y x =+ 【答案】B【解析】()432f x x x =− ,()3246f x x x ′∴=−,()11f ∴=−,()12f ′=−, 因此,所求切线的方程为()121y x +=−−,即21y x =−+. 故选:B .【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题 3.(2020年高考课标Ⅲ卷理科·第0题)若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1 D .y =12x +12【答案】D解析:设直线l在曲线y =(0x ,则00x >,函数y =的导数为y ′=,则直线l的斜率k =,设直线l的方程为)0y x x −−,即00x x −+=, 由于直线l 与圆2215x y +==, 两边平方并整理得2005410x x −−=,解得01x =,015x =−(舍), 则直线l 的方程为210x y −+=,即1122y x =+. 故选:D .【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.4.(2019·全国Ⅲ·理·第6题)已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( )A .,1a e b ==−B .,1a e b ==C .1,1a e b −==D .1,1a e b −==−【答案】D【解析】由/ln 1x y ae x =++,根据导数的几何意义易得/1|12x y ae ==+=,解得1a e −=,从而得到切点坐标为(1,1),将其代入切线方程2y x b =+,得21b +=,解得1b =−,故选D .【点评】准确求导是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.另外对于导数的几何意义要注意给定的点是否为切点,若为切点,牢记三条:①切点处的导数即为切线的斜率;②切点在切线上;③切点在曲线上。
高考导数知识点重难点中国的高考是每年学生们备战的一场重要战役,而数学作为其中的一门科目,对于许多学生来说,是其中的一个难点。
而在数学中,导数是一个重要的知识点,也是高考中常考的内容之一。
在本文中,我们将探讨高考导数知识点的重难点,帮助学生们更好的备考。
导数的定义是数学中的一项基本定义,它可以用来描述函数在某一点的变化率。
导数的计算方法有很多种,其中一种常见的方法是使用极限。
例如,对于任意一条曲线上的一点P,在积分学中,我们可以通过求取该曲线斜率的极限来得到这一点的导数。
这个极限即为该点的导数值。
由于导数的定义使用了极限的概念,所以在计算导数时需要注意极限运算的性质。
在计算导数时,有一些常见的基本函数的导数需要牢记。
例如常数函数的导数恒为零,可以表示为f(x)=c,其中c为常数;幂函数的导数为指数乘以基数的指数减一,即f(x)=x^n,导数为f'(x)=nx^(n-1);指数函数和对数函数的导数分别为自身的导数和底数为自然对数e的指数函数与自身相乘,即f(x)=a^x,导数为f'(x)=a^x*ln(a)。
这些基本函数的导数在高考中经常需要用到,所以对它们的记忆是非常必要的。
高考对于导数的应用也是非常多的。
例如,高考常考的一类题目是函数的最值问题。
对于给定的一个函数,我们需要通过求导的方法找到其极值点。
为了求解这类问题,我们需要使用到导数的性质。
首先,我们要找到函数的极值点,这可以通过求函数的导数为零的点来实现。
然后,我们可以通过判定函数的二阶导数的符号来判断这个极值点是极大值还是极小值。
如果二阶导数的符号为正,那么这个点就是函数的极小值;如果二阶导数的符号为负,那么这个点就是函数的极大值。
除了求极值点之外,高考中还经常考察函数的单调性和变化趋势。
对于给定的函数,我们可以通过求导的方法来判断其在某个区间内的单调性。
如果函数的导数在某个区间内恒大于零,那么函数在这个区间内是单调递增的;如果函数的导数在某个区间内恒小于零,那么函数在这个区间内是单调递减的。
导数及其应用专题五:利用导数研究函数零点问题一、知识储备1、利用导数确定函数零点的常用方法(1)图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需使用极限).(2)利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数. 2、利用函数的零点求参数范围的方法(1)分离参数(()a g x =)后,将原问题转化为()y g x =的值域(最值)问题或转化为直线y a =与()y g x =的图象的交点个数问题(优选分离、次选分类)求解; (2)利用函数零点存在定理构建不等式求解;(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解. 二、例题讲解1.(2022·重庆市秀山高级中学校高三月考)已知函数()e e x x f x x =+. (1)求函数()f x 的单调区间和极值;(2)讨论函数()()()g x f x a a =-∈R 的零点的个数.【答案】(1)单调递减区间是(,2)-∞-,单调递增区间是(2,)-+∞,极小值为21e -,无极大值;(2)详见解析. 【分析】(1)利用导数求得()f x 的单调区间,进而求得极值.(2)由(1)画出()f x 大致图象,由此对a 进行分类讨论,求得()g x 的零点个数. 【详解】(1)函数()f x 的定义域为R ,且()(2)e x f x x '=+, 令()0f x '=得2x =-,则()'f x ,()f x 的变化情况如下表示:(2,)-+∞.当2x =-,()f x 有极小值为21(2)e f -=-,无极大值. (2)令()0f x =有1x =-:当1x <-时,()0f x <;当1x >-时,()0f x >,且()f x 经过212,e A ⎛⎫-- ⎪⎝⎭,(1,0)B -,(0,1)C .当x →-∞,与一次函数相比,指数函数e x y -=增长更快,从而1()0e xx f x -+=→;当x →+∞时,()f x →+∞,()f x '→+∞,根据以上信息,画出大致图象如下图所示.函数()()()g x f x a a =-∈R 的零点的个数为()y f x =与y a =的交点个数. 当2x =-时,()f x 有极小值21(2)e f -=-. ∴关于函数()()()g x f x a a =-∈R 的零点个数有如下结论: 当21e a <-时,零点的个数为0个; 当21e a =-或0a ≥,零点的个数为1个; 当210ea -<<时,零点的个数为2个. 【点睛】求解含参数零点问题,可利用分离常数法,结合函数图象进行求解.感悟升华(核心秘籍)本题讨论()()()g x f x a a =-∈R 零点的个数,将问题分解为()y f x =与y a =交点的个数,注意在利用导函数求()f x 单调性,极值后,画出草图,容易出错,本题利用极限x →-∞时,()0f x →,从而将草图画的更准确;三、实战练习1.(2022·河南高三开学考试(文))若函数()34f x ax bx =+-,当2x =时,函数()f x 有极值43-.(1)求函数的递减区间;(2)若关于x 的方程()0f x k -=有一个零点,求实数k 的取值范围. 【答案】(1)递减区间为()2,2-;(2)428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【分析】(1)对函数进行求导,利用()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩,解方程即可得1,34.a b ⎧=⎪⎨⎪=⎩,对函数求导,根据导数的性质列表,即可得答案;(2)作出函数的图象,直线与函数图象需有1个交点,即可得答案; 【详解】(1)()23f x ax b '=-,由题意知()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩解得1,34.a b ⎧=⎪⎨⎪=⎩ 故所求的解析式为()31443f x x x =-+,可得()()()2422f x x x x '=-=-+,令()0f x '=,得2x =或2x =-,由此可得所以函数的递减区间为2,2-.(2)由(1)知,得到当2x <-或2x >时, ()f x 为增函数; 当22x -<<时, ()f x 为减函数,∴函数()31443f x x x =-+的图象大致如图,由图可知当43k <-或283k >时, ()f x 与y k =有一个交点,所以实数k 的取值范围为428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【点睛】关键点睛:根据函数的单调性做出该函数的大致图像,进而利用数形结合求解,考查利用导数研究函数的极值、单调性、零点,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力、运算求解能力.2.(2022·陕西西安中学高三月考(理))已知函数()()1xf x e ax a R =--∈.(1)试讨论函数()f x 的零点个数;(2)若函数()()ln 1ln xg x e x =--,且()()f g x f x <⎡⎤⎣⎦在()0,x ∈+∞上恒成立,求实数a 的取值范围.【答案】(1)当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)(],1-∞【分析】(1)通过求解函数的单调性,然后根据零点存在定理,通过讨论求解得出函数零点的个数;(2)根据(1)中结论,得到函数()f x 在(0,)+∞上单调递增,将不等式转换为自变量的比较,最后得出结论. 【详解】解:(1)根据题意,可得()x f x e a '=-,则有:①若0a ,则()0x f x e a '=->,此时可得函数()f x 在R 上单调递增, 又因为(0)0f =,所以函数只有一个零点; ②若0a >,令()0f x '=,则有ln x a =,所以()0ln f x x a '>⇒>,此时函数()f x 在(ln ,)a +∞上单调递增;()0ln f x x a '<⇒<,此时函数()f x 在(,ln )a -∞上单调递减;即()(ln )1ln min f x f a a a a ==--,则有:()i 当ln 01a a =⇒=时,则()0f x ,此时函数()f x 只有一个零点;()ii 当ln 0a ≠时,即1a ≠时,则(ln )(0)0f a f <=,又因为x →-∞时,()f x →+∞;x →+∞时,()f x →+∞, 根据零点存在定理可得,此时函数()f x 在R 上有两个零点. 综上可得,当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)下面证明:0x ∀>,有()0g x x <<,先证:0x ∀>,有()0g x >,由(1)可知当1a =时,()()00min f x f ==,即当0x >时,1x e x ->,故0x ∀>,()()()1ln 1ln ln ln10x xe g x e x g x x ⎛⎫-=--==>= ⎪⎝⎭,再证0x ∀>,()g x x <;要证0x ∀>,()g x x <,只需证明0x ∀>,1x xe e x-<,即证0x ∀>,1x x e xe -<,即证0x ∀>,10x x xe e -+> 令()1(0)x x H x xe e x =-+>()0x H x xe '=>在(0,)+∞上恒成立,即得函数()H x 在(0,)+∞上单调递增,故有()(0)0H x H >=,即0x ∀>,10x x xe e -+>恒成立,即0x ∀>,有()0g x x <<,当1a ≤时,由(1)得,()f x 在(0,)+∞上单调递增,则由上结论可知,[()]()f g x f x <在(0,)x ∈+∞上恒成立,符合题意;当1a >时,由(1)得,()f x 在(0,ln )a 上单调递减,在(ln ,)a +∞上单调递增, 此时当0ln x a <<时,0()ln [()]()g x x a f g x f x <<<⇔>,不合题意, 综上可得,1a ,即(],1a ∈-∞. 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;(2)若函数()f x 有两个零点,求实数a 的取值范围.【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)()0,1. 【分析】(1)求出导函数()212121ax x f x ax x x-'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)把()f x 有两个零点,转化为2ln x xa x +=有两个解,令()2ln x x h x x+=,二次求导后得到函数()h x 的单调性和极值,即可求出实数a 的取值范围. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)若()f x 有两个零点,即2ln 0ax x x --=有两个解,2ln x x a x +=.设()2ln x x h x x +=,()312ln x h x xx '-=-, 设()12ln F x x x =--,因为函数()F x 在()0,∞+上单调递减,且()10F =, 所以当01x <<时,()0F x >,()0h x '>,当1x >时,()0F x <,()0h x '<. 以函数()h x 在()0,1上单调递增,在()1,+∞上单调递减, 且 x →+∞时,()0h x →,()11h =, 所以01a <<.即实数a 的取值范围为()0,1.4.(2022·沙坪坝·重庆南开中学)已知函数()e 1xf x x a -=++(R a ∈).(1)讨论()f x 的单调性;(2)若函数()f x 有两个零点,求a 的取值范围.【答案】(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增;(2)()20,e -.【分析】(1)对函数求导,进而讨论a 的符号,进而得到函数的单调区间;(2)由(1)可以判断0a >,根据(1)可知()()min ln 0f x f a =<,进而根据零点存在定理结合放缩法得到答案. 【详解】(1)()f x 的定义域为R ,()1e xf x a -'=-,①当0a ≤时,()0f x '>恒成立,所以()f x 在R 上单调递增; ②当0a >时,令()0f x '=得ln x a =, 当ln x a <时,()0f x '<,()f x 单调递减, 当ln x a >时,()0f x '>,()f x 单调递增,所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增综上所述,当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.(2)由(1)可知,0a ≤时,()f x 在R 上单调递增,函数至多有一个零点,不合题意.0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,因为函数有2个零点,所以()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=.记()()e 0x g x x x =-<,则()e 1xg x '=-,所以(),0x ∈-∞时,()0g x '<,()g x 单调递减,所以()()010g x g >=>,则e xx >,于是2e2x x ->-,则x <0时,2e 4xx ->. 所以当x <0时,()214ax f x x >++,限定1x <-,则()()212844ax f x x x ax >+=+, 所以当1x <-且8x a<-时,()0f x >.于是,若函数有2个零点,则()20,e a -∈.【点睛】在“()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=”这一步之后,另一个特值不太好找,这时候需要利用e xx >得到2e2x x->-,进而根据放缩法得到结论. 5.(2022·赣州市第十四中学高三月考(文))已知函数()e 2xf x x =+. (1)求函数()y f x =的单调区间;(2)若函数()()()g x f x ax a =-∈R ,在定义域内恰有三个不同的零点,求实数a 的取值范围.【答案】(1)()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数;(2)⎛⎫+∞⎪⎪⎭. 【分析】(1)求出函数()f x 的定义域,利用导数与函数单调性的关系可求得函数()f x 的增区间和减区间;(2)分析可知,直线y a =与函数()22xeh x x x=+(0x ≠且2x ≠-)的图象有三个交点,利用导数分析函数()22xe h x x x=+的单调性与极值,数形结合可得出实数a 的取值范围.【详解】(1)因为()e 2xf x x =+的定义域为{}2x x ≠-,且()()()212x e x f x x +'=+,则当2x <-时,()0f x '<,()f x 为减函数; 当21x -<<-时,()0f x '<,()f x 为减函数; 当1x >-时,()0f x '>,()f x 为增函数,综上可得:()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数; (2)令函数()()0g x f x ax =-=,因为0x =不是方程的解,所以可得22xe a x x=+,构造函数()22xeh x x x =+(0x ≠且2x ≠-),则()()()22222x e x h x x x -'=+,由()0h x '=可得x =作出函数()h x 的图象如下图所示:由图可知,当a >时,函数y a =与函数()y h x =的图象有三个不同的交点,因此实数a 的取值范围是⎛⎫+∞⎪⎪⎭.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.6.(2022·天津静海一中高三月考)已知函数32()3f x x x ax b =-++在1x =-处的切线与x 轴平行. (1)求a 的值和函数()f x 的单调区间; (2)若函数()y f x =的图象与抛物线231532y x x =-+恰有三个不同交点,求b 的取值范围. 【答案】(1)-9,单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-;(2)1,12⎛⎫⎪⎝⎭.【分析】(1)根据(1)0f '-=即可求得a 的值,利用导函数求解单调区间;(2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,转化为()g x 有三个不同的零点.【详解】(1)由已知得2()36f x x x a '=-+, ∵在1x =-处的切线与x 轴平行 ∴(1)0f '-=,解得9a =-.这时2()3693(1)(3)f x x x x x ==+'--- 由()0f x '>,解得3x >或1x <-; 由()0f x '<,解13x .∴()f x 的单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-. (2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,则原题意等价于()g x 图象与x 轴有三个交点. ∵2()3963(1)(2)g x x x x x '=-+=--, ∴由()0g x '>,解得2x >或1x <; 由()0g x '<,解得12x <<.∴()g x 在1x =时取得极大值1(1)2g b =-;()g x 在2x =时取得极小值(2)1g b =-.依题意得10210b b ⎧->⎪⎨⎪-<⎩,解得112b <<.故b 的取值范围为1,12⎛⎫⎪⎝⎭.7.(2022·沙坪坝·重庆南开中学高三月考)已知函数()()2ln =+-∈f x ax x x a R .(1)当1a =时,求()f x 在区间1[,1]3上的最值;(2)若()()g x f x x =-在定义域内有两个零点,求a 的取值范围.【答案】(1)3()=ln 24min f x +,()2max f x =;(2)10,2e ⎛⎫⎪⎝⎭.【分析】(1)当1a =时,求出导函数,求出函数得单调区间,即可求出()f x 在区间1[,1]3上的最值;(2)由()()0g x f x x =-=,分离参数得2ln ()x a h x x ==,根据函数2ln ()xh x x =得单调性作图,结合图像即可得出答案. 【详解】解:(1)当1a =时,()2ln f x x x x =+-,(21)(1)()x x f x x-+'=,∴()f x 在11[,)32单调递减,在1(,1]2单调递增,11114ln ln 339339f ⎛⎫=+-=+ ⎪⎝⎭,()414112ln 993f e f ⎛⎫==+> ⎪⎝⎭,∴13()()ln 224min f x f ==+,()(1)2max f x f ==.(2)()()0g x f x x =-=2ln ()x a h x x ⇔==,则312ln ()xh x x -'=,∴()h x在单调递增,在)+∞单调递减,12h e=,当0x →时,()h x →-∞,当x →+∞时,()0h x →, 作出函数2ln ()x h x x =和y a=得图像, ∴由图象可得,1(0,)2a e∈.8.(2022·全国高三专题练习)已知函数()ln f x a x bx =+的图象在点(1,3)-处的切线方程为21y x =--. (1)若对任意1[,)3x ∈+∞有()f x m 恒成立,求实数m 的取值范围;(2)若函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,求实数k 的范围. 【答案】(1)[ln31--,)+∞;(2)3(ln2,0)4-.【分析】(1)()af x b x'=+,(0)x >,根据函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--.可得f '(1)2=-,f (1)3=-,解得a ,b ,利用导数研究函数的单调性极值与最值即可得出实数m 的取值范围. (2)由(1)可得:2()ln 32g x x x x k =-+++,利用导数研究函数的单调性极值与最值,根据函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,可得最值满足的条件,进而得出实数k 的取值范围.【详解】解:(1)()a f x b x'=+,(0)x >.函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--. f '∴(1)2=-,f (1)3=-,∴23a b b +=-⎧⎨=-⎩,解得3b =-,1a =.()ln 3f x x x ∴=-.13()13()3x f x x x --=-=',1[,)3x ∈+∞,()0f x '∴.∴当13x =时,函数()f x 取得最大值,1()ln313f =--.对任意1[,)3x ∈+∞有()f x m 恒成立,所以()max m f x ,1[,)3x ∈+∞.ln31m ∴--.∴实数m 的取值范围是[ln31--,)+∞.(2)由(1)可得:2()ln 32g x x x x k =-+++,∴1(21)(1)()23x x g x x x x--'=+-=, 令()0g x '=,解得12x =,1. 列表如下:由表格可知:当1x =时,函数()f x 取得极小值g (1)k =;当2x =时,函数()g x 取得极大值13()ln224g k =-++.要满足函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点, 3ln2040k k ⎧-++>⎪⎨⎪<⎩, 解得3ln204k -<<, 则实数k 的取值范围3(ln2,0)4-.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、转化方法,考查了推理能力于计算能力,属于难题.9.(2022·全国高三开学考试)已知函数()()()21102f x x a x x =-+>. (1)若()()ln g x f x a x =+,讨论函数()g x 的单调性;(2)已知()()()2ln 222m x f x x x a x a =-++-+,若()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,求a 的取值范围.【答案】(1)答案见解析;(2)9ln 21,105⎛⎤+ ⎥⎝⎦ 【分析】(1)求出导函数,对a 进行分类讨论:①0a ≤;②01a <<;③a =1;④a >1,利用导数研究单调性. (2)把()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点转化为关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭利用导数判断单调性,求出值域,即可求出a 的范围. 【详解】(1)()f x 的定义域为(0,+∞),()()()()11x x a a f x x a x x--'=-++=. ①当0a ≤时,令()0f x '<,得到01x <<;令()0f x '>,得到1x >,此时()f x 在(0,1)上为减函数,在(1,+∞)上为增函数;②当01a <<时,令()0f x '<,得到1<<a x ;令()0f x '>,得到0x a <<或1x >,此时()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数;③当a =1时,显然()0f x '≥恒成立,此时()f x 在0,+∞)上为增函数;④当a >1时,令()0f x '<,得到1x a <<;令()0f x '>,得到01x <<或x a >.此时()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.综上:①当0a ≤时, ()f x 在(0,1)上为减函数,在(1,+∞)上为增函数; ②当01a <<时, ()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数; ③当a =1时,()f x 在0,+∞)上为增函数;④当a >1时,()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.(2)()()()22ln 222ln 22m x f x x x a x a x ax x x a =-++-+=---+在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,即关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭则()()2232ln 4=2x x x h x x +--'+, 令()2132ln 4,2p x x x x x ⎡⎫=+--∈+∞⎪⎢⎣⎭,,则()()()212x x p x x-+'=,显然()0p x '≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,故()p x 在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增.因为p (1)=0,所以当1,12x ⎡⎫∈⎪⎢⎣⎭,有()0p x <,即()0h x '<所以()h x 单调递减;当()1x ∈+∞,,有()0p x >,即()0h x '>所以()h x 单调递增; 因为()()9ln 24=,1,0111423ln 21532h h h h ⎛⎫⎛⎫+==-> ⎪ ⎪⎝⎭⎝⎭,所以a 的取值范围9ln 21,105⎛⎤+ ⎥⎝⎦ 10.(2022·贵州贵阳一中(文))已知函数3211()()32f x x ax a =-∈R 在[0,1]上的最小值为16-.(1)求a 的值;(2)若函数()()2()g x f x x b b =-+∈R 有1个零点,求b 的取值范围. 【答案】(1)1a =;(2)76b <-或103b >.【分析】(1)利用导数分0a ,01a <<,1a =和1a >四种情况求出函数的最小值,然后列方程可求出a 的值; (2)由(1)3211()232g x x x x b =--+,可得3211232b x x x =-++,构造函数3211()232h x x x x =-++,利用导数求出函数的单调区间和极值,结合函数图像可得答案 【详解】解:(1)由3211()32f x x ax =-,2()()f x x ax x x a =--'=,当0a 时,()'f x 在[0,)+∞上恒大于等于0,所以()f x 在[0,1]上单调递增, min ()(0)0f x f ==,不合题意;当01a <<时,则[0,]x a ∈时,()0f x '<,()f x 单调递减; [,1]x a ∈时,()0f x '>,()f x 单调递增,所以333min 111()()326f x f a a a a ==-=-,31166a -=-,所以1a =,不满足01a <<;当1a =时,在[0,1]上,()0f x '且不恒为0,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f ==-=-,适合题意;当1a >时,在[0,1]上,()0f x '<,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f a ==-=-,所以1a =,不满足1a >;综上,1a =. (2)由(1)3211()232g x x x x b =--+,所以3211232b x x x =-++,令3211()232h x x x x =-++,则2()2(2)(1)h x x x x x =-++=--+',所以(2)0,(1)0h h ''=-=,且当1x <-时,()0h x '<; 当12x -<<时,()0h x '>;当2x >时,()0h x '<,所以 117()(1)2326h x h =-=+-=-极小, 1110()(2)844323h x h ==-⨯+⨯+=极大,如图:函数()g x 有1个零点,所以76b <-或103b >.。
专题突破卷05 导数中的极值点偏移问题题型一 极值点偏移解决零点问题1.已知函数()ln 1f x x ax =+-有两个零点12,x x ,且12x x <,则下列命题正确的是( )A .1a >B .122x x a +<C .121x x ×<D .2111x x a->-2.已知函数()ln 1f x x ax =+-有两个零点1x 、2x ,且12x x <,则下列命题正确的个数是( )①01a <<;②122x x a +<;③121x x ×>;④2111x x a->-;A .1个B .2个C .3个D .4个3.已知函数()ln f x x ax =-有两个零点1x ,()212x x x <,则下列说法:①函数()f x 有极大值点0x ,且1202x x x +>;②212e x x >;③1232x x a+>;④若对任意符合条件的实数a ,曲线()y f x =与曲线1y b x=-最多只有一个公共点,则实数b 的最大值为ln2.其中正确说法的有( )A .1个B .2个C .3个D .4个4.已知函数()ln x f x x =,对于正实数a ,若关于t 的方程()a f t f t æö=ç÷èø恰有三个不同的正实数根,则a 的取值范围是( )A .()1,8B .()2,8e C .()8,+¥D .()2,e +¥5.关于函数()2ln f x x x=+,下列说法错误的是( )A .2x =是()f x 的极小值点B .函数()y f x x =-有且只有1个零点C .存在正实数k ,使得()f x kx >恒成立D .对任意两个正实数1x ,2x ,且12x x >,若()()12f x f x =,则124x x +>6.关于函数2()ln f x x x=+,下列说法正确的是( )A .2x =是()f x 的极大值点B .函数()y f x x =-有2个零点C .存在正整数k ,使得()f x kx >恒成立D .对任意两个正实数12,x x ,且12x x ¹,若()()12f x f x =,则124x x +>7.已知函数()x f x e ax =-有两个零点1x ,2x ,则下列判断:①a e <;②122x x +<;③121x x ×>;④有极小值点0x ,且1202x x x +<.则正确判断的个数是( )A .4个B .3个C .2个D .1个8.已知函数3()2f x x =+的图象与函数()g x kx =的图象有三个不同的交点11(,)x y 、22(,)x y 、33(,)x y ,其中123x x x <<.给出下列四个结论:①3k >;②12x <-;③232x x +>;④231x x >.其中正确结论的个数有( )个A .1B .2C .3D .49.已知()e x f x ax =-有两个零点12x x <,下列说法正确的是A .e a <B .122x x +>C .121x x ×>D .有极小值0x 且1202x x x +>10.已知函数()2πcos f x x x a =++在()0,π上有两个不同的零点()1212,x x x x <,给出下列结论:①()10f x ¢<;②()20f x ¢>;③12πx x +<.其中错误结论的个数是( )A .0B .1C .2D .311.已知a b >,c d >,e e 1.0111a b a b ==++,()()1e 1e 0.99c dc d -=-=,则( )A .0a b +<B .0c d +>C .0a d +>D .0b c +>12.已知1a >,1x ,2x ,3x 均为2x a x =的解,且123x x x <<,则下列说法正确的是( )A .1(2,1)x Î--B .2e (1,e )a ÎC .120x x +<D .232ex x +<题型二 极值点偏移解决不等式问题13.已知函数()e xf x x =-,则下列说法正确的是( )A .()f x 在R 上是增函数B .1x ">,不等式()()2ln f ax f x ³恒成立,则正实数a 的最小值为2eC .若()f x t =有两个零点12,x x ,则120x x +>D .若过点()1,M m 恰有2条与曲线()y f x =相切的直线,则1e 1m -<<-14.关于函数2()ln f x x x=+,下列说法正确的是( )A .2x =是()f x 的极大值点B .函数()y f x x =-有且只有1个零点C .存在正整数k ,使得()f x kx >恒成立D .对任意两个正实数12,x x ,且12x x ¹,若12()()f x f x =,则124x x +>15.设函数1cos ,0(),0e x x x f x x x -£ìï=í>ïî,下面四个结论中正确的是( )A .函数在()0,1上单调递增B .函数()y f x x =-有且只有一个零点C .函数的值域为[]1,e -D .对任意两个不相等的正实数12,x x ,若()()12f x f x =,则122x x +<16.已知函数()e xf x x =,()lng x x x =,则下列说法正确的是( )A .函数()f x 与函数()g x 有相同的极小值B .若方程()f x a =有唯一实根,则a 的取值范围为0a ³C .若方程()g x a =有两个不同的实根12,x x ,则212x x a>D .当0x >时,若()()12f x g x t ==,则12x x t =成立17.已知函数ln ()xf x x=,则( )A .(2)(3)f f >B .若()f x m =有两个不相等的实根1x ,2x ,则212ex x >C .ln 2<D .若23x y =,x ,y 均为正数,则23x y >18.关于函数()2ln f x x x=+,下列说法正确的是( )A .()f x 在()2,+¥上单调递增B .+12,R x x "Î且21x x >,若()()12f x f x =,则124x x +>C .R k +$Î,使得()f x kx >恒成立D .函数()y f x x =-有且只有1个零点19.定义在R 上的函数()f x 满足()()e xf x f x =¢+,且()01f =,则下列说法正确的是( )A .()f x 在2x =-处取得极小值B .()f x 有两个零点C .若0x ">,()f x k >恒成立,则1k <D .若1x $,2R x Î,12x x ¹,()()12f x f x =,则124x x +<-20.宠物很可爱,但身上会有寄生虫,小猫“墩墩”的主人每月定期给“墩墩”滴抺驱虫剂.刚开始使用的时候,寄生虫的数量还会继续增加,随着时间的推移,奇生虫增加的幅度逐渐变小,到一定时间,寄生虫数量开始减少.若已知使用驱虫剂t 小时后寄生虫的数量大致符合函数()()()47e 50(0720),t f t t t f t -=-+¢£<为()f t 的导数,则下列说法正确的是( )A .驱虫剂可以杀死所有寄生虫B .()100f ¢表示100t =时,奇生虫数量以10052e -的速度在减少C .若存在,,a b a b ¹,使()()f a f b =,则96a b +<D .寄生虫数量在48t =时的瞬时变化率为021.已知()()12()ln ,f x x x f x f x ==且12x x ¹,则( )A .1212ex x +>B .1212ex x +<C1e>D1e<22.已知关于x 的方程e 0x x a -=有两个不等的实根12,x x ,且12x x <,则下列说法正确的有( )A .1e 0a --<<B .122x x +<-C .2x a>D .11e 0xx +<23.已知函数()e xf x x =-,()lng x x x =-,则下列说法正确的是( )A .()ln f x 在()1,+¥上是增函数B .1x ">,不等式()()2ln f ax f x ³恒成立,则正实数a 的最小值为2eC .若()g x t =有两个根1x ,1x ,则121x x ×>D .若()()()122f x g x t t ==>,且210x x >>,则21ln t x x -的最大值为1e24.已知2.86ln ln a ba b==,ln ln 0.35c c d d ==-,a b <,c d <,则有( )A .2e a b +<B .2ec d +>C .1ad <D .1bc >题型三 极值点偏移解决双变量问题25.已知函数 ()()2e xx f x g x x ax ==+,,且曲线()y f x =在()0,0处切线也是曲线()y g x =的切线.(1)求a 的值;(2)求证:()()f x g x £;(3)若直线y k =与曲线()y f x =有两个公共点()11,A x y ,()22,B x y ,与曲线()y g x =有两个公共点()()33,C x g x ,()()44,D x g x ,求证:12341x x x x +++>26.已知函数()()2e ln 1xf x a x a -=+-ÎR .(1)若函数()f x 在()0,¥+上单调递增,求实数a 的取值范围;(2)若函数()f x 恰有两个极值点()1212,x x x x <,且21x x 的最大值为2e ,求证:2122e 1e 1x x ++£-.27.已知函数()22ln 1f x x x x =-+.(1)证明:()1f x <;(2)若120x x <<,且()()120f x f x +=,证明:122x x +>.28.设函数23115e ()e e (1),[0,)232x f x x x x =---+Î+¥.(1)判断函数()f x 的单调性;(2)若12x x ¹,且()()126e f x f x +=,求证:122x x +<.29.已知函数()()1ln f x x x =+.(1)求曲线()y f x =在1x =处的切线方程;(2)若关于x 的不等式()(1)f x m x >-在(1,)+¥上恒成立,求实数m 的最大值;(3)若关于x 的方程2()(1)10()f x ax a x a ++++=ÎR 有两个实根1x ,()212x x x ¹,求证:121123a a x x -<+<+.30.设()()()()1ln 1ln 0f x x x x a a =+-->.(1)若1a =,求函数()y f x =的图象在1x =处的切线方程;(2)若()0f x ³在 [)1,+¥上恒成立,求实数a 的取值范围;(3)若函数()y f x =存在两个极值点1212x x x x (<)、,求证:122x x +>.31.已知函数()11e ,0axf x x a a a -æö=-+>ç÷èø.(1)若()f x 的极小值为-4,求a 的值;(2)若()()ln g x f x a x =-有两个不同的极值点12,x x,证明:12x x +>32.已知函数()e 1xf x ax =--.(1)讨论函数()f x 的单调性;(2)当0a >时,若满足()()()1212f x f x x x =<,求证:122ln x x a +<;(3)若函数()()sin g x f x x =+,当0x ³时,()0g x ³恒成立,求实数a 的取值范围.33.已知函数()()2ln 2g x x ax a x =-+-(R a Î).(1)求()g x 的单调区间;(2)若函数()()()212f x g x a x x =++-,()1212,0x x x x <<是函数()f x 的两个零点,证明:1202x x f +æö¢<ç÷èø.34.已知函数()23ln 4(0)f x x ax x a =+->.(1)当1a =时,讨论()f x 的单调性;(2)当12a =时,若方程()f x b =有三个不相等的实数根123,,x x x ,且123x x x <<,证明:314x x -<.35.已知常数0a >,函数221()2ln 2f x x ax a x =--.(1)若20,()4x f x a ">>-,求a 的取值范围;(2)若1x 、2x 是()f x 的零点,且12x x ¹,证明:124x x a +>.36.已知函数()()2ln R af x x x a x=+Î有两个零点()1212,x x x x <.(1)求实数a 的取值范围;(2)证明:121x x +>.1.已知a b >,且e e 1.01a b a b -=-=,则下列说法正确的有( )①1b <-; ②102a << ;③0b a +<; ④1a b -<.A .①②③B .②③④C .②④D .③④2.已知函数()ln f x x x =-,过点()()1,1P b b >-作函数()f x 的两条切线,PA PB ,切点分别为,A B ,下列关于直线AB 斜率k 的正负,说法正确的是( )A .0k <B .0k =C .0k >D .不确定3.关于函数()22ln x f x x x =++,下列说法错误的是( )A .不存在正实数k ,使得()f x kx >恒成立B .对任意12,(0,)x x Î+¥,若12x x <,有()2112()x f x x f x <C .对任意121212()(),(0,1),()22x x f x f x x x f ++ΣD .若正实数12,x x ,满足12()()4f x f x +=,则122x x +³4.已知函数()()()e ,e xxxf x x a ag x =+Î=R ,下列说法正确的是( )A .若()()1212,x x g x g x ¹=,则122x x +>B .若0a =,则“120x x +=”是“()()120f x g x +=”的充要条件C .若不等式()()f x g x <恰有3个整数解,则实数a 的取值范围是22e e 212e ,e éö--÷êëøD .若不等式()()f x g x <恰有2023个整数解122023,,x x x ×××,则()()20232023112023kkk k f x g x a==+=åå5.已知()()e e ,, 1.01,1e 1e 0.9911a bc d a b c d c d a b >>==-=-=++,则( )A .0a b +>B .0c d +>C .0a d +>D .0b c +>6.已知函数()e xf x x =,若120x x >>,则下列结论正确的是( )A .2121()()f x f x x x ->-B .1122()()x f x x f x +>+C .1221()()x f x x f x >D .若12()()f x f x -=-,则122x x +>7.已知函数()()e xf x x a bx =--,则下列结论正确的是( )A .当1,2a b =-=时,()1f x ³恒成立B .当1,a b R =Î时,()f x 必有零点C .若()f x 有两个极值点12x x 、,则1224x x a +>-D .若()f x 在R 上单调递增,则1a b +£8.已知函数()ln f x x x a =--有两个零点1x 、2x ,则下列说法正确的是( ).A .1a >B .121x x >C .121x x <D .122x x +>9.已知函数()ln xf x x=,则( )A .()()25f f >B .若()f x m =有两个不相等的实根1x 、2x ,则212ex x <C.ln 2>D .若23x y =,x ,y 均为正数,则23x y >10.关于函数f (x )=2x+ln x ,则下列结论正确的是( )A .x =2是f (x )的极小值点B .函数y =f (x )-x 有且只有1个零点C .对任意两个正实数x 1,x 2,且x 2>x 1,若f (x 1)=f (x 2),则x 1+x 2>4D .存在正实数k ,使得f (x )>kx 恒成立11.已知函数()2ln 2a f x x x x =-有两个极值点1x ,212()x x x <,则( )A .a 的取值范围为(-∞,1)B .122x x +>C .12112x x +>D .2111x x a->-12.已知关于x 的方程ln 0x x a -=有两个不等的正根1x ,2x 且12x x <,则下列说法正确的有( )A .1ea -<<B .122ex x +>C .122x x a +<-D .1x a<-13.设函数1,0()cos ,0x xx f x e x x -ì>ï=íï£î,下列四个结论中正确的是( )A .函数()f x 在区间[),1p -上单调递增B .函数()y f x x =-有且只有两个零点C .函数()f x 的值域是[]1,1-D .对任意两个不相等正实数12,x x ,若12()()f x f x =,则122x x +>14.已知函数()e x f x x a =-,则下面结论成立的是( )A .当10ea <<时,函数()0f x =有两个实数根B .函数()0f x =只有一个实数根,则0a £C .若函数()0f x =有两个实数根1x ,2x ,则122x x +>D .若函数()0f x =有两个实数根1x ,2x ,则123x x +>15.已知函数()e x x m f x +=的极大值点为0,则实数m 的值为 ;设12t t ¹,且211212ln ln t t t t t t -=-,不等式12ln ln l +>t t 恒成立,则实数l 的取值范围为 .16.已知函数()2ln ,R f x x x ax x a =-+Î.(1)若函数()f x 是减函数,求a 的取值范围;(2)若()f x 有两个零点12,x x ,且212x x >,证明:1228e x x >.17.已知函数()2ln ,R a f x x a x=+Î.若函数()f x 有两个不相等的零点12,x x .(1)求a 的取值范围;(2)证明:124x x a +>.18.已知函数()ln f x x x a =--有两个不同的零点12,x x .(1)求实数a 的取值范围;(2)求证:122x x +>.19.已知函数ln ()a x a f x x +=.(1)讨论()f x 的极值;(2)若()()2112e e x xx x =(e 是自然对数的底数),且1>0x ,20x >,12x x ¹,证明:122x x +>.20.已知函数()()()2ln 3,0f x x a x x a a =+-->.(1)当1x ³时,()0f x ³,求a 的取值范围.(2)若函数()f x 有两个极值点12,x x ,证明:12122e x x -+>.。
《2016艺体生文化课-百日突围系列》专题五导数变化率与导数、导数的计算【背一背基础知识】1.函数f(x)在点x0处的导数(1)定义函数y=f(x)在点x0的瞬时变化率limΔx→000()()f x x f xx+-=l,通常称为f(x)在点x0处的导数,并记作f′(x0),即limΔx→000()()f x x f xx+-=f′(x0).(2)几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))的切线的斜率等于f′(x0).2.函数f(x)的导函数如果f(x)在开区间(a,b)内每一点x导数都存在,则称f(x)在区间(a,b)可导.这样,对开区间(a,b)内每个值x,都对应一个确定的导数f′(x).于是,在区间(a,b)内,f′(x)构成一个新的函数,我们把这个函数称为函数y=f(x)的导函数,记为f′(x)(或y′x、y′).3.基本初等函数的导数公式4(1)[f(x)±g(x)]′=f′(x)±g′(x); (2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x); (3) 2()'()()'()()'()()f x f xg x g x f x g x g x ⎡⎤⋅-⋅=⎢⎥⎣⎦ (g(x)≠0).5.复合函数的导数复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为y′x =y′u ·u′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.【讲一讲基本技能】必备技能:1.根据导数的定义求函数()y f x =在点0x 处导数的方法: ①求函数的增量00()()y f x x f x ∆=+∆-;②求平均变化率00()()f x x f x y x x+∆-∆=∆∆; ③得导数00()lim x yf x x∆→∆'=∆,简记作:一差、二比、三极限.2.函数的导数与导数值的区间与联系:导数是原来函数的导函数,而导数值是导函数在某一点的函数值,导数值是常数3.运用可导函数求导法则和导数公式,求函数()y f x =在开区间(a,b )内的导数的基本步骤: ①分析函数()y f x =的结构和特征; ②选择恰当的求导法则和导数公式求导; ③整理得结果.4.对较复杂的函数求导数时,先化简再求导,特别是对数函数真数是根式或分式时,可用对数的性质转化真数为有理式或整式求解更为方便.5.复合函数的求导方法求复合函数的导数,一般是运用复合函数的求导法则,将问题转化为求基本函数的导数解决. ①分析清楚复合函数的复合关系是由哪些基本函数复合而成的,适当选定中间变量; ②分步计算中的每一步都要明确是对哪个变量求导,而其中特别要注意的是中间变量;③根据基本函数的导数公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数;④复合函数的求导熟练以后,中间步骤可以省略,不必再写出函数的复合过程. 典型例题例1已知函数()f x 在1x =处的导数为1,则 0(1)(1)3limx f x f x x→--+=A .3B .23-C .13D .32- 【答案】B例2.求下列函数的导数.()()()()()()()222x x x 251y 2x 1(3x 1)x x 12y x x 13y 3e 2elnx 4y x 15y 32x =-+-+=++=-+=+=-【答案】(1)21843x x +-;(2)22222(1)x x x +-+;(3)()3322x xe ln e ln -;(4)2222ln )1x((11)x x x -++;(5)()41032.x --【练一练趁热打铁】1. 若)(x f 在R 上可导,3)2('2)(2++=x f x x f ,则=')3(f ( )A.2-B.2C.12-D.12 【答案】A2. 求下列函数的导数: (1)y =e x·ln x; (2) 2311y=x x x x ⎛⎫++ ⎪⎝⎭导数的几何意义【背一背基础知识】函数y =f (x )在x =x 0处的导数几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).【讲一讲基本技能】必备技能:1.求函数()f x 图象上点00(,())P x f x 处的切线方程的关键在于确定该点切线处的斜率k ,由导数的几何意义知0'()k f x =,故当0'()f x 存在时,切线方程为000()'()()y f x f x x x -=-.2.要深入体会切线定义中的运动变化思想:①两个不同的公共点→两公共点无限接近→两公共点重合(切点);②割线→切线.3.可以利用导数求曲线的切线方程,由于函数()y f x =在0x x =处的导数表示曲线在点00(,())P x f x 处切线的斜率,因此,曲线()y f x =在点00(,())P x f x 处的切线方程,可按如下方式求得:第一,求出函数()y f x =在0x x =处的导数,即曲线()y f x =在点00(,())P x f x 处切线的斜率; 第二,在已知切点坐标和切线斜率的条件下,求得切线方程000'()()y y f x x x =+-;如果曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(此时导数不存在)时,由切线的定义可知,切线的方程为0x x =. 典型例题 例1函数在点处的切线方程是( )xe xf x ln )(=))1(,1(fA. B . C . D .【答案】C例2已知函数x x x f +=ln )(,则函数)(x f 点P (1,)1(f )的切线与两坐标轴围成的三角形的面积为 . 【答案】41【练一练趁热打铁】1. 已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则a = .【答案】1 【解析】试题分析:∵2()31f x ax '=+,∴(1)31f a '=+,即切线斜率31k a =+, 又∵(1)2f a =+,∴切点为(1,2a +),∵切线过(2,7),∴273112a a +-=+-,解得a =1.考点:利用导数的几何意义求函数的切线;常见函数的导数;【名师点睛】对求过某点的切线问题,常设出切点,利用导数求出切线方程,将已知点代入切线方程得到关于切点横坐标的方程,解出切点的横坐标,即可求出切线方程,思路明确,关键是运算要细心. 2. 函数x y xe =在其极值点处的切线方程为____________. 【答案】1y e=-【解析】()()(1)x xy f x xe f x x e '==⇒=+,令()01f x x '=⇒=-,此时1(1)f e-=-函数xy xe =在其极值点处的切线方程为1y e=- 【考点定位】:导数的几何意义.【名师点睛】1.本题考查导数的几何意义,利用导数研究曲线上某点处切线方程等基础知识,考查运算求解)1(2-=x e y 1-=ex y )1(-=x e y ex y -=能力.2.解决导数几何意义的问题时要注意抓住切点的三重作用:○1切点在曲线上;○2切点在切线上;○3切点处导函数值等于切线斜率. 3. 已知曲线31y x =+.(1)求曲线在1x =-处的切线方程; (2)求曲线过点(1,0)-的切线方程.【答案】(1)330x y -+=;(2)330x y -+=或3430x y -+= 【解析】导数与函数的单调性、极值【背一背基础知识】1.函数的单调性在某个区间(a ,b)内,如果f′(x)>0,那么函数y =f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y =f(x)在这个区间内单调递减. 2.函数的极值(1)判断f(x 0)是极值的方法一般地,当函数f(x)在点x 0处连续时,①如果在x 0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x 0)是极大值; ②如果在x 0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x 0)是极小值. (2)求可导函数极值的步骤 ①求f′(x);②求方程f′(x)=0的根;③检查f′(x)在方程f′(x)=0的根附近的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值. 3.函数的最值(1)在闭区间[a ,b]上连续的函数f(x)在[a ,b]上必有最大值与最小值.(2)若函数f(x)在[a ,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a ,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a ,b]上连续,在(a ,b)内可导,求f(x)在[a ,b]上的最大值和最小值的步骤如下: ①求f(x)在(a ,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.【讲一讲基本技能】必备技能:1.导数法证明函数()f x 在(,)a b 内的单调性的步骤 (1)求'()f x ;(2)确认'()f x 在(,)a b 内的符号;(3)作出结论:'()0f x ≥时为增函数;'()0f x ≤时为减函数. 2.求函数的单调区间方法一:①确定函数()y f x =的定义域; ②求导数''()y f x =;③解不等式'()0f x ≥,解集在定义域内的部分为单调递增区间; ④解不等式'()0f x ≤,解集在定义域内的部分为单调递减区间. 3.求函数的单调区间方法二:①确定函数()y f x =的定义域;②求导数''()y f x =,令f′(x)=0,解此方程,求出在定义区间内的一切实根;③把函数()f x 的间断点(即()f x 的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义区间分成若干个小区间;④确定'()f x 在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性. 4.求函数f(x)极值的步骤: (1)确定函数的定义域; (2)求导数f′(x);(3)解方程f′(x)=0,求出函数定义域内的所有根;(4)列表检验f′(x)在f′(x)=0的根x 0左右两侧值的符号,如果左正右负,那么f(x)在x 0处取极大值,如果左负右正,那么f(x)在x 0处取极小值.5. 求函数f(x)在[a ,b]上的最大值和最小值的步骤 (1)求函数在(a ,b)内的极值;(2)求函数在区间端点的函数值f(a),f(b);(3)将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值. 典型例题例1已知函数f (x )=-2lnx +x 2-2ax +a 2,其中a >0. 设g (x )为f (x )的导函数,讨论g (x )的单调性; 【答案】【解析】由已知,函数f (x )的定义域为(0,+∞)g (x )=f '(x )=2(x -1-lnx -a ) 所以g '(x )=2-22(1)x x x-= 当x ∈(0,1)时,g '(x )<0,g (x )单调递减 当x ∈(1,+∞)时,g '(x )>0,g (x )单调递增 例2设函数()x x x x f 2141ln 2--=. (1)求()x f 的单调区间和极值; (2)若()()⎪⎭⎫⎝⎛++=1412x x f x x g ,当1>x 时,()x g 在区间()1,+n n 内存在极值,求整数n 的值.例3已知函数f(x)=x3+ax2+bx+a2(a,b∈R).(1)若函数f(x)在x=1处有极值10,求b的值;(2)若对于任意的a∈[-4,+∞),f(x)在x∈[0,2]上单调递增,求b的最小值.【答案】(1)b=-11;(2)16 3.【练一练趁热打铁】1.函数()2x f x e x =-的单调递增区间是_______________. 【答案】(ln 2,)+∞2. 已知函数()ln()xf x e x m =-+.x =0是f(x)的极值点,则m= ,函数的增区间为 ,减区间为 .【答案】1,(0,),(1,0).+∞-3. 已知函数()ln(1)2ex f x f x '=-⋅,32()()2x a g x f x x=--(其中a R ∈). (1)求()f x 的单调区间;(2)若函数()g x 在区间[2,)+∞上为增函数,求a 的取值范围; 【答案】(1)单调增区间为(0,2),单调减区间为(2,)+∞.(2)3a ≥-.(一) 选择题(12*5=60分)1. 若21()(2)ln 2f x x b x =--+在(1,+∞)上是减函数,则b 的取值范围是( ) A .[-1,+∞) B .(-1,+∞) C .(-∞,-1] D .(-∞,-1)【答案】C2. 函数)(x f y =的图象如下图所示,则导函数)('x f y =的图象的大致形状是( )【答案】D .3.曲线32y x x =-在(1,1)-处的切线方程为( )A .20x y --=B .20x y -+=C .20x y +-=D .20x y ++= 【答案】A4.如图,是函数)(x f y =的导函数)(x f '的图象,则下面判断正确的是( )A .在区间(-2,1)上)(x f 是增函数B .在区间(1,3)上)(x f 是减函数C .在区间(4,5)上)(x f 是增函数D .当4=x 时,)(x f 取极大值. 【答案】C5. 对二次函数2()f x ax bx c =++(a 为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( )A .1-是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值D . 点(2,8)在曲线()y f x =上 【答案】A6.已知)(x f 的定义域为),0(+∞,)()(x f x f 为'的导函数,且满足)()(x f x x f '-<,则不等式)1()1()1(2-->+x f x x f 的解集是 ( )A .)1,0(B .),1(+∞C .(1,2)D .),2(+∞ 【答案】D7. 设函数()ln(1)ln(1)f x x x =+--,则()f x 是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数 【答案】A 【解析】函数()ln(1)ln(1)f x x x =+--,函数的定义域为(-1,1),函数()ln(1)ln(1)()f x x x f x -=--+=-所以函数是奇函数.()2111'111f x x x x=+=+-- ,在(0,1)上()'0f x > ,所以()f x 在(0,1)上单调递增,故选A.【考点定位】利用导数研究函数的性质【名师点睛】利用导数研究函数()f x 在(a ,b)内的单调性的步骤:(1)求()'f x ;(2)确认()'f x 在(a ,b)内的符号;(3)作出结论:()'0f x >时为增函数;()'0f x <时为减函数.研究函数性质时,首先要明确函数定义域.8. 定义在R 上的奇函数)(x f y =满足0)3(=f ,且不等式)()(x f x x f '->在),0(+∞上恒成立,则函数)(x g =1lg )(++x x xf 的零点的个数为( )A. 4B. 3C. 2D. 1【答案】B【解析】∵不等式)()(x f x x f '->在),0(+∞上恒成立,∴'(())0xf x >,∴函数()y xf x =在(0,)+∞上为增函数,又∵)(x f y =在R 上为奇函数,∴函数()y xf x =在(,0)(0,)-∞+∞上为偶函数,且过(3,0)和(3,0)-和(0,0),∴函数)(x g =1lg )(++x x xf 的零点的个数为3个.9. 已知函数()()()3223110f x mx m x m m =+--+>的单调递减区间是()0,4,则m =( )A.3B.13C.2D.12【答案】B【解析】()()2361f x mx m x '=+-,则0与4是方程()0f x '=的两根,则由韦达定理得()214m m-=-, 10. 若定义在R 上的函数()f x 满足()01f =- ,其导函数()f x ' 满足()1f x k '>> ,则下列结论中一定错误的是( )A .11f k k⎛⎫<⎪⎝⎭ B .111f k k ⎛⎫> ⎪-⎝⎭ C . 1111f k k ⎛⎫< ⎪--⎝⎭ D . 111k f k k ⎛⎫> ⎪--⎝⎭ 【答案】C11. 定义域为R 的可导函数()x f y =的导函数为()x f ',满足()()x f x f '>,且(),10=f 则不等式的解集为( )A .()0,∞-B .()+∞,0C .()2,∞-D .()+∞,2【答案】B12. 对二次函数2()f x ax bx c =++(a 为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( )A .1-是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值D . 点(2,8)在曲线()y f x =上 【答案】A【解析】若选项A 错误时,选项B 、C 、D 正确,()2f x ax b '=+,因为1是()f x 的极值点,3是()f x 的极值,所以()()1013f f '=⎧⎪⎨=⎪⎩,即203a b a b c +=⎧⎨++=⎩,解得:23b a c a =-⎧⎨=+⎩,因为点()2,8在曲线()y f x =上,所以428a b c ++=,即()42238a a a +⨯-++=,解得:5a =,所以10b =-,8c =,所以()25108f x x x =-+,因为()()()21511018230f -=⨯--⨯-+=≠,所以1-不是()f x 的零点,所以选项A 错误,选项B 、C 、D 正确,故选A .【考点定位】1、函数的零点;2、利用导数研究函数的极值.【名师点晴】本题主要考查的是函数的零点和利用导数研究函数的极值,属于难题.解题时一定要抓住重要字眼“有且仅有一个”和“错误”,否则很容易出现错误.解推断结论的试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊值进行检验,也可作必要的合情推理.(二) 填空题(4*5=20分)13. 设函数()f x 在(0)∞,+内可导,且()x xf e x e =+,则2'1f ⎛⎫⎪⎝⎭=________. 【答案】314. 已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a 的值为 . 【答案】3【解析】因为()()1ln f x a x '=+ ,所以()13f a '==. 【考点定位】本题主要考查导数的运算法则.【名师点睛】本题考查内容单一,求出()()1ln f x a x '=+由,再由()13f '=可直接求得a 的值,因此可以说本题是一道基础题,但要注意运算的准确性,由于填空题没有中间分,一步出错,就得零分,故运算要特别细心.15.已知向量2=(e ,-x)2xx a + ,1()b t =,,若函数()·f x a b =在区间(-1,1)上存在增区间,则t 的取值范围为________.【答案】()1e ∞-,+16. 设函数错误!未找到引用源。
导 数 重点难点归纳1. 导数(导函数的简称)的定律:设0x 是函数)(x f y =定律域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零. ②已知函数)(x f y =定律域为A ,)('x f y =的定律域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆xy ,故x yx ∆∆→∆0lim不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4、几种常见的函数导数:0'=C (C 为常数) 1')(-=n n nx x(R n ∈)x x cos )(sin '= x x sin )(cos '-=x x 1)(ln '=e xx a a log 1)(log '= x x e e =')( a a a x x ln )('=5. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导.6. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.7. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数.⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)(φx f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)(φx f ,有一个点例外即x =0时f (x ) = 0,同样0)(πx f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的.8. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理) 当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点. 9. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义.导数练习一、选择对的一项1.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是2.设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 ( )A .12120,0x x y y +>+>B .12120,0x x y y +>+<C .12120,0x x y y +<+>D .12120,0x x y y +<+<3.设函数f(x)=2x+lnx 则 ( )A .x=12为f(x)的极大值点 B . x=12为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点4.设a>0,b>0,e 是自然对数的底数( )A .若e a +2a=e b +3b,则a>bB .若e a +2a=e b +3b,则a<bC .若e a -2a=e b -3b,则a>bD .若e a -2a=e b -3b,则a<b5.函数y=12x 2-㏑x 的单调递减区间为 ( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)6.已知32()69,f x x x x abc a b c =-+-<<,且()()()0f a f b f c ===.现给出如下结论:①(0)(1)0f f >;②(0)(1)0f f <;③(0)(3)0f f >;④(0)(3)0f f <.其中正确结论的序号是 ( )A .①③B .①④C .②③D .②④7.已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为8.设a >0,b >0.( )A .若2223a b a b +=+,则a >bB .若2223a b a b +=+,则a <bC .若2223a b a b -=-,则a >bD .若2223a b a b -=-,则a <b9.设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图像如题(8)图所示,则下列结论中一定成立的是 ( )A .函数()f x 有极大值(2)f 和极小值(1)fB .函数()f x 有极大值(2)f -和极小值(1)fC .函数()f x 有极大值(2)f 和极小值(2)f -D .函数()f x 有极大值(2)f -和极小值(2)f 10.设函数()x f x xe =,则( ) A .1x =为()f x 的极大值点 B .1x =为()f x 的极小值点 C .1x =-为()f x 的极大值点D .1x =-为()f x 的极小值点11.设0a >且1a ≠,则“函数()x f x a =在R 上是减函数 ”,是“函数3()(2)g x a x =-在R 上是增函数”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件12.已知函数33y x x c =-+的图像与x 轴恰有两个公共点,则c =( )A .2-或2B .9-或3C .1-或1D .3-或1二、填空习题13.曲线(3ln 1)y x x =+在点(1,1)处的切线方程为________14.曲线33y x x =-+在点()1,3处的切线方程为___________________. 三、简答题15.已知函数3()f x ax bx c =++在2x =处取得极值为16c -(1)求a 、b 的值;(2)若()f x 有极大值28,求()f x 在[3,3]-上的最大值.16.已知a ∈R,函数3()42f x x ax a =-+(1)求f(x)的单调区间(2)证明:当0≤x ≤1时,f(x)+ 2a ->0.17.已知函数3211()(0)32a f x x x ax a a -=+-->(I)求函数)(x f 的单调区间;(II)若函数)(x f 在区间(2,0)-内恰有两个零点,求a 的取值范围; (III)当1a =时,设函数)(x f 在区间]3,[+t t 上的最大值为()M t ,最小值为()m t ,记()()()g t M t m t =-,求函数()g t 在区间]1,3[--上的最小值.学习就到这里了,最后祝大家逢考必过!!!。
专题05一元函数的导数及其应用(思维构建+知识盘点+重点突破+方法技巧+易混易错)知识点1导数的概念1、函数y =f (x )在x =x 0处的导数定义一般地,称函数y =f (x )在x =x 0处的瞬时变化率f (x 0+Δx )-f (x 0)Δx=lim Δx →0ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx.2、导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).3、函数f (x )的导函数:称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.知识点2导数的运算1、基本初等函数的导数公式原函数导函数f (x )=c (c 为常数)f ′(x )=0f (x )=x n (n ∈Q *)f ′(x )=nx n-1f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x (a >0且a ≠1)f ′(x )=a x ln_a f (x )=e xf ′(x )=e x f (x )=log a x (x >0,a >0且a ≠1)f ′(x )=1x ln af (x )=ln x (x >0)f ′(x )=1x2、导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ).(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ).(3)f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).3、复合函数的导数(1)复合函数的概念:一般地,对于两个函数()y f u =和()u g x =,如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为()y f u =和()u g x =的复合函数,记作(())y f g x =.(2)复合函数的求导法则:一般地,复合函数(())y f g x =的导数和函数()y f u =,()u g x =的导数间的关系为x u x y 'y 'u '=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.规律:从内到外层层求导,乘法连接。
考向14导数的概念及应用【2022·全国·高考真题】曲线ln ||y x =过坐标原点的两条切线的方程为____________,____________. 【答案】1ey x = 1e y x =-【解析】 【分析】分0x >和0x <两种情况,当0x >时设切点为()00,ln x x ,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出0x ,即可求出切线方程,当0x <时同理可得; 【详解】解:因为ln y x =,当0x >时ln y x =,设切点为()00,ln x x ,由1y x'=,所以001|x x y x ='=,所以切线方程为()0001ln y x x x x -=-,又切线过坐标原点,所以()0001ln x x x -=-,解得0e x =,所以切线方程为()11e e y x -=-,即1ey x =; 当0x <时()ln y x =-,设切点为()()11,ln x x -,由1y x'=,所以111|x x y x ='=,所以切线方程为()()1111ln y x x x x --=-, 又切线过坐标原点,所以()()1111ln x x x --=-,解得1e x =-,所以切线方程为()11e e y x -=+-,即1ey x =-; 故答案为:1ey x =;1e y x =-【2022·全国·高考真题】若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________. 【答案】()(),40,∞∞--⋃+ 【解析】 【分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围. 【详解】∵()e x y x a =+,∴(1)e x y x a '=++,设切点为()00,x y ,则()000e x y x a =+,切线斜率()001e xk x a =++, 切线方程为:()()()00000e 1e x xy x a x a x x -+=++-, ∵切线过原点,∴()()()00000e 1e x xx a x a x -+=++-,整理得:2000x ax a +-=,∵切线有两条,∴240a a ∆=+>,解得4a 或0a >,∴a 的取值范围是()(),40,-∞-+∞,故答案为:()(),40,-∞-+∞1.求函数导数的总原则:先化简解析式,再求导.注意以下几点:连乘形式则先展开化为多项式形式,再求导;三角形式,先利用三角函数公式转化为和或差的形式,再求导;分式形式,先化为整式函数或较为简单的分式函数,再求导;复合函数,先确定复合关系,由外向内逐层求导,必要时可换元2.利用导数研究曲线的切线问题,一定要熟练掌握以下三点:(1)函数在切点处的导数值是切线的斜率,即已知切点坐标可求切线斜率,已知斜率可求切点坐标. (2)切点既在曲线上,又在切线上,切线还有可能和曲线有其它的公共点.(3)曲线()y f x =“在”点00(,)P x y 处的切线与“过”点00(,)P x y 的切线的区别:曲线()y f x =在点00(,)P x y 处的切线是指点P 为切点,若切线斜率存在,切线斜率为()0k f x '=,是唯一的一条切线;曲线()y f x =过点00(,)P x y 的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.3.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.4.求解与导数的几何意义有关问题时应注意的两点 (1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.1.在点的切线方程切线方程000()()()y f x f x x x '-=-的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩. 2.过点的切线方程设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-,又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.一、导数的概念和几何性质1.概念函数()f x 在0x x =处瞬时变化率是0000()()lim limx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.诠释:①增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有 多近,即|0|x ∆-可以小于给定的任意小的正数;②当0x ∆→时,y ∆在变化中都趋于0,但它们的比值却趋于一个确定的常数,即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近; ③导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时 刻的瞬间变化率,即00000()()()limlimx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆. 2.几何意义函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.3.物理意义函数)(t s s =在点0t 处的导数)(0t s '是物体在0t 时刻的瞬时速度v ,即)(0t s v '=;)(t v v =在点0t 的导数)(0t v '是物体在0t 时刻的瞬时加速度a ,即)(0t v a '=.二、导数的运算 1.求导的基本公式 基本初等函数 导函数 ()f x c =(c 为常数) ()0f x '= ()a f x x =()a Q ∈1()a f x ax -'=()x f x a =(01)a a >≠, ()ln x f x a a '=()log (01)a f x x a a =>≠, 1()ln f x x a'=()x f x e =()x f x e '=()ln f x x = 1()f x x'=()sin f x x = ()cos f x x '= ()cos f x x =()sin f x x '=-2.导数的四则运算法则(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±; (2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+; (3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=. 3.复合函数求导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为x u x y y u '''=:1.(2022·青海·海东市第一中学模拟预测(理))曲线2e x y x -=在2x =处的切线方程为( ) A .34y x =+ B .43y x =+ C .34y x =- D .43y x =-【答案】C【解析】()21e x y x -'=+,2|3x y ='=,曲线2x y xe -=在点(2,2)处的切线方程为()232y x -=-,即34y x =-.故选:C.2.(2022·湖南·长沙县第一中学模拟预测)函数()2ln 1sin y x x =++的图象在0x =处的切线对应的倾斜角为α,则sin2α=( ) A .310 B .±310C .35D .±35【答案】C【解析】因为()2ln 1sin y x x =++ 所以2cos 1y x x '=++ 当0x =时,3y ,此时tan 3α=,∴2222sin cos 2tan 63sin 22sin cos sin cos tan 1915ααααααααα⋅=⋅====+++.故选:C.3.(2022·湖南·模拟预测)已知P 是曲线)2:ln 3C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)3,0⎡⎣ B .)22,0⎡⎣C .(,23-∞D .(,22-∞【答案】D【解析】因为)2ln 3y x x a x =++,所以123y x a x'=++, 因为曲线在M 处的切线的倾斜角ππ,32θ⎡⎫∈⎪⎢⎣⎭,所以πtan33y ≥'0x >恒成立,即1233x a x++-≥对任意0x >恒成立, 即12a x x≤+,又1222x x +≥,当且仅当12x x =,即22x =时,等号成立,故22a ≤, 所以a 的取值范围是(,22⎤-∞⎦. 故选:D .4.(2022·安徽·巢湖市第一中学模拟预测(文))曲线22x ay x +=+在点()1,b 处的切线方程为60kx y -+=,则k 的值为( )A .1-B .23-C .12D .1【答案】A【解析】由切点()1,b 在曲线上,得23ab +=①; 由切点()1,b 在切线上,得60k b -+=②; 对曲线求导得()242ay x -'=+,∴2143x ay k ='-==,即49a k -=③, 联立①②③236049a b k b a k+⎧=⎪⎪-+=⎨⎪-=⎪⎩,解之得1351a b k =⎧⎪=⎨⎪=-⎩故选:A.1.(2022·广东·模拟预测)如图是网络上流行的表情包,其利用了“可倒”和“可导”的谐音生动形象地说明了高等数学中“连续”和“可导”两个概念之间的关系.根据该表情包的说法,()f x 在0x x =处连续是()f x 在0x x =处可导的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由“连续不一定可导”知,“()f x 在0x x =处连续”不能推出“()f x 在0x x =处可导”, 比如函数()f x x =在0x =处连续,但是()f x x =在0x =处不可导;由“可导一定连续”知,“()f x 在0x x =处可导”可以推出“()f x 在0x x =处连续”. 因此()f x 在0x x =处连续是()f x 在0x x =处可导的必要不充分条件 答案选:B2.(2022·湖北·模拟预测)若过点()(),0m n m <可作曲线3y x =-三条切线,则( ) A .30n m <<- B .3n m >- C .0n < D .30n m <=-【答案】A【解析】设切点为()3,t t -,由323y x y x '=-⇒=-,故切线方程为()323y t t x t +=--,因为()(),0m n m <在切线上,所以代入切线方程得32230t mt n --=, 则关于t 的方程有三个不同的实数根,令()3223g t t mt n =--,则()2660g t t mt t m '=-=⇒=或0=t ,所以当(),t m ∈-∞,()0,∞+时,()0g t '>,()g t 为增函数, 当(),0t m ∈-时,()0g t '<,()g t 为减函数, 且t →-∞时,()g t →-∞,t →+∞时,()g t →+∞,所以只需()()()()300g t g m m n g t g n ⎧==-->⎪⎨==-<⎪⎩极大值极小值,解得30n m <<-故选:A3.(2022·全国·模拟预测(理))过点()0,P b 作曲线e x y x =的切线,当240e b -<<时,切线的条数是( ) A .0 B .1 C .2 D .3【答案】D【解析】设切点为(),e mm m ,()1e x y x '=+,∴切线斜率()1e m k m =+, ∴切线方程为:()()e 1e m m y m m x m -=+-;又切线过()0,P b ,()2e 1e e m m mb m m m m ∴=-+=-;设()2e m f m m =-,则()()2e mf m m m '=-+,∴当()(),20,m ∈-∞-+∞时,()0f m '<;当()2,0m ∈-时,()0f m '>;()f m ∴在(),2-∞-,()0,∞+上单调递减,在()2,0-上单调递增,又()242e f -=-,()00f =,()0f m ≤恒成立,可得()f m 图象如下图所示,则当240e b -<<时,y b =与()f m 有三个不同的交点, 即当240eb -<<时,方程2e m b m =-有三个不同的解,∴切线的条数为3条. 故选:D.4.(2022·湖北·黄冈中学模拟预测)已知a ,b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则14a b+的最小值为( ) A .8B .9C .10D .13【解析】设切点为00(,)x y ,ln()y x b =+的导数为1y x b'=+, 由切线的方程y x a =-可得切线的斜率为1,令0011,1x b x b ==-+,则0ln(1)0y b b =-+= ,故切点为(1,0)b -, 代入y x a =-,得1a b +=, a 、b 为正实数,则141444()()5529b a b a a b a b a b a b a b+=++=++≥+⋅, 当且仅当13a =,23b =时,14a b +取得最小值9,故选:B5.(2022·四川省内江市第六中学模拟预测(理))若函数()21f x x =+与()2ln 1g x a x =+的图象存在公共切线,则实数a 的最大值为( ) A .e 2B .eC eD .2e【答案】B【解析】()2f x x '=,()2a g x x'=,设公切线与()21f x x =+的图象切于点()211,1x x +,与曲线:()2ln 1C g x a x =+切于点()22,2ln 1x a x +,∴()()2221211221212ln 1122ln 2a x x a a x x x x x x x x +-+-===--,故12a x x =,所以212211212ln 2x x x x x x x -=-,∴122222ln x x x x =-⋅,∵12a x x =,故2222222ln a x x x =-,设22()22ln (0)h x x x x x =-⋅>,则()2(12ln )h x x x '=-,∴()h x 在e)上递增,在(e,)+∞上递减,∴max ()(e)e h x h ==, ∴实数a 的最大值为e 故选:B.6.(2022·云南师大附中模拟预测(理))若函数()y f x =的图象上存在两个不同的点A ,B ,使得曲线()y f x =在这两点处的切线重合,则称函数()y f x =为“自重合”函数.下列函数中既是奇函数又是“自重合”函数的是A .ln y x x =+B .3y x =C .cos y x x =-D .sin y x x =+【答案】D【解析】对于A ,C ,函数都不是奇函数,故排除. 若曲线()y f x =在这两点处的切线重合,则首先要保证两点处导数相同;对于B ,23y x '=,若斜率相同,则切点300()A x x ,,300()B x x --,,代入解得切线方程分别为230032y x x x =-,230032y x x x =+;若切线重合,则00x =,此时两切点A ,B 为同一点,不符合题意,故B 错误;对于D ,1cos y x '=+,令1cos 1y x '=+=,得π()2k x k =∈Z ,则取ππ5π5π112222A B ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,,,,切线均为1y x =+,即存在不同的两点A ,B 使得切线重合,故D 正确. 故选:D .7.(2022·山东潍坊·三模)过点()()1,P m m ∈R 有n 条直线与函数()e xf x x =的图像相切,当n 取最大值时,m 的取值范围为( )A .25e em -<< B .250e m -<< C .10em -<<D .e m <【答案】B【解析】由()e xf x x =,()()1e x f x x '=+,故当1x <-时,()0f x '<,()f x 单调递减,且()0f x <;当1x >-时,()0f x '>,()f x 单调递增,结合图象易得,过点()()1,P m m ∈R 至多有3条直线与函数()xf x xe =的图像相切,故3n =.此时,设切点坐标为()00,x y ,则切线斜率()001e x k x =+⋅,所以切线方程为()()00000e e 1x xy x x x x -=+⋅-,将()1,P m 代入得()0201e x m x x =-++⋅,存在三条切线即函数()21e x m x x =-++⋅有三个不同的根,又()()()1e 2x g x x x '=--+⋅,易得在()2,1-上,()0g x '>,()g x 单调递增;在(),2-∞-和()1,+∞上,()0g x '<,()g x 单调递减,画出图象可得当()20g m -<<,即250e m -<<时符合题意故选:B8.(多选题)(2022·辽宁·渤海大学附属高级中学模拟预测)已知0a >,0b >,直线2y x a =+与曲线1e 1x y b -=-+相切,则下列不等式一定成立的是( ) A .219ab+≥ B .19ab ≤C 225a b +D 22a b ≤【答案】ACD【解析】设切点为()00,x y ,因为1e x y -'=,所以0010010e 12e 1x x y x a y b --⎧=⎪=+⎨⎪=-+⎩,解得01x =, 122a b +=-,即21a b +=,对于A ,2121(2)a b a b a b ⎛⎫+=++ ⎪⎝⎭2255249b a a b=++≥+=,当且仅当13a b ==时,等号成立,故A 正确; 对于B ,122a b ab =+≥18ab ≤,当且仅当14a =,12b =时,等号成立,故B 不正确;对于C 2222(12)a b a a ++-2541a a -+2215555a ⎛⎫=-+ ⎪⎝⎭,当且仅当25a =,15b =时,等号成立,故C 正确;对于D ,由2222a b a b ++≥⎝⎭22a b ⇒≤D 正确. 故选:ACD9.(多选题)(2022·山东潍坊·模拟预测)过平面内一点P 作曲线|ln |y x =两条互相垂直的切线12,l l ,切点为P 1、P 2(P 1、P 2不重合),设直线12,l l 分别与y 轴交于点A ,B ,则下列结论正确的是( ) A .P 1、P 2两点的横坐标之积为定值 B .直线P 1P 2的斜率为定值 C .线段AB 的长度为定值D .三角形ABP 面积的取值范围为(0,1] 【答案】ABC【解析】因为ln ,01ln ln ,1x x y x x x -<<⎧==⎨≥⎩,所以,当01x <<时,1y x '=-;当1≥x 时,1y x'=, 不妨设点1P ,2P 的横坐标分别为12,x x ,且12x x <, 若1201x x <<≤时,直线1l ,2l 的斜率分别为111k x =-,221k x =-,此时121210k k x x =>,不合题意; 若211x x >≥时,则直线1l ,2l 的斜率分别为111k x =,221k x =,此时121210k k x x =>,不合题意. 所以1201x x <≤<或1201x x <<≤,则111k x =-,221k x =,由题意可得121211k k x x =-=-,可得121=x x , 若11x =,则21x =;若21x =,则11x =,不合题意,所以1201x x <<<,选项A 对; 对于选项B ,易知点()111,ln P x x -,()222,ln P x x ,所以,直线12PP 的斜率为()1212212121ln ln ln 0P P x x x x k x x x x +===--,选项B 对;对于选项C ,直线1l 的方程为()1111ln y x x x x +=--,令0x =可得11ln y x =-,即点10,1ln A x , 直线2l 的方程为()2221ln y x x x x -=-,令0x =可得21ln 1ln 1y x x =-=--,即点()10,ln 1B x --, 所以,()()111ln 1ln 2AB x x =----=,选项C 对;对于选项D ,联立112211ln {1ln 1y x x x y x x x =-+-=+-可得1212121221P x x xx x x x ==++, 令()221xf x x =+,其中()0,1∈x ,则()()()2222101x f x x -'=>+,所以,函数()f x 在0,1上单调递增,则当()0,1∈x 时,()()0,1f x ∈, 所以,()121210,121ABP P x S AB x x =⋅=∈+△,选项D 错. 故选:ABC.10.(多选题)(2022·江苏·模拟预测)设函数()()()2e R xf x x ax a a -=++∈的导函数()f x '存在两个零点1x 、()212x x x >,当a 变化时,记点()()11,x f x 构成的曲线为1C ,点()()22,x f x 构成的曲线为2C ,则( )A .曲线1C 恒在x 轴上方B .曲线1C 与2C 有唯一公共点C .对于任意的实数t ,直线y t =与曲线1C 有且仅有一个公共点D .存在实数m ,使得曲线1C 、2C 分布在直线y x m =-+两侧 【答案】AD【解析】对于A 选项,因为()()()2e R x f x x ax a a -=++∈,则()()22e x f x a x x -'⎡⎤=--⎣⎦,令()0f x '=可得0x =或2x a =-,因为函数()f x '存在两个零点1x 、()212x x x >,则20a -≠,即2a ≠. 当20a -<时,即当2a >时,10x =,则()12f x a =>,当20a ->时,即当2a <时,12x a =-,则()()()()121124e 2e x a f x f a a x --=-=-=+,则曲线1C 为函数()()()2e0xg x x x -=+>的图象以及射线()02x y =>,且当0x >时,()()2e 0xg x x -=+>,所以,曲线1C 在x 轴上方,A 对;对于B 选项,当20a -<时,即当2a >时,22x a =-,则()()()()222224e 2e x a f x f a a x --=-=-=+,当20a ->时,即当2a <时,20x =,则()22f x a =< 所以,曲线2C 为函数()()()2e0xh x x x -=+<的图象以及射线()02x y =<,由图可知,曲线1C 、2C 无公共点,B 错; 对于C 选项,对于函数()2e x x g x +=,()()1210e exx x x g x -++'==-<, 此时函数()g x 在()0,∞+上单调递减,且()0g x >,结合图象可知,当0m ≤时,直线y t =与曲线1C 没有公共点,C 错;对于D 选项,对于函数()2e x x x ϕ+=,()1ex x x ϕ+'=-,则()01ϕ'=-, 又因为()02ϕ=,所以,曲线()y x ϕ=在0x =处的切线方程为2y x -=-,即2y x =-+. 构造函数()()2222e e x xx x p x x x ++=--+=+-,则()00p =, ()1e 11e e x x xx x p x +--'=-=,令()e 1xm x x =--,则()e 1x m x '=-,当0x <时,()0m x '<,此时函数()m x 单调递减,当0x >时,()0m x '>,此时函数()m x 单调递增,所以,()()00m x m ≥=,所以,()e 10ex xx p x --'=≥且()p x '不恒为零, 所以,函数()p x 在R 上为增函数, 当0x <时,()()00p x p <=,即22e xx x +<-+, 当0x >时,()()00p x p >=,即22e xx x +>-+, 所以,曲线1C 、2C 分布在直线2y x =-+的两侧,D 对.故选:AD.11.(2022·全国·南京外国语学校模拟预测)己知函数22f xx ,()3ln g x x ax =-,若曲线()y f x =与曲线()y g x =在公共点处的切线相同,则实数=a ________. 【答案】1【解析】设函数22f xx ,()3ln g x x ax =-的公共点为()00,x y ,则()()()()0000,,f xg x f x g x ''⎧=⎪⎨=⎪⎩即200000023,32,0,x lnx ax x a x x ⎧-=-⎪⎪=-⎨⎪⎪>⎩则2003ln 10x x +-=.令()23ln 1h x x x =+-,易得()h x 在()0,∞+上单调递增,所以以由2003ln 10x x +-=,解得01x =,所以切点为()1,1-,所以13ln1a =-,则1a =.故答案为:1.12.(2022·江苏·阜宁县东沟中学模拟预测)已知0a >,0b >,直线y x a =+与曲线1e 21x y b -=-+相切,则21a b+的最小值为___________. 【答案】8【解析】设直线y x a =+与曲线121x y e b -=-+相切于点()00,x y 由函数121x y e b -=-+的导函数为1x y e -'=,则001|e 1x x x k y -='===解得01x =所以0122y a b =+=-,即21a b +=则()21214424428b a b a a b a b a b a b a b ⎛⎫+=++=++≥+⨯ ⎪⎝⎭当且仅当4b aa b =,即11,24a b ==时取得等号. 故答案为:813.(2022·山东泰安·模拟预测)已知函数32()f x x ax =-+,写出一个同时满足下列两个条件的()f x :___________.①在[1,)+∞上单调递减;②曲线()(1)y f x x =≥存在斜率为1-的切线. 【答案】32()f x x x (答案不唯一)【解析】若()f x 同时满足所给的两个条件,则2()320f x x ax '=-+≤对[1,)x ∈+∞恒成立,解得:min32a x ⎛⎫≤ ⎪⎝⎭,即32a ≤, 且2()321f x x ax '=-+=-在[)1,+∞上有解,即3122x a x=-在[)1,+∞上有解,由函数的单调性可解得:31122x a x=-≥. 所以312a ≤≤.则32()f x x x (答案不唯一,只要()f x 满足32()f x x ax =-+(312a ≤≤即可) 故答案为:32()f x x x14.(2022·山东潍坊·模拟预测)已知()e 1xf x =-(e 为自然对数的底数),()ln 1g x x =+,请写出()f x 与()g x 的一条公切线的方程______. 【答案】e 1y x =-或y x =【解析】设公切线与()f x 相切于点(),e 1mm -,与()g x 相切于点(),ln 1n n +,()e x f x '=,()1g x x '=,∴公切线斜率1e mk n==; ∴公切线方程为:()e 1e m m y x m -+=-或()1ln 1y n x n n--=-, 整理可得:()e 1e 1m my x m =---或1ln y x n n=+, ()1e 1e 1ln m m n m n⎧=⎪∴⎨⎪-+=-⎩,即()ln 1e 1ln mm n m n =-⎧⎨-+=-⎩, ()()()1e 11e 10m m m m m ∴-+-=--=,解得:1m =或0m =, ∴公切线方程为:e 1y x =-或y x =.故答案为:e 1y x =-或y x =.15.(2022·山东师范大学附中模拟预测)已知函数()()2e ,xf xg x x a==,若存在一条直线同时与两个函数图象相切,则实数a 的取值范围__________.【答案】2e (,0),4∞∞⎡⎫-⋃+⎪⎢⎣⎭【解析】数形结合可得:当0a <,存在一条直线同时与两函数图象相切;当0a >,若存在一条直线同时与两函数图象相切, 则,()0x ∈+∞时,2e xx a=有解,所以21,(0,)ex x x a ∞=∈+,令2(),(0,)ex x h x x ∞=∈+,因为22(2)()e e x x x x x x h x --==', 则当(0,2)x ∈时,()0h x '>,()h x 为单调递增函数; 当(2,)x ∈+∞时,()0h x '<,()h x 为单调递减函数; 所以()h x 在2x =处取得极大值,也是最大值, 最大值为24(2)eh =,且()0h x >在,()0x ∈+∞上恒成立, 所以2140,e a ⎛⎤∈ ⎥⎝⎦,即2e (,0),4a ∞∞⎡⎫∈-⋃+⎪⎢⎣⎭. 故答案为:2e (,0),4a ∞∞⎡⎫∈-⋃+⎪⎢⎣⎭16.(2022·广东佛山·模拟预测)已知函数()()211ln 21,4212,2x x f x x x a x ⎧->⎪⎪=⎨⎪++≤⎪⎩,函数在1x =处的切线方程为____________.若该切线与()f x 的图象有三个公共点,则a 的取值范围是____________. 【答案】 210x y --=【解析】切点坐标为()1,0,()142f x x '=-,()112k f '==,所以切线l 方程为1122y x =-. 函数5124f a ⎛⎫=+ ⎪⎝⎭,即()f x 过点15,24a ⎛⎫+ ⎪⎝⎭,当切线l 过点15,24a ⎛⎫+ ⎪⎝⎭时,切线l 与函数()f x 的图象有三个公共点,将其代入切线l 方程得32a =-;当切线l 与()22f x x x a =++(12x ≤)相切时直线与函数()f x 的图象只有两个公共点, 设切线l :1122y x =-与()22f x x x a =++(12x ≤)在0x x =处相切,()001222k f x x '==+=,034x =-,所以切点坐标为315,416a ⎛⎫-- ⎪⎝⎭,代入切线方程解得116a =,因此直线与曲线有三个交点时,31216a -<≤.故答案为:32-;31,216⎡⎫-⎪⎢⎣⎭1.(2021·全国·高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a << D .0e a b <<【答案】D 【解析】 【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;解法二:画出曲线x y e =的图象,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线. 【详解】在曲线x y e =上任取一点(),tP t e ,对函数x y e =求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()t t y e e x t -=-,即()1t ty e x t e =+-, 由题意可知,点(),a b 在直线()1t t y e x t e =+-上,可得()()11t t tb ae t e a t e =+-=+-, 令()()1t f t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增, 当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点. 故选:D.解法二:画出函数曲线x y e =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0a b e <<.故选:D. 【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.2.(2020·全国·高考真题(理))若直线l 与曲线y x x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1 B .y =2x +12C .y =12x +1D .y =12x +12【答案】D 【解析】 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 【详解】设直线l 在曲线y x =(00x x ,则00x >,函数y x =2y x'=,则直线l 的斜率02k x , 设直线l 的方程为)0002y x x x x =-,即0020x x x -+=,由于直线l 与圆2215x y +=00145x + 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+. 故选:D. 【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.3.(2020·全国·高考真题(理))函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =-- B .21y x =-+ C .23y x =- D .21y x =+【答案】B 【解析】 【分析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简即可. 【详解】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+. 故选:B. 【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题 4.(多选题)(2022·全国·高考真题)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线【答案】AC 【解析】 【分析】利用极值点的定义可判断A ,结合()f x 的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D. 【详解】由题,()231f x x '=-,令()0f x '>得3x >3x <, 令()0f x '<得33x <<, 所以()f x 在33(上单调递减,在3(,-∞,3()+∞上单调递增,所以3x =是极值点,故A 正确; 因323(10f =>,323(10f =>,()250f -=-<, 所以,函数()f x 在3,⎛-∞ ⎝⎭上有一个零点, 当3x ≥()30f x f ≥>⎝⎭,即函数()f x 在3⎫∞⎪⎪⎝⎭上无零点, 综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-, 则()h x 是奇函数,(0,0)是()h x 的对称中心, 将()h x 的图象向上移动一个单位得到()f x 的图象, 所以点(0,1)是曲线()y f x =的对称中心,故C 正确;令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+, 故D 错误. 故选:AC.5.(2022·全国·高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为____________,____________. 【答案】 1e y x = 1ey x =- 【解析】 【分析】分0x >和0x <两种情况,当0x >时设切点为()00,ln x x ,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出0x ,即可求出切线方程,当0x <时同理可得; 【详解】解: 因为ln y x =,当0x >时ln y x =,设切点为()00,ln x x ,由1y x'=,所以001|x x y x ='=,所以切线方程为()0001ln y x x x x -=-,又切线过坐标原点,所以()0001ln x x x -=-,解得0e x =,所以切线方程为()11e e y x -=-,即1ey x =; 当0x <时()ln y x =-,设切点为()()11,ln x x -,由1y x'=,所以111|x x y x ='=,所以切线方程为()()1111ln y x x x x --=-, 又切线过坐标原点,所以()()1111ln x x x --=-,解得1e x =-,所以切线方程为()11e e y x -=+-,即1ey x =-; 故答案为:1e y x =;1ey x =- 6.(2022·全国·高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________. 【答案】()(),40,∞∞--⋃+ 【解析】 【分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围. 【详解】∵()e x y x a =+,∴(1)e x y x a '=++,设切点为()00,x y ,则()000e x y x a =+,切线斜率()001e xk x a =++,切线方程为:()()()0000e 1e x xy x a x a x x -+=++-,∵切线过原点,∴()()()0000e 1e x x x a x a x -+=++-,整理得:2000x ax a +-=,∵切线有两条,∴240a a ∆=+>,解得4a 或0a >,∴a 的取值范围是()(),40,-∞-+∞, 故答案为:()(),40,-∞-+∞7.(2021·全国·高考真题)已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______. 【答案】0,1 【解析】 【分析】结合导数的几何意义可得120x x +=,结合直线方程及两点间距离公式可得1211x e A x M +,2221x e B x N =+,化简即可得解.【详解】由题意,()1011,0,xx x e x f x e e x <=⎧---≥⎪=⎨⎪⎩,则()0,,0xx x f x e e x ⎧-⎪=<>⎨'⎪⎩,所以点()11,1x A x e -和点()22,1x B x e -,12,x xAM BN k e k e =-=,所以12121,0x xe e x x -⋅=-+=,所以()()111111,0:,11xxxxe e x x e AM e y M x -+=---+,所以()112221111x x x e x e x AM ++,同理2221x e B x N +, 所以()1111212222122221110,1111x x x x x x x e x e e e e e e Nx AM B -===+⋅++∈+++⋅=. 故答案为:0,1 【点睛】 关键点点睛:解决本题的关键是利用导数的几何意义转化条件120x x +=,消去一个变量后,运算即可得解. 8.(2021·全国·高考真题(理))曲线212x y x -=+在点()1,3--处的切线方程为__________. 【答案】520x y -+= 【解析】 【分析】先验证点在曲线上,再求导,代入切线方程公式即可. 【详解】由题,当1x =-时,3y =-,故点在曲线上. 求导得:()()()()222221522x x y x x +--==++',所以1|5x y =-='.故切线方程为520x y -+=. 故答案为:520x y -+=.9.(2020·全国·高考真题(文))曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________. 【答案】2y x =【解析】 【分析】设切线的切点坐标为00(,)x y ,对函数求导,利用0|2x y '=,求出0x ,代入曲线方程求出0y ,得到切线的点斜式方程,化简即可. 【详解】设切线的切点坐标为001(,),ln 1,1x y y x x y x=++'=+, 00001|12,1,2x x y x y x ='=+===,所以切点坐标为(1,2), 所求的切线方程为22(1)y x -=-,即2y x =. 故答案为:2y x =. 【点睛】本题考查导数的几何意义,属于基础题.10.(2022·全国·高考真题(文))已知函数32(),()f x x x g x x a =-=+,曲线()y f x =在点()()11,x f x 处的切线也是曲线()y g x =的切线. (1)若11x =-,求a ; (2)求a 的取值范围. 【答案】(1)3 (2)[)1,-+∞ 【解析】 【分析】(1)先由()f x 上的切点求出切线方程,设出()g x 上的切点坐标,由斜率求出切点坐标,再由函数值求出a 即可;(2)设出()g x 上的切点坐标,分别由()f x 和()g x 及切点表示出切线方程,由切线重合表示出a ,构造函数,求导求出函数值域,即可求得a 的取值范围. (1)由题意知,(1)1(1)0f -=---=,2()31x f x '=-,(1)312f '-=-=,则()y f x =在点()1,0-处的切线方程为2(1)y x =+,即22y x =+,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()22g x x '==,解得21x =,则(1)122g a =+=+,解得3a =;(2)2()31x f x '=-,则()y f x =在点()11(),x f x 处的切线方程为()()32111131()y xx x x x --=--,整理得()2311312y x x x =--,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()2g x x '=,则切线方程为()22222()y x a x x x -+=-,整理得2222y x x x a =-+,则21232123122x x x x a⎧-=⎨-=-+⎩,整理得2223343212111113193122222424x a x x x x x x ⎛⎫=-=--=--+ ⎪⎝⎭, 令432931()2424h x x x x =--+,则32()9633(31)(1)h x x x x x x x '=--=+-,令()0h x '>,解得103x -<<或1x >, 令()0h x '<,解得13x <-或01x <<,则x 变化时,(),()h x h x '的变化情况如下表:x1,3⎛⎫-∞- ⎪⎝⎭ 13-1,03⎛⎫- ⎪⎝⎭0 ()0,11 ()1,+∞()h x '-+-0 +()h x527141-则()h x 的值域为[)1,-+∞,故a 的取值范围为[)1,-+∞.11.(2021·全国·高考真题(文))已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 【答案】(1)答案见解析;(2) 和()11a ---,. 【解析】 【分析】(1)首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性;(2)首先求得导数过坐标原点的切线方程,然后将原问题转化为方程求解的问题,据此即可求得公共点坐标. 【详解】(1)由函数的解析式可得:()232f x x x a '=-+, 导函数的判别式412a ∆=-,当14120,3a a ∆=-≤≥时,()()0,f x f x '≥在R 上单调递增,当时,的解为:12113113,33a ax x --+-==, 当113,3a x ⎛⎫--∈-∞ ⎪ ⎪⎝⎭时,单调递增;当113113,33a a x ⎛⎫--+-∈ ⎪ ⎪⎝⎭时,单调递减;当113,3a x ⎛⎫+-∈+∞ ⎪ ⎪⎝⎭时,单调递增;综上可得:当时,在R 上单调递增,当时,在113,3a ⎛⎫---∞ ⎪ ⎪⎝⎭,113,3a⎛⎫+-+∞ ⎪ ⎪⎝⎭上 单调递增,在113113,33a a ⎡⎤⎢⎥⎣-+-⎦-上单调递减. (2)由题意可得:()3200001f x x x ax =-++,()200032f x x x a '=-+, 则切线方程为:()()()322000000132y x x ax x x a x x --++=-+-,切线过坐标原点,则:()()()32200000001320x x ax x x a x --++=-+-,整理可得:3200210x x --=,即:()()20001210x x x -++=,解得:,则,()0'()11f x f a '==+切线方程为:()1y a x =+, 与联立得321(1)x x ax a x -++=+,化简得3210x x x --+=,由于切点的横坐标1必然是该方程的一个根,()1x ∴-是321x x x --+的一个因式,∴该方程可以分解因式为()()2110,x x --=解得121,1x x ==-,()11f a -=--,综上,曲线过坐标原点的切线与曲线的公共点的坐标为和()11a ---,. 【点睛】本题考查利用导数研究含有参数的函数的单调性问题,和过曲线外一点所做曲线的切线问题,注意单调性研究中对导函数,要依据其零点的不同情况进行分类讨论;再求切线与函数曲线的公共点坐标时,要注意除了已经求出的切点,还可能有另外的公共点(交点),要通过联立方程求解,其中得到三次方程求解时要注意其中有一个实数根是求出的切点的横坐标,这样就容易通过分解因式求另一个根.三次方程时高考压轴题中的常见问题,不必恐惧,一般都能容易找到其中一个根,然后在通过分解因式的方法求其余的根. 12.(2020·北京·高考真题)已知函数2()12f x x =-. (Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值. 【答案】(Ⅰ)2130x y +-=,(Ⅱ)32. 【解析】 【分析】(Ⅰ)根据导数的几何意义可得切点的坐标,然后由点斜式可得结果;(Ⅱ)根据导数的几何意义求出切线方程,再得到切线在坐标轴上的截距,进一步得到三角形的面积,最后利用导数可求得最值. 【详解】(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=. (Ⅱ)[方法一]:导数法显然0t ≠,因为()y f x =在点()2,12t t -处的切线方程为:()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t+=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样), 则()423241441144(24)44t t S t t t t t++==++, 所以()S t '=4222211443(848)(324)44t t t t t+-+-= 222223(4)(12)3(2)(2)(12)44t t t t t t t -+-++==,由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()St 在()0,2上递减,在()2,+∞上递增,所以2t =时,()St 取得极小值,也是最小值为()16162328S ⨯==. [方法二]【最优解】:换元加导数法()()2222121121()12(0)2|2|4||t t S t t t t t ++=⋅⋅+=⋅≠.因为()S t 为偶函数,不妨设0t >,221()4S t t =⋅,令a t 2,0t a a =>.令412()a g a a +=,则面积为21[()]4S g a =,只需求出412()a g a a +=的最小值.34422412312()a a a a g a a a ⋅---='=()()()222223223(2)(2)2a a a a a a a -++==. 因为0a >,所以令()0g a '=,得2a =随着a 的变化,(),()g a g a '的变化情况如下表: a()0,22()2,+∞()g a '-0 +()g a减 极小值增所以min [()](2)822g a g === 所以当2a =2t =时,2min 1[()](82)324S t =⨯=. 因为[()]S t 为偶函数,当0t <时,min [()](2)(2)32S t S S =-==. 综上,当2t =±时,()S t 的最小值为32. [方法三]:多元均值不等式法同方法二,只需求出412()(0)a g a a a+=>的最小值. 令433412444444()482a g a a a a a a a a a a+==+++≥⋅⋅⋅= 当且仅当34a a=,即2a = 所以当2a =2t =时,2min 1[()](82)324S t =⨯=.因为()S t 为偶函数,当0t <时,min [()](2)(2)32S t S S =-==.综上,当2t =±时,()S t 的最小值为32. [方法四]:两次使用基本不等式法同方法一得到()()()()()22222222222121241646464()41626416324||444tt t t S t t t t t t ++++++=≥==+++≥=+++ ,下同方法一. 【整体点评】(Ⅱ)的方法一直接对面积函数求导数,方法二利用换元方法,简化了运算,确定为最优解;方法三在方法二换元的基础上,利用多元均值不等式求得最小值,运算较为简洁;方法四两次使用基本不等式,所有知识最少,配凑巧妙,技巧性较高.。
导数的概念及运算一、知识梳理1.函数y =f(x)在x =x 0处的导数(1)定义:称函数y =f(x)在x =x 0处的瞬时变化率0lim x ∆→f (x 0+Δx )-f (x 0)Δx=lim x ∆→ΔyΔx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0limx ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).2.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx称为函数y =f (x )在开区间内的导函数.3.导数公式表4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1) [f (x )±g (x )]′=f ′(x )±g ′(x ); (2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3) ⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为 y x ′=y u ′·u x ′.知识点小结:1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2. ⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2. 3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (4)曲线的切线与曲线不一定只有一个公共点.( ) 解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错.(3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错. 答案 (1)× (2)× (3)× (4)√2.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A.-9B.-3C.9D.15解析 因为y =x 3+11,所以y ′=3x 2,所以y ′|x =1=3,所以曲线y =x 3+11在点P (1,12)处的切线方程为y -12=3(x -1).令x =0,得y =9. 答案 C3.在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =________ m/s ,加速度a =______ m/s 2.解析 v =h ′(t )=-9.8t +6.5,a =v ′(t )=-9.8. 答案 -9.8t +6.5 -9.84.(2019·青岛质检)已知函数f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A.e 2B.1C.ln 2D.e解析 f ′(x )=2 018+ln x +x ×1x =2 019+ln x .由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1. 答案 B5.(2018·天津卷)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________.解析 由题意得f ′(x )=e xln x +e x·1x ,则f ′(1)=e.答案 e6.(2017·全国Ⅰ卷)曲线y =x 2+1x 在点(1,2)处的切线方程为________.解析 设y =f (x ),则f ′(x )=2x -1x 2, 所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1. 答案 y =x +1考点一 导数的运算角度1 根据求导法则求函数的导数 【例1-1】 分别求下列函数的导数: (1)y =e x ln x ; (2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)f (x )=ln 1+2x .解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e xx =e x ⎝⎛⎭⎪⎫ln x +1x .(2)因为y =x 3+1+1x 2,所以y ′=3x 2-2x 3. (3)因为y =ln1+2x =12ln ()1+2x ,所以y ′=12·11+2x ·(1+2x )′=11+2x .角度2 抽象函数的导数计算【例1-2】 (2019·天津河西区调研)已知函数f (x )的导函数是f ′(x ),且满足f (x )=2xf ′(1)+ln 1x ,则f (1)=( ) A.-eB.2C.-2D.e解析 由已知得f ′(x )=2f ′(1)-1x ,令x =1得f ′(1)=2f ′(1)-1,解得f ′(1)=1,则f (1)=2f ′(1)=2. 答案 B【训练1】 (1)若y =x -cos x 2sin x2,则y ′=________. (2)已知f (x )=x 2+2xf ′(1),则f ′(0)=________. 解析 (1)因为y =x -12sin x ,所以y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .(2)∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2.∴f ′(x )=2x -4,∴f ′(0)=-4. 答案 (1)1-12cos x (2)-4考点二 导数的几何意义 角度1 求切线方程【例2-1】 (2018·全国Ⅰ卷)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( ) A.y =-2x B.y =-x C.y =2xD.y =x解析 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以a -1=0,则a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x . 答案 D角度2 求切点坐标【例2-2】 (1)(2019·聊城月考)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( ) A.3B.2C.1D.12(2)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________. 解析 (1)设切点的横坐标为x 0(x 0>0),∵曲线y =x 24-3ln x 的一条切线的斜率为12, ∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意),即切点的横坐标为3. (2)∵函数y =e x 的导函数为y ′=e x ,∴曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1.设P (x 0,y 0)(x 0>0),∵函数y =1x 的导函数为y ′=-1x 2,∴曲线y =1x (x >0)在点P 处的切线的斜率k 2=-1x 20,由题意知k 1k 2=-1,即1·⎝ ⎛⎭⎪⎫-1x 20=-1,解得x 20=1,又x 0>0,∴x 0=1.又∵点P 在曲线y =1x (x >0)上,∴y 0=1,故点P 的坐标为(1,1). 答案 (1)A (2)(1,1)角度3 求参数的值或取值范围【例2-3】 (1)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A.(-∞,2] B.(-∞,2) C.(2,+∞)D.(0,+∞)(2)(2019·河南六市联考)已知曲线f (x )=x +ax +b (x ≠0)在点(1,f (1))处的切线方程为y =2x +5,则a -b =________.解析 (1)由题意知f ′(x )=2在(0,+∞)上有解. ∴f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x . 因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). (2)f ′(x )=1-ax 2,∴f ′(1)=1-a ,又f (1)=1+a +b ,∴曲线在(1,f (1))处的切线方程为y -(1+a +b )=(1-a )(x -1),即y =(1-a )x +2a +b ,根据题意有⎩⎪⎨⎪⎧1-a =2,2a +b =5,解得⎩⎪⎨⎪⎧a =-1,b =7,∴a -b =-1-7=-8. 答案 (1)B (2)-8规律方法 1.求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.2.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 (1)(2019·东莞二调)设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( ) A.(0,0)B.(1,-1)C.(-1,1)D.(1,-1)或(-1,1)(2)(2018·全国Ⅱ卷)曲线y =2ln(x +1)在点(0,0)处的切线方程为________________.解析 (1)由f (x )=x 3+ax 2,得f ′(x )=3x 2+2ax . 根据题意可得f ′(x 0)=-1,f (x 0)=-x 0,可列方程组⎩⎪⎨⎪⎧x 30+ax 20=-x 0, ①3x 20+2ax 0=-1, ②解得⎩⎪⎨⎪⎧x 0=1,a =-2或⎩⎪⎨⎪⎧x 0=-1,a =2.当x 0=1时,f (x 0)=-1,当x 0=-1时,f (x 0)=1. ∴点P 的坐标为(1,-1)或(-1,1). (2)由题意得y ′=2x +1.在点(0,0)处切线斜率k =y ′|x =0=2.∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x . 答案 (1)D (2)y =2x三、课后练习1.(2019·深圳二模)设函数f (x )=x +1x +b ,若曲线y =f (x )在点(a ,f (a ))处的切线经过坐标原点,则ab =( ) A.1B.0C.-1D.-2解析 由题意可得,f (a )=a +1a +b ,f ′(x )=1-1x 2,所以f ′(a )=1-1a 2,故切线方程是y -a -1a -b =⎝⎛⎭⎪⎫1-1a 2(x -a ),将(0,0)代入得-a -1a -b=⎝ ⎛⎭⎪⎫1-1a 2(-a ),故b =-2a ,故ab =-2. 答案 D2.已知函数f (x )=|x 3+ax +b |(a ,b ∈R ),若对任意的x 1,x 2∈[0,1],f (x 1)-f (x 2)≤2|x 1-x 2|恒成立,则实数a 的取值范围是________. 解析 当x 1=x 2时,f (x 1)-f (x 2)≤2|x 1-x 2|恒成立;当x 1≠x 2时, 由f (x 1)-f (x 2)≤2|x 1-x 2|得f (x 1)-f (x 2)|x 1-x 2|≤2,故函数f (x )在[0,1]上的导函数f ′(x )满足|f ′(x )|≤2,函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,其中[0,1]上的值域为[a ,a +3],则有⎩⎪⎨⎪⎧|a |≤2,|a +3|≤2,解得-2≤a ≤-1.综上所述,实数a 的取值范围为[-2,-1]. 答案 [-2,-1]3.函数g (x )=ln x 图象上一点P 到直线y =x 的最短距离为________. 解析 设点(x 0,ln x 0)是曲线g (x )=ln x 的切线中与直线y =x 平行的直线的切点,因为g ′(x )=(ln x )′=1x ,则1=1x 0,∴x 0=1,则切点坐标为(1,0),∴最短距离为(1,0)到直线y =x 的距离, 即为|1-0|1+1=22. 答案 224.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2(当且仅当x =1时取等号).答案 [2,+∞)。
高二数学第五章导数知识点导数是高中数学中的一个重要概念,在高二数学的第五章中,我们学习了一系列与导数相关的知识点。
本文将对这些知识点逐一进行介绍和解析。
1. 函数的导数函数的导数是描述函数变化率的重要工具。
对于函数f(x),其导数表示为f'(x)或dy/dx,定义为极限lim[h→0] [(f(x+h)-f(x))/h]。
导数的概念可以理解为函数在某点处的切线斜率。
2. 导数的几何意义导数的几何意义是函数曲线在某一点处的切线的斜率。
导数的正负表示曲线上升还是下降,导数的绝对值大小表示变化的速率。
3. 导数的基本性质导数具有一系列基本性质:常数函数的导数为0,函数与它的相反数的导数互为相反数,两个函数的和的导数等于两个函数的导数的和,函数与一个常数乘积的导数等于函数的导数乘以常数。
4. 基本导数公式高中数学中常用的函数的导数公式包括:常数函数的导数为0,幂函数的导数为幂次减一乘以系数,指数函数的导数为自身乘以常数,对数函数的导数为自身除以自变量。
5. 导数的运算法则导数的运算法则包括:和的导数等于各个函数的导数的和,差的导数等于各个函数的导数的差,积的导数等于函数的导数与另一个函数的值的乘积之和,商的导数等于分子函数的导数与分母函数的值的乘积减去分母函数的导数与分子函数的值的乘积之商。
6. 高阶导数高阶导数是指函数的导数再次求导得到的导数。
高阶导数的计算可以通过迭代运用导数的定义,也可以运用函数的导数公式和运算法则进行计算。
7. 隐函数求导隐函数求导是指对于一些由关系式所定义的函数,利用导数的求导法则求得其导函数。
隐函数求导与显式函数求导的区别在于在求导的过程中要将自变量视为关于另一个变量的函数来进行求导。
8. 参数方程求导参数方程求导是指对于由参数方程所定义的函数,利用导数的定义和性质来求其导数。
参数方程的求导需要将自变量表示为参数的函数,然后将参数看作自变量进行求导。
9. 函数的导数与函数的性质关系导数与函数的性质之间存在一系列的关系,比如函数在某点可导,则在该点连续;函数在某区间可导,则在该区间内连续;函数在某点可导,则在该点处的切线与曲线相切等。
导数的概念【重难点知识点网络】: 一、平均变化率 1.变化率事物的变化率是相关的两个量的“增量的比值”。
如气球的平均膨胀率是半径的增量与体积增量的比值; 2.平均变化率一般地,函数f(x)在区间[]21,x x 上的平均变化率为:2121()()f x f x x x --3.如何求函数的平均变化率 求函数的平均变化率通常用“两步”法:①作差:求出21()()y f x f x ∆=-和21x x x ∆=- ②作商:对所求得的差作商,即2121()()f x f x y x x x -∆=∆-。
二、导数的概念定义:函数()f x 在0x x =处瞬时变化率是()()xx f x x f x yx x ∆-∆+=∆∆→∆→∆0000limlim,我们称它为函数()x f y =在0x x =处的导数,记作() 或0x f '即 0x x y ='()()()xx f x x f x yx f x x ∆-∆+=∆∆'→∆→∆00000limlim= 三、求导数的方法: 求导数值的一般步骤:① 求函数的增量:00()()y f x x f x ∆=+∆-;② 求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③ 求极限,得导数:00000()()'()lim lim x x f x x f x yf x x x∆→∆→+∆-∆==∆∆。
也可称为三步法求导数。
【重难点题型突破】: 一、平均变化率与瞬时变化率函数(x)f 在某点()00x ,(x )f 处的导数()()00'000(x )lim lim x x f x x f x y f x x →→+-⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭例1.(1)设函数()y f x =,当自变量x 由0x 改变到0x +Δx 时,函数的增量Δy 为( )A .0()f x x +∆B .0()f x x +∆C .0()f x x ⋅∆D .00()()f x x f x +∆-(2)若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx ,1+Δy ),则x y∆∆等于 A.4 B.4xC.4+2ΔxD.4+2Δx 2例2.函数()y f x ==在区间[1,1+Δx]内的平均变化率为________。
大数据之十年高考真题(2013-2022)与优质模拟题(新高考卷与新课标理科卷)专题05导数及其应用解答题1.【2022年全国甲卷理科21】已知函数f(x)=e xx−lnx+x−a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则环x1x2<1.2.【2022年全国乙卷理科21】已知函数f(x)=ln(1+x)+axe−x(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在区间(−1,0),(0,+∞)各恰有一个零点,求a的取值范围.3.【2022年新高考1卷22】已知函数f(x)=e x−ax和g(x)=ax−lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.4.【2022年新高考2卷22】已知函数f(x)=x e ax−e x.(1)当a=1时,讨论f(x)的单调性;(2)当x>0时,f(x)<−1,求a的取值范围;(3)设n∈N∗,证明:1√12+1+1√22+2+⋯+1√n2+n>ln(n+1).5.【2021年全国甲卷理科21】已知a>0且a≠1,函数f(x)=x aa x(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.6.【2021年新高考1卷22】已知函数f(x)=x(1−lnx).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna−alnb=a−b,证明:2<1a +1b<e.7.【2021年全国乙卷理科20】设函数f(x)=ln(a−x),已知x=0是函数y=xf(x)的极值点.(1)求a;真题汇总(2)设函数g(x)=x+f(x)xf(x).证明:g(x)<1.8.【2021年新高考2卷22】已知函数f(x)=(x −1)e x −ax 2+b . (1)讨论f(x)的单调性;(2)从下面两个条件中选一个,证明:f(x)有一个零点 ①12<a ≤e 22,b >2a ;②0<a <12,b ≤2a .9.【2020年全国1卷理科21】已知函数f(x)=e x +ax 2−x . (1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 10.【2020年全国2卷理科21】已知函数f (x )=sin 2x sin2x . (1)讨论f (x )在区间(0,π)的单调性; (2)证明:|f(x)|≤3√38; (3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤3n4n .11.【2020年全国3卷理科21】设函数f(x)=x 3+bx +c ,曲线y =f(x)在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若f(x)有一个绝对值不大于1的零点,证明:f(x)所有零点的绝对值都不大于1. 12.【2020年山东卷21】已知函数f(x)=ae x−1−lnx +lna .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.13.【2020年海南卷22】已知函数f(x)=ae x−1−lnx +lna .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.14.【2019年新课标3理科20】已知函数f (x )=2x 3﹣ax 2+b . (1)讨论f (x )的单调性;(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为﹣1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.15.【2019年全国新课标2理科20】已知函数f (x )=lnx −x+1x−1.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =lnx 在点A (x 0,lnx 0)处的切线也是曲线y =e x 的切线. 16.【2019年新课标1理科20】已知函数f (x )=sin x ﹣ln (1+x ),f ′(x )为f (x )的导数.证明: (1)f ′(x )在区间(﹣1,π2)存在唯一极大值点;(2)f (x )有且仅有2个零点.17.【2018年新课标1理科21】已知函数f (x )=1x −x +alnx . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f(x 1)−f(x 2)x 1−x 2<a ﹣2.18.【2018年新课标2理科21】已知函数f (x )=e x ﹣ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1; (2)若f (x )在(0,+∞)只有一个零点,求a .19.【2018年新课标3理科21】已知函数f (x )=(2+x +ax 2)ln (1+x )﹣2x . (1)若a =0,证明:当﹣1<x <0时,f (x )<0;当x >0时,f (x )>0; (2)若x =0是f (x )的极大值点,求a .20.【2017年新课标1理科21】已知函数f (x )=ae 2x +(a ﹣2)e x ﹣x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.21.【2017年新课标2理科21】已知函数f (x )=ax 2﹣ax ﹣xlnx ,且f (x )≥0. (1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e ﹣2<f (x 0)<2﹣2.22.【2017年新课标3理科21】已知函数f (x )=x ﹣1﹣alnx . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,(1+12)(1+122)…(1+12n )<m ,求m 的最小值. 23.【2016年新课标1理科21】已知函数f (x )=(x ﹣2)e x +a (x ﹣1)2有两个零点. (Ⅰ)求a 的取值范围;(Ⅱ)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.24.【2016年新课标2理科21】(Ⅰ)讨论函数f (x )=x−2x+2e x 的单调性,并证明当x >0时,(x ﹣2)e x +x +2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=e x−ax−ax2(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.25.【2016年新课标3理科21】设函数f(x)=a cos2x+(a﹣1)(cos x+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.26.【2015年新课标1理科21】已知函数f(x)=x3+ax+14,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.27.【2015年新课标2理科21】设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.28.【2014年新课标1理科21】设函数f(x)=ae x lnx+be x−1x,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.29.【2014年新课标2理科21】已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<√2<1.4143,估计ln2的近似值(精确到0.001).30.【2013年新课标1理科21】已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y =g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.31.【2013年新课标2理科21】已知函数f(x)=e x﹣ln(x+m)(Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.1.已知函数f(x)=x22+cosx−1.(1)求函数f(x)的最小值;(2)证明:∑cos1k >n+12n−1nk=1.2.已知函数f(x)=e x(sinx+cosx)−asinx..(1)当a=1时,求函数f(x)在区间[0,2π]上零点的个数;(2)若函数y=f(x)在(0,2π)上有唯一的极小值点,求实数a的取值范围3.已知函数ℎ(x)=x−alnx(a∈R).(1)若ℎ(x)有两个零点,a的取值范围;(2)若方程x e x−a(lnx+x)=0有两个实根x1、x2,且x1≠x2,证明:e x1+x2>e2x1x2.4.已知函数f(x)=a2x2+(a−1)x−lnx(a∈R).(1)求函数f(x)的单调区间;(2)当a>4时,若方程f(x)=ax2−x+a2在(0,1)内存在唯一实根x0,求证:x0∈(14,1e).5.已知函数f(x)=e1−x+a(x2−1),a∈R.(1)若a=12,求f(x)的最小值;(2)若当x>1时,f(x)>1x+lnx恒成立,求a的取值范围.6.已知函数f(x)=2x3+3(1+m)x2+6mx(x∈R).(1)讨论函数f(x)的单调性;(2)若f(1)=5,函数g(x)=a(lnx+1)−f(x)x2≤0在(1,+∞)上恒成立,求整数a的最大值.7.已知函数f(x)=lnx+ax,a∈R.(1)当a=1时,求函数f(x)的单调递增区间;(2)设函数g(x)=f(x)−1x,若g(x)在[1,e2]上存在极值,求a的取值范围.8.设函数f(x)=a e x−x−1,a∈R.(1)当a=1时,求f(x)在点(0,f(0))处的切线方程;(2)当x∈R时,f(x)≥0恒成立,求a的取值范围;模拟好题(3)求证:当x∈(0,+∞)时,e x−1x>e x2.9.已知f(x)=34x2−x22lnx−a(x−1).(1)若f(x)恒有两个极值点x1,x2(x1<x2),求实数a的取值范围;(2)在(1)的条件下,证明f(x1)+f(x2)>32.10.已知函数f(x)=xsinx+cosx+12ax2,x∈[0,π].(1)当a=0时,求f(x)的单调区间;(2)当a>0时,讨论f(x)的零点个数.11.已知函数f(x)=xe x−1+(1−a)lnx,g(x)=lnx+ax.(1)当a=1时,求y=f(x)在点(1,f(1))处的切线方程;(2)当a=2时,对于在(0,1)中的任意一个常数b,是否存在正数x0,使得e g(x0+1)−3x0−2+b2x02<1,请说明理由;(3)设ℎ(x)=f(x)−g(x),x1是ℎ(x)的极小值点,且ℎ(x1)≥0,证明:ℎ(x1)≥2(x12−x13).12.已知函数f(x)=ax−2e x+3(a∈R),g(x)=lnx+x e x(e为自然对数的底数,e<259).(1)求函数f(x)的单调区间;(2)若a=−1,ℎ(x)=f(x)+g(x),当x∈[12,1]时,ℎ(x)∈(m,n),(m,n∈Z),求n−m的最小值.13.已知函数f(x)=a e xx+lnx−x(a∈R).(1)若f(x)在(1,+∞)上单调递增,求a的取值范围;(2)当a>1时,设F(x)=f(x)−(2lnx−x+1x ),求证:F(x)>ln(ax)x−lnx+e−1.14.设函数f(x)=m e x−1,g(x)=lnx+n,m、n为实数,若F(x)=g(x)x 有最大值为1e2(1)求n的值;(2)若f(x)e2>xg(x),求实数m的最小整数值.15.已知f(x)=34x2−x22lnx−a(x−1),a>0.(1)若f(x)在区间(1,+∞)上有且仅有一个极值点m,求实数a的取值范围;(2)在(1)的条件下,证明34<f(m)<e24.16.已知函数f(x)=ln(x−1)−mx(m∈R),g(x)=2x+n−2.(1)讨论函数f(x)的单调性;(2)当−1≤m≤e−2时,若不等式f(x)≤g(x)恒成立,求n−3的最小值.m+217.已知函数f(x)=e x2lnx(x>0).(1)求f(x)的极值点.(2)若有且仅有两个不相等的实数x1,x2(0<x1<x2)满足f(x1)=f(x2)=e k.(i)求k的取值范围(ⅱ)证明x2e2−2e≤e−e21.x118.已知函数f(x)=xlnx−a(x2−1),a∈R(1)当a=0时,求f(x)的单调区间;(2)若过原点作曲线y=f(x)的切线有两条,求a的取值范围,并证明这两条切线的斜率互为相反数.19.已知函数f(x)=e−x+sinx−ax,g(x)为f(x)的导函数.]内存在唯一的极值点x0,√2<2cosx0<√3;(1)证明:当a=0时,函数g(x)在区[0,π2(2)若f(x)在(0,π)上单调递减,求整数a的最小值.(x>0).20.已知函数f(x)=1+ln(x+1)x(1)试判断函数f(x)在(0,+∞)上单调性并证明你的结论;(2)若f(x)>k对于∀x∈(0,+∞)恒成立,求正整数k的最大值;x+1(3)求证:(1+1×2)(1+2×3)(1+3×4)⋯[1+n(n+1)]>e2n−3.。
用思维导图突破解导数压轴题()=ln 1,0.f x a x x x ++>0a ≠34a =-()f x思路点拨420≤<a x x a x f ++=1ln )(ax2≤满分解答21[,)e x ∈+∞(),2x f x a≤ae 2.71828...=()'f x xaxa1=x af 212)1(≤=420≤<a 21e x ≥∀记 其中,,证明凑用基本不等式证明≤0以1a 为主元以x 为主元原 问 题视a 为主元,构造二次函数,证明视a 为主元()3433'4x x f x x -+=-==34a =-()3ln 4f x x =-+)0,∞+()f x ()3,+∞()0,31(1)2f a≤0a <≤04a <≤()2f x a≤2ln 0xa--≥1t a=t ≥()22ln g t t x=t≥2()2ln g t t x=1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()(22)2ln g x g x=1()ln,7p x x x =≥1()p x x '=-==17()(1)0,()(22)2()0p x p g t g p x ∴=∴=211,7x e ⎡⎫∈⎪⎢⎣⎭12()12x g t g x x ≥+=211()2(1),,7q x x x x x e ⎡⎤=++∈⎢⎥⎣⎦()10q x x'=+>()q x 211,7e ⎡⎤⎢⎥⎣⎦1()7q x q ⎛⎫∴≤ ⎪⎝⎭127127(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭1()0,()102q x g t g x x ∴<∴≥+=>21,,[22,),()0x t g t e ⎡⎫∈+∞∈+∞≥⎪⎢⎣⎭21,x e ⎡⎫∈+∞⎪⎢⎣⎭()2f x ax≤20,4⎛ ⎝⎦思路点拨第(2)题作函数h (x )=a x −alnx +x +1x ,只要h (x )在[1,e]上的最小值小于0,对h (x )求导后判断单调性,根据单调性求最小值。
专题05 导数的概念
【重难点知识点网络】: 一、平均变化率 1.变化率
事物的变化率是相关的两个量的“增量的比值”。
如气球的平均膨胀率是半径的增量与体积增量的比值; 2.平均变化率
一般地,函数f(x)在区间[]21,x x 上的平均变化率为:
2121
()()
f x f x x x --
3.如何求函数的平均变化率 求函数的平均变化率通常用“两步”法:
①作差:求出21()()y f x f x ∆=-和21x x x ∆=-
②作商:对所求得的差作商,即
2121
()()f x f x y x x x -∆=∆-。
二、导数的概念
定义:函数()f x 在0x x =处瞬时变化率是()()x
x f x x f x y
x x ∆-∆+=∆∆→∆→∆0000lim
lim
,我们称它为函数()x f y =在0x x =处的导数,记作() 或0x f '即 0
x x y ='()()()x
x f x x f x y
x f x x ∆-∆+=∆∆'→∆→∆00000lim
lim
= 三、求导数的方法: 求导数值的一般步骤:
① 求函数的增量:00()()y f x x f x ∆=+∆-;
② 求平均变化率:
00()()
f x x f x y x x
+∆-∆=
∆∆; ③ 求极限,得导数:00000()()'()lim
lim
x x f x x f x y
f x x x
∆→∆→+∆-∆==∆∆。
也可称为三步法求导数。
【重难点题型突破】: 一、平均变化率与瞬时变化率
函数(x)f 在某点()00x ,(x )f 处的导数()()00'
00
0(x )lim lim x x f x x f x y f x x →→+-⎛⎫⎛⎫==
⎪
⎪⎝⎭⎝⎭
例1.(1)设函数()y f x =,当自变量x 由0x 改变到0x +Δx 时,函数的增量Δy 为( )
A .0()f x x +∆
B .0()f x x +∆
C .0()f x x ⋅∆
D .00()()f x x f x +∆- 【答案】 D
【解析】 由公式00()()y f x x f x ∆=+∆-可得,故选D 。
(2)若函数f (x )=2x 2
-1的图象上一点(1,1)及邻近一点(1+Δx ,1+Δy ),则
x
y
∆∆等于 A.4 B.4x
C.4+2Δx
D.4+2Δx 2
【答案】C
【解析】Δy =2(1+Δx )2
-1-1=2Δx
2
+4Δx ,
x
y
∆∆=4+2Δx . 例2. 函数()y f x ==
在区间[1,1+Δx]内的平均变化率为________。
【解析】 ∵(1)(1)1y f x f ∆=+∆-=
-
== =
,∴y x ∆=∆ 例3.求函数y=2x 2+5在区间[2,2+Δx]上的平均变化率;并计算当1
2
x ∆=
时,平均变化率的值。
【答案】 ∵2
2
2
(2)(2)2(2)5(225)82()y f x f x x x ∆=+∆-=+∆+-⋅+=∆+∆ ∴
82y
x x
∆=+∆∆,函数在区间[2,2+Δx]上的平均变化率为82x +∆。
当12x ∆=
时,829y x x
∆=+∆=∆,即平均变化率的值为9. 例 4. 已知函数f (x )=x x +-2
的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则
=∆∆x
y
. 【答案】 ∵ )1()1(22
x x y ∆+-+∆+--=∆+-,∴ 2(1)(1)23y x x x x x
∆--+∆+-+∆+==-∆∆∆ 二、利用定义求导数的值
例5.(1)设函数在处存在导数,则( )
A .
B .
C .
D .
【答案】A
【解析】,故选A.
(2)设函数f (x )在x =1处存在导数为2,则= _______________.
【答案】
【解析】由极限的运算法则结合导函数的定义可得:
==×f ′(1)=.
()f x 1x =0
(1)(1)
lim
3x f x f x
∆→+∆-=∆1
(1)3
f '(1)f '3(1)f '(3)f '0
0(1)(1)1(1)(1)1
lim
lim (1)
333
x x f x f f x f f x x ∆→∆→+∆-+∆-'==∆∆()()
113x f x f lim
x
∆→+∆-∆2
3
()()0
113x f x f lim
x ∆→+∆-∆()()01113x f x f lim x
∆→+∆-∆1
323
例6. 用导数的定义,求函数()y f x
==
在x=1处的导数。
【解析】∵(1)(1)1
y f x f ∆=+∆-=
=
=
= ∴
y x ∆=∆∴01'(1)lim 2x y f x ∆→∆==-∆。
【点评】 利用定义求函数的导数值,需熟练掌握求导数的步骤和方法,即三步法。
例7. (1)求函数 2
()3f x x =在x =1处的导数.
(2)求函数f (x )=x x +-2
在1x =-附近的平均变化率,并求出在该点处的导数.
【答案】 (1) 2
2
(1)(1)3(1)363()y f x f x x x ∆=+∆-=+∆-=∆+∆
2
63()63y x x x x x
∆∆+∆==+∆∆∆, 0lim(63)6x x ∆→+∆=,即(1)6f '=.
所以 函数 2
()3f x x =在x =1处的导数为6 .
(2) 依照定义,f (x )在1x =-的平均变化率,为两增量之比,
需先求22
00()()(1)(1)23()y f x x f x x x x x ∆=+∆-=--+∆+-+∆-=∆-∆,
再求:
2
3()3y x x x x x
∆∆-∆==-∆∆∆,即为f (x )=x x +-2在1x =-附近的平均变化率。
再由导数定义得: 00
(1)lim
lim(3)3x x y
f x x ∆→∆→∆'-==-∆=∆
例8. 已知函数1
y x
=
x=4处的导数.
【答案】(1
)0011
(2)
(4)(4)44'(4)lim lim x x f x f x f x x
∆→∆→-+∆-+∆==∆∆
01
12)44lim x x x ∆→⎛⎫-- ⎪
+∆⎝⎭=
∆0lim
x ∆→=
15
lim 4(4)16x x ∆→⎛
-==- +∆⎝
, 例9.
已知()f x ='()f x ,'(2)f 【答案】
因为y ∆=
,所以
y
x x ∆===
∆∆。
当Δx →0
时,'()f x =
,∴当x=2
时,1
'(2)4
f =
=。
三、导数的几何意义
例10.已知()y f x =的图象如图所示,则()A f x '与()B f x '的大小关系是
A .()()A
B f x f x >''
B .()()A B f x f x =''
C .()()A B f x f x <''
D .()A f x '与()B f x '大小不能确定
例11.如图,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则[(0)]
f
f
= ;0
(1)(1)
lim
x f x f x
∆→+∆-∆= .
【答案】 2, 2
【解析】 由图可知:f(0)=4,f(4)=2; f(x)=-2x+4,带入可得。
例12.已知曲线31433
C y x =
+:. (1)求曲线C 上横坐标为2的点处的切线方程;
(2)第(1)小题中的切线与曲线C 是否还有其他的公共点?。