导数及其应用复习小结
- 格式:ppt
- 大小:675.50 KB
- 文档页数:29
导数题的解题技巧小结【命题趋向】导数命题趋势:综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点:(1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题.(2)求极值, 函数单调性,应用题,与三角函数或向量结合.分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题.【考点透视】1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值.【例题解析】考点1 导数的概念对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念.例1.(2007年北京卷)()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力.[解答过程] ()22()2,(1)12 3.f x x f ''=+∴-=-+=故填3.例2. ( 2006年湖南卷)设函数()1x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实数a 的取值范围是 ( )A.(-∞,1)B.(0,1)C.(1,+∞)D. [1,+∞)[考查目的]本题主要考查函数的导数和集合等基础知识的应用能力. [解答过程]由0,,1;, 1.1x a x a a x x -<∴<<<<-当a>1时当a<1时()()()//11,0.11111.x x a x a x a a y y x x x x a ------⎛⎫=∴===> ⎪--⎝⎭--∴> 综上可得M P 时, 1.a ∴>考点2 曲线的切线(1)关于曲线在某一点的切线求曲线y=f(x)在某一点P (x,y )的切线,即求出函数y=f(x)在P 点的导数就是曲线在该点的切线的斜率.(2)关于两曲线的公切线若一直线同时与两曲线相切,则称该直线为两曲线的公切线. 典型例题例3.(2007年湖南文)已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点.(I )求24a b -的最大值;(II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式. 思路启迪:用求导来求得切线斜率. 解答过程:(I )因为函数3211()32f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根,设两实根为12x x ,(12x x <),则21x x -=2104x x <-≤.于是04,20416a b <-≤,且当11x =-,23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.(II )解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是(1)(1)(1)y f f x '-=-,即21(1)32y a b x a =++--, 因为切线l 在点(1())A f x ,处空过()y f x =的图象, 所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则 1x =不是()g x 的极值点.而()g x 321121(1)3232x ax bx a b x a =++-++++,且 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.若11a ≠--,则1x =和1x a =--都是()g x 的极值点.所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--.解法二:同解法一得21()()[(1)]32g x f x a b x a =-++-- 2133(1)[(1)(2)]322a x x x a =-++-+. 因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<).当11m x <<时,()0g x <,当21x m <<时,()0g x >; 或当11m x <<时,()0g x >,当21x m <<时,()0g x <. 设233()1222a a h x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,则 当11m x <<时,()0h x >,当21x m <<时,()0h x >; 或当11m x <<时,()0h x <,当21x m <<时,()0h x <. 由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102ah =⨯++=, 所以2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--. 例4.(2006年安徽卷)若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++= [考查目的]本题主要考查函数的导数和直线方程等基础知识的应用能力. [解答过程]与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=. 故选A.例5. ( 2006年重庆卷)过坐标原点且与x 2+y 2 -4x +2y +25=0相切的直线的方程为 ( )A.y =-3x 或y =31x B. y =-3x 或y =-31x C.y =-3x 或y =-31x D. y =3x 或y =31x[考查目的]本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力. [解答过程]解法1:设切线的方程为,0.y kx kx y =∴-= 又()()()22521,2,1.2x y -++=∴-圆心为213830., 3.3k k k k +-=∴==- 1,3.3y x y x ∴==-或故选A.解法2:由解法1知切点坐标为1331(,),,,2222⎛⎫- ⎪⎝⎭由()()//22////113231(,)(,)22225(2)1,22(2)210,2.113,.313,.3x xx x x x x y x y y x y y k y k y y x y x -⎛⎫⎡⎤-++= ⎪⎣⎦⎝⎭∴-++=-∴=-+∴==-==∴=-=故选A.例6.已知两抛物线a x y C x x y C +-=+=2221:,2:, a 取何值时1C ,2C 有且只有一条公切线,求出此时公切线的方程.思路启迪:先对a x y C x x y C +-=+=2221:,2:求导数.解答过程:函数x x y 22+=的导数为22'+=x y ,曲线1C 在点P(12112,x x x +)处的切线方程为))(2(2)2(11121x x x x x y -+=+-,即 211)1(2x x x y -+= ①曲线1C 在点Q ),(222a x x +-的切线方程是)(2)(222x x x a x y --=+--即a x x x y ++-=2222 ② 若直线l 是过点P 点和Q 点的公切线,则①式和②式都是l 的方程,故得1,1222121+=--=+x x x x ,消去2x 得方程,0122121=+++a x x若△=0)1(244=+⨯-a ,即21-=a 时,解得211-=x ,此时点P 、Q 重合.∴当时21-=a ,1C 和2C 有且只有一条公切线,由①式得公切线方程为14y x =- .考点3 导数的应用中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题: 1.. 求函数的解析式; 2. 求函数的值域; 3.解决单调性问题; 4.求函数的极值(最值); 5.构造函数证明不等式. 典型例题 例7.(2006年天津卷)函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A .1个B .2个C .3个D . 4个[考查目的]本题主要考查函数的导数和函数图象性质等基础知识的应用能力. [解答过程]由图象可见,在区间(,0)a 内的图象上有一个极小值点. 故选A.例8 .(2007年全国一)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.思路启迪:利用函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值构造方程组求a 、b 的值.解答过程:(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a=-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>; 当(12)x ∈,时,()0f x '<; 当(23)x ∈,时,()0f x '>.所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+.则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2()f x c <恒成立, 所以 298c c +<,解得1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞ ,,.例9.函数y x x =+-+243的值域是_____________.思路启迪:求函数的值域,是中学数学中的难点,一般可以通过图象观察或利用不等式性质求解,也可以利用函数的单调性求出最大、最小值。
导数知识点总结及例题一、导数的定义1.1 函数的变化率在生活中,我们经常会遇到函数随着自变量的变化而发生变化的情况,比如一辆汽车的速度随着时间的变化而变化、货物的销售量随着价格的变化而变化等。
这种情况下,我们就需要考虑函数在某一点处的变化率,也就是导数。
对于函数y=f(x),在点x处的变化率可以用函数的增量Δy和自变量的增量Δx的比值来表示:f'(x) = lim(Δx→0) (Δy/Δx)其中f'(x)表示函数f(x)在点x处的导数。
利用导数的定义,我们可以计算得到函数在某一点处的变化率。
1.2 导数的几何意义导数还有一个重要的几何意义,它表示了函数曲线在某一点处的切线的斜率。
例如,对于函数y=x^2,在点(1,1)处的导数就代表了曲线在这一点处的切线斜率。
这也意味着,导数可以帮助我们理解函数曲线在不同点处的形状和走向。
1.3 导数存在的条件对于一个函数f(x),它在某一点处的导数存在的条件是:在这一点处函数曲线的切线存在且唯一。
也就是说,如果函数在某一点处导数存在,那么这个点就是函数的可导点。
二、导数的性质2.1 导数与函数的关系导数是函数的一个重要属性,它可以帮助我们理解函数的性质。
例如,导数可以表示函数在某一点处的斜率,可以告诉我们函数曲线的凹凸性,还可以帮助我们找到函数的极值点等。
2.2 导数与导函数当一个函数在某一点处的导数存在时,我们可以使用导数的定义来求出函数在该点处的导数。
我们把这个过程称为求导,求出的导数称为导函数。
导函数的值就是原函数在对应点处的导数值。
2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、可导函数的和、差、积、商的导数求法则等。
这些性质是我们求解导数的问题时的重要依据,也是我们理解函数性质的基础。
三、求导法则3.1 基本求导法则基本求导法则是求解导数问题的基础,它包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等函数的导数求法。
导数知识点总结与应用一、导数的定义导数的定义是一个函数在某一点的变化率,通俗地说就是函数在某一点的斜率。
数学上我们用极限的概念来定义导数,设函数y=f(x),在点x0处的导数定义为:f'(x0) = lim (Δx→0) (f(x0+Δx)- f(x0))/Δx如果这个极限存在的话,我们就称这个导数为存在的。
导数在几何意义上就是函数在某一点的切线的斜率。
二、导数的意义导数不仅仅是一个数学概念,更是反映了函数在不同点的变化情况。
导数告诉我们了函数在某一点的变化率,也就是函数在该点上的速度。
导数在物理中也有广泛的应用,比如在求物体的速度、加速度等等。
在经济学中,导数也有广泛的应用,比如在边际收益、边际成本等等。
三、导数的常用性质1、导数的和差规则:设函数f(x)和g(x)都在点x0具有导数,那么它们的和、差的导数就可以用下面的关系式来表示:(f(x)±g(x))' = f'(x)±g'(x)2、导数的数乘规则:设函数f(x)在点x0具有导数,那么它的数乘k的导数可以用下面的关系式来表示:(k*f(x))' = k*f'(x)3、导数的积法则:设函数f(x)和g(x)都在点x0具有导数,那么它们的积的导数可以用下面的关系式来表示:(f(x)*g(x))' = f'(x)*g(x) + f(x)*g'(x)4、导数的商法则:设函数f(x)和g(x)都在点x0具有导数,并且g(x0)≠0,那么它们的商的导数可以用下面的关系式来表示:(f(x)/g(x))' = (f'(x)*g(x) - f(x)*g'(x))/[g(x)]^2四、高阶导数由导函数可以得到二阶导数,三阶导数···,n阶导数的定义分别为f''(x) = [f'(x)]'f'''(x) = [f''(x)]'···f^(n)(x) = [f^(n-1)(x)]'几何意义上就是函数在该点的曲率、弯曲程度。
导数知识点总结大全一、基本概念1.1 导数的定义对于函数y = f(x),在点x处的导数表示为f'(x),它定义为函数在该点的变化率。
导数可以用极限的概念来定义:\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\]其中,h表示自变量x的小变化量,当h趋近于0时,这个极限就表示了函数在点x处的导数。
导数也可以表示为函数的微分形式,即dy = f'(x)dx。
1.2 导数的几何意义导数有着重要的几何意义,它表示了函数在某一点上的切线斜率。
对于函数y = f(x),在点(x, f(x))处的切线的斜率恰好等于函数在该点的导数f'(x)。
这意味着导数可以描述函数在某一点的变化速率和方向。
1.3 导数的物理意义在物理学中,导数也有着重要的物理意义。
对于物理量s关于时间t的函数s(t),它的导数s'(t)表示了速度的变化率,即s'(t) = ds/dt。
类似地,速度关于时间的函数v(t)的导数v'(t)表示了加速度的变化率,即v'(t) = dv/dt。
因此,导数在描述物理过程中的变化率和速度方面也有着重要的应用。
1.4 导数的符号表示导数的符号表示通常有几种形式,常见的包括f'(x)、dy/dx、y'等。
它们都表示对函数y =f(x)的自变量x求导所得到的结果,即函数在某一点上的变化率或者斜率。
二、导数的性质2.1 导数存在性对于一个函数f(x),它在某一点上的导数可能存在也可能不存在。
如果函数在某一点上导数存在,那么称该函数在该点上可导。
对于大多数常见的函数,它们在定义域内是可导的,例如多项式函数、三角函数、指数函数等。
但也存在一些特殊的函数,在某些点上导数可能不存在,例如绝对值函数在原点处的导数就不存在。
2.2 导数的连续性如果一个函数在某一点上导数存在,并且它在该点上是连续的,那么称该函数在该点上是可微的。
导数知识点总结与计算导数是微积分中的重要概念,它描述了函数在某一点的变化率。
计算导数可以用于求解函数在某一点的切线斜率、最大值最小值以及函数的变化趋势等问题。
在实际应用中,导数也被广泛应用于物理、经济、工程等领域,因此对于导数的理解和掌握是十分重要的。
本文将对导数的基本概念、求导法则以及常见函数的导数进行总结,并进行详细的解释和示例计算,以便读者更好地掌握导数知识。
一、导数的基本概念1. 函数的导数在微积分中,函数f(x)在点x处的导数表示为f'(x),即导数是函数在某一点的变化率。
可以用极限的概念来定义函数的导数:若函数f(x)在点x处的导数存在,则f'(x)=lim (Δx→0) (f(x+Δx)-f(x))/Δx其中Δx表示自变量x的增量。
当Δx趋于0时,函数在点x处的导数即为该点的切线斜率。
2. 导数的几何意义导数可以用几何意义来解释:函数f(x)在点x处的导数即为该点处曲线的切线斜率。
当导数为正时,函数在该点处是增加的;当导数为负时,函数在该点处是减少的;当导数为零时,函数在该点处取得极值。
因此,导数可以用于描述函数在某一点的变化趋势。
3. 导数的物理意义在物理学中,导数也具有重要的物理意义。
例如,当我们知道一个物体的位移函数时,可以通过求导得到该物体的速度函数;再对速度函数求导,可以得到该物体的加速度函数。
因此,导数可以帮助我们描述物体的运动规律。
二、求导法则对于常见的函数,我们可以通过一些基本的求导法则来求解其导数。
下面将介绍求导的基本法则及其示例计算。
1. 常数函数的导数若f(x)=c,其中c为常数,则f'(x)=0。
因为常数函数在任意点的变化率均为0。
示例计算:求函数f(x)=5的导数。
解:f'(x)=0。
2. 幂函数的导数若f(x)=x^n,其中n为正整数,则f'(x)=nx^(n-1)。
即幂函数的导数等于指数与原函数的指数减一的乘积。
《导数及其应用》知识点总结一、导数的定义与运算1.导数的定义:导数表示函数在其中一点上的变化率,定义为函数在该点处的极限值。
设函数y=f(x),则函数f(x)在点x=a处的导数记为f'(a),可以表示为以下三种形式:(1)f'(a) = lim(x→a) [f(a)-f(x)] / (a-x)(2)f'(a) = lim(h→0) [f(a+h)-f(a)] / h(3)f'(a) = dy / dx,_(x=a)2.导数的运算法则:(1)和差法则:(u±v)'=u'±v'(2)数乘法则:(ku)' = ku'(3)乘法法则:(uv)' = u'v+uv'(4)商法则:(u/v)' = (u'v-uv') / v²(5)复合函数求导法则:(f[g(x)])'=f'(g(x))*g'(x)二、导数的几何意义1.切线与法线:函数在其中一点处的导数就是函数在该点处的切线的斜率,切线方程为y-f(a)=f'(a)(x-a)。
函数在其中一点处的导数的倒数就是函数在该点处的法线的斜率,法线方程为y-f(a)=-(1/f'(a))(x-a)。
2.函数的单调性与极值:若函数在一段区间上的导数大于0,则函数在该区间上单调递增;若函数在一段区间上的导数小于0,则函数在该区间上单调递减。
函数在一个点处的导数为0,则该点为函数的驻点;函数在驻点上的导数为正,则该点为函数的极小值点;函数在驻点上的导数为负,则该点为函数的极大值点。
三、导数的应用1.函数的极值与最值:(1)求函数的极值点:将函数的导数等于0的解作为候选点,再通过计算二阶导数或进行导数的符号表来判断是否为极值点。
(2)求函数的最值:将函数的极值点和函数在定义域的两端计算的值进行比较,得出最大值或最小值。
导数的应用知识点总结一、导数的定义与几何意义。
1. 导数的定义。
- 函数y = f(x)在x = x_0处的导数f^′(x_0)定义为f^′(x_0)=limlimits_Δ x→0(Δ y)/(Δ x)=limlimits_Δ x→0frac{f(x_0+Δ x)-f(x_0)}{Δ x}。
- 如果函数y = f(x)在开区间(a,b)内的每一点都可导,就说f(x)在区间(a,b)内可导。
这时对于区间(a,b)内的每一个确定的x值,都对应着一个确定的导数f^′(x),这样就构成了一个新的函数f^′(x),称它为函数y = f(x)的导函数,简称导数,记作y^′或f^′(x)或(dy)/(dx)等。
2. 导数的几何意义。
- 函数y = f(x)在点x_0处的导数f^′(x_0)的几何意义是曲线y = f(x)在点(x_0,f(x_0))处的切线斜率。
- 曲线y = f(x)在点(x_0,f(x_0))处的切线方程为y - f(x_0)=f^′(x_0)(x - x_0)。
二、导数的基本公式与运算法则。
1. 基本公式。
- (C)^′ = 0(C为常数)- (x^n)^′ = nx^n - 1(n∈ Q)- (sin x)^′=cos x- (cos x)^′ =-sin x- (a^x)^′ = a^xln a(a>0,a≠1)- (e^x)^′ = e^x- (log_ax)^′=(1)/(xln a)(a>0,a≠1,x>0)- (ln x)^′=(1)/(x)2. 运算法则。
- (u± v)^′ = u^′± v^′- (uv)^′ = u^′ v + uv^′- ((u)/(v))^′=(u^′ v - uv^′)/(v^2)(v≠0)三、导数在函数单调性中的应用。
1. 函数单调性与导数的关系。
- 设函数y = f(x)在某个区间内可导,如果f^′(x)>0,那么函数y = f(x)在这个区间内单调递增;如果f^′(x)<0,那么函数y = f(x)在这个区间内单调递减。
高中数学导数知识点总结第一篇:导数定义、基本求导公式及其应用关于导数的定义导数是微积分学中的一项重要知识,是描述函数变化率的概念。
对于函数f(x)而言,若它在点x0处可导,则导数f'(x0)表示函数f(x)在该点的变化率,即当x在x0附近微小偏移时,f(x)的改变量与x偏移量的比值。
导数的求法1. 使用导数定义根据导数的定义,导数f'(x)可以表示为:f'(x) = limΔx→0 [f(x+Δx)-f(x)]/Δx这个方法比较麻烦,但在某些特殊情况下比较有用。
2. 使用基本求导公式基本求导公式有以下几种形式:1)常数函数的导数为零。
2)幂函数的导数为:(xn)'=nxⁿ⁻¹。
3)指数函数的导数为:(ex)'=ex。
4)对数函数的导数为:(lnx)'=1/x。
5)三角函数的导数为:(sinx)'= cosx,(cosx)'= -sinx,(tanx)'= sec²x,(cotx)'= -csc²x。
3. 使用导数定理导数定理包括和法、差法、积法、商法和复合函数求导法。
它们的公式分别为:1)和法:[u(x)+v(x)]' = u'(x) + v'(x)。
2)差法:[u(x)-v(x)]' = u'(x) - v'(x)。
3)积法:[u(x)·v(x)]' = u'(x)·v(x) + u(x)·v'(x)。
4)商法:[u(x)/v(x)]' = [u'(x)·v(x) -u(x)·v'(x)]/v²(x)。
5)复合函数求导法:[f(g(x))]′=f′(g(x))·g′(x)。
导数的应用1. 判断函数在某点的单调性和极值若函数在某点的导数f'(x0)符号发生改变,则该点是函数f(x)的极值点。
章末小结知识点一导数的概念与几何意义求曲线的切线的方法求曲线的切线分两种情况(1)求点P(x0,y0)处的切线,该点在曲线上,且点是切点,切线斜率k =y′|x=x0.(2)求过点P(x1,y1)的切线方程,此点在切线上不一定是切点,需设出切点(x0,y0),求出切线斜率k=y′|x=x0,利用点斜式方程写出切线方程,再根据点在切线上求出切点坐标即可求出切线方程.已知函数y=x3-x,求函数图象(1)在点(1,0)处的切线方程;(2)过点(1,0)的切线方程.解析:(1)函数y=x3-x的图象在点(1,0)处的切线斜率为k=y′|x=1=(3x2-1)|x=1=2,所以函数的图象在点(1,0)处的切线方程为y=2x-2.(2)设函数y=x3-x图象上切点的坐标为P(x0,x30-x0),则切线斜率为k=y′|x=x0=3x20-1,切线方程为y-(x30-x0)=(3x20-1)(x-x0),由于切线经过点(1,0),所以0-(x30-x0)=(3x20-1)(1-x0),整理,得2x 30-3x 20+1=0,即2(x 30-1)-3(x 20-1)=0,所以2(x 0-1)(x 20+x 0+1)-3(x 0+1)(x 0-1)=0, 所以(x 0-1)2(2x 0+1)=0, 解得x 0=1或x 0=-12.所以P (1,0)或P ⎝ ⎛⎭⎪⎫-12,38,所以切线方程为y =2x -2或y =-14x +14.知识点二 导数与函数的单调性 求函数f (x )的单调区间的方法步骤 (1)确定函数f (x )的定义域; (2)计算函数f (x )的导数f ′(x );(3)解不等式f ′(x )>0,得到函数f (x )的递增区间;解不等式f ′(x )<0,得到函数f (x )的递减区间.提醒:求函数单调区间一定要先确定函数定义域,往往因忽视函数定义域而导致错误.(2014·高考大纲卷)函数f (x )=ax 3+3x 2+3x (a ≠0). (1)讨论函数f (x )的单调性;(2)若函数f (x )在区间(1,2)是增函数,求a 的取值范围. 解析:(1)因为函数f (x )=ax 3+3x 2+3x , 所以f ′(x )=3ax 2+6x +3.令f ′(x )=0,即3ax 2+6x +3=0,则Δ=36(1-a )。
导数综合运算知识点总结一、导数的定义及意义:1. 导数的定义:函数f(x)在点x=a处的导数,记为f'(a),定义为极限$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$其中f'(a)表示函数f(x)在点x=a处的导数。
2. 导数的几何意义:函数f(x)在点x=a处的导数f'(a)表示函数f(x)在点x=a处的切线斜率。
也即在点x=a处,函数f(x)的变化率。
3. 导数的物理意义:如果函数f(x)表示某一物理量y关于另一物理量x的变化规律,那么函数f'(x)表示物理量y关于物理量x的变化率。
4. 导数的符号:函数f(x)在点x=a处的导数f'(a)的符号表示函数f(x)在点x=a处的增减情况。
当f'(a)>0时,函数f(x)在点x=a处是增加的;当f'(a)<0时,函数f(x)在点x=a处是减小的;当f'(a)=0时,函数f(x)在点x=a处是不变的。
二、导数的运算法则:1. 基本导数法则:(常数函数规则、幂函数规则、指数函数规则、对数函数规则、三角函数规则、反三角函数规则、双曲函数规则)。
2. 复合函数的导数法则:函数f(g(x))的导数等于f'(g(x))g'(x)。
链式法则。
3. 反函数的导数法则:如果函数y=f(x)在区间I上单调、可导,并且在区间I上f'(x)≠0,则有反函数x=f^(-1)(y)在区间J上也可导,并且在区间J上f^(-1)'(y)=1/f'(f^(-1)(y))。
4. 参数方程的导数:如果x=f(t)、y=g(t)是参数方程,且函数f(t)、g(t)在t处可导,则参数方程x=f(t)、y=g(t)的导数dx/dt=f'(t)、dy/dt=g'(t)。
5. 隐函数的导数:若函数F(x,y)=0表示隐函数,且F(x,y)在点P(x0,y0)的邻域内具有连续偏导数,则隐函数y=f(x)的导数dy/dx可用偏导数表示:dy/dx=-∂F/∂x/∂F/∂y。