人教版初中数学中考模拟试题
- 格式:pdf
- 大小:82.56 KB
- 文档页数:5
第7题图第10题图人教版九年级数学中考模拟试卷一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)一、选择题 (本题共10小题,每小题3分,满分30分) 1.3- 的相反数为 ( )A . 3-B . 3C . 31-D . 31 2.下列图形中是中心对称图形的是( )A .B .C .D .3.把不等式组10630x x +>⎧⎨-≥⎩的解集表示在数轴上正确的是( )A .B .C .D .4.在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DE =6,则BC =( ) A .3 B .6C .9D .125.在一次立定跳远的测试中,小娟等6位同学立定跳远的成绩分别为: 1.8、2、2.2、1.7、2、1.9,那么关于这组数据的说法正确的是( ) A .平均数是2 B .中位数是2 C .众数是2 D .方差是2 6.若一个正多边形的一个外角是30°,则这个正多边形的边数是( )A .12B .11C .10D .9 7.如图,AB DE ∥,62E ∠=,则B C ∠+∠等于( ) A .138B .118C .38D .628.对于二次函数2241y x x =--+,下列说法正确的是A .当 0x <,y 随x 的增大而增大B .当 1x =- 时,y 有最大值 3C .图象的顶点坐标为 ()1,3D .图象与轴有一个交点9.已知圆锥的母线长是4cm ,侧面积是12πcm 2,则这个圆锥底面圆的半径是( ) A .3cm B . 4cm C .5cm D .6cm10.将抛物线241y x x 向左平移至顶点落在y 轴上,如图所示,则两条抛物线、直线3y 和x 轴围成的图形的面积S (图中阴影部分)是( ) A .5 B .6C .7D .8第16题图二、填空题 (共6小题,每小题3分,满分18分) 11.分解因式:224a ab -= . 12.计算:20199(1)2sin 30=+-- .13.已知命题:“如果两个角是直角,那么它们相等”,该命题的....是 命题(填“真”或“假”).14.已知一次函数图象经过第一、二、四象限,请写出一个..符合条件的一次函数解析式 .15. 已知点1122(,)(,)A x y B x y 、在二次函数2(1)1y x =-+的图象上,若121x x >>,则12____y y 。
初三数学模拟测试卷说明:本卷共有六大题,25小题,全卷满分120分。
考试时间120分钟1.下列4个数中,大于-6的数是( ) (A )-5 (B )-6 (C )-7 (D )-82.已知a<b<0,则点A(a-b,b)在( )(A )第一象限(B )第二象限(C )第三象限 (D )第四象限3.长城总长为67000100米,用科学记数法表示为( ) (A )6.7×108 (B )6.7×107(C )6.7×106(D )6.7×1054.下列图形中,能够说明∠1 > ∠2的是( )(A ) (B ) (C ) (D ) 5.将如图所示放置的一个直角三角形ABC ,(∠C=90°),绕斜边AB 旋转一周,所得到的几何体的正视图是下面四个图中的( )(A ) (B )(C )(D )6.在右边的表格中,每一行、列及对角线上的三个整数的和 都相等,则X 的值为( )(A )-3 (B )0(C )2(D )37.如图 ———— 在一个房间的门口装有两个开关,以控制里面的电灯,现在门口随机拉一下开关,房间里面的灯能够亮的可能性为( )(A )12(B )13(C )14(D )238.有一个商店,某件商品按进价加20%作为定价,可是总 是卖不出去,后来老板按定价减价20%以96元出售,很快 就卖掉了,则这次生意的盈亏情况是 ( ) (A )赚6元 (B )亏4元 (C )亏24元(D )不亏不赚 9.如图,在⊙O 中,弦AB=3.6cm ,圆周角∠ACB=30°,则⊙O 的直径等于 ( (A )3.6cm (B )1.8cm (C )5.4cm (D )7.2cm10.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( ) (A )平均数 (B )加权平均数 (C )中位数 (D )众数二、填空题(本大题共6小题,每小题3分,共18 11.a 的相反数等于2007,则a=______ 12.抛物线y=ax 2+bx+c 如图所示,则它关于y 轴对称的抛物线的解析式是________13.如图。
2022-2023学年全国中考专题数学中考模拟考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 下列图形中,是中心对称图形的有( )A.个B.个C.个D.个2. 下列计算正确的是 A.=B.=C. D.3. 据统计自开展精准扶贫工作五年以来,湖南省减贫人,贫困发生率由下降到,个贫困村出列,个贫困县摘帽.将用科学记数法表示为( )A.B.C.D.1234()−5−2−3−8−80551000013.43%3.86%26951455100000.551×1075.51×1065.51×107551×1044. 下列几何体中,从正面看和从上面看到的图形都为长方形的是( ) A. B. C. D.5. 如图,正六边形内接于,的半径为,则的长为( )A.B.C.D.6. 把不等式组的解集表示在数轴上,下列选项正确的是( )A.B.C.ABCDEF ⊙O ⊙O 1AB ^π6π3π2π{−x ≤1x +1>0D.7. 如图,直线,若,,则的度数为( )A.B.C.D.8. 如图,在中, , , 是的外接圆,是直径,交于点,连接,若,则的长为( )A.B.C.D.9. 已知:.求作:一点,使点到三个顶点的距离相等.小明的作法是:作的平分线;作边的垂直平分线;直线与射线交于.点即为所求的点(作图痕迹如图).小丽的作法是:作的平分线;作的平分线;射线与射线交于点.点即为所求的点(作图痕迹如图).对于两人的作法,下列说法正确的是( )AD //BC ∠1=42∘∠BAC =78∘∠250∘60∘68∘84∘△ABC AB =BC tan C =12⊙O △ABC AD ⊙O BD AC E CD CE =3AD 853–√45–√10△ABC O O △ABC (1)∠ABC BF (2)BC GH (3)GH BF O O 1(1)∠ABC BF (2)∠ACB CM (3)CM BF O O 2A.小明对,小丽不对B.小丽对,小明不对C.两人都对D.两人都不对10. 已知函数(其中)的图象如图所示,则一次函数与反比例函数的图象可能是( )A.B.C.D.卷II (非选择题)y =−(x −m)(x −n)m <ny =mx +n y =m +n x二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 若某个一元二次方程的两个实数根分别为、,则这个方程可以是________.12. 若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是 ,则另一个交点的坐标是________.13. 数据,,,,的方差是________.14. 某校组织开展了“吸烟有害健康”的知识竞赛,共有道题,答对一题得分,答错(或不答)一题扣分;小军参加本次竞赛得分要超过分,他至少要答对的题数为________道.15. 边长为的正方形,在边上取一动点,连接,作,交边于点,若的长为,则的长为________.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 ) 16.计算: ;先化简,再求值: ,其中.17. 如图,在四边形中,、分别平分和 ,与交于点,探究与之间的数量关系.−21(2,3)1−21,−1−12201051004ABCD BC E AE EF ⊥AE CD F CF 34CE (1)−+2cos (−1)2–√0()12−160∘(2)÷(−x −2)2x −6x −25x −2x =−1ABCD AM CM ∠DAB ∠DCB AM CM M ∠AMC ∠B,∠D18. 开展“光盘行动”,拒绝“舌尖上的浪费”,已成为一种时尚.某学校食堂为了激励同学们做到光盘不浪费,提出如果学生每餐做到光盘不浪费,那么餐后奖励香蕉或橘子一份.近日,学校食堂花了元和元分别采购了香蕉和橘子,采购的香蕉比橘子多千克,香蕉每千克的价格比橘子每千克的价格低,求橘子每千克的价格.19. 如图,一次函数与反比例函数的图象交于点和,与轴交于点.求一次函数和反比例函数的解析式;在轴上取一点,当的面积为时,求点的坐标;将直线向下平移个单位后得到直线,当函数值时,求的取值范围. 20. 如图,为了测量某校教学楼的高度,先在地面上用测角仪自处测得教学楼顶部的仰角是,然后在水平地面上向教学楼前进了,此时自处测得教学楼顶部的仰角是.已知测角仪的高度是,请你计算出该教学楼的高度.(结果精确到)(参考数据:)21. 随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选择一种),在全校随机调查了部分学生,将统计结果绘制成了如下两幅不完整的统计图,其中扇形统计图中,表示“钉钉”和“”的扇形圆心角相等,请结合图中所给信息解答下列问题:(1)这次统计共抽查了________名学生;在扇形统计图中,表示“钉钉”的扇形圆心角的度数为2800250015030%=kx +b (k ≠0)y 1=(m ≠0)y 2m x A (1,2)B (−2,a)y M (1)(2)y N △AMN 3N (3)y 12y 3>>y 1y 2y 3a CD A 30∘40m B 45∘1.2m 1m ≈1.732,≈1.4143–√2–√QQ________;(2)将条形统计图补充完整;(3)该校共有名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“钉钉”、“”、“电话”四种沟通方式中选择一种方式与对方联系,请用列表或树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.22. 如图,将平行四边形的边延长到点,使,连接,交于点,,连接,.求证:四边形是矩形.23. 如图,抛物线的图象过点.求抛物线的解析式:根据轴对称的性质知道在抛物线的对称轴上存在一点,使得的周长最小,此时,在直线上方的抛物线上是否存在点(不与点重合),使得?若存在,请直接写出点的坐标;若不存在,请说明理由.2000QQ ABCD DC E CE =DC AE BC F ∠AFC =2∠D AC BE ABEC y =a −bx +3x 2A(−1,0),B(3,0)(1)(2)P △PAC PA M C =S △PAM S △PAC M参考答案与试题解析2022-2023学年全国中考专题数学中考模拟一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】C【考点】中心对称图形【解析】此题暂无解析【解答】此题暂无解答2.【答案】C【考点】合并同类项同底数幂的乘法幂的乘方与积的乘方【解析】根据有理数的运算法则逐项计算即可求解.【解答】解:.,故不正确;.,故不正确;.,故正确;.,故不正确;故选.3.【答案】A −5−2=−7B −8−8=−16C −=−1642D =823CB【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是非负数;当原数的绝对值时,是负数.【解答】解:.故选.4.【答案】B【考点】简单几何体的三视图【解析】分别找出从物体正面看所得到的图形即可.【解答】解:、主视图是三角形,故此选项不合题意;、主视图是长方形,俯视图是长方形,故此选项符合题意;、主视图是长方形,俯视图是圆,故此选项不合题意;、主视图是梯形,俯视图是长方形,故此选项不合题意;故选.5.【答案】B【考点】正多边形和圆弧长的计算【解析】连接,,求出圆心角的度数,再利用弧长公式解答即可.a ×10n 1≤|a |<10n n a n ≥1n <1n 5510000=5.51×106B A B C D B OA OB ∠AOB【解答】连接,,∵多边形为正六边形,∴=,∴的长,6.【答案】A【考点】在数轴上表示不等式的解集解一元一次不等式组【解析】先求出各个不等式的解集,再把解集表示在数轴上即可.【解答】解:解得:则在数轴上表示为:故选.7.【答案】B【考点】平行线的性质【解析】根据平行线的性质,可以得到=,再根据题目中=,=,即可得到的度数.【解答】解:∵直线,∴,OA OB ABCDEF ∠AOB ×=360∘1660∘AB ^==60π×1180π3{−x ≤−1,x +1>0,{x ≥1,x >−1,A ∠1+∠2+∠BAC 180∘∠140∘∠BAC 80∘∠2AD //BC ∠DAC =∠1∠1+∠2+∠BAC =180∘∴,∵,,∴.故选.8.【答案】D【考点】勾股定理锐角三角函数的定义圆周角定理【解析】1【解答】解:∵ ,∴,∴,∴,∵,∴,在中,,,∴,设,,∴,在中,,故选.9.【答案】D【考点】作角的平分线作图—尺规作图的定义∠1+∠2+∠BAC =180∘∠1=42∘∠BAC =78∘∠2=60∘B AB =BC ∠BAC =∠BCA ∠BDC =∠ACB tan ∠BDC ==CE CD 12CE =3CD =6Rt △ECD DE =35–√tan ∠CAB ==BE AB 12AB =2BE BE =x tan ∠ADB ===AB BD 122xx +35–√x =5–√Rt △ABD AD =10D线段垂直平分线的性质角平分线的性质【解析】分别判断小明和小丽作法表示的几何意义,即可判断.【解答】解:点到三个顶点的距离相等,即是的外心,即为各边垂直平分线的交点.小明:的平分线,上的点到两边距离相等;边的垂直平分线,上的点到点距离相等,故与的交点,无法确定与点距离的关系,故小明作法错误;小丽:角平分线的交点为的内心,即到各边距离相等,也无法确定到各顶点距离的关系,故小丽作法也错误.故选.10.【答案】C【考点】二次函数的图象一次函数的图象反比例函数的图象【解析】根据二次函数图象判断出,,然后求出,再根据一次函数与反比例函数图象的性质判断即可.【解答】解:由图可知,,,∴,∴一次函数经过第一、二、四象限,且与轴相交于点,反比例函数的图象位于第二、四象限;故选:.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】=(答案不唯一)【考点】O △ABC O △ABC O ∠ABC BF BF BC GH GH B,C BF GH O A △ABC D m <−1n =1m +n <0m <−1n =1m +n <0y =mx +n y (0,1)y =m +n xC +x −2x 20根与系数的关系【解析】此题是一道开放型的题目,答案不唯一,只要写出一个符合的方程即可.【解答】=,=,所以这个一元二次方程可以是=,12.【答案】【考点】反比例函数的应用【解析】此题暂无解析【解答】此题暂无解答13.【答案】【考点】方差【解析】此题暂无解析【解答】解:这组数据的平均数为:,∴方差.故答案为:.14.【答案】−2+1−1−2×1−2+x −2x 202×(1−2+1−1−1+2)=016=×[(1−0+(−2−0+(1−0+(−1−0+(−1−0+(2−0]=2s 216)2)2)2)2)2)2214【考点】一元一次不等式的实际应用【解析】先设小军答对了道题,根据二等奖在分或分以上,列出不等式,求出的取值范围,再根据只能取正整数,即可得出答案.【解答】解:设小军答对了道题,依题意得:解得:,∵是正整数,∴最小为.故答案为:.15.【答案】或【考点】正方形的性质相似三角形的判定与性质【解析】由正方形的性质结合三角形内角和定理可得出,结合可得出,由C , ’可证出,再利用相似三角形的性质可求出的长.【解答】解:四边形为正方形,.,.,,,,,即, 或.故答案为:或.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )y 100100y y y 10y −5(20−y)≥100y ≥403y y 141413∠BAE +∠AEB =90∘∠AEB +∠CEF =90∘∠BAE =∠CEF ∠B =∠∠BAE =∠CEF △ABE ∼△ECF CE ∵ABCD ∴∠B =∠C =90∘∵EF ⊥AE ∴∠AEF =90∘∵∠BAE +∠AEB =90∘∴∠AEB +∠CEF =90∘∴∠BAE =∠CEF ∴△ABE ∼△ECF ∴=CE BA CF BE =CE 4344−CE ∴CE =1CE =31316.【答案】解: ;,当时,原式.【考点】特殊角的三角函数值零指数幂、负整数指数幂分式的化简求值【解析】利用零指数幂,负指数幂和特殊角的三角函数求值即可;利用分式的运算求解即可.【解答】解: ;(1)−+2cos (−1)2–√0()12−160∘=1−2+2×12=−1+1=0(2)÷(−x −2)2x −6x −25x −2=÷2(x −3)x −25−(x −2)(x +2)x −2=÷2(x −3)x −29−x 2x −2=⋅2(x −3)x −2x −2−(x +3)(x −3)=−2x +3x =−1=−=−12−1+3(1)(2)(1)−+2cos (−1)2–√0()12−160∘=1−2+2×12=−1+1=0(2)÷(−x −2)2x −6x −25x −2=÷2(x −3)x −25−(x −2)(x +2)x −2=÷2(x −3)x −29−x 2x −2=⋅2(x −3)x −2x −2−(x +3)(x −3)−2,当时,原式.17.【答案】证明:如图,连接并延长.∵ 是 的外角,∴,∵是的外角,∴,∵,∴,∵、分别平分,∴,∴,∴ .【考点】三角形中位线定理【解析】此题暂无解析【解答】证明:如图,连接并延长.∵ 是 的外角,∴,∵是的外角,∴,∵,∴,∵、分别平分,∴,=−2x +3x =−1=−=−12−1+3DM ∠3△AMD ∠3=∠1+∠ADM ∠4△CMD ∠4=∠2+∠CDM ∠AMC =∠3+∠4∠AMC =∠1+∠ADM +∠CDM +∠2=∠1+∠2+∠ADC AM CM ∠DAB,∠DCB ∠1=∠BAD.12∠2=∠BCD 12∠AMC =∠BAD +∠BCB +∠ABC =(−∠B −∠ADC)+ADC 121212360∘=(−∠B −∠ADC)12360∘2∠AMC +∠B =∠ADC =360∘DM ∠3△AMD ∠3=∠1+∠ADM ∠4△CMD ∠4=∠2+∠CDM ∠AMC =∠3+∠4∠AMC =∠1+∠ADM +∠CDM +∠2=∠1+∠2+∠ADC AM CM ∠DAB,∠DCB ∠1=∠BAD.12∠2=∠BCD 12AMC =∠BAD +∠BCB +∠ABC =(−∠B −∠ADC)+ADC111∴,∴ .18.【答案】解:设橘子每千克的价格为元,则香蕉每千克的价格为元.根据题意,得.解得.经检验, 是原分式方程的解,且符合题意.答:橘子每千克的价格为元.【考点】分式方程的应用【解析】此题暂无解析【解答】解:设橘子每千克的价格为元,则香蕉每千克的价格为元.根据题意,得.解得.经检验, 是原分式方程的解,且符合题意.答:橘子每千克的价格为元.19.【答案】解:∵过点,∴,即反比例函数:,当时,,即,过和,代入得 ,解得,∴一次函数解析式为;当时,代入中得,,即,∵,∴,∴或;如图,设与的图像交于,两点,∵向下平移两个单位得且∴,22∠AMC =∠BAD +∠BCB +∠ABC =(−∠B −∠ADC)+ADC 121212360∘=(−∠B −∠ADC)12360∘2∠AMC +∠B =∠ADC =360∘x 70%x −=150280070%2500x x =10x =1010x 70%x −=150280070%2500x x =10x =1010(1)=y 2m x A(1,2)m =1×2=2=y 22x x =−2a =−1B (−2,−1)=kx +b y 1A(1,2)B (−2,−1){k +b =2−2k +b =−1,{k =1b =1=x +1y 1(2)x =0y =x +1y =1M (0,1)=⋅MN ⋅||=3,=1S △AMN 12x A x A MN =6N (0,7)(0,−5)(3)y 2y 3C D y 1y 3=x +1y 1=x −1y 3 =2联立得.解得或∴,,在、两点之间或、两点之间时,,∴或.【考点】反比例函数与一次函数的综合待定系数法求反比例函数解析式【解析】此题暂无解析【解答】解:∵过点,∴,即反比例函数:,当时,,即,过和,代入得 ,解得,∴一次函数解析式为;当时,代入中得,,即,∵,∴,∴或;如图,设与的图像交于,两点,向下平移两个单位得且∴,联立得.解得或∴,,在、两点之间或、两点之间时,,∴或. y =2x y =2x {x =−1y =−2{x =2y =1C (−1,−2)D (2,1)A D B C >>y 1y 2y 3−2<x <−11<x <2(1)=y 2m x A(1,2)m =1×2=2=y 22x x =−2a =−1B (−2,−1)=kx +b y 1A(1,2)B (−2,−1){k +b =2−2k +b =−1,{k =1b =1=x +1y 1(2)x =0y =x +1y =1M (0,1)=⋅MN ⋅||=3,=1S △AMN 12x A x A MN =6N (0,7)(0,−5)(3)y 2y 3C D y 1y 3=x +1y 1=x −1y 3 y =2x y =2x {x =−1y =−2{x =2y =1C (−1,−2)D (2,1)A D B C >>y 1y 2y 3−2<x <−11<x <220.【答案】解:设,根据题意得,,∵,∴,.在直角中,,解得,,即,∴.即教学楼的高度约为.【考点】解直角三角形的应用-仰角俯角问题【解析】设,根据锐角三角函数的定义列出关于的方程,解出即可.【解答】解:设,根据题意得,,∵,∴,.在直角中,,解得,,即,∴.即教学楼的高度约为.21.【答案】,∵抽查的名学生中,喜欢用“短信”沟通的人数为:=(人),CE =xm AB =40m ∠CBE =45∘BE =CE =xm ∴AE =AB +BE =(40+x)m △ACD tan ===30∘CE AE x 40+x 3–√3x =(20+20)m 3–√CE =(20+20)m 3–√CD =CE +DE =20+20+1.2≈20×1.732+20+1.2≈56m3–√56m CE =xm x CE =xm AB =40m ∠CBE =45∘BE =CE =xm ∴AE =AB +BE =(40+x)m △ACD tan ===30∘CE AE x 40+x 3–√3x =(20+20)m 3–√CE =(20+20)m 3–√CD =CE +DE =20+20+1.2≈20×1.732+20+1.2≈56m3–√56m 10054∘100100×5%5∴喜欢用“微信”进行沟通的学生有:=(人),将条形统计图补充完整如图:=(名),即该校共有名学生,估计该校最喜欢用“微信”进行沟通的学生有名;画出树状图,如图所示:所有情况共有种情况,其中甲、乙两名同学恰好选择同一种沟通方式的共有种情况,故甲、乙两名同学恰好选中同一种沟通方式的概率为:=.【考点】条形统计图用样本估计总体列表法与树状图法扇形统计图【解析】(1)根据喜欢电话沟通的人数与百分比即可求出共抽查人数,求出喜欢用“钉钉”沟通的人数即可求出表示“钉钉”的扇形圆心角度数;(2)计算出喜欢用短信与微信的人数即可补全统计图;(3)用样本中喜欢用微信进行沟通的百分比来估计名学生中喜欢用微信进行沟通的人数即可求出答案;(4)列出树状图分别求出所有情况以及甲、乙两名同学恰好选中同一种沟通方式的情况后,利用概率公式即可求出甲、乙两名同学恰好选中同一种沟通方式的概率.【解答】喜欢用电话沟通的人数为,所占百分比为,∴此次共抽查了:=(人),100−20−5−15−15−5402000×800200080016425002020%20÷20%100QQ∵表示“钉钉”和“”的扇形圆心角相等,∴喜欢用“钉钉”和“”沟通的人数相等,∴喜欢用“钉钉”沟通的人数为人,∴表示“钉钉”的扇形圆心角的度数为=;故答案为:;;∵抽查的名学生中,喜欢用“短信”沟通的人数为:=(人),∴喜欢用“微信”进行沟通的学生有:=(人),将条形统计图补充完整如图:=(名),即该校共有名学生,估计该校最喜欢用“微信”进行沟通的学生有名;画出树状图,如图所示:所有情况共有种情况,其中甲、乙两名同学恰好选择同一种沟通方式的共有种情况,故甲、乙两名同学恰好选中同一种沟通方式的概率为:=.22.【答案】证明:∵四边形是平行四边形,∴,.∵,∴,,∴四边形是平行四边形,∴,.∵四边形是平行四边形,∴.又∵,∴.∵,∴,∴,∴,QQ QQ 15×360∘54∘10054∘100100×5%5100−20−5−15−15−5402000×8002000800164ABCD AB //CD AB =CD CE =DC AB =EC AB //EC ABEC FA =FE FB =FC ABCD ∠ABC =∠D ∠AFC =2∠D ∠AFC =2∠ABC ∠AFC =∠ABC +∠BAF ∠ABC =∠BAF FA =FB FA =FE =FB =FC∴,∴四边形是矩形.【考点】矩形的判定平行四边形的性质【解析】(2)由(1)得的结论先证得四边形是平行四边形,通过角的关系得出,,得证.【解答】证明:∵四边形是平行四边形,∴,.∵,∴,,∴四边形是平行四边形,∴,.∵四边形是平行四边形,∴.又∵,∴.∵,∴,∴,∴,∴,∴四边形是矩形.23.【答案】解:()把点 分别代入,得解得,∴抛物线的解析式为 .存在满足条件的带你,使得,如图:∵,∴当以为底时,两三角形等高,∴点和点到直线的距离相等,∵在轴上方,AE =BC ABEC ABEC FA =FE =FB =FC AE =BC ABCD AB //CD AB =CD CE =DC AB =EC AB //EC ABEC FA =FE FB =FC ABCD ∠ABC =∠D ∠AFC =2∠D ∠AFC =2∠ABC ∠AFC =∠ABC +∠BAF ∠ABC =∠BAF FA =FB FA =FE =FB =FC AE =BC ABEC 1A (−1,0),B (3,0)y =a +bx +3x 2{0=a −b +3,0=9a +3b +3{a =−1b =2.y =−+2x +3x 2(2)M =S △PAM S △PAC =S △PAM S △PAC PA C M PA M x∴,∵,,设直线的解析式为,∴,解得,∴直线的解析式为,∴直线的解析式为,联立得,解得(即点),,∴点的坐标为.【考点】待定系数法求一次函数解析式二次函数综合题待定系数法求二次函数解析式二次函数图象上点的坐标特征【解析】此题暂无解析【解答】解:()把点 分别代入,得解得,∴抛物线的解析式为 .存在满足条件的带你,使得,如图:∵,∴当以为底时,两三角形等高,∴点和点到直线的距离相等,∵在轴上方,∴,∵,,设直线的解析式为,∴,解得,∴直线的解析式为,CM//CA A(−1,0)P(1,2)AP y =px +d {−p +d =0p +d =2{p =1d =1AP y =x +1CM y =x +3{y =x +3y =−+2x +3x 2{=0x 1=3y 1C {=1x 2=4y 2M (1,4)1A (−1,0),B (3,0)y =a +bx +3x 2{0=a −b +3,0=9a +3b +3{a =−1b =2.y =−+2x +3x 2(2)M =S △PAM S △PAC =S △PAM S △PAC PA C M PA M x CM//CA A(−1,0)P(1,2)AP y =px +d {−p +d =0p +d =2{p =1d =1AP y =x +1∴直线的解析式为,联立得,解得(即点),,∴点的坐标为.CM y =x +3{y =x +3y =−+2x +3x 2{=0x 1=3y 1C {=1x 2=4y 2M (1,4)。
新课标人教版中考数学模拟题 附答案一、选择题 (本大题共14小题,每小题3分,满分42分) 在每小题所给的四个选项中,只有一项是符合题目要求的1.下列各数中,相反数等于5的数是( ). A .-5 B .5C .-15D .152.如图所示的几何体的俯视图是( ).A.B .C .D .3.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( ).A .精确到十分位,有2个有效数字B .精确到个位,有2个有效数字C .精确到百位,有2个有效数字D .精确到千位,有4个有效数字 4 ).A .1个B .2个C .3个D .4个 5.下列运算中,错误的是( )A .a3+a3=2a3B .a2·a3=a5C .(-a3)2=a9D .2a3÷a2=2a6.已知⊙O1的半径是4cm ,⊙O2的半径是2cm ,O1O2=5cm ,则两圆的位置关系是( )A .外离B .外切C .相交D .内含7.某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h 与注水时间t 关系的是(A) (B) (C) (D)8.某外贸公司要出口一批规格为150g 的苹果,现有两个厂家提供货源,它们的价格相同,苹果的品质也相近. 质检员分别从甲、乙两厂的产品中随机抽取了50个苹果称重,并将所得数据处理后,制成如下表格. 根据表中信息判断,第2题图第7题图 深 水 区 浅水区第10题图A 1第11题图 下列说法错误的是( ).A .本次的调查方式是抽样调查B .甲、乙两厂被抽取苹果的平均质量相同C .被抽取的这100个苹果的质量是本次调查的样本D .甲厂苹果的质量比乙厂苹果的质量波动大9.有长度分别为3cm 、5cm 、7cm 、9cm 的四条线段,从中任取三条线段能够组成三角形的概率是( )A .43B .32C .21D .4110.二次函数22y x x =--的图象如图所示,则函数值y<0时x 的取值范围是A .x <-1B .x >2C .-1<x <2D .x <-1或x >2 11.在△ABC 中,∠C =90º,BC =4cm ,AC =3cm .把△ABC 绕点A 顺时针旋转90º后,得到△AB 1C 1(如图所示),则点B 所走过的路径长为( ) A .52cm B . 5π4cmC . 5π 2cm D .5πcm12.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为( )A .6B .3C .200623 D .10033231003⨯+13.如图,在等腰Rt △ABC 中,∠C =90o ,AC =6,D 是AC 上一点,若tan ∠DBA =51,则AD 的长为(第12题图)第16题图FB (A ) 2 (B )3 (C )2 (D )114.如图,D 是半径为R 的⊙O 上一点,过点D 作⊙O 的切线交直径AB 的延长线于点C ,下列四个条件:①AD =CD ;②∠A =30°;③∠ADC =120°;④DC=3R .其中,使得BC =R 的有( )A .①②B .①③④C .②③④D .①②③④ 二、填空题 (本大题共5小题,每小题3分,共15分)把答案填在题中横在线 15.分解因式:a 2b -2ab 2+b 3= .16.如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是 .17.一次函数y =34x +4分别交x 轴、y 轴于A 、B 两点,在x 轴上取一点,使△ABC 为等腰三角形,则这样的的点C 最多..有 个..18.把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3 cm ,BC = 5 cm ,则重叠部分△DEF 的面积是 ______ cm2.19.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 _________ 枚棋子,摆第n 个图案需要______枚棋子.A(第14题)… 第19题图 A BC F E 'A 第18题图 ('B ) D三、开动脑筋,你一定能做对!(本大题共3小题,共20分)20.配餐公司为某学校提供A、B、C三类午餐供师生选择,三类午餐每份的价格分别是:A餐5元,B餐6元,C餐8元.为做好下阶段的营销工作,配餐公司根据该校上周A、B、C三类午餐购买情况,将所得的数据处理后,制成统计表(如下左图);根据以往销售量与平均每份利润之间的关系,制成统计图(如下右图).请根据以上信息,解答下列问题:(1)该校师生上周购买午餐费用的众数是________ 元;(2)配餐公司上周在该校销售B餐每份的利润大约是________ 元;(3)请你计算配餐公司上周在该校销售午餐约盈利多少元?(6分)21.在某道路拓宽改造工程中,一工程队承担了24千米的任务。
九年级数学中考模拟试卷一、选择题(每小题3分,共36分)1、去年某市接待入境旅游者约876000人,这个数可以用科学记数法表示为() A.60.87610⨯ B.58.7610⨯ C.487.610⨯ D.387610⨯2、在直角坐标系中,点M(1,2)关于y轴对称的点的坐标为()A.(1,-2) B.(2,-1) C.(-1,-2) D.(-1,2)3、如右图,在⊙O 中,AB是弦,OC⊥AB,垂足为C,若AB=16,OC=6,则⊙O的半径OA等于()A、16B、12C、10D、84、下列图形中,是.轴对称图形的为()ABCD5、在昆明“世博会”期间,为方便游客参观,铁道部门临时加开了南宁至昆明的直达列车.已知南宁至昆明的路程为828km,普快列车与直快列车由昆明到南宁时,直快列车平均速度是普快的倍,若直快列车比普快列车晚出发2 h而先到4h,求两列车的平均速度分别是多少设普快列车的速度为x km/h,则直快列车的速度为1.5xkm/h.依题意,所列方程正确的是()828828.241.5Ax x++=828828.241.5Bx x+-=;828828.241.5Cx x--=;828828.241.5Dx x-+=6、在一个可以改变容积的密闭容器内,装有质量为m的某种气体,当V在改变容积V时,气体的密度ρ也随之改变.ρ与一定范围内满足mVρ=,它的图象如右图,则该气体的质量m为( ) A.B.5kgC.D.7kg7、从两副拿掉大、小王的扑克牌中,各抽取一张,两张牌都是红桃的概率是()A BA.12B.14C.18D.1168、如图,AB∥CD ,直线EF分别交AB,CD于E,F两点,∠BEF的平分线交CD于点G,若∠EFG=72°,则∠EGF等于( )A. 36° B. 54° C. 72 ° D. 108°9、右图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是()A.4 B.5 C.6 D.710、如图为了测量某建筑物AB的高度,在平地上C处测得建筑物顶端A的仰角为30°,沿CB方向前进12m到达D处,在D处测得建筑物顶端A的仰角为45°,则建筑物AB的高度等于()A.6(3+1)m B. 6 (3—1) mC. 12 (3+1) m D.12(3-1)m 11、如右图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是米,那么路灯A的高度AB等于()A.米B.6米C.米D.8米12、已知二次函数11)(2k2--+=xkxy与x轴交点的横坐标为1x、2x(21xx<),则对于下列结论:①当x=-2时,y=1;②当2xx>时,y>0;③方程11)(22=-+-xkkx有两个不相等的实数根1x、2x;④11-<x,12>-x;⑤22114kx xk+-=,其中正确的结论有( ).A.2个 B.3个 C.4个 D.5个二、填空题(每小题3分,共21分)13、分解因式3763x x-= .14、圆锥的侧面展开图的面积为6π,母线长为3,则该圆锥的底面半径为 .15、在函数y =2x +中,自变量x 的取值范围是 . 16、一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是 ;在前16个图案中 “ ”有________个.第2008个图案是 .17、有一圆柱体高为10cm ,底面圆的半径为4cm ,AA 1、BB 1为相对的两条母线,在AA 1上有一个蜘蛛Q ,QA=3cm ,在BB 1上有一只苍蝇P ,PB 1=2cm ,蜘蛛沿圆柱体侧面爬到P 点吃苍蝇, 最短的路径是 cm 。
人教版中考数学模拟考试试题卷数学一、选择题(本大题共10小题,共30.0分)1.−110的倒数是()A. −10B. 10C. −110D. 1102.四个长宽分别为a,b的小长方形(白色的)按如图所示的方式放置,形成了一个长、宽分别为m、n的大长方形,则下列各式不能表示图中阴影部分的面积是()A. mn−4abB. mn−2ab−amC. an+2bn−4abD. a2−2ab−am+mn3.下列运算,正确的是()A. 2x+3y=5xyB. (x−3)2=x2−9C. (xy2)2=x2y4D. x6÷x3=x24.若√−ab=√a·√−b成立,则()A. a≥0,b≥0B. a≥0,b≤0C. ab≥0D. ab≤05.对于命题“若a2=b2”,则“a=b”下面四组关于a,b的值中,能说明这个命题是假命题的是()A. a=3,b=3B. a=−3,b=−3C. a=3,b=−3D. a=−3,b=−26.为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()1A. 43%B. 50%C. 57%D. 73% 7. AD 是△ABC 的中线,E 是AD 上一点,AE =14AD ,BE 的延长线交AC 于F ,则AF AC 的值为( ) A. 14B. 15C. 16D. 178. 已知{3x +2y =k x −y =4k +3,如果x 与y 互为相反数,那么( ) A. k =0 B. k =−34 C. k =−32 D. k =34 9. 如图,正三角形ABC 的边长为3,将△ABC 绕它的外心O 逆时针旋转60°得到△A′B′C′,则它们重叠部分的面积是( )A. 2√3B. 34√3C. 32√3D. √310. 已知抛物线y =ax 2−2ax −2开口向下,(−2,y 1)、(3,y 2)、(0,y 3)为抛物线上的三个点,则( ) A. y 3>y 2>y 1 B. y 1>y 2>y 3 C. y 2>y 1>y 3 D. y 1>y 3>y 2二、填空题(本大题共5小题,共20.0分)11. 如图,数轴上A ,B 两点表示的数是互为相反数,且点A 与点B 之间的距离为4个单位长度,则点A 表示的数是______.12. 在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,成绩比较稳定的是______运动员.313. 在△ABC 中,∠A =80°,当∠B =________________时,△ABC 是等腰三角形.14. 如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,P 为AB边上不与A ,B 重合的一动点,过点P 分别作PE ⊥AC 于点E ,PF ⊥BC 于点F ,则线段EF 的最小值是______.15. 已知关于x 、y 的方程组{x +2y =1−a x −y =2a −5,则代数式22x ⋅4y =______. 三、解答题(本大题共10小题,共100.0分)16. (8分)如图,现有5张写着不同数字的卡片,请按要求完成下列问题:17. (1)若从中取出2张卡片,使这2张卡片上数字的乘积最大,则乘积的最大值是______.18. (2)若从中取出2张卡片,使这2张卡片上数字相除的商最小,则商的最小值是______.19. (3)若从中取出4张卡片,请运用所学的计算方法,写出两个不同的运算式,使四个数字的计算结果为24.20. (10分)在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴.村民小李购买了一台A 型洗衣机,小王购买了一台B型洗衣机,两人一共得到财政补贴351元,又知B型洗衣机售价比A型洗衣机售价多500元.试求:21.(1)A型洗衣机和B型洗衣机的售价各是多少元?(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?22.(10分)已知A(m,0),B(0,n),满足:(n−4)2+√m+n=0.(1)求m和n的值;(2)如图,点D是A点左侧的x轴上一点,连接BD,以BD为直角边作等腰直角△BDE,连接AB、EA,EA交BD于点G.①若OA=AD,求点E的坐标;②求证:∠AED=∠ABD.23.(10分)2020年5月5日,为我国载人空间站工程研制的长征五号运载火箭在海南文昌首飞成功.运較火箭从地面O处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.已知C,D两处相距460米,求火箭从A到B 处的平均速度(结果精确到1米/秒,参考数据:√3≈1.732,√2≈1.414).24.(10分)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.25.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;26.(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)27.(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型5活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?28.(8分)如图,点A和点B在数轴上对应的数分别为a和b,且(a+2)2+|b−8|=0(1)线段AB的长为______.x+1的解,在线段AB上是 (2)点C在数轴上所对应的为x,且x是方程x−1=67CD?若存在,请求出点D在数轴上所对应的数,若不存否存在点D.使AD+BD=56在:请说明理由:______.29.(3)在(2)的条件下,线段AD和BC分别以6个单位长度/秒和5个单位长度/秒的速度同时向右运动,运动时间为t秒,点M为线段AD的中点,点N为线段BC的中点,若MN=5,求t的值.30.(10分)如图,等边△ABC的边长为15cm,现有两点M,N分别从点A,点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M,N同时停止运动(1)点M、N运动几秒后,M,N两点重合?(2)点M、N运动几秒后,△AMN为等边三角形?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.的图象交于A(2,3),31.(10分)如图,一次函数y=kx+b与反比例函数y =mxB(−3,n)两点.32.7(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式kx+b>m的解集;x(3)过点B作BC⊥x轴,垂足为C,求△ABC的面积.33.(12分)如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.(1)将△ABC向右平移6个单位长度得到△A1B1C1,请画出△A1B1C1;(2)画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)若将△ABC绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.34.(12分)某水果店11月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.12月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款300元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到120千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过90千克,则12月份该店需要支付这两种水果的货款最少应是多少元?9答案1.A2.A3.C4.B5.C6.C7.D8.C9.C 10.A 11.−212.甲13.80°或50°或20°14.4.815.1416.(1)21 ;(2) −7 ;(3)−7,−3,1,2;−3,1,2,5. 17.解:(1)设A 型洗衣机的售价为x 元,B 型洗衣机的售价为y 元. 根据题意可列方程组:,解得:{x =1100y =1600 答:A 型洗衣机的售价为1100元,B 型洗衣机的售价为1600元.(2)小李实际付款为:1100×(1−13%)=957(元);小王实际付款为:1600×(1−13%)=1392(元).答:小李和小王购买洗衣机各实际付款957元和1392元. 18.(1)解:∵(n −4)2+√m +n =0,∴n −4=0,m +n =0,解得m =−4,n =4,∴m =−4,n =4;(2)①证明:∵m =−4,n =4,∴A(−4,0),B(0,4),∴OA =OB =4,∵OA =AD ,∴OD =8,如图,过点E 作EH ⊥x 轴于点H.则∠EDH +∠DEH =90°.∵∠EDB=90°,∴∠EDH+∠BDO=90°,∴∠BDO=∠DEH.在△EHD和△DOB中,{DEH=∠BDO∠DHE=∠BOD=90°DE=BD,∴△EHD≌△DOB(AAS).∴EH=OD=8,DH=OB=4,∴OH=OD+DH=8+4=12,∴E(−12,8);②证明:如图,∵△EHD≌△DOB,∴∠DEH=∠BDO,∵DH=OB=OA=4,EH=OD.而AH=DH+AD=OA+AD=OD.∴EH=AH.∴△EHA为等腰直角三角形,∴∠AEH=45°=∠BAO,又∵∠BAO=∠BDA+∠ABD,∠AEH=∠AED+∠DEH,∴∠AED=∠ABD.19.解:设火箭从A到B处的平均速度为x米/秒,根据题意可知:AB=3x,在Rt△ADO中,∠ADO=30°,AD=4000,∴AO=2000,∴DO=2000√3,∵CD=460,∴OC=OD−CD=2000√3−460,在Rt△BOC中,∠BCO=45°,∴BO=OC,11∵OB=OA+AB=2000+3x,∴2000+3x=2000√3−460,解得x≈335(米/秒).答:火箭从A到B处的平均速度为335米/秒.20.解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH−OH=4−3=1,∴E(0,1),D(2,0),∴该抛物线的函数表达式y=kx2+1,把点D(2,0)代入,得k=−14,∴该抛物线的函数表达式为:y=−14x2+1;(2)∵GM=2,∴OM=OG=1,∴当x=1时,y=34,∴N(1,34),∴MN=34,∴S矩形MNFG =MN⋅GM=34×2=32,∴每个B型活动板房的成本是:425+32×50=500(元).答:每个B型活动板房的成本是500元;(3)根据题意,得w=(n−500)[100+20(650−n)10] =−2(n−600)2+20000,∵每月最多能生产160个B型活动板房,。
20232024学年全国初中七年级下数学人教版模拟考试试卷一、选择题(每题2分,共20分)1.下列各数中,是整数的是()A. 0.5B. 2C. 2/3D. 1.52.下列各数中,是负数的是()A. 3B. 4C. 5/6D. 03.下列各数中,是正数的是()A. 3B. 0C. 2/3D. 44.下列各数中,是分数的是()A. 0B. 2C. 3/4D. 15.下列各数中,是正整数的是()A. 3B. 0C. 2/3D. 56.下列各数中,是负整数的是()A. 4B. 5C. 2/3D. 07.下列各数中,是正分数的是()A. 3/4B. 0C. 5/6D. 28.下列各数中,是负分数的是()A. 3/4B. 0C. 2/3D. 59.下列各数中,是零的是()A. 3B. 0C. 2/3D. 510.下列各数中,是自然数的是()A. 3B. 0C. 2/3D. 5二、填空题(每题2分,共20分)1.下列各数中,是整数的是__________。
2.下列各数中,是负数的是__________。
3.下列各数中,是正数的是__________。
4.下列各数中,是分数的是__________。
5.下列各数中,是正整数的是__________。
6.下列各数中,是负整数的是__________。
7.下列各数中,是正分数的是__________。
8.下列各数中,是负分数的是__________。
9.下列各数中,是零的是__________。
10.下列各数中,是自然数的是__________。
三、解答题(每题5分,共20分)1.解方程:2x + 3 = 7。
2.解方程:3x 2 = 5。
3.解方程:4x + 5 = 9。
4.解方程:5x 3 = 7。
四、应用题(每题10分,共20分)1.小明有5个苹果,小红有7个苹果,小华有3个苹果。
他们一共有多少个苹果?2.小明有3个苹果,小红有5个苹果,小华有7个苹果。
他们一共有多少个苹果?五、简答题(每题5分,共20分)1.简述整数的概念。
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.(﹣1)2020等于( )A. ﹣2020B. 2020C. ﹣1D. 12.下列计算正确的是( )A. (﹣2a2)4=8a8B. a3+a=a4C. a5÷a2=a3D. (a+b)2=a2+b23.已知反比例函数y=kx(k≠0)图象位于二、四象限,则一次函数y=x+k图象大致是( )A. B.C. D.4.(2016甘肃省兰州市)已知△ABC∽△DEF,若△ABC与△DEF的相似比为34,则△ABC与△DEF对应中线的比为( )A. 34B.43C.916D.1695.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A. 40°B. 50°C. 80°D. 100°6.若分式211xx-+的值为0,则x的取值为( )A. x≠1B. x≠﹣1C. x=1D. x=﹣17.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( ) 工资(元) 2000 2200 2400 2600人数(人) 1 3 4 2A. 2400元、2400元B 2400元、2300元C. 2200元、2200元D. 2200元、2300元8.已知等边三角形的周长为6,则它的内切圆和外接圆组成的圆环面积为( )A. 6πB. 3πC. πD. 2π9.货车行驶25 千米与小车行驶35 千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是( )A. 253520x x=-B.253520x x=-C.253520x x=+D.253520x x=+10.如图已知点A(1,4),B(2,2)是反比例函数y=4x图象上的两点,动点P(x,0)在x轴上运动,当线段AP=BP时,点P的坐标是( )A. (﹣92,0) B. (﹣94,0) C. (92,0) D. (94,0)二.填空题(共8小题)11.世界文化遗产长城总长约6 700 00 m,用科学记数法可表示为_____m.12.因式分解:a4﹣2a3+a2=_____.13.菱形的两条对角线长分别是方程214480x x-+=的两实根,则菱形的面积为______.14.四边形ABCD是某个圆内接四边形,若∠A=100°,则∠C= .15.现定义运算”☆”,对于任意实数a、b,都有a☆b=a2﹣3a+b,若x☆2=6,则实数x值是_____.16.一个不透明的袋子中装有形状、大小均相同的3个红球,2个白球,1个黑球,从袋中随机摸出一个球是红球的概率为_____.17.如图,点D在ΔABC的边BC上,∠C+∠BAD=∠DAC,tan∠BAD=47,AD=65,CD=13,则线段AC的长为.18.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定22016的个位数字是_____.三.解答题(共6小题)19.(1)计算:(π﹣2016)0+6cos45°﹣|﹣18|+(12)﹣2(2)先化简,再求值:(1111x x-+-)÷21x-,其中x=2.20.铜仁市教育局为了了解七年级学生寒假参加社会实践活动的天数,随机抽查本市部分七年级学生寒假参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)a=%,并写出该扇形所对圆心角的度数为;补全条形图;(2)在这次抽样调查中,一共调查了多少名学生?(3)如果该市有七年级学生20000人,请你估计”活动时间不少于5天”的大约有多少人?21.已知:如图,AB=CD,BC=DA,求证:∠A=∠C.22.如图,一艘渔船以60海里每小时的速度向正东方向航行.在A处测得灯塔C在北偏东60°方向上;继续航行1小时到达B处,此时测得灯塔C在北偏东30°方向上.已知在灯塔C周围50海里范围内有暗礁,问这艘渔船继续向东航行有无触礁的危险?23.某超市销售一种进价为40元/千克的产品,若按60元/千克出售时,平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,则平均每天的销售量可增加10千克.(1)若该超市销售这种产品计划平均每天获利2240元,则这种产品应将售价定为多少元?(2)将售价定为多少元时,可使超市销售这种产品一天获利最大,最大利润是多少?24.如图,AC是⊙O的直径,P是⊙O外一点,连结PC交⊙O于B,连结PA、AB,且满足PC=50,PA=30,PB=18.(1)求证:△PAB∽△PCA;(2)求证:AP是⊙O的切线.答案与解析一.选择题(共10小题)1.(﹣1)2020等于( )A. ﹣2020B. 2020C. ﹣1D. 1【答案】D【解析】【分析】根据负数的偶次方是正数可以解答.【详解】(﹣1)2020=1,故选:D.【点睛】本题考查了有理数的乘方运算,知道-1的奇次方是-1,-1的偶次方是1,是常考题型.2.下列计算正确的是( )A. (﹣2a2)4=8a8B. a3+a=a4C. a5÷a2=a3D. (a+b)2=a2+b2【答案】C【解析】【分析】分别根据积的乘方运算法则,合并同类项法则,同底数幂的除法法则以及完全平方公式逐一判断即可.【详解】A.(﹣2a2)4=16a8,故本选项不合题意;B.a3与a不是同类项,所以不能合并,故本选项不合题意;C.a5÷a2=a3,正确;D.(a+b)2=a2+2ab+b2,故本选项不合题意.故选:C.【点睛】本题考查幂运算、合并同类项以及完全平方公式,掌握相关的公式以及运算法则是解题关键.3.已知反比例函数y=kx(k≠0)的图象位于二、四象限,则一次函数y=x+k图象大致是( )A. B.C. D.【答案】B【解析】【分析】根据反比例函数图象所经过的象限判定k<0,由此可以推知一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.【详解】解:∵反比例函数kyx(k≠0)的图象在第二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.观察选项,只有B选项正确.故选:B.【点睛】本题考查反比例函数与一次函数的图象特点,根据图象象限分布判断参数正负性以及根据参数正负性判断象限分布是解题关键.4.(2016甘肃省兰州市)已知△ABC∽△DEF,若△ABC与△DEF的相似比为34,则△ABC与△DEF对应中线的比为( )A. 34B.43C.916D.169【答案】A 【解析】试题分析:∵△ABC∽△DEF,△ABC与△DEF的相似比为34,∴△ABC与△DEF对应中线的比为34,故选A.考点:相似三角形的性质.5.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A. 40°B. 50°C. 80°D. 100°【答案】A【解析】【分析】在等腰三角形OBC中求出∠BOC,继而根据圆周角定理可求出∠A的度数.【详解】解:∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°﹣50°=80°,∴∠A=12∠BOC=40°;故选A.【点睛】本题考查在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.6.若分式211xx-+的值为0,则x的取值为( )A. x≠1B. x≠﹣1C. x=1D. x=﹣1【答案】C【解析】【分析】根据分式值为零的条件可得x2﹣1=0,且x+1≠0,再解即可.【详解】解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故选:C.【点睛】本题考查分式值为零的条件,掌握分式值为零的条件是分子为零,分母不为零是解题关键.7.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( ) 工资(元) 2000 2200 2400 2600人数(人) 1 3 4 2A. 2400元、2400元B. 2400元、2300元C. 2200元、2200元D. 2200元、2300元【答案】A【解析】【分析】众数是在一组数据中,出现次数最多的数据;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)【详解】这组数据中,出现次数最多的是2400元,故这组数据的众数为2400元.将这组数据重新排序为2000,2200,2200,2200,2400,2400,2400,2400,2600,2600,∴中位数是按从小到大排列后第5,6个数的平均数,为:2400元.故选A.8.已知等边三角形的周长为6,则它的内切圆和外接圆组成的圆环面积为( )A. 6πB. 3πC. πD. 2π【答案】C【解析】【分析】根据题意画出图形,由等边三角形的周长为6,可得BC=2,设点D为BC边与内切圆的切点,连接AD,则AD⊥BC,可得BD=DC=12BC=1,再根据勾股定理可得OB2﹣OD2=BD2=1,再根据S圆环=S外接圆﹣S内切圆即可得结论.【详解】解:如图,∵等边三角形ABC的周长为6,∴BC=2,设点D为BC边与内切圆的切点,连接AD ,则AD ⊥BC , ∴BD =DC =12BC =1, 在Rt △BOD 中,根据勾股定理,得 OB 2﹣OD 2=BD 2=1, ∴S 圆环=S 外接圆﹣S 内切圆 =OB 2π﹣OD 2π =BD 2π =π. 故选:C .【点睛】本题考查三角形的外接圆与内切圆,掌握正三角形的外接圆与内切圆半径求算是解题关键. 9.货车行驶 25 千米与小车行驶 35 千米所用时间相同,已知小车每小时比货车多行驶 20千米,求两车的速度各为多少?设货车的速度为 x 千米/小时,依题意列方程正确的是( ) A.253520x x =- B.253520x x=-C.253520x x =+ D.253520x x=+【答案】C 【解析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式. 解:根据题意,得253520x x =+. 故选C .10.如图已知点A(1,4),B(2,2)是反比例函数y =4x的图象上的两点,动点P(x ,0)在x 轴上运动,当线段AP =BP 时,点P 的坐标是( )A. (﹣92,0) B. (﹣94,0) C. (92,0) D. (94,0) 【答案】A 【解析】 【分析】根据平面直角坐标系中距离公式得到:(x﹣1)2+42=(x﹣2)2+22,求解即可.【详解】解:∵点A(1,4),B(2,2),动点P(x,0)在x轴上运动,∴2AP=(x﹣1)2+42,2BP=(x﹣2)2+22,∵AP=BP,∴(x﹣1)2+42=(x﹣2)2+22,解得x=﹣92,∴点P的坐标是(﹣92,0),故选:A.【点睛】本题考查距离公式,掌握平面直角坐标系中距离公式是解题关键.二.填空题(共8小题)11.世界文化遗产长城总长约6 700 00 m,用科学记数法可表示为_____m.【答案】6.7×105.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【详解】解:将670 000用科学记数法表示为6.7×105m.故答案为:6.7×105【点睛】本题考查科学记数法,确定,a n的值是解题关键.12.因式分解:a4﹣2a3+a2=_____.【答案】a2(a﹣1)2.【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=a2(a2﹣2a+1)=a2(a﹣1)2.故答案为:a2(a﹣1)2.【点睛】本题考查因式分解,掌握提公因式法和公式法因式分解解题关键.13.菱形的两条对角线长分别是方程214480x x-+=的两实根,则菱形的面积为______.【答案】24【解析】【详解】解:x2﹣14x+48=0,则有(x-6)(x-8)=0解得:x=6或x=8.所以菱形的面积为:(6×8)÷2=24.菱形的面积为:24.故答案为24.点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.14.四边形ABCD是某个圆的内接四边形,若∠A=100°,则∠C= .【答案】80°.【解析】试题分析:已知四边ABCD是圆的内接四边形,∠A=100°,根据圆内接四边形的对角互补可得∠C=180°﹣100°=80°.考点:圆内接四边形的性质.15.现定义运算”☆”,对于任意实数a、b,都有a☆b=a2﹣3a+b,若x☆2=6,则实数x的值是_____.【答案】4或﹣1.【解析】【分析】先根据新定义得出一元二次方程,求出方程的解即可.【详解】解:∵x☆2=6,∴x2﹣3x+2=6,x2﹣3x﹣4=0,即(x﹣4)(x+1)=0,x﹣4=0,x+1=0,x1=4,x2=﹣1,故答案为:4或﹣1.【点睛】本题考查定义新运算与一元二次方程,正确理解定义新运算是解题关键.16.一个不透明的袋子中装有形状、大小均相同的3个红球,2个白球,1个黑球,从袋中随机摸出一个球是红球的概率为_____.【答案】12.【解析】【分析】用红球的个数除以球的总个数即可得.【详解】解:从袋中随机摸出一个球是红球的概率为31= 3+2+12故答案为:12.【点睛】本题考查概率求算,掌握利用概率公式求算是解题关键.17.如图,点D在ΔABC的边BC上,∠C+∠BAD=∠DAC,tan∠BAD=47,AD=65,CD=13,则线段AC的长为.【答案】13【解析】试题分析:过点A作AE⊥BC,然后根据∠BAD的正切值以及角度之间的关系和AD、CD的长度大小求出AC的长度.考点:三角函数的应用.18.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定22016的个位数字是_____.【答案】6.【解析】【分析】观察发现,每四个一组,个位数字循环,然后用2016除以4,正好能够整除,所以与第四个数的个位数字相同.【详解】解:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,所以,每四个一组,个位数字循环,∵2016÷4=504,∴22016的个位数字与24的个位数字相同是:6.故答案为:6.【点睛】本题考查了尾数特征,利用有理数的乘法考查了数字变化规律的问题,观察得到”每四个数一组,个位数字循环”是解题的关键.三.解答题(共6小题)19.(1)计算:(π﹣2016)0+6cos45°﹣|(12)﹣2(2)先化简,再求值:(1111x x -+-)÷21x -,其中x .【答案】(1)5;(2)11x +,﹣1. 【解析】【分析】(1)根据零指数幂、特殊角的三角函数值、绝对值和负整数指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.详解】解:(1)(π﹣2016)0+6cos45°﹣|(12)﹣2=1+6×2﹣+4=﹣+4=5;(2)(1111x x -+-)÷21x - =1(1)(1(1)1)2x x x x x -•--+-+ =1)12(1x x x --+-- =2()21x --+ =11x +,当x 时,﹣1.【点睛】本题考查分式的化简求值、零指数幂、特殊角的三角函数值、绝对值和负整数指数幂,解答本题的关键是明确它们各自的计算方法.20.铜仁市教育局为了了解七年级学生寒假参加社会实践活动的天数,随机抽查本市部分七年级学生寒假参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)a=%,并写出该扇形所对圆心角的度数为;补全条形图;(2)在这次抽样调查中,一共调查了多少名学生?(3)如果该市有七年级学生20000人,请你估计”活动时间不少于5天”的大约有多少人?【答案】(1)25,90°,图详见解析;(2)200;(3)15000【解析】【分析】(1)用100%减去3天、4天、5天、7天所占百分比可得a,利用360°乘以所占百分比可得该扇形所对圆心角的度数,求出总数,再乘以所占百分比可得6天的人数,再补图即可;(2)由(1)的计算可得答案;(3)利用样本估计总体的方法计算即可.【详解】解:(1)a=100%﹣30%﹣15%﹣10%﹣20%=25%,360°×25%=90°,调查人数:20÷10%=200(人),200×25%=50(人),如图所示:故答案为:25;90°;(2)由(1)可得一共调查了200名学生;(3)20000×(30%+20%+25%)=15000(人),答:”活动时间不少于5天”的大约有15000人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.21.已知:如图,AB=CD,BC=DA,求证:∠A=∠C.【答案】详见解析【解析】分析】根据SSS可证明△ABD≌△CDB,则可得出结论.【详解】证明:∵AB=CD,BC=DA,BD=DB,∴△ABD≌△CDB(SSS),∴∠A=∠C.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解本题的关键.22.如图,一艘渔船以60海里每小时的速度向正东方向航行.在A处测得灯塔C在北偏东60°方向上;继续航行1小时到达B处,此时测得灯塔C在北偏东30°方向上.已知在灯塔C周围50海里范围内有暗礁,问这艘渔船继续向东航行有无触礁的危险?【答案】渔船继续向正东方向航行是安全的,理由详见解析.【解析】【分析】作CH⊥AB于H.利用解直角三角形,求出PH的值即可判定; 【详解】解:作CH⊥AB于H.∵∠CAB=30°,∠ABC=120°,∴∠ACB=180°﹣∠CAB﹣∠ABC=30°,∵∠BAC=∠BCA=30°,∴BA=BC=60海里,在Rt△CBH中,CH=CB•sin60°=60×33海里),∵350,∴渔船继续向正东方向航行是安全的.【点睛】本题考查的是解直角三角形的应用——方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.23.某超市销售一种进价为40元/千克的产品,若按60元/千克出售时,平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,则平均每天的销售量可增加10千克.(1)若该超市销售这种产品计划平均每天获利2240元,则这种产品应将售价定为多少元?(2)将售价定为多少元时,可使超市销售这种产品一天获利最大,最大利润是多少?【答案】(1)这种产品应将售价定为54元或56元;(2)销售价格定为55时,才能使平均每天获得的利润最大,最大利润是2250元.【解析】【分析】(1)设每千克水果应降价x元,利用销售量×每件利润=2240元列出方程求解即可;(2)设每天获得的利润为W,销售价格为x,列出W与x的函数关系式即可解答.【详解】解:(1)设每千克水果应降价x元,根据题意,得:(60﹣x﹣40)(100+10x)=2240,解得:x1=4,x2=6,答:这种产品应将售价定为54元或56元;(2)设每天获得利润为W,销售价格为x,则W=(x﹣40)[100+10(60﹣x)]=(x﹣40)(﹣10x+700)=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250.∴销售价格定为55时,才能使平均每天获得的利润最大,最大利润是2250元.【点睛】本题考查了一元二次方程的应用以及二次函数的应用,解题的关键是根据题目中的等量关系列出方程和函数关系式.24.如图,AC是⊙O的直径,P是⊙O外一点,连结PC交⊙O于B,连结PA、AB,且满足PC=50,PA=30,PB=18.(1)求证:△PAB∽△PCA;(2)求证:AP是⊙O的切线.【答案】见解析【解析】【分析】(1)根据△PAB与△PCA的对应边成比例,夹角相等证得结论.(2)欲证明AP是⊙O切线,只需证得∠PAC=90°.【详解】证明:(1)∵PC=50,PA=30,PB=18,∴PC505PA305,PA303PB183 ====.∴PC PA PA PB=.又∵∠APC=∠BPA,∴△PAB∽△PCA.(2)∵AC是⊙O的直径,∴∠ABC=90°.∴∠ABP=90°.又∵△PAB∽△PCA,∴∠PAC=∠ABP.∴∠PAC=90°.∴PA是⊙O的切线.。
2022-2023学年全国中考专题数学中考模拟考试总分:127 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 16 小题 ,每题 3 分 ,共计48分 )1. 计算的结果是( )A.B.C.D. 2.如图,在中,边的高是( )A.B.C.D. 3. 大家都知道,七点五十可以说成差十分钟八点,有时这样表达更清楚,这也启发了人们设计了一种新的加减记数法.比如:写成,=;写成=;写成=.按这个方法请计算=( )A.B.⋅(−a)a 3a 3−a 3a 4−a 4△ABC BC CECDACAF81110−218929200−20+976831310000−2320+352−3124081990C.D.4. 的算术平方根是 A.B.C.D.5. 如果过一个多边形的一个顶点的对角线有条,则该多边形是( )A.九边形B.八边形C.七边形D.六边形6. 据统计,年长春市接待旅游人数约人次,这个数用科学记数法表示为( )A.B.C.D. 7.如图是由个相同的小正方体组成的几何体,那么这个几何体的俯视图是( ) A.B.241030249()−33±38162016670000006700000067×1066.7×1056.7×1076.7×1086C. D.8. 如图,在▱中,,是上两点,,连接,,,.添加一个条件,使四边形是矩形,这个条件是( )A.B.C.D.9. 如果 ,那么 的值为 ( )A.B.C.D.以上都不对10. 制造弯形管道时,经常要先按中心线计算“展直长度”,再下料.右图是一段弯形管道,其中’,中心线的两条弧的半径都是,这段变形管道的展直长度约为(取)( )ABCD M N BD BM =DN AM MC CN NA AMCN MB =MOOM =AC 12BD ⊥AC∠AMB =∠CND2x =3y (−)⋅y x (−)x y2−1−23−32∠O =∠O=90∘1000mm π3.14A.B.C.D.11. 在下列图形中,由条件不能得到的是 A. B. C. D.12. 已知,则函数=和的图象大致是( )A.9280mm6280mm6140mm457mm∠1+∠2=180∘AB //CD ()<0<k 1k 2y x −1k 1y =k 2xB. C. D.13. 下列说法中:①若点在直线上,则点一定在线段上;②两点之间,直线最短;③已知,则点是线段的中点;④两点确定一条直线;⑤连接两点的线段叫两点间的距离.其中正确的个数有( )A.个B.个C.个D.个14. 甲、乙、丙、丁四人进行射击测试,他们在相同条件下各射击次,成绩(单位:环)统计如表:甲乙丙丁平均数方差如果从这四人中,选出一位成绩较好且状态稳定的选手参加比赛,那么应选( )A.甲B.乙C.丙D.丁15. 一个两位数,个位数字与十位数字的和是,如果将个位数字与十位数字对调后所得的新数比原数大,那么原来的两位数为( )A.C AB C AB AC =BC C AB 3210109.79.69.69.70.250.250.270.289954B.C.D.16. 平行四边形两邻边长分别为和,它们的夹角(锐角)为 ,则平行四边形中较短的对角线的长为( )A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )17. 一个质地均匀的小正方体,个面分别标有数字,,,,,.若随机投掷一次小正方体,则朝上一面的数字是的概率为________.18. 如图,是的直径,已知,,是的上的两点,且,是上一点,则的最小值是________.19. 已知如图,每个小正方形的边长都是,、、、…都在格点上,、、、…都是斜边在轴上,且斜边长分别为、、、…的等腰直角三角形.若的三个顶点坐标为、、,则依图中规律,则的坐标为________.277245ABCD 2360∘ABCD 7–√26−−√3161121551AB ⊙O AB =2C D ⊙O +=BC ˆBD ˆ23AB ˆM AB MC +MD 1A 1A 2A 3△A 1A 2A 3△A 3A 4A 5△A 5A 6A 7x 246△A 1A 2A 3(2,0)A 1(1,−1)A 2(0,0)A 3A 19三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 )20.先化简,再求值:,然后从的范围内选取一个合适的整数作为的值代入求值. 21. 科技是第一生产力.科技深刻地改变了中国人的生活方式,更为企业插上了腾飞的翅膀.机器人分拣、配送货物已经成为很多大型企业仓储的首选.某公司为了了解下属仓库机器人的工作状况,随机抽取台进行日分拣货物测试,并将它们的测试结果数据进行整理、描述和分析(日分拣货物的重量单位:吨)部分信息如下:等级重量(吨)频率请结合上述信息完成下列问题:________, ________, ________;请补全频数分布直方图;①在扇形统计图中,“”等级对应的圆心角的度数是________;②这次调查的中位数落在________等级内;(填“”“”“”或“”)若该公司仓库有 台机器人,根据抽样调查结果,请估计该公司日分拣货物超过吨的机器人的台数.22. 为了求的值,可令,则,因此,,所以.仿照以上推理计算:的值________.(−)÷a +4a +1a +1a 4a −2−1a 2−2<a ≤2a 20A20≤x <25a B25≤x <30b C30≤x <35D 35≤x <40c(1)a =b =c =(2)(3)C A B C D (4)200301+2+++⋯+22232100m =1+2+++⋯+222321002m =2+++⋯+222321012m −m =−12101m =−121011+3+++⋯+32333n23.小明家今年种植的草莓喜获丰收,采摘上市天全部销售完,爸爸让他对今年的销售情况进行跟踪记录,小明利用所学的数学知识将记录情况绘成图象(所得图象均为线段),日销售量(单位:千克)与上市时间(单位:天)的函数关系如图所示,草莓的销售价(单位:元/千克)与上市时间(单位:天)的函数关系如图所示.设第天的日销售额为(单位:元).第天的日销售额为________元;观察图象,求当时,日销售额与上市时间之间的函数关系式及的最大值;若上市第天时,爸爸把当天能销售的草莓批发给了邻居马叔叔,批发价为每千克元,马叔叔到市场按照当日的销售价元/千克将批发来的草莓全部售完,他在销售的过程中,草莓总质量损耗了.那么,马叔叔支付完来回车费元后,当天能赚到多少元? 24. 如图,是的直径,,分别与相切于点,,交的延长线于点,交的延长线于点,交于点,连接.求证:;若,,求的面积和线段的长. 25. 如图,直线与双曲线相交于和两点,与轴交于点,与轴交于点.(1)求,的值;(2)在轴上是否存在一点,使与相似?若存在求出点的坐标;若不存在,请说明理由.20y x (1)p x (2)x w (1)11w (2)16≤x ≤20w x w (3)1515p 2%20AB ⊙O PA PC ⊙O A C PC AB D DM ⊥PO PO M ⊙O N AN (1)∠MPD =∠MDO (2)PC =6sin ∠PDA =35⊙O MN =mx +n(m ≠0)y 1=(k ≠0)y 2k x A(−1,2)B(2,b)y C x D m n y P △BCP △OCD P26. 如图,是中边的中线,,点为上一点,如果,过作交于点,点是的中点,将绕点顺时针旋转度(其中)后,射线交直线于点.如果的面积为,求的面积(用的代数式表示);当和不重合时,请探究的度数与旋转角的度数之间的函数关系式;写出当为等腰三角形时,旋转角的度数.OC △ABC AB ∠ABC =36∘D OC OD =k ⋅OC D DE //CA BA E M DE △ODE O α<α<0∘180∘OM BC N (1)△ABC 26△ODE k (2)N B ∠ONB y α(3)△ONB α参考答案与试题解析2022-2023学年全国中考专题数学中考模拟一、 选择题 (本题共计 16 小题 ,每题 3 分 ,共计48分 )1.【答案】D【考点】同底数幂的乘法【解析】根据单项式乘单项式的方法先进行相乘,然后按照同底数幂的乘法运算法则进行计算即可.【解答】解:故选.2.【答案】D【考点】三角形的高【解析】根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,确定出答案即可.【解答】解:从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,所以在中,边上的高是.故选.3.【答案】A【考点】⋅(−a)=−⋅a =−.a 3a 3a 4D △ABC BC AF D有理数的加减混合运算【解析】此题暂无解析【解答】此题暂无解答4.【答案】B【考点】算术平方根【解析】如果一个非负数的平方等于,那么是的算术平方根,根据此定义即可求出结果.【解答】解:∵,∴的算术平方根为.故选.5.【答案】A【考点】多边形的对角线【解析】根据从每一个顶点处可以作的对角线的条数为计算即可得解.【解答】∵过一个多边形的一个顶点的对角线有条,∴多边形的边数为=,∴这个多边形是九边形.6.【答案】Cx a x a =32993B (n −3)66+39【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是非负数;当原数的绝对值时,是负数.【解答】这个数用科学记数法表示为.7.【答案】C【考点】简单几何体的三视图【解析】此题暂无解析【解答】解:由个相同的小正方体组成的几何体,那么这个几何体的俯视图是:故选.8.【答案】B【考点】矩形的判定【解析】此题暂无解析【解答】a ×10n 1≤|a |<10n n a n ≥1n <1n 67000000 6.7×1076C ABCD解:∵四边形是平行四边形,∴,,∵对角线上的两点,满足,∴,即,∴四边形是平行四边形,由矩形性质得:①矩形具有平行四边形的所有性质:对边平行且相等,对角相等,邻角互补,对角线互相平分;②矩形的四个角都是直角;③矩形的对角线相等.,因不能确定原平行四边形的对角线相等,故,不可判定四边形是矩形,,由可得平行四边形对角线相等,故可判定四边形是矩形,,矩形的对角线互相平分但不一定垂直,故不可判定四边形是矩形,,因原题中未给定具体的角的度数,所以不能得出四边形的角的具体度数,故不可判定四边形是矩形,故选.9.【答案】C【考点】分式的化简求值【解析】【解答】解:原式,,,原式.故选.10.【答案】C【考点】弧长的计算【解析】ABCD OA =OC OB =OD BD M N BM =DN OB −BM =OD −DN OM =ON AMCN A ABCD MB =MO AMCN B OM =AC 12AMCN AMCN C AMCN D ∠AMB =∠CND AMCN AMCN B =−×y x x 2y 2=−x y∵2x =3y ∴=x y 32∴=−32C先计算出扇形的弧长再加上直管道的长度即可.【解答】图中管道的展直长度.11.【答案】C【考点】平行线的判定【解析】在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.【解答】解:、的对顶角与是同旁内角,它们互补,所以能判定,故本选项不符合题意;、的对顶角与的对顶角是同旁内角,它们互补,所以能判定,故本选项不符合题意;、由条件能得到,不能判定,故本选项符合题意;、的邻补角,所以能判定,故本选项不符合题意.故选.12.【答案】A【考点】反比例函数的图象一次函数的图象【解析】根据反比例函数的图象性质及正比例函数的图象性质可作出判断.【解答】∵,=∴直线过二、三、四象限;双曲线位于一、三象限.13.3000=2×+3000=1000π+3000≈1000×3.14+3000=6140mm 90π×1000180A ∠1∠2AB //CD B ∠1∠2AB //CDC ∠1+∠2=180∘AD //BC AB //CD D ∠1∠BAD =∠2AB //CD C <0<k 1k 2b −1<0C【考点】线段的中点两点间的距离线段的性质:两点之间线段最短直线的性质:两点确定一条直线直线、射线、线段【解析】分别根据线段、直线的性质,两点间距离的定义,线段中点的定义等知识对各选项进行逐一分析即可.【解答】解:①若点在直线上,则点不一定在线段上,可能在线段外,故原说法错误;②两点之间,线段最短,故原说法错误;③若,且,,三点共线,则点是线段的中点,故原说法错误;④两点确定一条直线,故原说法正确;⑤连接两点的线段的长度叫两点间的距离,故原说法错误.综上所述,其中正确的个数有个.故选.14.【答案】A【考点】方差【解析】此题暂无解析【解答】此题暂无解答15.【答案】【考点】一元一次方程的应用——其他问题C AB C AB AB AC =BC A B C C AB 1C此题暂无解析【解答】此题暂无解答16.【答案】A【考点】勾股定理含30度角的直角三角形【解析】此题暂无解析【解答】解:作于,因为,,所以,,,所以.故选.二、 填空题 (本题共计 3 小题 ,每题3 分 ,共计9分 )17.【答案】【考点】概率公式【解析】此题暂无解析CE ⊥AD E ∠ADC =60∘CD =2DE =1AE =2CE =3–√AC ==(+3–√)222−−−−−−−−−√7–√A 12解:由题意得,共有种情况,则朝上一面的数字是的有种,故朝上一面的数字是的概率为.故答案为:.18.【答案】【考点】圆心角、弧、弦的关系轴对称——最短路线问题【解析】过作于交于,根据垂径定理得到,于是得到,连接交于,则的最小值,过作于,得到,,解直角三角形得到,即可得到结论.【解答】解:过作于交于,∴,∵,∴,∴,连接交于,则的最小值,过作于,∵,∴,,∵,∴,∴,∴的最小值是,故答案为:.19.【答案】6131=3612123–√D DD'⊥AB H ⊙O D'=BD ˆD'B ˆ∠COD'=120∘CD'AB M CD'=MC +MD O ON ⊥CD'N CD'=2NC ∠C =30∘CN =3–√2D DD'⊥AB H ⊙O D'=BD ˆD'B ˆ+=BC ˆBD ˆ23AB ˆ+=BC ˆBD'ˆ23AB ˆ∠COD'=120∘CD'AB M CD'=MC +MD O ON ⊥CD'N OC =OD'CD'=2NC ∠C =30∘OC =AB =112CN =3–√2CD'=3–√MC +MD 3–√3–√(−8,0)规律型:点的坐标【解析】根据相邻的两个三角形有一个公共点列出与三角形的个数与顶点的个数的关系式,然后求出所在的三角形,并求出斜边长,然后根据第奇数个三角形关于直线对称,第偶数个三角形关于直线对称求出,然后写出坐标即可.【解答】解:设到第个三角形顶点的个数为,则,∵当时,,∴是第个三角形的最后一个顶点,∵等腰直角三角形的斜边长分别为、、、…,∴第个等腰直角三角形的斜边长为,由图可知,第奇数个三角形在轴下方,关于直线对称,∴,∴的坐标为.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 )20.【答案】解:原式.在中,取时,原分式有意义.当时,原式.【考点】分式的化简求值【解析】此题暂无解析【解答】解:原式.在中,取时,原分式有意义.A 19x =1x =2OA 19n y y =2n +12n +1=19n =9A 19924692×9=18x x =1O =−1=8A 19182A 19(−8,0)(−8,0)=⋅=+4a −−2a −1a 2a 2a(a +1)(a +1)(a −1)2(2a −1)a −12a−2<a ≤2a =2a =2===a −12a 2−12×214=⋅=+4a −−2a −1a 2a 2a(a +1)(a +1)(a −1)2(2a −1)a −12a−2<a ≤2a =2==a −12−11当时,原式.21.【答案】,,下图即为补全的频数分布直方图.,因为台,所以该公司日分拣物超过吨的机器人有台.【考点】频数(率)分布直方图中位数扇形统计图用样本估计总体【解析】此题暂无解析【解答】解:由频数分布直方图,知,.因为,所以.故答案为:;;.下图即为补全的频数分布直方图.①在扇形统计图中,“”等级对应的圆心角的度数是.②因为“”等级内的有台,所以中位数落在“”等级内.故答案为:;.a =2===a −12a 2−12×2140.10.50.1(2)108∘B (4)200×=806+2203080(1)a =2÷20=0.1c =10%=0.16÷20=0.3b =1−0.1−0.3−0.1=0.5a =0.1b =0.5c =0.1(2)(3)C ×=360∘620108∘B 10B 108∘B ×=806+2因为台,所以该公司日分拣物超过吨的机器人有台.22.【答案】【考点】规律型:数字的变化类【解析】令,然后两边同时乘,接下来按照例题的方法计算即可.【解答】解:令,则,因此,所以.所以.故答案为:.23.【答案】当时,设与之间的函数关系式为,依题意得解得∴,当时,设与之间的函数关系式为:,依题意得解得∴,(4)200×=806+2203080−13n+12S =1+3+++...+3233320153m =1+3+++⋯+32333n3m =3++++⋯+3233343n+13m −m =−13n+12m =−13n+1m =−13n+12−13n+121980(2)11≤x ≤20y x y =x +k 1b 1{20+=0,k 1b 111+=90,k 1b 1{=−10,k 1=200,b 1y =−10x +20016≤x ≤20p x p =x +k 2b 2{16+=17,k 2b 220+=19,k 2b 2 =,k 212=9,b 2p =x +912=py =(x +9)(−10x +200)1∴,∴当时,随的增大而减小,∴当时,有最大值是元.当时,,,当时,(元),(千克),∴利润为:(元).答:马叔叔当天能赚到元.【考点】待定系数法求一次函数解析式二次函数的应用待定系数法求二次函数解析式二次函数的最值【解析】此题暂无解析【解答】解:由图可得,第天的日销售量为千克,由图可得,第天的销售价格为元/千克,第天的销售价格为元/千克,设第天到第天的销售价格与天数的解析式为,由题意得解得∴当时,,当时,,∴销售价格为元/千克,∴销售额(元).故答案为:.当时,设与之间的函数关系式为,依题意得w =py =(x +9)(−10x +200)12=−5+10x +1800x 2=−5+1805(x −1)216≤x ≤20w x x =16w 680(3)3≤x ≤16p =−x +33y =−10x +200x =15p =−15+33=18y =−10×15+200=5050(1−2%)×18−50×15−20=112112(1)(1)1190(2)3301617316p x p =kx +b {3k +b =30,16k +b =17,{k =−1,b =33,3≤x ≤16p =−x +33x =11p =2222w =90×22=19801980(2)11≤x ≤20y x y =x +k 1b 1{20+=0,k 1b 111+=90,k 1b 1=−10,解得∴,当时,设与之间的函数关系式为:,依题意得解得∴,∴,∴当时,随的增大而减小,∴当时,有最大值是元.当时,,,当时,(元),(千克),∴利润为:(元).答:马叔叔当天能赚到元.24.【答案】证明:,分别与相切于点,,,.,,,,,.解:连接,,如图:{=−10,k 1=200,b 1y =−10x +20016≤x ≤20p x p =x +k 2b 2{16+=17,k 2b 220+=19,k 2b 2 =,k 212=9,b 2p =x +912w =py =(x +9)(−10x +200)12=−5+10x +1800x 2=−5+1805(x −1)216≤x ≤20w x x =16w 680(3)3≤x ≤16p =−x +33y =−10x +200x =15p =−15+33=18y =−10×15+200=5050(1−2%)×18−50×15−20=112112(1)∵PA PC ⊙O A C ∴∠MPD =∠MPA ∠PAO =90∘∵DN ⊥PO ∴∠PMD =90∘∵∠POA =∠DOM ∠PAO =∠PMD ∴∠MPA =∠MDO ∴∠MPD =∠MDO (2)OC ON,分别与相切于点,,,,在中,,,,在中,由勾股定理得:,,,,的面积.在中,由勾股定理得:.在和中,,,,∴,即,,在中,由勾股定理得:.的面积为,线段的长为.【考点】切线的性质相似三角形的性质与判定勾股定理锐角三角函数的定义【解析】左侧图片未给出解析左侧图片未给出解析【解答】证明:,分别与相切于点,,∵PA PC ⊙O A C PC =6∴PA =6∵Rt △PAD sin ∠PDA =35∴=PA PD 35∴PD =10Rt △PAD AD ===8P −P D 2A 2−−−−−−−−−−√−10262−−−−−−−√∴CD =4∴OC =3OD =5∴⊙O S =9πRt △PAO OP ===3O +A A 2P 2−−−−−−−−−−√+3262−−−−−−√5–√Rt △OAP Rt △OMD ∵∠AOP =∠MOD ∠PAO =∠DMO =90∘∴△OAP ∽△OMD =OP OD OA OM =35–√53OM ∴OM =5–√Rt △OMN MN ===2O −O N 2M 2−−−−−−−−−−−√−32()5–√2−−−−−−−−−√∴⊙O 9πMN 2(1)∵PA PC ⊙O A C ∴∠MPD =∠MPA ∠PAO =90∘,.,,,,,.解:连接,,如图:,分别与相切于点,,,,在中,,,,在中,由勾股定理得:,,,,的面积.在中,由勾股定理得:.在和中,,,,∴,即,,在中,由勾股定理得:.的面积为,线段的长为.25.【答案】∵和在双曲线上,∴,解得.∴.∵和在直线上,∴,∴∠MPD =∠MPA ∠PAO =90∘∵DN ⊥PO ∴∠PMD =90∘∵∠POA =∠DOM ∠PAO =∠PMD ∴∠MPA =∠MDO ∴∠MPD =∠MDO (2)OC ON ∵PA PC ⊙O A C PC =6∴PA =6∵Rt △PAD sin ∠PDA =35∴=PA PD 35∴PD =10Rt △PADAD ===8P −P D 2A 2−−−−−−−−−−√−10262−−−−−−−√∴CD =4∴OC =3OD =5∴⊙O S =9πRt △PAOOP ===3O +A A 2P 2−−−−−−−−−−√+3262−−−−−−√5–√Rt △OAP Rt △OMD ∵∠AOP =∠MOD ∠PAO =∠DMO =90∘∴△OAP ∽△OMD =OP OD OA OM =35–√53OM ∴OM =5–√Rt △OMNMN ===2O −O N 2M 2−−−−−−−−−−−√−32()5–√2−−−−−−−−−√∴⊙O 9πMN 2A(−1,2)B(2,b)=(k ≠0)y 2k x k =−1×2=2b b =−1B(2,−1)A(−1,2)B(2,−1)=mx +n(m ≠0)y 1{ −m +n =22m +n =−1解得,∴,的值分别是、;在轴上存在这样的点,理由如下:①如图,过点作交轴于点,∴,∵,∴,②过点作交轴于点,∴,由(1)知,,∴,,∴,∴是等腰直角三角形,∴是等腰直角三角形,∴,∴,∴这样的点有个.即和.【考点】反比例函数综合题【解析】(1)把点、的坐标分别代入反比例函数解析式求得、的值,然后将点、的坐标分别代入一次函数解析式,利用方程组求得它们的值;(2)需要分类讨论:,,由坐标与图形的性质以及等腰直角三角形的性质进行解答.【解答】∵和在双曲线上,∴,解得.∴.∵和在直线上,∴,解得,∴,的值分别是、;在轴上存在这样的点,理由如下:①如图,过点作交轴于点,∴,{m =−1n =1m n −11y P B BP //x y P △PCB ∽△OCD B(2,−1)P(0,−1)B BP'⊥AB y P △BCP'∼△OCD =−x +1y 1C(0,1)D(1,0)OC =OD △OCD △BCP'CP'=PP'=2P'(0,−3)P 2(0,−1)(0,−3)A B k b A B △PCB ∽△OCD △BCP'∼△OCD A(−1,2)B(2,b)=(k ≠0)y 2k x k =−1×2=2b b =−1B(2,−1)A(−1,2)B(2,−1)=mx +n(m ≠0)y 1{−m +n =22m +n =−1{ m =−1n =1m n −11y P B BP //x y P △PCB ∽△OCD B(2,−1)∵,∴,②过点作交轴于点,∴,由(1)知,,∴,,∴,∴是等腰直角三角形,∴是等腰直角三角形,∴,∴,∴这样的点有个.即和.26.【答案】解:∵是中边的中线,的面积为,∴.∵,∴,,∴,且,∴.∵,∴.∵是中边的中线,点是的中点,∴,,∴,且,∴,∴.如图,当时,∵,∴,即,∴.如图,当时,B(2,−1)P(0,−1)B BP'⊥AB y P △BCP'∼△OCD =−x +1y 1C(0,1)D(1,0)OC =OD △OCD △BCP'CP'=PP'=2P'(0,−3)P 2(0,−1)(0,−3)(1)OC △ABC AB △ABC 26=13S △OAC DE //AC △ODE ∼△OCA ∠OEM=∠OAC =()S △ODE S △OAC OD OC2OD =k ⋅OC =13S △ODE k 2(2)△ODE ∼△OCA ===k OE OA OD OC DE AC OC △ABC AB M DE AB =2AO EM =DE 12==OE AB k 2EM AC ∠OEM =∠OAC △OEM ∼△BAC ∠EOM=∠ABC =36∘<α<0∘144∘∠AON=∠B +∠ONB ∠AOE +∠EOM =∠B +∠ONB α+=+y 36∘36∘y =α<α<144∘180∘∵,∴,∵.∴的度数与旋转角的度数之间的函数关系式为当时,若,则,若,则,若,则,∴.当时,若,则,∴.综上,旋转角的度数为,,,.【考点】三角形的中线相似三角形的性质与判定旋转的性质等腰三角形的性质【解析】(1)通过证明,可得,即可求解;(2)通过证明,可得==,分两种情况讨论可求解;(3)分四种情况讨论,由等腰三角形的性质可求解.【解答】解:∵是中边的中线,的面积为,∴.∵,∴,,∴,且,∴.∵,∠BON=∠EOM −∠BOE =−(−α)36∘180∘∠BON=α−144∘∠ONB=∠ABC −∠BON=−(α−)=36∘144∘−α180∘∠ONB y αy ={α,<α<,0∘144∘−α,<α<.180∘144∘180∘(3)<α<0∘144∘OB =ON ∠ABC=∠BNO =36∘=αOB=BN ∠ONB ===α−180∘36∘272∘ON =BN ∠ABC=∠BON =36∘∠ONB=−2×=180∘36∘108∘=α<α<144∘180∘OB=BN ∠ONB=∠NOB =18∘=−α180∘α=162∘α36∘72∘108∘162∘△ODE ∽△OCA =()S △DEO S △OAC OD OC2△OEM ∽△BAC ∠EOM ∠ABC 36∘(1)OC △ABC AB △ABC 26=13S △OAC DE //AC △ODE ∼△OCA ∠OEM=∠OAC =()S △ODE S △OAC OD OC2OD =k ⋅OC =13S △ODE k 2(2)△ODE ∼△OCA ==kOE OD DE∴.∵是中边的中线,点是的中点,∴,,∴,且,∴,∴.如图,当时,∵,∴,即,∴.如图,当时,∵,∴,∵.∴的度数与旋转角的度数之间的函数关系式为当时,若,则,若,则,若,则,∴.当时,若,则,∴.综上,旋转角的度数为,,,.===k OE OA OD OC DE AC OC △ABC AB M DE AB =2AO EM =DE 12==OE AB k 2EM AC ∠OEM =∠OAC △OEM ∼△BAC ∠EOM=∠ABC =36∘<α<0∘144∘∠AON=∠B +∠ONB ∠AOE +∠EOM =∠B +∠ONB α+=+y 36∘36∘y =α<α<144∘180∘∠BON=∠EOM −∠BOE =−(−α)36∘180∘∠BON=α−144∘∠ONB=∠ABC −∠BON=−(α−)=36∘144∘−α180∘∠ONB y αy ={α,<α<,0∘144∘−α,<α<.180∘144∘180∘(3)<α<0∘144∘OB =ON ∠ABC=∠BNO =36∘=αOB=BN ∠ONB ===α−180∘36∘272∘ON =BN ∠ABC=∠BON =36∘∠ONB=−2×=180∘36∘108∘=α<α<144∘180∘OB=BN ∠ONB=∠NOB =18∘=−α180∘α=162∘α36∘72∘108∘162∘。
初三中考水平测试数学模拟试题说明:1.全卷共4页,考试历时100分钟,总分值为120分.2.答案必需写在答题卡各题目指定区域内相应位置上,不按以上要求作答的答案无效.3.考试终止时,将答题卡上交, 试卷自己妥帖保管,以便教师讲评. 一、单项选择题(每题3分) 1.–3-是( ) A.3-B.3C.13D.13-2.以下运算正确的选项是( )A .x ·x 2 = x 2 B. (xy )2 = xy 2 C. (x 2)3 = x 6 D.x 2 +x 2 = x 4 3.以下左图是由5个相同大小的正方体搭成的几何体,那么它的俯视图是( )4.在以下图形中,既是轴对称图形,又是中心对称图形的是( )5.假设代数式21x -成心义,那么x 的取值范围是( )A .12x ≠B .x ≥12C .x ≤12D .x ≠-126.在Rt △ABC 中,90C=∠,3AC=,4BC=,那么sin A 的值为 ( )A .45B .43C .34D .357. . 如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =25°,那么∠CAD 的度数是( ) A .25°B .60°C .65°D .75°8.不等式组⎩⎨⎧≥->+125523x x 的解在数轴上表示为( )第3题图A .B .C .D .AD B OCA .B .C .D .CBAA BCD E9.为了参加市中学生篮球运动会,一支校篮球队预备购买10双运动鞋,各类尺码统计如下表: 尺码(厘米) 25 25.5 26 26.5 27 购买量(双)12322那么这10双运动鞋尺码的众数和中位数别离为( ) A.25.5厘米,26厘米 B.26厘米,25.5厘米 C.25.5厘米,25.5厘米 D.26厘米,26厘米10.如图,DE 与ABC △的边AB AC ,别离相交于D E ,两点,且DE BC ∥.假设A D :BD=3:1, DE=6,则BC 等于( ). A. 8 B.92C. 35D. 2二、填空题(每题4分,总分值20分)11.小明在“百度”搜索引擎中输入“钓鱼岛最新消息”,能搜索到与之相关的结果个数约为5640000,那个数用科学记数法表示为 . 12.已知反比例函数5m y x-=的图象在第二、四象限,那么m 取值范围是__________ 13.假设方程2210x x --=的两个实数根为1x ,2x ,那么=+2221x x .14.小红要过生日了,为了筹备生日聚会,预备自己动手用纸板制作一个底面半径为9cm ,母线长为30cm 的圆锥形生日礼帽,那么那个圆锥形礼帽的侧面积为________cm 2 .(结果保留π)15.如图,小聪用一块有一个锐角为30︒的直角三角板测量树高,已知小聪和树都与地面垂直,且相距33小聪身高AB 为1.7米,那么这棵树的高度= 米 16.若是函数1()2f x x =+,那么(5)f = 三、解答题(共3个小题,每题5分,总分值15分)17.()10112 3.14tan 603π-⎛⎫---︒ ⎪⎝⎭.18.先化简211()1122x x x x -÷-+-2,1,-1当选取一个你以为适合..的数作为x 的值代入求值.A B CD E19.如图,在ABCD 中,E 为BC 边上一点,且AB AE =. (1)求证:ABC EAD △≌△. (2)假设AE 平分DAB ∠,25EAC =∠,求AED ∠的度数.四、解答题(共3个小题,每题8分,总分值24分)20. 已知关于x 的一元二次方程 (m -2)x 2 + 2mx + m +3 = 0 有两个不相等的实数根. (1)求m 的取值范围; (2)当m 取知足条件的最大整数时,求方程的根.21. 如图,在边长均为1的小正方形网格纸中,△OAB 的极点O 、A 、B 均在格点上,且O 是直角坐标系的原点,点A 在x 轴上.(1)以O 为位似中心,将△OAB 放大,使得放大后的△11B OA 与△OAB 对应线段的比为2∶1,画出△11B OA .(所画△11B OA 与△OAB 在原点双侧).(2)求出线段11B A 所在直线的函数关系式.22.“校园电话”现象愈来愈受到社会的关注,小记者刘凯随机调查了某校假设干学生和家长对中学生带电话现象的观点,制作了如下的统计图:(1)求这次调查的总人数,并补全图13-1;(2)求图13-2中表示家长“同意”的圆心角的度数;ABC(3)针对随机调查的情形,刘凯决定从初三一班表示同意的3位家长中随机选择2位进行深切调查,其中包括小亮和小丁的家长,请你利用树状图或列表的方式,求出小亮和小丁的家长被同时选中的概率.五、解答题(共3个小题,每题9分,总分值27分) 23.中山市某施工队负责修建1800米的绿道.为了尽可能减少施工对周边环境的阻碍,该队提高了施工效率,实际工作效率比原打算天天提高了20%,结果提早两天完成.求实际平均天天修绿道的长度?24. 如图,D 为O ⊙上一点,点C 在直径BA 的延长线上,CDA CBD ∠=∠.(1)求证:CD 是O ⊙的切线;(2)过点B 作O ⊙的切线交CD 的延长线于点E ,假设BC=4,ta n ∠ABD=12求BE 的长.25.如图,抛物线)0(322≠-+=m m mx mx y 的极点为H ,与x 轴交于A 、B 两点(B 点在A 点右边),点H 、B 关于直线l :333+=x y 对称,过点B 作直线BK ∥AH 交直线l 于K 点.(1)求A 、B 两点坐标,并证明点A 在直线l 上; (2)求此抛物线的解析式;(3)将此抛物线向上平移,当抛物线通过K 点时,设极点为N ,求出NK 的长.初三中考水平测试数学模拟试题ABCDE O学生及家长对中学生带手机的态度统计图家长学生无所谓反对赞成30803040140类别人数28021014070家长对中学生带手机的态度统计图20%反对无所谓赞成图22-1图22-2参考答案一、选择题(每题3分,共15分)1.A 2. C 3.C 4.C 5. B 6.A 7. C 8. C 9. D 10. A 二、填空题(每题4分,共20分)11.65.6410⨯ 12. m >5 13. 6 14.270π 15. 4.716. 三、解答题(每题5分,共15分)17. 解:解: 原式4分+2 ……………………… 5分 18.解: 原式=22(x 1)(x 1)(x 1)(x 1)x+-⨯+- ……………… 3分=2x……………………… 4分 当时,上式= …………………… 5分19.证明:∵四边形ABCD 为平行四边形,∴AD BC AD BC =∥,. ∴DAE AEB =∠∠.………1分 又∵AB AE =∴AEB B =∠∠ ∴B DAE =∠∠.………2分∴ABC EAD △≌△. ………3分(2)∵AE 平分DAB ∠∴DAE BAE DAE AEB ==∠∠,∠∠, ∴BAE AEB B ==∠∠∠.∴ABE △为等边三角形. ………4分 ∴60BAE =∠.∵25EAC =∠∴85BAC =∠ ∵ABC EAD △≌△∴85AED BAC ==∠∠. ………5分四、解答题(每题8分,共24分) 20.解:(1)∵方程有两个不相等的实数2m 根.∴=b 2-4ac=(2m)2-4 (m -2)( m +3)>0 (2)分∴m <6且m ≠2 ………4分 (2)∵m 取知足条件的最大整数∴m=5 ………5分把m=5代入原方程得:3x 2 + 10x + 8= 0 ………6分解得:124,23x x =-=- ………8分21. (1)画图略 …………………………………… 4分 (2) 设y=kx+b (k ≠0) ……… 5分把A 1(4,0)、B 1(2,-4)别离代入得: (6)0442k bk b =+⎧⎨-=+⎩……… 7 解得:k=2, b=-8∴直线A 1 B 1的解析式为y=2x-8 (8)22.解:解:(1)学生人数是200人,家长人数是80÷20%=400人,……………1分因此调查的总人数是600人; …………………2分 补全的统计图如图3所示: …………………3分(2)表示家长“同意”的圆心角的度数为40040×360=36° . ……………4分 (3)设小亮、小丁的家长别离用A 、B 表示,另外一个家长用C 表示,列树状图如下:第一次选择第二次选择……………7分 ∴P (小亮和小丁家长同时被选中)=29. …………………8分图3ABCB C DA C D AB D五、解答题(每题9分,共27分)23.解:解:设原打算平均天天修绿道的长度为x 米,那么………1分180018002(1.20%)x x-=+ ………4分 解得150=x ………6分经查验:150=x 是原方程的解,且符合实际 ……… 7分150×1.2=180 ………8分答:实际平均天天修绿道的长度为180米. ……… 9分 24、1)证明:如图(13),连结OD ………1分∵OB OD =,∴OBD BDO ∠=∠. ………2分 ∵CDA CBD ∠=∠, ∴CDA ODB ∠=∠. 又AB 是O ⊙的直径,∴90ADO ODB ∠+∠=︒, ………3分 ∴9090ADO CDA CDO ∠+∠=︒∠=︒即 ∴CD 是O ⊙的切线. ………4分(2).(2)解:∵CDA ABD ∠=∠ ∴1tan tan 2CDA ABD ∠=∠= ∴12AD BD = ………5分 ∵C C CDA CBD ∠=∠∠=∠, CAD CDB ∴△∽△ ………6分 12CD AD BC BD ∴==, ∵4BC =,∴2CD =. ………7分 ∵CE BE 、是O ⊙的切线, BE DE BE BC ∴=⊥,, 222BE BC EC ∴+=∴()22224BE BE +=+, ………8分解得3BE =. ………9分B25. 解:1)依题意,得)0(0322≠=-+m m mx mx , ………1分 解得31-=x ,12=x ∵B 点在A 点右边,∴A 点坐标为(﹣3,0),B 点坐标为(1,0).………2分 证明:∵直线l :333+=x y 当3-=x 时,03)3(33=+-⨯=y ∴点A 在直线l 上. ………3分 (2)解:∵点H 、B 关于过A 点的直线l :333+=x y 对称, ∴ 4==AB AH ………4分过极点H 作HC ⊥AB 交AB 于C 点, 则221==AB AC ,322422=-=HC ∴极点)32,1(-H ………5分代入抛物线解析式,得m m m 3)1(2)1(322--⨯+-⨯=解得23-=m ∴抛物线解析式为2333232+--=x x y ………6分 (3)连结HK ,可证得四边形HABK 是平行四边形 ∴HK ∥AB,HK=AB可求得K(3,23), ………7分 设向上平移K 个单位,抛物线通过点K ∴2333232+--=x x y +K 把K(3,23)代入得:K=83 ………8分 在Rt △NHK 中,∵NK=83,HK=4 由勾股定理得 NK 的长是134 ………9分。
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共有10个小题,每小题3分,共30分)1.在下列四个实数-3,-0.5,0,2中,最小的是( )A. -3B. - 0.5C. 0D. 22.下列计算结果正确的是( )A. a6 ÷a2=a3B. (ab)2=a2b2C. a4 ·a2=a8D. (a4)2=a63.下列立体图形中,俯视图与主视图不同是( )A 正方体 B. 圆柱 C. 圆锥 D. 球4.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )A. 80°B. 90°C. 100°D. 102°5.防范新冠病毒感染要养成戴口罩、勤洗手、多通风、常消毒等卫生习惯,其中对物体表面进行消毒可以采用浓度为75%的酒精.现有一瓶浓度为95%的酒精500ml,需将其加入适量的水,使浓度稀释为75%.设加水量为x ml,可列方程为( )A. 75%x=95%×500B. 95%x=75%×500C. 75%(500+x)=95%×500D. 95%(500+x)=75%×5006.若单项式-3x2y2m+n与2x m+n y4是同类项,则m2+2mn的算术平方....根.为( )A 0 B. 2 C. -2 D. ±2--,1)的一元二次方程有两个实7.定义(a,b,c)为方程20ax bx c++=的特征数.若特征数为(2k,12k数根,则k 的取值范围是( )A.<14-B. k > 14-C. k > 14-且0k ≠D. k ≥14-且0k ≠ 8.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AMB 上一点,则∠APB 的度数为( )A. 45°B. 30°C. 75°D. 60°9.二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +ac 的 图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限10.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点. 已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .333 D. 36二、填空题(本大题共6个小题,每小题3分,共18分)11.将3x 2﹣27分解因式的结果是 _______________________.12.若点(1,k )关于y 轴的对称点为(-1,1),则y 关于x 的函数k x y -=的取值范围是_______. 13.点P 的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .14.如图,在Rt∆ABC 中,∠C =90°,以顶点B 为圆心,适当长度为半径画弧,分别交AB ,BC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .当∠A =30°时,小敏正确求得∆BCD S :ABD S ∆=1:2.写出两条..小敏求解中用到的数学依据....:__________________.15.如图,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1:3,则大楼AB 的高度为________米.(精确到0.1米,参考数据:2 1.41≈,3 1.73≈,6 2.45≈)16.定义新运算:对于任意实数a ,b ,都有a ⊕b =ab +a +b ,其中等式右边是通常的加法、乘法运算,例如2⊕3=2×3+2+3=11.若y 关于x 的函数y =(kx +1)⊕(x -1)图象与x 轴仅有一个公共点,则实数k 的值为_______.三、解答题(本大题共有8小题,共72分)17.先化简,再求值:226(2)369x x x x -÷+++,其中x 是不等式组20218x x ->⎧⎨+<⎩的整数解. 18.若实数m ,n 满足210m m n -++-=,请用配方法...解关于x 的一元二次方程20x mx n ++=. 19.如图,在正方形ABCD 中,E 为边BC 上一点(不与点B ,C 重合),垂直于AE 的一条直线MN 分别交AB ,AE ,CD 于点M ,P ,N .小聪过点B 作BF ∥MN 分别交AE ,CD 于点G ,F 后,猜想线段EC ,DN ,MB 之间的数量关系为EC =DN +MB .他的猜想正确吗?请说明理由.20.为了解”停课不停学”过程中学生对网课内容的喜爱程度,某校开展了一次网上问卷调查.随机抽取部分学生,按四个类别统计,其中A 表示”很喜欢”,B 表示”喜欢”,C 表示”一般”,D 表示”不喜欢”,并将调查结果绘制成下面两幅不完整的统计图.请根据图中提供的信息,解决下列问题:(1)这次共抽取名学生进行统计调查,扇形统计图中D类所在扇形的圆心角度数为;(2)将条形统计图补充完整;(3)若该校共有3000名学生,估计该校表示”喜欢”的B类学生大约有多少人?21.参照学习函数的过程与方法,探究函数y=2(0)xxx-≠的图象与性质.因y=221-=-xx x,即y=﹣2x+1,所以我们对比函数y=﹣2x来探究.列表:x …﹣4 ﹣3 ﹣2 ﹣1 ﹣12121 2 3 4 …y=﹣2x…12231 2 4 ﹣4 ﹣1 1 ﹣23﹣12…y=2xx-…32532 3 5 ﹣3 ﹣1 01312…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=2xx-相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填”增大”或”减小”)②y=2xx-的图象是由y=﹣2x的图象向平移个单位而得到;③图象关于点中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=2xx-的图象上的两点,且x1+x2=0,试求y1+y2+3的值.22.已知:在△ABC中,AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.(1)如图1,当∠ABC=45°时,求证:AE2MD;(2)如图2,当∠ABC=60°时,①直接写出....线段AE,MD之间的数量关系;②延长BM到P,使MP=BM,连接CP,若AB=7,AE=27,探求sin∠PCB的值.23.为了抗击新冠病毒疫情,全国人民众志成城,守望相助.春节后某地一水果购销商安排15辆汽车装运A,B,C三种水果120吨销售,所得利润全部捐赠湖北抗疫.已知按计划15辆汽车都要装满且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆,汽车对不同水果的运载量和每吨水果销售获利情况如下表.水果品种 A B C汽车运载量(吨/辆) 10 8 6水果获利(元/吨) 800 1200 1000(1)设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,根据上表提供的信息,①求y与x之间的函数关系式;②设计车辆的安排方案,并写出每种安排方案;(2)若原有获利不变的情况下,当地政府按每吨50元的标准实行运费补贴,该经销商打算将获利连同补贴全部捐出.问应采用哪种车辆安排方案,可以使这次捐款数w(元)最大化?捐款w(元)最大是多少?24.在平面直角坐标系xOy中,已知点P是反比例函数23(0)y xx=>图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKP A的形状,并说明理由.(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时,①求过点A,B,C三点的抛物线解析式;②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的12?若存在,直接写...出.所有满足条件的M点的坐标;若不存在,试说明理由.答案与解析一、选择题(本大题共有10个小题,每小题3分,共30分)1.在下列四个实数-0.5,0中,最小的是( )A. B. - 0.5 C. 0 D.【答案】A【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,由此时行比较即可.【详解】∵正实数都大于0,负实数都小于0,∴最小的数是-0.5,又∵|-0.5|∴,∴实数-0.5,0中,最小是故选:A.【点睛】考查了实数大小比较,解题关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.下列计算结果正确的是( )A. a6 ÷a2=a3B. (ab)2=a2b2C. a4 ·a2=a8D. (a4)2=a6【答案】B【解析】分析】根据同底数幂的乘除法、幂的乘方和积的乘方计算法则进行计算,再进行判断即可.【详解】A选项:a6 ÷a2=a6-2=a4,故计算错误;B选项:(ab)2=a2b2,计算正确;C选项:a4 ·a2=a4+2=a6,故计算错误;⨯=,故计算错误;D选项:(a4)2=428a a故选:B.【点睛】考查了同底数幂的乘除法、幂的乘方和积的乘方,解题关键是熟记其计算法则,根据计算法则进行计算.3.下列立体图形中,俯视图与主视图不同的是( )A. 正方体B. 圆柱C. 圆锥D. 球【答案】C【解析】【分析】从正面看所得到的图形是主视图,从上面看到的图象是俯视图,再根据判断即可.【详解】A选项:俯视图与主视图都是正方形,故不合题意;B选项:俯视图与主视图都是长方形,故不合题意;C选项:俯视图是圆,主视图是三角形;故符合题意;D选项:俯视图与主视图都是圆,故不合题意;故选:C.【点睛】考查了立体图形的三视图,解题关键是理解:从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.4.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )A. 80°B. 90°C. 100°D. 102°【答案】A【解析】分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°∠1−∠A,代入求出即可.详解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°∠1−∠A=80°,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.5.防范新冠病毒感染要养成戴口罩、勤洗手、多通风、常消毒等卫生习惯,其中对物体表面进行消毒可以采用浓度为75%的酒精.现有一瓶浓度为95%的酒精500ml,需将其加入适量的水,使浓度稀释为75%.设加水量为x ml,可列方程为( )A. 75%x=95%×500B. 95%x=75%×500C. 75%(500+x)=95%×500D. 95%(500+x)=75%×500【答案】C【解析】【分析】根据稀释前后纯酒精的量不变列方程即可.【详解】设加水量为x ml,则稀释前纯酒精的量为95%×500,稀释后纯酒精的量为75%(500+x),根据稀释前后纯酒精的量不变可得:75%(500+x)=95%×500.故选:C.【点睛】考查了一元二次方程应用,解题关键是设未知数,根据题意找出等量关系:稀释前后纯酒精的量不变列方程.6.若单项式-3x2y2m+n与2x m+n y4是同类项,则m2+2mn的算术平方根.....为( )A. 0B. 2C. -2D. ±2【答案】B【解析】【分析】直接利用同类项的定义得出m,n的值,进而求得m2+2mn的值,再求其算术平方根即可.【详解】∵单项式-3x2y2m+n与2x m+n y4是同类项,∴224m nm n+=⎧⎨+=⎩,∴2mn=⎧⎨=⎩,∴m2+2mn=4,∴m2+2mn的算术平方根为2.故选:B .【点睛】考查了解二元一次方程组、算术平方根和同类项的概念,解题关键是根据同类项的概念得到关于m 、n 的二元一次方程组,并正确求解.7.定义(a ,b ,c )为方程20ax bx c ++=的特征数.若特征数为(2k ,12k --,1)的一元二次方程有两个实数根,则k 的取值范围是( )A.<14-B. k > 14-C. k > 14-且0k ≠D. k ≥14-且0k ≠ 【答案】C【解析】【分析】根据特征数的定义得到一个一元二次方程,再由方程有两个实数根得到k 的取值范围即可.【详解】∵定义(a ,b ,c )为方程20ax bx c ++=的特征数,∴特征数为(2k ,12k --,1)的一元二次方程为:22(12)10k x k x +--+=,又∵特征数为(2k ,12k --,1)的一元二次方程有两个实数根,∴0>且0k ≠,即22(12)40k k --->且0k ≠,∴k > 14-且0k ≠. 故选:C .【点睛】考查了一元二次方程的根与系数的关系,解题关键是熟记:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程没有实数根.8.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AMB 上一点,则∠APB 的度数为( )A. 45°B. 30°C. 75°D. 60°【答案】D【解析】 【详解】作半径OC ⊥AB 于点D ,连结OA ,OB ,∵将O 沿弦AB 折叠,圆弧较好经过圆心O ,∴OD=CD,OD=12OC=12OA,∴∠OAD=30°(30°所对的直角边等于斜边的一半),同理∠OBD=30°,∴∠AOB=120°,∴∠APB=12∠AOB=60°.(圆周角等于圆心角的一半)故选D.9.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+ac的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】根据二次函数y=ax2+bx+c的图象可以判断a、b、c的正负,从而可以判断一次函数y=bx+ac的图象经过哪几个象限即可.【详解】由二次函数y=ax2+bx+c的图象可得:a>0,b>0,c>0,∴ac>0,∴一次函数y=bx+ac的图象经过第一、二、三象限,不经过第四象限.故选:D.【点睛】考查了二次函数的图象与系数的关系,解题关键是根据函数的图象得到a>0,b>0,c>0,由此再判断一次函数的图象.10.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C 都在格点上,则tan∠ABC的值是.A.32B.33C.34D.36【答案】A【解析】如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=3a,EB=2a,∴∠AEB=90°,∴tan∠ABC=AEBE=32aa=32,故选A.二、填空题(本大题共6个小题,每小题3分,共18分)11.将3x2﹣27分解因式的结果是_______________________.【答案】3(x-3)(x+3)【解析】【分析】先提取公因式3,再利用平方差公式进行因式分解.【详解】3x2﹣27=3(x2-9)=3(x-3)(x+3).故答案为:3(x-3)(x+3).【点睛】考查了综合因式分解,解题关键先提取公式后再利用平方差公式进行因式分解.12.若点(1,k)关于y轴的对称点为(-1,1),则y关于x的函数k xy-=的取值范围是_______.【答案】x≤1且x≠0 【解析】【分析】由关于坐标轴对称两点坐标特点求得k的值,再代入k xy-=中求得取值范围.【详解】∵点(1,k)关于y轴的对称点为(-1,1),∴k=1,∴y关于x的函数为1-=xyx,∴1-x≥0且x≠0,∴x ≤1且x ≠0.故答案为:x ≤1且x ≠0.【点睛】考查了分式和根式有意义的条件,解题关键是关于坐标轴对称两点坐标特点求得k 的值和根式被开方数≥0,分式的分母不能为0.13.点P 的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .【答案】【解析】画树状图为:共有20种等可能的结果数,其中点P(a ,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a ,b)在平面直角坐标系中第二象限内的概率=420=15. 故答案为15. 14.如图,在Rt∆ABC 中,∠C =90°,以顶点B 为圆心,适当长度为半径画弧,分别交AB ,BC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .当∠A =30°时,小敏正确求得∆BCD S :ABD S ∆=1:2.写出两条..小敏求解中用到的数学依据....:__________________.【答案】答案不唯一,如直角三角形30度角所对直角边等于斜边的一半和等边对等角【解析】【分析】由已知条件得到∆BCD S :ABD S ∆=1:2,写出其中的2条依据即可.【详解】由作法得BD 平分∠ABC ,∵∠C=90°,∠A=30°,∴∠ABC=60°,(三角形的内角和为180º)∴∠ABD=∠CBD=30°(角平分线的性质),∴DA=DB (等角对等边),在Rt △BCD 中,BD=2CD ,(直角三角形30度角所对直角边等于斜边的一半)∴AD=2CD (等量代换),∴∆BCD S :ABD S ∆=1:2.故答案为:答案不唯一,如直角三角形30度角所对直角边等于斜边的一半和等边对等角.【点睛】考查了含30度角的直角三角形的性质和基本作图,解题关键是理解题意,并根据已知条件得到结论:∆BCD S :ABD S ∆=1:2.15.如图,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1:3,则大楼AB 的高度为________米.(精确到0.1米,参考数据:2 1.41≈,3 1.73≈,6 2.45≈)【答案】3【解析】【分析】延长AB 交DC 于H ,作EG ⊥AB 于G ,则GH =DE =15米,EG =DH ,设BH =x 米,则CH 3米,在Rt △BCH 中,BC =12米,由勾股定理得出方程,解方程求出BH =6米,CH =3BG 、EG 的长度,证明△AEG 是等腰直角三角形,得出AG =EG =3+20(米),即可得出大楼AB 的高度.【详解】延长AB 交DC 于H ,作EG ⊥AB 于G ,如图所示:则GH =DE =15米,EG =DH , ∵梯坎坡度i =13∴BH :CH =13设BH =x 米,则CH 3米,在Rt △BCH 中,BC =12米,由勾股定理得:x 2+3)2=122,解得:x=6,∴BH=6米,CH=63米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=63+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=63+20(米),∴AB=AG+BG=63+20+9=(63+29)m.故答案为:3.【点睛】考查了解直角三角形的应用-坡度、俯角问题;解题关键是作辅助线运用勾股定理求出BH,得出EG.16.定义新运算:对于任意实数a,b,都有a⊕b=ab+a+b,其中等式右边是通常的加法、乘法运算,例如2⊕3=2×3+2+3=11.若y关于x的函数y=(kx+1)⊕(x-1)图象与x轴仅有一个公共点,则实数k的值为_______.【答案】-1【解析】【分析】由定义的新运算求得y关于x的函数为:y=kx2+2x-1,再由y关于x函数的图象与x轴仅有一个公共点得到4+4k=0,求解即可.【详解】∵(kx+1)⊕(x-1)=(kx+1)(x-1)+(kx+1)+(x-1)=kx2+2x-1,∴y= kx2+2x-1,又∵y= kx2+2x-1图象与x轴仅有一个公共点,∴△=0,即4+4k=0,∴k=-1.故答案是:-1.【点睛】考查了一元二次方程的根与二次函数图像和x 轴交点坐标的关系,解题关键是熟记:一元二次方程有两个根,说明二次函数图像和x 轴的横坐标有两个交点;一元二次方程有一个根,说明二次函数图像和x 轴的横坐标有一个交点;一元二次方程(在实数范围)无解,说明二次函数图像和x 轴的横坐标没有交点.三、解答题(本大题共有8小题,共72分)17.先化简,再求值:226(2)369x x x x -÷+++,其中x 是不等式组20218x x ->⎧⎨+<⎩的整数解. 【答案】4【解析】【分析】先化简和求得x 的整数解,再代入计算即可. 【详解】226(2)369x x x x -÷+++ =22(3)(3)3x x x x x++⨯+ =22(3)x x x + =26x x+ =2+6x ; 20218x x ->⎧⎨+<⎩①② 解不等式①得:x>2,解不等式②得:x<72, 所以不等式的解集为:722x ,则其整数解为3, 把x =3代入原式=6243+=. 【点睛】考查了分式的混合运算和解不等式组,解题关键是正确化简分式和求得x 的值.18.若实数m ,n满足20m -=,请用配方法...解关于x 的一元二次方程20x mx n ++=. 【答案】x=1【解析】【分析】根据绝对值、算术平方根的非负性求得m 、n 的值,再代入一元二次方程中,再求解即可.【详解】∵m ,n 满足210m m n -++-=,∴m-2=0,m+n-1=0,∴m=2,n=-1,∴一元二次方程为2210x x +-=,∴221110x x ++--=,即2(1)2x +=,∴x=21±-.【点睛】考查了利用配方法解一元二次方程,解题关键是根据绝对值、算术平方根的非负性求得m 、n 的值和熟记完全平方公式的特点.19.如图,在正方形ABCD 中,E 为边BC 上一点(不与点B ,C 重合),垂直于AE 的一条直线MN 分别交AB ,AE ,CD 于点M ,P ,N .小聪过点B 作BF ∥MN 分别交AE ,CD 于点G ,F 后,猜想线段EC ,DN ,MB 之间的数量关系为EC =DN +MB .他的猜想正确吗?请说明理由.【答案】正确,理由见解析【解析】【分析】先证明四边形MBFN 是平等四边形,从而得到MB =NF ;根据ASA 证明△ABE ≌△BCF ,从而得到BE =CF ,则有DF =EC ,再根据DF =NF+DN 和MB =NF 可得到EC =DN+MB .【详解】∵四边形ABCD 是正方形,∴MB//NF ,∠C =∠ABC ,AB//DC ,∠BFC+∠CBF =90º,AB =BC ,又∵MN//BF ,∴四边形MBFN 是平行四边形,∠AMP =∠ABF ,∴MB =NF ,∵AB//DC ,∴∠BFC=∠ABF ,又∵∠AMP =∠ABF ,∴∠AMP =∠BFC ,∵MN ⊥AE ,∴∠APM 是直角,则∠AMP+∠MAE =90º,又∵∠BFC+∠CBF =90º,∴∠MAE =CBF ,在△ABE 和△BCF 中AB BC C ABC MAE CBF =⎧⎪∠∠⎨⎪∠⎩==,∴△ABE ≌△BCF (AAS ),∴BE =CF ,∴CE =DF又∵DF =NF+DN (由图可得),MB =NF (已证)∴CE =DF =DN+MB ,即CE =DN+MB .【点睛】考查了正方形的性质、平行四边形的性质和判定,解题关键证明△ABE ≌△BCF 从而得到BE =CF 和MB =NF .20.为了解”停课不停学”过程中学生对网课内容的喜爱程度,某校开展了一次网上问卷调查.随机抽取部分学生,按四个类别统计,其中A 表示”很喜欢”,B 表示”喜欢”,C 表示”一般”,D 表示”不喜欢”,并将调查结果绘制成下面两幅不完整的统计图.请根据图中提供的信息,解决下列问题:(1)这次共抽取 名学生进行统计调查,扇形统计图中D 类所在扇形的圆心角度数为 ;(2) 将条形统计图补充完整;(3) 若该校共有3000名学生,估计该校表示”喜欢”的B 类学生大约有多少人?【答案】(1)50,72°;(2)见解析;(3)1380人【解析】【分析】(1)这次共抽取:12÷24%=50(人),D 类所对应的扇形圆心角的大小360°×1050 =72°; (2)A 类学生:50-23-12-10=5(人),据此补充条形统计图;(3)该校表示”喜欢”的B 类的学生大约有3000×2350=690(人). 【详解】(1)这次共抽取:12÷24%=50(人), D 类所对应的扇形圆心角的大小360°×1050=72°; (2)A 类学生:50-23-12-10=5(人),条形统计图补充如下该校表示”喜欢”的B 类的学生大约有3000×2350=1380(人), 答:该校表示”喜欢”的B 类的学生大约有1380人;【点睛】考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.参照学习函数的过程与方法,探究函数y=2(0)x x x-≠的图象与性质. 因为y=221-=-x x x ,即y=﹣2x +1,所以我们对比函数y=﹣2x 来探究. 列表: x … ﹣4 ﹣3 ﹣2 ﹣1 ﹣12 12 1 2 3 4 …y=﹣2x … 12 23 1 2 4 ﹣4 ﹣1 1 ﹣23 ﹣12…y=2xx-…32532 3 5 ﹣3 ﹣1 01312…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=2xx-相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填”增大”或”减小”)②y=2xx-的图象是由y=﹣2x的图象向平移个单位而得到;③图象关于点中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=2xx-的图象上的两点,且x1+x2=0,试求y1+y2+3的值.【答案】(1)图象见解析;(2)增大,上,1,(0,1);(3)5.【解析】【分析】(1)用光滑曲线顺次连接即可;(2)观察图象,利用图象法即可解决问题;(3)根据中心对称的性质,可知A(x1,y1),B(x2,y2)关于(0,1)对称,由此即可解决问题. 【详解】(1)函数图象如图所示:(2)①当x<0时,y随x的增大而增大;②y=2xx的图象是由y=﹣2x的图象向上平移1个单位而得到;③图象关于点(0,1)中心对称,故答案为①增大;②上,1;③(0,1);(3)∵x1+x2=0,∴x1=﹣x2,∴A(x1,y1),B(x2,y2)关于(0,1)对称,∴y1+y2=2,∴y1+y2+3=5.【点睛】本题考查反比例函数的性质、中心对称的性质等知识,解题的关键是灵活运用所学知识解决问题.22.已知:在△ABC中,AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.(1)如图1,当∠ABC=45°时,求证:AE2MD;(2)如图2,当∠ABC=60°时,①直接写出....线段AE,MD之间的数量关系;②延长BM到P,使MP=BM,连接CP,若AB=7,AE=27,探求sin∠PCB的值.【答案】(1)见解析;(2)①AE=2DM,理由见解析;②3 2【解析】【分析】(1)由题意知∠BAE=∠BDM,∠ABE=∠DBM故有△ABE∽△DBM,从而得到AE:DM=AB:BD,而∠ABC =45°,再得到AB=2BD,则有AE=2MD;(2)①由于△ABE∽△DBM,相似比为2,故有EB=2BM,进而确定出AE与DM的关系;②由题意知得△BEP为等边三角形,有EM⊥BP,∠BMD=∠AEB=90°,在Rt△AEB中求得AE、AB、tan∠EAB的值,由D为BC中点,M为BP中点,得DM∥PC,求得tan∠PCB的值,在Rt△ABD和Rt△NDC 中,由锐角三角函数的定义求得AD、ND的值,进而求得tan∠PCB的值.【详解】(1)证明:如图1,连接AD.∵AB=AC,BD=CD,∴AD⊥BC.又∵∠ABC=45°,∴BD=AB•cos∠ABC,即AB2BD.∵∠BAE=∠BDM,∠ABE=∠DBM,∴△ABE∽△DBM.∴AEDM=ABDB2,∴AE2MD.(2)①如图2,连接AD,EP,过N作NH⊥AC,垂足为H,连接NH,∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,又∵D为BC的中点,∴AD⊥BC,∠DAC=30°,BD=DC=12 AB,∵∠BAE=∠BDM,∠ABE=∠DBM,∴△ABE∽△DBM,∴AEDM=BEBM=ABDB=2,∠AEB=∠DMB,即AE=2DM;②∵△ABE∽△DBM,∴AEDM=BEBM=ABDB=2,∴EB=2BM,又∵BM=MP,∴EB=BP,∵∠EBM=∠EBA+∠ABM=∠MBD+∠ABM=∠ABC=60°,∴△BEP为等边三角形,∴EM⊥BP,∴∠BMD=90°,∴∠AEB=90°,在Rt△AEB中,AE=7AB=7,∴BE2AB AE21,∴tan∠EAB=BEAE3∵D为BC中点,M为BP中点,∴DM∥PC,∴∠MDB=∠PCB,∴∠EAB=∠PCB,∴tan∠PCB【点睛】考查了相似三角形的判定与性质、等边三角形的判定与性质、直角三角形的性质和锐角三角函数的定义,解题关键是正确作出辅助线,明确线段与线段的关系.23.为了抗击新冠病毒疫情,全国人民众志成城,守望相助.春节后某地一水果购销商安排15辆汽车装运A,B,C三种水果120吨销售,所得利润全部捐赠湖北抗疫.已知按计划15辆汽车都要装满且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆,汽车对不同水果的运载量和每吨水果销售获利情况如下表.(1)设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,根据上表提供的信息,①求y与x之间的函数关系式;②设计车辆的安排方案,并写出每种安排方案;(2)若原有获利不变的情况下,当地政府按每吨50元的标准实行运费补贴,该经销商打算将获利连同补贴全部捐出.问应采用哪种车辆安排方案,可以使这次捐款数w(元)最大化?捐款w(元)最大是多少?【答案】(1)①y=15-2x;②有四种方案,方案一:装运A、B、C三种不同品质的车辆分别是3辆、9辆、3辆;方案二:装运A、B、C三种不同品质的车辆分别是4辆、7辆、4辆;方案三:装运A、B、C三种不同品质的车辆分别是5辆、5辆、5辆;方案四:装运A、B、C三种不同品质的车辆分别是6辆、3辆、6辆;(2)装运A、B、C三种不同品质的车辆分别是3辆、9辆、3辆,利润W(元)的最大值是134400元【解析】【分析】(1)①根据题意和表格中的数据可以求得y与x之间的函数关系式;②根据题意和(1)中函数关系式可以列出相应的不等式,从而可以解答本题;(2)根据题意和表格中的数据可以求得采用哪种车辆安排方案可以使得W最大,并求得W的最大值.【详解】(1)①由题意可得:10x+8y+6(15-x-y)=120,化简得:y=15-2x ,所以y 与x 之间的函数关系式为y=15-2x ;②由题意可得,()31523151523x x x x ⎧≥⎪-≥⎨⎪---≥⎩, 解得:3≤x≤6,∴有四种方案,方案一:装运A 、B 、C 三种不同品质的车辆分别是3辆、9辆、3辆;方案二:装运A 、B 、C 三种不同品质的车辆分别是4辆、7辆、4辆;方案三:装运A 、B 、C 三种不同品质的车辆分别是5辆、5辆、5辆;方案四:装运A 、B 、C 三种不同品质的车辆分别是6辆、3辆、6辆;(2)设装运A 种椪柑的车辆数为x 辆,W=10x×800+8(15-2x )×1200+6[15-x-(15-2x )]×1000+120×50=-5200x+150000,∵3≤x≤6,∴x=3时,W 取得最大值,此时W=134400,答:采用方案一:装运A 、B 、C 三种不同品质的车辆分别是3辆、9辆、3辆,利润W (元)的最大值是134400元.【点睛】考查一次函数的应用、一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答.24.在平面直角坐标系xOy 中,已知点P是反比例函数0)y x =>图象上一个动点,以P 为圆心圆始终与y 轴相切,设切点为A .(1)如图1,⊙P 运动到与x 轴相切,设切点为K ,试判断四边形OKP A 的形状,并说明理由.(2)如图2,⊙P 运动到与x 轴相交,设交点为B ,C .当四边形ABCP 是菱形时,①求过点A ,B ,C 三点的抛物线解析式;②在过A ,B ,C 三点的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面积的12?若存在,直接写...出.所有满足条件的M 点的坐标;若不存在,试说明理由.【答案】(1)四边形OKP A 是正方形,理由见解析;(2)①y 3243x 3;;②存在,M 的坐标为(0,3)或(3,0)或(43)或(7,83【解析】【分析】(1)先证明四边形OKP A 是矩形,又P A =PK ,所以四边形OKP A 是正方形;(2)①证明△PBC 为等边三角形;在Rt △PBG 中,∠PBG =60°,设PB =P A =a ,BG =2a ,由勾股定理得:PG 3,所以P (a 3a ),将P 点坐标代入y 23,求出PG 3,P A =BC =2,又四边形OGP A 是矩形,P A =OG =2,BG =CG =1,故OB =OG ﹣BG =1,OC =OG +GC =3,即可求得a 、b 、c 的值;设二次函数的解析式为:y =ax 2+bx +c ,根据题意得:a +b +c =0,9a +3b +c =0,而c 3 ②【详解】(1)四边形OKP A 是正方形,理由:∵⊙P 分别与两坐标轴相切,∴P A ⊥OA ,PK ⊥OK ,∴∠P AO =∠OKP =90°.又∵∠AOK =90°,∴∠P AO =∠OKP =∠AOK =90°.∴四边形OKP A 是矩形.又∵P A =PK ,∴四边形OKP A 是正方形;(2)①连接PB ,过点P 作PG ⊥BC 于G .∵四边形ABCP为菱形,∴BC=P A=PB=PC.∴△PBC为等边三角形.在Rt△PBG中,∠PBG=60°,设PB=P A=a,BG=2a由勾股定理得:PG 3,所以P(a 3a),将P点坐标代入y23,解得:a=2或﹣2(舍去负值),∴PG3P A=BC=2.又四边形OGP A是矩形,P A=OG=2,BG=CG=1,∴OB=OG﹣BG=1,OC=OG+GC=3.∴A(03,B(1,0),C(3,0);设:二次函数的解析式为:y=ax2+bx+c,根据题意得:a+b+c=0,9a+3b+c=0,而c3解得:a 3b43c3,∴二次函数的解析式为:y=33x243x3②设直线BP的解析式为:y=ux+v,据题意得:0 23 u vu v+=⎧⎪⎨+=⎪⎩解之得:u3v3∴直线BP 的解析式为:yx过点A 作直线AM ∥BP ,则可得直线AM的解析式为:y =+解方程组:2y y x ⎧=+⎪⎨=-+⎪⎩得:110x y =⎧⎪⎨=⎪⎩227x y =⎧⎪⎨=⎪⎩ 过点C 作直线CM ∥PB ,则可设直线CM的解析式为:y t =+. ∴0=t .∴t =-∴直线CM的解析式为:y =-.解方程组:2y y x ⎧=-⎪⎨=-+⎪⎩得:1130x y =⎧⎨=⎩;224x y =⎧⎪⎨=⎪⎩ 综上可知,满足条件的M 的坐标有四个,分别为(0,(3,0),(4),(7,.【点睛】考查了二次函数的综合运用.解题关键是灵活运用菱形和圆的性质和数形结合.。
人教版九年级数学中考模拟试题一、选择题(本大题共6小题,每小题3分,共18分)1.下列计算正确的是()A.-3-(-3)=-6B.-3-3=0C .-3÷3×3=-3D.-3÷3÷3=-32.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B 或∠C3.下面说法中,不.正确的是()A.绝对值最小的实数是0B.立方根最小的实数是0C.平方最小的实数是0D.算术平方根最小的实数是04.下列计算结果为正数的是()A.21(2-- B.01(2-- C.31(2- D.-125.在下列说法中,菱形对角线不具有的性质是()A.对角线互相垂直; B.对角线所在的直线是对称轴;C.对角线相等;D.对角线互相平分.6.如图抛物线2y=ax bx c ++与x 轴交于A 、B 两点,其中B 点坐标为(4,0),直线DE 是抛物线的对称轴,且与x 轴交于点E ,CD ⊥DE 于D ,现有下列结论:①a<0,②b<0,③2b -4ac>0,④AE+CD=4下列选项中选出的结论完全正确..............的.是..(第6题)A.①②③B.①②④C.①③④D.①②二、填空题(本大题共6小题,每小题3分,共18分)7=.8..一次体检中,某班学生视力情况如下表:视力情况0.7以下0.70.80.91.01.0以上人数5﹪8﹪15﹪20﹪40﹪12﹪所占的百分比从表中看出全班视力情况的众数是9.已知命题“关于x的一元二次方程x2+bx+14=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是.10.如图,BC是一条河的直线河岸,点A是河岸BC对岸上的一点,AB⊥BC于B,站在河岸BC的C处测得∠BCA=50 ,BC=10m,则桥长AB=m(用计算器计算,结果精确到0.1米)11.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要个小立方体.(第10题)(第11题)(第12题)12.如图,在直角坐标系中,ABCD的四个顶点的坐标分别为A(0,8),B(-6,8),C(-6,0),D(0,0),现有动点P在线段CB上运动,当△ADP为等腰三角形时,P点坐标为.三、(本大题共5小题,每小题6分,共30分)13.(本题共2小题,每小题3分)(1)解方程:12222xx x++= --(2)如图,在⊙O 中,OA ⊥OB ,∠A=20°,求∠B 的度数.14.已知2(23)a ++与23b +-互为相反数,求22(2)(2)(2)2a b b a b a a +-+--的值.15,.关于x 的不等式组.;01234⎪⎩⎪⎨⎧<-+>+a x x x (1)当3=a 时,解这个不等式组;(2)若不等式组的解集是1<x ,求a 的值.AOCB(第(2)题)16.如图,点A、B在⊙O上,点O是⊙O的圆心,请你只用无刻度的直尺,分别画出图①和图②中∠A的余角.(1)图①中,点C在⊙O上;(2)图②中,点C在⊙O内;17.一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x个,其他均为黄球,现甲从布袋中随机摸出一个球,若是红球则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜。
2022-2023学年初中中考专题数学中考模拟学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:130 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 的相反数是( )A.B.C.D.2. 沿圆柱体上底面直径截去一部分的物体如图所示,它的俯视图是( )A.B.C.D.3. 如图所示,三架飞机,,保持编队飞行,某时刻在坐标系中的坐标分别为,,.秒后,飞机飞到位置,则飞机,的位置,分别为( )−20202020−1202012020−2020P Q R (−1,1)(−3,1)(−1,−1)30P P'(4,3)Q R Q'R'A.,B.,C.,D.,4. 下列各式计算正确的是( )A.B.C.D.5. 如图,一束光线先后经平面镜,反射后,反射光线与平行,当时,的度数为( )A.B.C.D.6. 港珠澳大桥的桥隧全长米,是世界最长的跨海大桥,数字用科学记数法表示为( )A.B.C.D.7. 方程的解是( )Q'(2,3)R'(4,1)Q'(2,3)R'(2,1)Q'(2,2)R'(4,1)Q'(3,3)R'(3,1)=±222−−√(+)(−)=35–√2–√5–√2–√=−2(−2)2−−−−−√=×(−4)×(−25)−−−−−−−−−−−√−4−−−√−25−−−−√AB OM ON CD AB ∠ABM =40∘∠DCN 40∘50∘60∘80∘55000550005.5×1040.55×1045.5×10355×103+=−111−x x x −1A.B.C.D.无实数解8. 赵师傅透过平举放大镜从正上方看到水平桌面上的菱形的,那么与放大镜中的的大小关系是( )A.B.C.D.9. 如图所示的两个统计图,女生人数多的学校是( )A.甲校B.无法确定C.甲、乙两校女生人数一样多D.乙校10. 如图,点在内,连接,,,若对于任意的,都成立,则点应是( )A.三条高的交点B.的三条中线的交点C.的三条角平分线的交点D.的一条中线与一条角平分线的交点卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )x =2x =1x =0ABCD ∠C ∠A ∠C ∠A =∠C∠A >∠C∠A <∠C∠A ≤∠CO △ABC OA OB OC △ABC ==S △OAB S △OBC S △OAC O △ABC △ABC △ABC △ABC11. 方程组的解是________.12. 方程的两个根分别为,,则的值等于________.13. 某服装店元旦促销,如图是该商店抽奖所用的一个转盘,这个转盘被分成的每等份所对的圆心角为.转动转盘,若指针落在空白区域,顾客所购商品打折;若指针落在阴影区域,顾客所购商品在打折的基础上,还可获得消费满减的代金券,则小李在该店消费并能获得代金券的概率为________.14. 用不等式表示下列关系:(1)是正数________;(2)是负数________;(3)与的和是正数________;(4)减的差是负数________;(5)的倍大于或等于________;(6)的一半小于________. 15. 如图,平行四边形的对角线,相交于点,则添加一个适当的条件:________,可使其成为菱形(只填一个即可).16. 如图,在中,是边上的高,且=,=,矩形的顶点、在边上,顶点、分别在边和上,如果设边的长为,矩形的面积为,那么关于的函数解析式是________.三、 解答题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )17. 计算:. 18. 为迎接建党周年,甲、乙两位学生参加了知识竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取次,记录这次成绩(单位:分),并按成绩从低到高整理成如下表所示,由于表格被污损,甲的第个数据看不清,但知道甲的中位数比乙的众数大.{x +y =5x −y =32+3x −1=x 20x 1x 2+1x 11x 222.5∘8850050a a a 5b 5x 39y 3ABCD AC BD O △ABC AD BC BC 5AD 3EFGH F G BC E H AB AC EF x(0<x <3)EFGH y y x (a −3+)÷1a −1−4a 22−2a1008853甲乙求的值;现要从中选派一人参加竞赛,从统计或概率的角度考虑,你认为选派哪位学生参加合适?请说明理由.19. 如图, , ,垂足分别为、.求证: ;猜想线段、、之间具有怎样的数量关系,并说明理由;题设条件不变,根据图可得线段、、之间的数量关系是________ .20. 如图所示,某数学活动小组选定测量小河对岸大树的高度,他们在斜坡上的处测得大树顶端的仰角是,在地面上处测得大树顶端的仰角是,若坡角,,求大树的高度.(结果保留整数,参考数据:)21. 晓芳的妈妈绣了一幅长厘米、宽厘米的十字绣的矩形风景画.晓芳想帮妈妈把这幅十字绣的四周镶一条相同宽度的金边,然后再装裱在一个矩形画框中,如图所示,最外圈深色部分是画框.如果要使整个画框的面积是厘米,当画框四边宽度均为厘米时,求金边的宽度? 22. 如图,在平面直角坐标系中,直线=与轴、轴分别相交于点、,.(1)求的值;(2)若直线=与双曲线的一个交点在一象限内,以为直径的与轴相切于点,求的值.78798182x 8893957580808385909295(1)x (2)1∠ACB =90∘AC =BC,AD ⊥MN,BE ⊥MN D E (1)△ADC ≅△CEB (2)AD BE DE (3)2AD BE DE BC AF D B 30∘A B 45∘∠FAE =30∘AD =6m ≈1.733–√805054002l :y kx +1(k >0)x y A B tan ∠ABO =3–√k l :y kx +1y =(m ≠0)m xQ BQ ⊙I x T m23. 如图,在平面直角坐标系中,圆心为 的动圆经过点,且与轴相切于点,与之间存在一种确定的函数关系,其图像是一条常见的曲线,记作曲线.如图,①时,直接写出的半径;②当,时,直接写出的半径.求曲线最低点的坐标(用含有的式子表示);如图,若曲线最低点总在直线 的下方,点 都在曲线上,试比较与的大小.24.(问题发现)如图①,正方形的两边分别在正方形的边和上,连接.填空:①线段与的数量关系为________;②直线与所夹锐角的度数为________;(拓展探究)如图②,将正方形绕点逆时针旋转,在旋转的过程中,中的结论是否仍然成立,请利用图②进行说明;(解决问题)如图③,在正方形中,,点为直线上异于,的一点,以为边作正方形,点为正方形的中心,连接,若,,直接写出的长. 25. 如图,已知为的直径,是弦,于点,于点,.求证;求证;若,设,求的值及阴影部分的面积. 26. 综合与探究如图,在平面直角坐标系中,抛物线=的顶点为,与轴交于点,与轴交于点,.是上的动点,设点的横坐标为,过点作直线轴.P (x,y)A (m,2m +4)(m >−2)x B y x F (1)1y =32⊙P m =−1x =−2⊙P (2)F m (3)2F y =x +312C (−2,),D (1,)y 1y 2F y 1y 2(1)AEFG ABCD AB AD CF CF DG CF DG (2)AEFG A (1)(3)ADBC AD =AC M BC B C AM AMEF N AMEF CN AC =4CM =2CN AB ⊙O CD AB ⊥CD E OF ⊥AC F BE =OF (1)OF//BC (2)△AFO ≅△CEB (3)EB =5cm,CD =10cm 3–√OE =xcm x 1:y W 1a +bx +3(a ≠0)x 2A y D x B(3,0)C(−1,0)P W 1P m(0<m <3)P //x(1)求抛物线的函数表达式及点,的坐标;(2)如图,连接,直线交直线于点,连接交于点,求的长(用含的代数式表示)及的最大值;(3)在点运动过程中,将抛物线沿直线对称得到拋物线,与轴交于点,为上一点,试探究是否存在点,使是以为直角顶点的等腰直角三角形?若存在,直接写出此时点的坐标;若不存在,请说明理由.W 1A D 2BD l BD M OP BD N PM m P W 1l W 2W 2y E F W 2P △DEF D P参考答案与试题解析2022-2023学年初中中考专题数学中考模拟一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】A【考点】相反数【解析】此题暂无解析【解答】解:的相反数是.故选.2.【答案】B【考点】简单几何体的三视图【解析】找到从上面看所得到的图形即可.【解答】解:从上面看依然可得到两个半圆的组合图形.故选.3.【答案】A【考点】坐标与图形变化-平移【解析】由点到知,编队需向右平移个单位、向上平移个单位,据此可得.【解答】由点到知,编队需向右平移个单位、向上平移个单位,∴点的对应点坐标为,点的对应点,−20202020A B P(−1,1)P'(4,3)52P(−1,1)P'(4,3)52Q(−3,1)Q'(2,3)R(−1,−1)R'(4,1)4.【答案】B【考点】二次根式的性质与化简二次根式的混合运算【解析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:,,故选项错误;,,故选项正确;,,故选项错误;,,故选项错误.故选.5.【答案】B【考点】平行线的性质【解析】此题暂无解析【解答】解:∵∴∴,∴∴,∴,∵∴,故选.6.【答案】A【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移A ==222−−√4–√B (+)(−)=5−2=35–√2–√5–√2–√C ==2(−2)2−−−−−√4–√D =×(−4)×(−25)−−−−−−−−−−−√4–√25−−√B ∠ABM =,∠ABM =∠OBC,40∘∠OBC =40∘∠ABC =−∠ABM −∠OBC =−−=180∘180∘40∘40∘100∘CD//AB∠ABC +∠BCD =180∘∠BCD =−∠ABC =180∘80∘∠BCO =∠DCN,∠BCO +∠BCD +∠DCN =180∘∠DCN =(−∠BCD)=12180∘50∘B a ×10n 1≤|a |<10n n a动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【解答】将用科学记数法表示应为:.7.【答案】D【考点】解分式方程【解析】此题暂无解析【解答】解:方程两边同乘以得,,移项得,,合并同类项得,,系数化为得,.当时,,该分式方程无意义.故该分式方程无实数解.故选.8.【答案】A【考点】圆内接四边形的性质【解析】此题暂无解析【解答】解:由于图形放大或缩小后,角的形状没有发生变化,结合相似三角形的性质,可判定.故选.9.【答案】B【考点】扇形统计图【解析】根据题意,结合扇形图的性质,扇形统计图只能得到每部分所占的比例,具体人数不能直接体现,易得答案.【解答】n >10n <1n 55000 5.5×1041−x 1−x =−1+x−x −x =−1−1−2x =−21x =1x =11−x =0D ∠A =∠C A解:根据题意,因不知道甲乙两校学生的总人数,只知道两校女生占的比例,故无法比较两校女生的人数,故选.10.【答案】B【考点】全等三角形的性质与判定三角形的面积三角形的角平分线、中线和高【解析】根据三角形的面积公式,知点和点到的距离相等,利用全等三角形就可证明的延长线和的交点即为的中点,同理可证明、也是三角形的中线的一部分.【解答】解:延长交于,作于,作于.,.,,,,∴是边上的中线.同理可以证明是边上的中线,是边上的中线,∴点是三角形的三条中线的交点.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )11.【答案】【考点】加减消元法解二元一次方程组【解析】本题考查解二元一次方程组.【解答】B BC AO AO BC BC BO CO AO BC P BE ⊥AO E CF ⊥AO F ∵=S △OAB S △OAC ∴BE =CF ∵∠E =∠CFP =90∘∠BPE =∠CPF ∴△BEP ≅△CFP ∴BP =CP AO BC BO AC CO AB O B {x =4y =1x +y =5①解:得,,解得,把③代入①得,,∴方程组的解为:.故答案为:.12.【答案】【考点】根与系数的关系【解析】先根据根与系数的关系得到,,再通分得到,然后利用整体代入的方法计算.【解答】解:根据题意得,,所以.故答案为:.13.【答案】【考点】概率公式【解析】由题可得,该转盘被等分成了份,其中阴影部分有份,故顾客在该店消费并能获得代金券的概率为.【解答】解:由题意,得转盘一共有个格子,且阴影部分一共有个格子,又获得代金券的概率,则顾客在该店消费并能获得代金券的概率为.故答案为:.14.【答案】{x +y =5①x −y =3②①+②2x =8x =4③y =1{x =4y =1{x =4y =13+=−x 1x 232=−x 1x 212+=1x 11x 2+x 1x 2x 1x 2+=−x 1x 232=−x 1x 212+===31x 11x 2+x 1x 2x 1x 2−32−123316163316÷=16360∘22.5∘3=阴影个数总数316316【考点】由实际问题抽象出一元一次不等式【解析】直接利用正数、负数的定义以及结合不等关系得出不等式.【解答】是正数,则;是负数,则;与的和是正数,则;减的差是负数,则;的倍大于或等于,则;的一半小于,则.故答案为:,,,.15.【答案】【考点】菱形的判定【解析】利用菱形的判定方法确定出适当的条件即可.【解答】解:平行四边形的对角线,相交于点,添加,可使其成为菱形,理由为邻边相等的平行四边形为菱形.故答案为:.(答案不唯一)16.【答案】【考点】相似三角形的性质与判定根据实际问题列二次函数关系式【解析】设边的长为,则=,进而利用已知得出,进而得出的长,即可得出答案.a >0a <0a +5>0b −5<03x ≥9<3a a >0a a <0a 4a +5>0b 8b −5<0x 793x ≥6y 3<6a >0a <0b −2<0<8AB =BCABCD AC BD O AB =BC AB =BC y =−+5x 53x 2EF x(0<x <3)AN 3−x △AEH ∽△ABC EH【解答】设边的长为,则=,∵,∴,∴,∴,解得:,∵矩形的面积为,∴关于的函数解析式是:.三、 解答题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )17.【答案】解:原式.【考点】分式的混合运算【解析】暂无【解答】解:原式.18.【答案】解:依题意,可知甲的中位数为,乙的众数为.所以,解得.派甲参赛比较合适.理由如下:,,,,因为,,EF x(0<x <3)AN 3−x EH //BC △AEH ∽△ABC =AN AD EH BC =3−x 3EH 5EH =(3−x)53EFGH y y x y =(3−x)×x =−+5x 5353x 2=⋅(a −3)(a −1)+1a −12(1−a)(a +2)(a −2)=⋅(a −2)2a −12(1−a)(a +2)(a −2)=−2a −4a +2=⋅(a −3)(a −1)+1a −12(1−a)(a +2)(a −2)=⋅(a −2)2a −12(1−a)(a +2)(a −2)=−2a −4a +2(1)82+x 280=80+382+x 2x =84(2)=(78+79+81+82+84+88+93+95)=85x ¯¯¯甲18=(75+80+80+83+85+90+92+95)=85x ¯¯¯乙18=[(78−85+++S 2甲18)2(79−85)2(81−85)2(82−85)2++(88−85+(93−85+(95−85]=35.5(84−85)2)2)2)2=[(75−85+(80−85+(80−85+(83−85S 2乙18)2)2)2)2+(85−85+(90−85+(92−85+(95−85]=41)2)2)2)2=x ¯¯¯甲x ¯¯¯乙<S 2甲S 2乙所以甲的成绩较稳定,派甲参赛比较合适.【考点】中位数众数算术平均数方差【解析】(1)依题意,可知甲的中位数为,乙的众数为 .∴,解得 .【解答】解:依题意,可知甲的中位数为,乙的众数为.所以,解得.派甲参赛比较合适.理由如下:,,,,因为,,所以甲的成绩较稳定,派甲参赛比较合适.19.【答案】证明:∵,∴,∴.∵,∴,∴,在和中,∴.解:,理由如下:由()知,∴ ,,∴.【考点】全等三角形的性质与判定82+x 280=80+382+x 2x =84(1)82+x 280=80+382+x 2x =84(2)=(78+79+81+82+84+88+93+95)=85x ¯¯¯甲18=(75+80+80+83+85+90+92+95)=85x ¯¯¯乙18=[(78−85+++S 2甲18)2(79−85)2(81−85)2(82−85)2++(88−85+(93−85+(95−85]=35.5(84−85)2)2)2)2=[(75−85+(80−85+(80−85+(83−85S 2乙18)2)2)2)2+(85−85+(90−85+(92−85+(95−85]=41)2)2)2)2=x ¯¯¯甲x ¯¯¯乙<S 2甲S 2乙(1)AD ⊥MN,BE ⊥MN ∠CDA =∠BEC =90∘∠ACD +∠DAC =90∘∠ACB =90∘∠ACD +∠BCE =90∘∠DAC =∠ECB △ADC △CEB ∠CDA =∠BEC,∠DAC =∠ECB,AC =CB,△ADC ≅△CEB (2)AD =BE +DE 1△ADC ≅△CEB AD =CE CD =BE AD =CE =CD +DE =BE +DE DE=AD +BE【解析】111【解答】证明:∵,∴,∴.∵,∴,∴,在和中,∴.解:,理由如下:由()知,∴ ,,∴.解:.理由:∵ ,∴ ,∴,∵,∴,∴.又∵, ,∴,∴ .∵,∴ .故答案为:.20.【答案】解:如图,延长交于点,作于点.因为,所以,易知,设米,则解得:,∴米.∴大树的高度为:米.【考点】解直角三角形的应用-仰角俯角问题【解析】(1)AD ⊥MN,BE ⊥MN ∠CDA =∠BEC =90∘∠ACD +∠DAC =90∘∠ACB =90∘∠ACD +∠BCE =90∘∠DAC =∠ECB △ADC △CEB ∠CDA =∠BEC,∠DAC =∠ECB,AC =CB,△ADC ≅△CEB (2)AD =BE +DE 1△ADC ≅△CEB AD =CE CD =BE AD =CE =CD +DE =BE +DE (3)DE =AD +BE AD ⊥MN,BE ⊥MN ∠ADC =,∠BEC =90∘90∘∠EBC +∠ECB =90∘∠ACB =90∘∠ECB +∠ACD =90∘∠ACD =∠CBE ∠ADC =∠CEB AC =CB △ADC ≅△CEB AD =CE,CD =BE CD +CE =DE DE =AD +BE DE =AD +BE BD EC M DG ⊥EC G BC ⊥EC △DMG ∼△BMC ∠DMA =30°MG =GA =6×cos 30°=3,3–√DG =6×sin 30°=3,BC =x =,33–√6+x 3–√3xx ≈14BC =1414DG ⊥BC G DH ⊥CE BC DG =CH CG =DH过点作于,于,设为,根据矩形性质得出,,再利用锐角三角函数的性质求的值即可.【解答】解:如图,延长交于点,作于点.因为,所以,易知,设米,则解得:,∴米.∴大树的高度为:米.21.【答案】解:设金边的宽度是,由题得,,或(舍去).答:金边的宽度是厘米.【考点】一元二次方程的应用——几何图形面积问题【解析】设金边的宽度是,根据绣了一幅长厘米、宽厘米的十字绣的矩形风景画,整个画框的面积是厘米,当画框四边宽度均为厘米时,可列方程求解.【解答】解:设金边的宽度是,由题得,,或(舍去).答:金边的宽度是厘米.22.【答案】在=中,令=,则=,∴=,在中,,∴,,把点代入=中得:,解得:,(D DG ⊥BC G DH ⊥CE H BC x DG =CH CG =DH x BD EC M DG ⊥EC G BC ⊥EC △DMG ∼△BMC ∠DMA =30°MG =GA =6×cos 30°=3,3–√DG =6×sin 30°=3,BC =x =,33–√6+x 3–√3xx ≈14BC =1414xcm (80+2+2+2x)(50+2+2+2x)=5400(x +72)(x −3)=0x =3x =−723xcm 805054002xcm (80+2+2+2x)(50+2+2+2x)=5400(x +72)(x −3)=0x =3x =−723y kx +1(k >0)x 0y 1OB 1Rt △AOB tan ∠ABO ===AO BO AO 13–√AO =3–√A(−,0)3–√A(−,0)3–√y kx +10=−k +13–√k =3–√3tan ∠ABO =3–√如图,∵,∴=,=,连接,∵与轴相切于点,∴,=,在中,=,=,∴=,在中,=,设=,则=,=,∴=,解得:=,=,作轴于点,在中,=,,,∴,∴,把点代入得:,【考点】反比例函数综合题【解析】(1)先求出,进而利用锐角三角函数求出,将点坐标代入表达式即可得出结论;(2)先求出=,进而求出=,即可求出=,利用锐角三角函数求出,即可得出结论.【解答】在=中,令=,则=,∴=,在中,,∴,,把点代入=中得:,解得:,(如图,∵,∴=,=,连接,∵与轴相切于点,∴,=,在中,=,=,∴=,在中,=,设=,则=,=,∴=,解得:=,=,作轴于点,在中,=,,,∴,∴,把点代入得:,23.【答案】解:①的半径为;②的半径为.tan ∠ABO =3–√∠ABO 60∘∠BAO 30∘IT ⊙I x T IT ⊥AT ∠ITA 90∘Rt △AOB ∠BAO 30∘OB 1AB 2Rt △ATI ∠IAT 30∘IT r AI r +2AI 2TI r +22r r 2AQ 6QC ⊥x C Rt △ATI ∠QAC 30∘QC =AQ =×6=31212AC =AQ ∗cos =330∘3–√OC =AC −AO =3−=23–√3–√3–√Q(2,3)3–√Q(2,3)3–√y =m xm =63–√OB OA A ∠BAO 30∘AB 2AQ 6CQ y kx +1(k >0)x 0y 1OB 1Rt △AOB tan ∠ABO ===AO BO AO 13–√AO =3–√A(−,0)3–√A(−,0)3–√y kx +10=−k +13–√k =3–√3tan ∠ABO =3–√∠ABO 60∘∠BAO 30∘IT ⊙I x T IT ⊥AT ∠ITA 90∘Rt △AOB ∠BAO 30∘OB 1AB 2Rt △ATI ∠IAT 30∘IT r AI r +2AI 2TI r +22r r 2AQ 6QC ⊥x C Rt △ATI ∠QAC 30∘QC =AQ =×6=31212AC =AQ ∗cos =330∘3–√OC =AC −AO =3−=23–√3–√3–√Q(2,3)3–√Q(2,3)3–√y =m x m =63–√(1)⊙P 32⊙P 54(2)PA A AC ⊥x C PD ⊥AC分别连接,,过点作 轴于点,过点作 于点如图所示,∵圆心为 的动圆经过点,且与轴相切于点.根据勾股定理 .∴,∴.整理得.∵.∴是关于的二次函数,其图象是一条开口向上,对称轴是的抛物线(即曲线,其最低点的坐标.∵抛物线的顶点在直线的下方,,解得,.点都在抛物线上,当时,,当时,;当时,【考点】二次函数综合题切线的性质【解析】此题暂无解析【解答】解:①的半径为;②的半径为.分别连接,,过点作 轴于点,过点作 于点如图所示,∵圆心为 的动圆经过点,且与轴相切于点.根据勾股定理 .∴,∴.整理得.∵.(2)PA PB A AC ⊥x C P PD ⊥AC D.P (x,y)A (m,2m +4)x B.∴PA =PB =CD P +A =P D 2D 2A 2+=(x −m)2(2m +4−y)2y 2+−2(2m +4)y +=(x −m)2(2m +4)2y 2y 2y =+(m +2)14m +8(x −m)2m >−2,∴>014m +8y x x =m F)(m,m +2)(3)y =x +312∴m +3>m +212m <2∵m >−2,∴−2<m <2∵C(−2,),D(1,)y 1y 2∴m =−12=y 1y 2−2<m <−12<y 1y 2−<m <212>.y 1y 2(1)⊙P 32⊙P 54(2)PA PB A AC ⊥x C P PD ⊥AC D.P (x,y)A (m,2m +4)x B.∴PA =PB =CD P +A =P D 2D 2A 2+=(x −m)2(2m +4−y)2y 2+−2(2m +4)y +=(x −m)2(2m +4)2y 2y 2y =+(m +2)14m +8(x −m)2m >−2,∴>014m +8F)∴是关于的二次函数,其图象是一条开口向上,对称轴是的抛物线(即曲线,其最低点的坐标.∵抛物线的顶点在直线的下方,,解得,.点都在抛物线上,当时,,当时,;当时,24.【答案】,中的结论仍然成立.理由如下:连接,,延长交的延长线于点,交于点.∵,∴.∵,,∴,∴,∴,,∴,.∵,∴.①当点在线段上时,如图,连接,.∵四边形,四边形为正方形,∴,,∴,即.∵,∴,∴,∴.∵,,∴,∴;②当点在线段的延长线上时,如图,连接,.y x x =m F)(m,m +2)(3)y =x +312∴m +3>m +212m <2∵m >−2,∴−2<m <2∵C(−2,),D(1,)y 1y 2∴m =−12=y 1y 2−2<m <−12<y 1y 2−<m <212>.y 1y 2CF =DG 2–√45∘(2)(1)AC AF CF DG K AG FK O ∠CAD =∠FAG =45∘∠CAF =∠DAG AC =AD 2–√AF =AG 2–√==AC AD AF AG 2–√△CAF ∼△DAG ==CF DG AC AD 2–√∠AFC =∠AGD CF =DG 2–√∠AFO =∠OGK ∠AOF =∠GOK ∠K =∠FAO =45∘(3)M BC AB AN ADBC AMEF ∠ABC =∠BAC =45∘∠MAN =45∘∠BAC −∠MAC =∠MAN −∠MAC ∠BAM =∠CAN ==AB AC AM AN 2–√△ABM ∼△ACN ==BM CN AB AC 2–√CN =BM 2–√2AC =4CM =2BM =AC −CM =2CN =BM =2–√22–√M BC AB AN∵四边形,四边形为正方形,∴,,∴,即.∵,∴,∴,∴.∵,,∴,∴.【考点】正方形的性质旋转的性质相似三角形的性质与判定【解析】()【问题发现】连接.易证,,三点共线.易知,,推出,从而得出与所夹锐角的度数;()【拓展探究】连接,,延长交的延长线于点,交于点,根据四边形的性质得到,根据,得到,根据相似三角形的性质即可解决问题;()【解决问题】需分两种情况讨论:①当点在线段上时,连接,,根据正方形的性质得到,,可得,根据,可得,从而得到,根据,,可得到,从而可求出的值;②当点在线段的延长线上时,连接,,根据正方形的性质得到,,可得,根据,可得,从而得到,根据,,可得到.从而可求出的值.【解答】解:①线段与的数量关系为;②直线与所夹锐角的度数为.理由如下:连接,易证,,三点共线.∵,,∴.故答案为:;.中的结论仍然成立.理由如下:ADBC AMEF ∠ABC =∠BAC =45∘∠MAN =45∘∠BAC +∠MAC =∠MAN +∠MAC ∠BAM =∠CAN ==AB AC AM AN 2–√△ABM ∼△ACN ==BM CN AB AC 2–√CN =BM 2–√2AC =4CM =2BM =AC +CM =6CN =BM =32–√22–√1AF A F C AF =AG 2–√AC =AD 2–√CF =AC −AF =(AD −AG)=DG 2–√2–√CF DG 2AC AF CF DG K AG FK O ∠CAD =∠FAG =45∘AC =AD 2–√AF =AG 2–√△CAF ∽△DAG 3M BC AB AN ∠ABC =∠BAC =45∘∠MAN =45∘∠BAM =∠CAN ==AB AC AM AN 2–√△ABM ∽△CAN CN =BM 2–√2AC =4CM =2BM =AC −CM =2CN M BC AB AN ∠ABC =∠BAC =45∘∠MAN =45∘∠BAM =∠CAN ==AB AC AM AN 2–√△ABM ∽△CAN CN =BM −2–√2AC =4CM =2BM =AC +CM =6CN (1)CF DG CF =DG 2–√CF DG 45∘AF A F C AF =AG 2–√AC =AD 2–√CF =AC −AF =(AD −AG)=DG 2–√2–√CF =DG 2–√45∘(2)(1)AC AF CF DG AG O连接,,延长交的延长线于点,交于点.∵,∴.∵,,∴,∴,∴,,∴,.∵,∴.①当点在线段上时,如图,连接,.∵四边形,四边形为正方形,∴,,∴,即.∵,∴,∴,∴.∵,,∴,∴;②当点在线段的延长线上时,如图,连接,.∵四边形,四边形为正方形,∴,,∴,即.∵,∴,∴,∴.∵,,∴,∴.25.AC AF CF DG K AG FK O ∠CAD =∠FAG =45∘∠CAF =∠DAG AC =AD 2–√AF =AG 2–√==AC AD AF AG 2–√△CAF ∼△DAG ==CF DG AC AD 2–√∠AFC =∠AGD CF =DG 2–√∠AFO =∠OGK ∠AOF =∠GOK ∠K =∠FAO =45∘(3)M BC AB AN ADBC AMEF ∠ABC =∠BAC =45∘∠MAN =45∘∠BAC −∠MAC =∠MAN −∠MAC ∠BAM =∠CAN ==AB AC AM AN 2–√△ABM ∼△ACN ==BM CN AB AC 2–√CN =BM 2–√2AC =4CM =2BM =AC −CM =2CN =BM =2–√22–√M BC AB AN ADBC AMEF ∠ABC =∠BAC =45∘∠MAN =45∘∠BAC +∠MAC =∠MAN +∠MAC ∠BAM =∠CAN ==AB AC AM AN 2–√△ABM ∼△ACN ==BM CN AB AC 2–√CN =BM 2–√2AC =4CM =2BM =AC +CM =6CN =BM =32–√22–√【答案】证明:∵为的直径,.,∴.(2)证明:∵,∴,∴.∵,∴.解:∵,∴,∵,∴在中,解得,∴,∵在中,,∴,∴.,,,∴.【考点】相似三角形的性质与判定全等三角形的性质与判定【解析】此题暂无解析【解答】证明:∵为的直径,.,∴.(2)证明:∵,∴,∴.∵,∴.解:∵,∴,∵,∴在中,解得,∴,∵在中,,∴,∴.,,(1)AB ⊙O BC ⊥AC OF ⊥AC OF//BC AB ⊥CD,OF ⊥AC =,∠CEB =∠OFA =BCˆBD ˆ90∘∠BCD =∠CAB OF =BE △AFO ≅△CEB (AAS)EB =5cm,CD =10cm,AB ⊥CD 3–√∠OEC =,CE =CD =5cm 90∘123–√OE =xcm OC =OB =OE +EB =(5+x)cm.Rt △CEO +=(5)3–√2x 2(5+x)2x =5OC =10cm Rt △CEO OE =CO 12∠OCE =30∘∠COE =60∘=2(−)S 阴S 扇形OB S △OCE =×π×=πc S 扇形COB 60360102503m 2=CE ⋅OE S △OEC 12=×5×5=c 123–√2523–√m 2=2×(π−)S 阴503253–√2=(π−25)c 10033–√m 2(1)AB ⊙O BC ⊥AC OF ⊥AC OF//BC AB ⊥CD,OF ⊥AC =,∠CEB =∠OFA =BCˆBD ˆ90∘∠BCD =∠CAB OF =BE △AFO ≅△CEB (AAS)EB =5cm,CD =10cm,AB ⊥CD 3–√∠OEC =,CE =CD =5cm 90∘123–√OE =xcm OC =OB =OE +EB =(5+x)cm.Rt △CEO +=(5)3–√2x 2(5+x)2x =5OC =10cm Rt △CEO OE =CO 12∠OCE =30∘∠COE =60∘=2(−)S 阴S 扇形OB S △OCE =×π×=πc S 扇形COB 60360102503m 2CE ⋅OEOEC 1,∴.26.【答案】将,代入的函数表达式得,解之得=,=,∴抛物线的表达式为=.∴=-=,∴=,∴顶点,,∵点的横坐标为,∴,经过、的函数表达式为=,∵,的纵坐标相同,∴=,∴=,∴,∴=,∵轴,∴=,又∵=,∴,∴,∵点的坐标为,∴=,设=,∴=,∵-,∴当=时,有最大值,∴当=时,的最大值为;存在,如图,∵与关于直线对称,∴与开口大小不变,方向相反,∵中的=,∴中的=,∵和关于直线对称,∴=,∴=,∴点,∵与关于直线对称,∴=,∴=,∴点,把点和点的坐标代入=,=CE ⋅OE S △OEC 12=×5×5=c 123–√2523–√m 2=2×(π−)S 阴503253–√2=(π−25)c 10033–√m 2B(3,0)C(−1,0)W 1a −1b 2W 1y −+2x +3x 2x 1y 4A(1,4)D(0,3)P m P(m,−+2m +3)m 2B(3,0)D(0,3)y −x +3P M −+2m +3m 2−x +3x −2m m 2M(−2m,−+2m +3)m 2m 2PM −+3m m 2l //x ∠MPO ∠POB ∠MNP ∠BNO △MNP ∽△BNO B (3,0)OB 3q q m q m 3W 1W 2l W 1W 2W 1a 1−1W 2a 21D E l +y D y E 2(−+2m +3)m 2y E −2+4m +3m 2E(0,−2+4m +3)m 2A G l +y A y G 2(−+2m +3)m 2y E −2+4m +2m 2G(1,−2+4m +2)m 2E G W 2+x +c x 2b 2得:,解得:,∴=,∵是以为直角顶点的等腰直角三角形,∴,=,∴轴,∴==,即=,∴=,∴=,∴==,∵===,∴=,两边同时平方并整理得=,令=,则=,解得:=,=,即=,解得:=,=,=,解得:=,=,∵,∴=或,∴点的坐标为或(,).【考点】二次函数综合题【解析】W 2+−2x +(−2+4m +3)x 2m 2△DEF D DE ⊥DF DE DF DF //x y F y D 3−2x +(−2+4m +3)x 2m 23−2x −2+4m x 2m 20x F 1±DF ||x F |1±|DE |−|y D y E |3−(−2+4m +3)|m 22−4m m 2|1±|2−4m m 2(2−4m −3(2−4m)m 2)2m 202−4m m 2t −3t t 20t 10t 232−4m m 20m 10m 222−4m m 23m 3m 40<m <3m 2P (2,3)−+2x +32(1)运用待定系数法求出抛物线的函数表达式=,利用顶点公式求得顶点坐标,令=,即可求得抛物线与轴交点的坐标;(2)由(1)得,运用待定系数法可求得直线的解析式,根据题意点的坐标为,根据轴,可得=,从而得出点的坐标,再由,得出,即可得到关于的函数关系式,再利用二次函数最值求解即可;(3)由于与关于直线对称,可得与开口大小不变,方向相反,根据和关于直线对称,即可得出=,由于是以为直角顶点的等腰直角三角形,即可建立方程求出,进而得出点的坐标.【解答】将,代入的函数表达式得,解之得=,=,∴抛物线的表达式为=.∴=-=,∴=,∴顶点,,∵点的横坐标为,∴,经过、的函数表达式为=,∵,的纵坐标相同,∴=,∴=,∴,∴=,∵轴,∴=,又∵=,∴,∴,∵点的坐标为,∴=,设=,∴=,∵-,∴当=时,有最大值,∴当=时,的最大值为;存在,如图,∵与关于直线对称,∴与开口大小不变,方向相反,∵中的=,∴中的=,∵和关于直线对称,∴=,∴=,∴点,∵与关于直线对称,∴=,∴=,∴点,把点和点的坐标代入=,W 1y −+2x +3x 2x 0y D D(0,3)BD P P(m,−+2m +3)m 2l //x −+2m +3m 2−x +3M PM //OB △MNP ∽△BNO m W 1W 2l W 1W 2D E l W 2+−2x +(−2+4m +3)x 2m 2△DEF D m P B(3,0)C(−1,0)W 1a −1b 2W 1y −+2x +3x 2x 1y 4A(1,4)D(0,3)P m P(m,−+2m +3)m 2B(3,0)D(0,3)y −x +3P M −+2m +3m 2−x +3x −2m m 2M(−2m,−+2m +3)m 2m 2PM −+3m m 2l //x ∠MPO ∠POB ∠MNP ∠BNO △MNP ∽△BNO B (3,0)OB 3q q m q m 3W 1W 2l W 1W 2W 1a 1−1W 2a 21D E l +y D y E 2(−+2m +3)m 2y E −2+4m +3m 2E(0,−2+4m +3)m 2A G l +y A y G 2(−+2m +3)m 2y E −2+4m +2m 2G(1,−2+4m +2)m 2E G W 2+x +c x 2b 2得:,解得:,∴=,∵是以为直角顶点的等腰直角三角形,∴,=,∴轴,∴==,即=,∴=,∴=,∴==,∵===,∴=,两边同时平方并整理得=,令=,则=,解得:=,=,即=,解得:=,=,=,解得:=,=,∵,∴=或,∴点的坐标为或(,).W2+−2x+(−2+4m+3)x2m2△DEF DDE⊥DF DE DFDF//xy F y D3−2x+(−2+4m+3)x2m23−2x−2+4mx2m20x F1±DF||x F|1±|DE|−|y D y E|3−(−2+4m+3)|m22−4mm2|1±|2−4mm2(2−4m−3(2−4m)m2)2m20 2−4mm2t−3tt20t10t232−4mm20m10m222−4mm23m3m40<m<3m2P(2,3)。
人教版九年级数学中考模拟试卷一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的代号填涂在答题卡上.1.5的绝对值是()A.5 B.﹣5 C.±5 D.2.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×1074.函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≤3 D.x≥﹣35.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a6.如图,AB∥CD,CP交AB于O,AO=PO,若∠C=50°,则∠A的度数为()A.25° B.35° C.15° D.50°7.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°8.下列调查中,最适合采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度C.调查初2016级15班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查9.如图是一组有规律的图案,第1个图案由1个▲组成,第2个图案由4个▲组成,第3个图案由7个▲组成,第4个图案由10个▲组成,…,则第7个图案▲的个数为()A.16 B.17 C.18 D.1910.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣411.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米12.使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和是()A.﹣2 B.﹣3 C.﹣7 D.0二、填空题(本大题6小题,每小题题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13.已知△ABC与△DEF的相似比为2:3,则△ABC与△DEF的面积比为.14.计算(﹣)﹣1+(2﹣1)0﹣|tan45°﹣2|= .15.从﹣1,0,1,3,4五个数字中,随机抽取一个数,记为a.那么,使一次函数y=﹣3x+a 不经过三象限的概率是.16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC 于M,N两点,则图中阴影部分的面积是(保留π).17.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步600米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则b= .18.如图,在矩形ABCD中,AB=4,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B 落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在直线EB′与AD的交点C′处,DF= .三、解答题(本大题2小题,每小题8分,共16分19.(8分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.20.(8分)某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是元/人;(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为20元的人数所占的圆心角度数是.(3)据统计该校的1500人中,每人每周的零花钱有75%在学校超市消费,试估计该校学生每周在学校超市消费的零花钱总金额为多少元?四、解答题(本大题4小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).22.(10分)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.23.(10分)小程经营的是一家服装店,店里有一款毛衣和一款牛仔裤销售非常可观,至2016年1月开店以来,平均每天可卖出毛衣10件,牛仔裤20件,已知买1件毛衣和3件牛仔裤与买2件毛衣和1件牛仔裤需要的钱一样多,都为500元.(1)求买一件毛衣和一件牛仔裤各需要多少钱?(2)双十一将至,小程经营的网店提前对该毛衣和牛仔裤开启了促销活动,活动当天,毛衣每件售价降低了a%,销售量在原来的基础上上涨2a%,牛仔裤每件售价也降低了a%,但销售量和原来一样,当天,这两件商品总的销售额为3960元,求a的值.24.(10分)当一个多位数位数为偶数时,在其中间位插入一位数k,(0≤k≤9,且k为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.五.解答题.(本大题共2小题,25题10分,共22分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.25.(10分)△ABC是等腰直角三角形,AC=BC,∠ACB=90°,(1)如图1,点M是BA延长线上一点,连结CM,K是AC上一点,BK延长线交CM于N,∠MBN=∠MCA=15°,BK=8求CM的长度.(2)如图2,直线l经过点C,AF⊥l于点F,AE⊥l于点E,点D是AB的中点,连接ED.求证:AF=BE+DE.26.(12分)如图,抛物线y=﹣x2+x+3 与 x 轴交于点 A,点 B,与 y 轴交于点C,点D 与点C关于 x 轴对称,点 P 是 x 轴上的一个动点,设点P 的坐标为(m,0),过点P 作 x 轴的垂线 l 交抛物线于点 Q.(1)求直线BD的解析式;(2)当点P在线段OB上运动时,直线 l 交 BD 于点M,当△DQB面积最大时,在x轴上找一点E,使QE+EB的值最小,求E的坐标和最小值.(3)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的代号填涂在答题卡上.1.5的绝对值是()A.5 B.﹣5 C.±5 D.【考点】15:绝对值.【分析】根据绝对值的定义,可直接得出5的绝对值.【解答】解:|5|=5,故选:A.【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是解决本题的关键.2.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:5400000用科学记数法表示为5.4×106,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≤3 D.x≥﹣3【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,3﹣x>0,解得x<3.故选B.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a【考点】47:幂的乘方与积的乘方;35:合并同类项.【分析】合并同类项法则,积的乘方分别求出每个式子的值,再判断即可.【解答】解:A、2a和3b不能合并,故本选项错误;B、结果是9a6,故本选项错误;C、a6和a2不能合并,故本选项错误;D、结果是﹣a,故本选项正确;故选D.【点评】本题考查了同类项,合并同类项,积的乘方的应用,能正确运用法则进行计算是解此题的关键,难度不是很大.6.如图,AB∥CD,CP交AB于O,AO=PO,若∠C=50°,则∠A的度数为()A.25° B.35° C.15° D.50°【考点】JA:平行线的性质;KH:等腰三角形的性质.【分析】根据AB∥CD,CP交AB于O,可得∠POB=∠C,再利用AO=PO,可得∠A=∠P,然后即可求得∠A的度数.【解答】解:∵AB∥CD,CP交AB于O,∴∠POB=∠C,∵∠C=50°,∴∠POB=50°,∵AO=PO,∴∠A=∠P,∴∠A=25°.故选:A.【点评】此题主要考查学生对平行线的性质,三角形外角的性质,等腰三角形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.要求学生应熟练掌握.7.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°【考点】M6:圆内接四边形的性质;M5:圆周角定理.【分析】先根据圆内接四边形的性质得到∠D=180°﹣∠B=50°,然后根据圆周角定理求∠AOC.【解答】解:∵∠B+∠D=180°,∴∠D=180°﹣130°=50°,∴∠AOC=2∠D=100°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了圆内接四边形的性质.8.下列调查中,最适合采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度C.调查初2016级15班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查【考点】V2:全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:乘坐高铁对旅客的行李的检查适合采用全面调查,A错误;了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度适合采用全抽样调查,B正确;调查初2016级15班全体同学的身高情况适合采用全面调查,C错误;对新研发的新型战斗机的零部件进行检查适合采用全面调查,D错误,故选:B.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.如图是一组有规律的图案,第1个图案由1个▲组成,第2个图案由4个▲组成,第3个图案由7个▲组成,第4个图案由10个▲组成,…,则第7个图案▲的个数为()A.16 B.17 C.18 D.19【考点】38:规律型:图形的变化类.【分析】仔细观察图形可知:第一个图形有1个三角形;第二个图形有3×2﹣3+1=4个三角形;第三个图形有3×3﹣3+1=7个三角形;第四个图形有3×4﹣3+1=10个三角形;…第n 个图形有3n﹣3+1=3n﹣2个三角形;进一步代入求得答案即可.【解答】解:观察发现:第一个图形有1个三角形;第二个图形有3×2﹣3+1=4个三角形;第三个图形有3×3﹣3+1=7个三角形;第四个图形有3×4﹣3+1=10个三角形;…第n个图形有3n﹣3+1=3n﹣2个三角形;则第7个图案中▲的个数为3×7﹣2=19.故选D.【点评】此题考查图形的变化规律,从简单情形入手,找到一般规律,利用规律,解决问题.10.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣4【考点】53:因式分解﹣提公因式法.【分析】首先利用相反数的定义得出a+b=0,再利用提取公因式法将原式变形求出答案.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2+ab﹣4=a(a+b)﹣4=0﹣4=﹣4.故选:D.【点评】此题主要考查了提取公因式的应用以及相反数的定义,正确将原式变形是解题关键.11.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【分析】延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.【解答】解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴==.设BD=5k(米),AD=12k(米),则AB=13k(米).∵AB=13(米),∴k=1,∴BD=5(米),AD=12(米).在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8(米),∴BC=10.8﹣5≈5.8(米).故选:D.【点评】本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.12.使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和是()A.﹣2 B.﹣3 C.﹣7 D.0【考点】B2:分式方程的解;CB:解一元一次不等式组.【分析】根据不等式组有解,可得m的范围,根据分式方程有非负整数解,可得5+m是3的倍数,根据有理数的加法,可得答案.【解答】解:不等式组整理得:,由不等式组有解,得到m﹣9<﹣2m+6,解得:m<5,分式方程整理得: +=2,去分母得:1+m﹣x=2x﹣4,解得:x=,由分式方程﹣=2有非负整数解,得5+m=0,m1=﹣5,5+m=3,m2=﹣2,5+m=6,m3=1(舍),5+m=9,m4=4,使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和﹣5+(﹣2)+4=﹣3,故选:B.【点评】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.二、填空题(本大题6小题,每小题题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13.已知△ABC与△DEF的相似比为2:3,则△ABC与△DEF的面积比为4:9 .【考点】S7:相似三角形的性质.【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵△ABC∽△DEF,且△ABC与△DEF的相似比为2:3,∴S△ABC:S△DEF=()2=4:9.故答案为:4:9.【点评】本题考查的是相似三角形的性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.14.计算(﹣)﹣1+(2﹣1)0﹣|tan45°﹣2|= ﹣2.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义化简即可得到结果.【解答】解:原式=﹣2+1﹣2+1=﹣2,故答案为:﹣2【点评】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.15.从﹣1,0,1,3,4五个数字中,随机抽取一个数,记为a.那么,使一次函数y=﹣3x+a 不经过三象限的概率是.【考点】X4:概率公式;F7:一次函数图象与系数的关系.【分析】根据一次函数y=﹣3x+a不经过三象限得出a的符号,进而可得出结论.【解答】解:∵一次函数y=﹣3x+a不经过三象限,∴a≥0,∴五个数字中符合条件的数有:0,1,3,4共4个,∴一次函数y=﹣3x+a不经过三象限的概率=.故答案为:.【点评】本题考查的是概率公式,熟知概率=所求情况数与总情况数之比是解答此题的关键.16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC 于M,N两点,则图中阴影部分的面积是(保留π).【考点】MO:扇形面积的计算;KQ:勾股定理;MC:切线的性质.【分析】我们只要根据勾股定理求出AD的长度,再用三角形的面积减去扇形的面积即可.【解答】解:连接AD,∵⊙A与BC相切于点D,AB=AC,∠A=120°,∴∠ABD=∠ACD=30°,AD⊥BC,∴AB=2AD,由勾股定理知BD2+AD2=AB2,即+AD2=(2AD)2解得AD=1,△ABC的面积=2×1÷2=,扇形MAN得面积=π×12×=,所以阴影部分的面积=.【点评】解此题的关键是求出圆的半径,即三角形的高,再相减即可.17.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步600米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则b= 192 .【考点】FH:一次函数的应用.【分析】由图象可以看出甲2秒跑了8米可以求出甲的速度为4米/秒,由乙跑的距离﹣甲跑的距离就可以得出结论.【解答】解:由图象,得甲的速度为:8÷2=4米/秒,乙走完全程时甲乙相距的路程为:b=600﹣4(100+2)=192,故答案为:192.【点评】此题考查了一次函数的应用,追击问题的运用,解答时求出甲的速度是解答本题的关键.18.如图,在矩形ABCD中,AB=4,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B 落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在直线EB′与AD的交点C′处,DF= .【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】首先连接CC′,可以得到CC′是∠EC′D的平分线,所以CB′=CD,又AB′=AB,所以B′是对角线中点,AC=2AB,所以∠ACB=30°,即可得出答案.【解答】解:连接CC′,∵将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.∴EC=EC′,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,在△CC′B′与△CC′D中,,∴△CC′B′≌△CC′D,∴CB′=CD,又∵AB′=AB,∴AB′=CB′,所以B′是对角线AC中点,即AC=2AB=8,所以∠ACB=30°,∴∠BAC=60°,∠ACC′=∠DCC′=30°,∴∠DC′C=∠1=60°,∴∠DC′F=∠FC′C=30°,∴C′F=CF=2DF,∵DF+CF=CD=AB=4,∴DF=.故答案为:.【点评】此题主要考查了翻折变换的性质和角平分线的判定与性质,解答此题要抓住折叠前后的图形全等的性质,得出CC′是∠EC′D的平分线是解题关键.三、解答题(本大题2小题,每小题8分,共16分19.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.【考点】KD:全等三角形的判定与性质.【分析】根据平行线的性质得出∠B=∠C,再根据AAS证出△ABE≌△DCF,从而得出AB=CD.【解答】解:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF,∴AB=CD.【点评】本题考查了全等三角形的判定与性质,用到的知识点是平行线的性质,全等三角形的判定和性质,关键是根据平行线的性质证出∠B=∠C.20.某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是12 元/人;(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为20元的人数所占的圆心角度数是36°.(3)据统计该校的1500人中,每人每周的零花钱有75%在学校超市消费,试估计该校学生每周在学校超市消费的零花钱总金额为多少元?【考点】VB:扇形统计图;V5:用样本估计总体;W2:加权平均数.【分析】(1)根据加权平均数的计算公式计算可得;(2)用样本中零花钱数额为20元的人数所占的比例乘以360°即可得;(3)用平均数乘以总人数,再乘以75%即可得.【解答】解:(1)平均数是×(5×10+10×15+15×20+20×5)=12元,故答案为:12;(2)一周内的零花钱数额为20元的人数所占的圆心角度数是360°×=36°,故答案为:36°;(3)1500×12×75%=13500元,答:估计该校学生每周在学校超市消费的零花钱总金额为13500元.【点评】此题考查了条形统计图、扇形统计图以及用样本估计总体,弄清题中的数据是解本题的关键.四、解答题(本大题4小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)(2017•开县一模)化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).【考点】6C:分式的混合运算;4I:整式的混合运算.【分析】(1)利用乘法公式展开,然后合并同类项即可;(2)先把括号内通分后进行同分母的减法运算,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.【解答】解:(1)原式=a2﹣2ab+b2+2a2﹣ab﹣4ab+2b2=3a2﹣7ab+3b2;(2)原式=、====.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了整式的混合运算.22.(10分)(2004•黄冈)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.【考点】GB:反比例函数综合题.【分析】(1)欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为3且为负数,由此即可求出k;(2)交点A、C的坐标是方程组的解,解之即得;从图形上可看出△AOC的面积为两小三角形面积之和,根据三角形的面积公式即可求出.【解答】解:(1)设A点坐标为(x,y),且x<0,y>0,则S△ABO=•|BO|•|BA|=•(﹣x)•y=,∴xy=﹣3,又∵y=,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(3+1)=4.【点评】此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.23.(10分)(2017•开县一模)小程经营的是一家服装店,店里有一款毛衣和一款牛仔裤销售非常可观,至2016年1月开店以来,平均每天可卖出毛衣10件,牛仔裤20件,已知买1件毛衣和3件牛仔裤与买2件毛衣和1件牛仔裤需要的钱一样多,都为500元.(1)求买一件毛衣和一件牛仔裤各需要多少钱?(2)双十一将至,小程经营的网店提前对该毛衣和牛仔裤开启了促销活动,活动当天,毛衣每件售价降低了a%,销售量在原来的基础上上涨2a%,牛仔裤每件售价也降低了a%,但销售量和原来一样,当天,这两件商品总的销售额为3960元,求a的值.【考点】AD:一元二次方程的应用.【分析】(1)可设买一件毛衣需要x元钱,买一件牛仔裤需要y元钱,根据等量关系:①买1件毛衣的钱数+买3件牛仔裤的钱数=500元;②买2件毛衣的钱数+买1件牛仔裤的钱数=500元,列出方程组求解即可;(2)根据等量关系:两件商品总的销售额为3960元,列出方程求解即可.【解答】解:(1)设买一件毛衣需要x元钱,买一件牛仔裤需要y元钱,依题意有,解得.答:买一件毛衣需要200元钱,买一件牛仔裤需要100元钱.(2)依题意有:200(1﹣a%)×10(1+2a%)+100(1﹣a%)×20=3960,解得a1=﹣10(舍去),a2=10.故a的值为10.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程(组),再求解.24.(10分)(2017•开县一模)当一个多位数位数为偶数时,在其中间位插入一位数k,(0≤k≤9,且k为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.【考点】#6:约数与倍数;1C:有理数的乘法.【分析】(1)设原数为ab=10a+b,其关联数为amb=100a+10m+b,根据关联数为原数的9倍即可得出b与a、m之间的关系,结合a、b、m的特点即可得出结论;(2)设原数为a1a2a3…a n﹣2a n﹣1a n(n为偶数),关联数为a1a2a3…m…a n﹣2a n﹣1a n,找出原数的10倍,将关联数与原数10倍相减得:m•﹣9×(…a n﹣1a n),再根据m 和9均为3的倍数,由此即可证出结论.【解答】(1)解:设原数为ab=10a+b,其关联数为amb=100a+10m+b,∵amb=9ab,∴100a+10m+b=9×(10a+b),∴5a+5m=4b,∴5(a+m)=4b,∵b、m为整数,a为正整数,且a、b、m均为一位数,∴b=5,a+m=4,∴a=1,m=3;a=2,m=2;a=3,m=1;a=4,b=0.∴满足条件的三位关联数为135、225、315和405.(2)证明:设原数为a1a2a3…a n﹣2a n﹣1a n(n为偶数),关联数为a1a2a3…m…a n﹣2a n﹣1a n,原数10倍为a1a2a3…a n﹣2a n﹣1a n0,将关联数与原数10倍相减得:m•﹣9×(…a n﹣1a n),∵m和9均为3的倍数,∴关联数与原数10倍的差一定能被3整除.【点评】本题考查了约数与倍数以及有理数的乘法,解题的关键是:(1)找出b与a、m(2)将关联数与原数的10做差得出m•﹣9×(…a n﹣1a n).本之间的关系;题属于中档题,难度不大,解决该题型题目时,设出合适的未知量是解题的关键.五.解答题.(本大题共2小题,25题10分,共22分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.25.(10分)(2017•开县一模)△ABC是等腰直角三角形,AC=BC,∠ACB=90°,(1)如图1,点M是BA延长线上一点,连结CM,K是AC上一点,BK延长线交CM于N,∠MBN=∠MCA=15°,BK=8求CM的长度.(2)如图2,直线l经过点C,AF⊥l于点F,AE⊥l于点E,点D是AB的中点,连接ED.求证:AF=BE+DE.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)如图1,过C作CD⊥AB于D,根据等腰直角三角形的性质得到∠ABC=∠BAC=45°,得到∠KBC=30°,根据直角三角形的性质得到BC=4,求得CD=BC=2,解直角三角形即可得到结论;(2)如图2,连接DF,CD,根据等腰直角三角形的性质得到CD=BD,∠CDB=90°,由全等三角形的性质得到BE=CF,CE=AF,推出△BDE≌△CDF,根据全等三角形的性质得到∠EDB=∠FDC,DE=DF,根据余角的性质得到∠EDF=90°,根据等腰直角三角形的性质得到EF=DE,于是得到结论.【解答】解:(1)如图1,过C作CD⊥AB于D,∵AC=BC,∠ACB=90°,∴∠ABC=∠BAC=45°,∵∠MBN=15°,∴∠KBC=30°,∵BK=8,∴BC=4,∴CD=BC=2,∵∠MCA=15°,∠BAC=45°,∴∠M=30°,∴CM=2CD=4;(2)如图2,连接DF,CD,∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF,∵AF⊥l于点F,∴∠AFC=90°,在△BCE与△ACF中,。
人教版中考数学模拟试卷(含答案) 中考数学模拟试卷(1)一、选择题(共10小题)1.下列说法中,正确的是()A。
最小的整数B。
最大的负整数是-1C。
有理数包括正有理数和负有理数D。
一个有理数的平方总是正数2.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是()A。
140元B。
135元C。
125元D。
120元3.若=0无解,则m的值是()A。
-2B。
2C。
3D。
-34.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()阅读量(单位:本/周)人数(单位:人)1 42 63 24 3A。
中位数是2B。
平均数是2C。
众数是2D。
极差是25.下列各式中能用完全平方公式分解因式的是()A。
x^2 + x + 1B。
x^2 + 2x + 1C。
x^2 + 2x - 1D。
x^2 - 2x - 16.如图所示,扇形AOB的圆心角120°,半径为2,则图中阴影部分的面积为()A。
-2B。
-√3C。
-π/3D。
-π/67.若方程组的解x,y满足<x+y<1,则k的取值范围是()A。
-4 < k <B。
-1 < k <C。
< k < 8D。
k。
-48.将一个四边形纸片依次按图示①、②的方式对折,然后沿图③中的虚线裁剪成④样式。
将纸片展开铺平,所得到的图形是图中的()A.B.C.D.9.若关于x不等式组有且只有四个整数解,且一次函数y=(k+3)x+k+5的图像不经过第三象限,则符合题意的整数k 有()个。
A。
4B。
3C。
2D。
110.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A。
第504个正方形的左下角B。
第504个正方形的右下角C。
第505个正方形的左上角D。
第505个正方形的右下角二、填空题(共8小题)11.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为()。