解不等式组的步骤:
- 格式:doc
- 大小:36.50 KB
- 文档页数:1
初中数学知识点总结(沪科版)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!初中数学知识点总结(沪科版)初中数学是基础数学,实践活动在新教材内容中占有一定比例。
不等式组1. 引言不等式组是数学中一个重要的概念,它由一组不等式组成。
不等式是数学中用于描述数值之间大小关系的工具,而不等式组则可以用于描述多个数值之间的复杂关系。
本文将介绍不等式组的定义、解法以及其在应用中的一些常见场景。
2. 不等式组的定义不等式组是由多个不等式组成的集合,每个不等式可以是大于(>)、小于(<)、大于等于(≥)或小于等于(≤)等符号连接的数学表达式。
一个不等式组的一般形式可表示为:{不等式1,不等式2,...不等式n}其中,每个不等式可以包含一或多个变量,表示了变量之间的大小关系,或者变量与常数之间的关系。
3. 不等式组的解法不等式组的解是使得每个不等式都成立的变量的取值范围。
要解决一个不等式组,可以通过以下步骤进行:- 确定每个不等式中的变量个数和类型。
- 找到每个不等式中变量的取值范围。
可以通过移项、合并同类项、因式分解等方法将不等式转化为形式更简单的不等式。
- 根据不等式符号的特性进行取值范围的确定。
例如,对于大于(>)或小于(<)的不等式,变量的取值范围应排除等号右侧的值;对于大于等于(≥)或小于等于(≤)的不等式,变量的取值范围应包括等号右侧的值。
- 根据每个不等式的取值范围求解整个不等式组的解。
可以通过求交集或并集的方式得到最终的解集。
4. 不等式组的表示方法不等式组可以用不等式图形表示法、解集表示法或区间表示法来表示,具体的表示方式取决于问题的要求和解的形式。
不等式图形表示法是通过绘制每个不等式的图形并表示它们的交集或并集来表示不等式组。
解集表示法是通过写出每个不等式的解集并表示它们的交集或并集来表示不等式组。
区间表示法是用数轴上的区间表示不等式组的解集。
5. 不等式组的应用不等式组在实际问题中具有广泛的应用。
以下是一些常见的应用场景:- 经济领域:不等式组可以用于描述供需关系、利润最大化问题等经济学中的问题。
- 工程领域:不等式组可以用于描述工程中的约束条件,如最大承载能力、最短路径等。
解一元一次不等式组一、两个概念1.一元一次不等式组:类似于方程组,把含同一个未知数的两个或两个以上的一元一次不等式合在一起,就组成了一个一元一次不等式组.2.一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做这个一元一次不等式组的解集.二、解一元一次不等式组的一般步骤及解集类型1.一般步骤2.由两个一元一次不等式组成的不等式组的解集通常有如下四种类型(其中a<b):不等式组数轴表示解集顺口溜x>b 大大取较大x<a 小小取较小a<x<b 大小、小大中间找无解大大、小小解不了一元一次不等式组解每个一元一次不等式在数轴上表示各不等式的解集确定各不等式解集的公共部分写出一元一次不等式组的解集x>a x>b x<a x<b x>a x<b x<a x>b逆用不等式组解集解题我们知道,由任意两个一元一次不等式组成的不等式组,最终都可转化为以下四种基本形式(其中a<b):①,,x ax b>⎧⎨>⎩⇒x>b;②,,x ax b<⎧⎨<⎩⇒x<a;③,,x ax b>⎧⎨<⎩⇒a<x<b;④,,x ax b<⎧⎨>⎩⇒无解.如能逆用上述结论,便可顺利解答某些字母范围(或取值)问题.请看下面的例题:例1:已知不等式组311,5xx a-⎧>⎪⎨⎪>⎩的解集为x>2,则().(A)a<2 (B)a≤2 (C)a>2 (D)a≥2例2:若关于x的不等式组41,32x xx a+⎧>+⎪⎨⎪+<⎩的解集为x<2,则a的取值范围是.例3:如果不等式组340,xx a-≤⎧⎨-≥⎩无解,则a的取值范围是.例4:已知不等式组3(2)(1)9,3212x xx mx+--≥⎧⎪⎨+>-⎪⎩的解集是1≤x<2,求m的取值.小试牛刀:1.已知不等式组()324,213x xa xx--≤⎧⎪⎨+>-⎪⎩的解集是1≤x<2,求a的值.2.如果不等式组230,xx m-≥⎧⎨≤⎩无解,则m的取值范围是___________.3.若关于x 的不等式组31,43x xx a+⎧>-⎪⎨⎪+<⎩的解集为x<-1,则a的值为_____.不等式组在实际中应用------方案设计彰显魅力1:今年6月份,我市某果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往深圳.已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝、香蕉各2吨.该果农安排甲、乙两种货车时有几种方案?请你帮助设计出来.2:某校初三同学考试结束后要去旅游,需租用客车.若租40座客车若干辆正好坐满;若租50座客车则可少租一辆,最后一辆车还剩下不到20个空座.已知40座客车的租金是每辆150元,50座客车的租金是每辆170元,只选租其中一种车,问租那种车省钱?3: 2009年某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级1班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?4、某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机进货量的一半.电视机与洗衣机的进价和售价如下表:类别电视机洗衣机进价(元/台)1800 1500售价(元/台)2000 1600计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.5、某公司为了扩大经营,决定购进6台机器用于生产某种活塞,现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表,经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)7 5每台日产量(个)100 60(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?。
高中二元一次不等式组解法
二元一次不等式组解法,也作为一元二次不等式组解法,是中学数学课程中常见的研
究内容。
它是指解决两个一次不等式的联立方程的方法。
所求的解如可实现一个解集,必
须是这两个不等式的共同解之一。
一元二次不等式组解法一般都具有统一的模式,首先要将不等式分别变为方程,准备
乘法变换,这样就可以将二次不等式转换为两个一元一次方程。
之后,将两个方程加起来,保证变量x被移至左边,右边统一记为定值,得到一个新的一元一次方程;最后,在用算
法解一元一次方程,就可以求出所有可行的解。
以一元二次不等式3x²-5x≤-6为例,先将其分别变化为方程:
3x²-5x+6≥0 且3x²-5x-6≤0
由上式可求出x0 = 2 或 x2 = 3 且x0应当是大于等于0,x2应当是小于等于3的解。
将上面的结论变为二元不等式表示法,就可以得到0≤x ≤ 3。
也就是说,二元不等
式3x²-5x≤-6的解集为{x | 0≤x ≤ 3}。
求解一元二次不等式组涉及到四步工作:第一步将不等式化为方程;第二步变换成一
元一次方程;第三步用算法解一元一次方程;第四步得出解集并变换为不等式表示。
解一
元二次不等式组可以通过以上步骤进行,但也要注意,在转换过程当中,需要对不等式的
号符号进行合理的变换,避免出现不正确的答案。
第11练不等式(组)及其解法知识点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.注:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.知识点二、解一元一次不等式组1.一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.注:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解不等式组就是求它的解集,解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.知识点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.注:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取整数.一、单选题1.不等式组12511xx-⎧⎨-⎩<<的解集是()A.x>2 B.﹣3<x<2 C.﹣1<x<2 D.﹣2<x<2【解析】【分析】先求出两个不等式的解集,然后再写出不等式组的解集即可.【详解】12511x x -⎧⎨-⎩<①<②, 解①得:x >﹣2,解②得:x <2,故不等式组的解集是:﹣2<x <2,故D 正确.故选:D .【点睛】本题主要考查了解一元一次不等式组,正确解出两个不等式的解集,是解题的关键. 2.若不等式组的解集为22x -≤<,则以下数轴表示中正确的是( )A .B .C .D . 【答案】C【解析】【分析】根据在数轴上表示解集的方法判断即可.【详解】解:若不等式组的解集为22x -≤<,在数轴上表示解集为:,故选:C .【点睛】本题主要考查了在数轴上表示不等式的解集,掌握在数轴上表示不等式解集的方法是解题的关键. 3.不等式组213417x x +≥⎧⎨-<⎩的解集是( ) A .1≥xB .2x <C .12x ≤<D .12x < 【答案】C【分析】求一元一次不等式组的解集即可;【详解】解:213x +≥,解得:1≥x ;417x -<,解得:2x <;∴不等式组的解集为:12x ≤<;故选:C .【点睛】本题主要考查求一元一次不等组的解集,正确计算是解本题的关键.4.若关于x 的不等式组325x m x ≤+⎧⎨>⎩无解,则m 的取值范围是( ) A .1mB .1m <C .m 1≥D .1m【答案】A【解析】【分析】首先解每一个不等式,然后根据不等式组无解确定m 的范围.【详解】 解:325x m x ≤+⎧⎨>⎩①② ∵不等式组无解,∵325m +≤解得,1m ,故选:A【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.5.关于x 的不等式组()1233111222x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩有且只有三个整数解,则a 的最大值是( ) A .3B .4C .5D .6【答案】C【解析】分别对两个不等式进行求解,得到不等式组的解集为1x a <<,根据不等式组有且只有三个整数解的条件计算出a 的最大值.【详解】 解不等式1233x x ->-, 1233x x -+>, ∴2233x >, ∴1x >, 解不等式111(2)22x a -<-, 得11(2)122x a <-+, ∴x a <, ∴1233111(2)22x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩的解集为1x a <<, ∵不等式组有且只有三个整数解,∴不等式组的整数解应为:2,3,4,∴a 的最大值应为5故选:C .【点睛】本题考查不等式组的整数解,解题的关键是熟练掌握不等式组的相关知识.6.如果关于x 的不等式组301x a x b -≥⎧⎨-<⎩的整数解仅有2和3,那么适合这个不等式组的两整数a ,b 组成的有序数对()a b ,的个数为( )A .3个B .4个C .5个D .6个【答案】A【解析】【分析】 求出不等式组的解集,根据已知求出1<3a ≤2,3<b +1≤4,解得:36a ≤<,23b ≤<,即可得出答案.【详解】解:解不等式3x −a ≥0,得:x ≥3a , 解不等式x −b <1,得:1x b +<,∵不等式组的整数解仅有x =2、x =3,∴1<3a ≤2,3<b +1≤4, 解得:36a ≤<,23b ≤<,则a =4时,b =3;当a =5时,b =3;当a =6时,b =3;∴适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有3个,故A 正确. 故选:A .【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的关键是求出a 、b 的取值范围.二、填空题7.不等式组325,212x x -≥⎧⎪⎨+>-⎪⎩的解集为______. 【答案】41x -<≤-【解析】【分析】先分别求出不等式组中每一个不等式的解集,再根据确定不等式组解集原则“大大取较大,小小取较小,大小小大,中间找,大大小小无处找”确定出不等式组的公共解集即可.【详解】 解:325212x x -≥⎧⎪⎨+>-⎪⎩①②, 解①得:x ≤–1,解②得:x >-4,∴-4<x ≤-1.故答案为:-4<x ≤-1.【点睛】本题考查解不等式组,掌握确定不等式组解集原则“大大取较大,小小取较小,大小小大,中间找,大大小小无处找”是解题的关键.8.若不等式组12x x k<≤⎧⎨>⎩无解,则k 的取值范围是______. 【答案】k ≥2【解析】【分析】根据不等式组的解集口诀:大大小小没有解得出k 的取值范围即可.【详解】解:∵不等式组12x x k <≤⎧⎨>⎩无解, ∴k ≥2,故答案为:k ≥2.【点睛】本题考查一元一次不等式组的解集,解答的关键是熟知不等式组的解集口诀:同大取大,同小取小,大小小大取中间,大大小小没有解,注意端点值的取舍.9.已知关于x 的一元一次不等式()24m x +>的解集是42x m <+,如图,数轴上的A ,B ,C ,D 四个点中,实数m 对应的点可能是______.【答案】A【解析】【分析】根据解一元一次不等式步骤中化系数为1中不等号变号,可得20m +<,进而得到m 的取值范围,结合数轴即可得到答案.【详解】由题意()24m x +>的解集为42x m <+, 则20m +<即2m <-则根据数轴中A ,B ,C ,D 位置,小于-2的只有A 点.故答案为A .【点睛】本题主要考查了解一元一次不等式,数轴,熟练掌握解一元一次不等式是解题的关键.10.定义运算:*2a b a b =-,例如3*42342=⨯-=,则不等式组()*242*17x x ≥⎧⎨-<⎩的解集是________.【答案】34x ≤<【解析】【分析】根据所给的定义运算,不等式组*242*(1)7x x ≥⎧⎨-<⎩为22437x x -≥⎧⎨+<⎩,进行计算即可得. 【详解】解:根据题意不等式组*242*(1)7x x ≥⎧⎨-<⎩为2244(1)7x x -≥⎧⎨--<⎩, 即22437x x -≥⎧⎨+<⎩, 解得34x x ≥⎧⎨<⎩, 即34x ≤<,故答案为:34x ≤<.【点睛】本题考查了求不等式组的解集,解题的关键是理解题意,掌握题中的定义运算. 11.某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价_________元.【答案】32【解析】【分析】设该商品最多可降价x 元,列不等式32024020%240x --≥,求解即可; 【详解】解:设该商品最多可降价x 元;由题意可得,32024020%240x --≥, 解得:32x ≤;答:该护眼灯最多可降价32元.故答案为:32.【点睛】本题主要考查一元一次不等式的应用,正确理解题意列出不等式是解题的关键.12.若关于x ,y 的二元一次方程组52121,45,x y k x y -=-⎧⎨-+=⎩的解满足0x y ->,则k 的取值范围是______. 【答案】12k >【解析】【分析】解关于x 、y 的二元一次方程组,再代入不等式x -y >0,解不等式即可.【详解】 解: 5212145x y k x y -=-⎧⎨-+=⎩①②, ①-②有66126x y k -=-,即21x y k -=-,∵x -y >0,∴2k -1>0, 解得12k >.【点睛】本题考查二元一次方程组和一元一次不等式的解法,掌握相关知识点是解题的关键.三、解答题13.解不等式组:421122x x x x ->+⎧⎪⎨--≤⎪⎩. 【答案】3x ≤1<【解析】【分析】先分别求出两个不等式的解集,再找这两个解集的公共部分即是不等式组的解集.【详解】421122x x x x -+⎧⎪⎨--≤⎪⎩>①②, 解不等式①得:x >1;解不等式②得:3x ≤;即不等式组的解集为:13x ≤<.【点睛】本题考查了求解一元一次不等式组的解集,解题的关键是准确解答出每一个不等式的解集.14.整式133m ⎛⎫- ⎪⎝⎭的值为P .(1)当m =2时,求P 的值;(2)若P 的取值范围如图所示,求m 的负整数值.【答案】(1)5-(2)2,1--【解析】【分析】(1)将m =2代入代数式求解即可,(2)根据题意7P ≤,根据不等式,然后求不等式的负整数解.(1)解:∵133m P ⎛⎫- ⎪⎝⎭= 当2m =时,1323P ⎛⎫=⨯- ⎪⎝⎭533⎛⎫=⨯- ⎪⎝⎭5=-;(2)133m P ⎛⎫- ⎪⎝⎭=,由数轴可知7P ≤, 即1373m ⎛⎫-≤ ⎪⎝⎭, 1733m ∴-≤,解得2m ≥-,∴m 的负整数值为2,1--.【点睛】本题考查了代数式求值,解不等式,求不等式的整数解,正确的计算是解题的关键.15.(1)解方程组:33814x y x y -=⎧⎨-=⎩; (2)解不等式组51222113x x +≥⎧⎪-⎨<⎪⎩,并把解集在数轴上表示出来. 【答案】(1)21x y =⎧⎨=-⎩(2)22x -≤< 【解析】【分析】(1)运用加减消元法解二元一次方程组,即可得出答案.(2)将不等式组中的两个一元一次不等式分别解出,再通过数轴确定公共解集,即可得出答案.【详解】(1)解:33814x y x y -=⎧⎨-=⎩①② 3⨯①得:339x y -=③③-②得:33(38)914x y x y ---=-55y =-∴1y =-把1y =-代入①:(1)3x --=∴2x =∴原方程组的解为:21x y =⎧⎨=-⎩; (2)解:51222113x x +≥⎧⎪⎨-<⎪⎩①② 解不等式①得:2x ≥-解不等式②得:2x <数轴上表示为:∴原不等式组的解集为:22x -≤<【点睛】本题考查知识点为,二元一次方程组的解法以及一元一次不等式组的解法.熟练掌握二元一次方程组和一元一次不等式组的解法,是解决本题的关键.16.解不等式组()5131212x x x x ⎧+>-⎨-≤+⎩①②.请结合题意完成本题的解答(每空只需填出最后结果). 解:解不等式①,得______.解不等式②,得______.把不等式①和②的解集在数轴上表示出来.所以原不等式组解集为______.【答案】2x >-;3x ≤;见详解;23x -<≤【解析】【分析】分别解两个不等式,然后在数轴上表示解集,再根据公共部分确定不等式组的解集.【详解】解:解不等式①,得2x >-,解不等式②,得3x ≤,把不等式①和②的解集在数轴上表示出来为:所以原不等式组解集为:23x -<≤.【点睛】本题考查了解一元一次不等式组并把解集在数轴上表示,熟练掌握一元一次不等式的解法是解决本题的关键.17.已知方程组713x y m x y m +=--⎧⎨-=+⎩的解满足x 为非正数,y 为负数. (1)求m 的取值范围;(2)当m 为何整数时,不等式2mx +x <4m +2的解集为x >2.【答案】(1)23m -<≤【解析】【分析】(1)解方程组,再根据x 、y 的范围列出关于m 的不等式组,解不等式组即可得到答案; (2)由不等式2mx +x <4m +2,即()()21221m x m ++<的解集为x >2,可知2m +1<0, 求出此不等式解集,再从-2<m ≤3中找到符合此条件的m 的整数值即可.(1)解:解方程组得324x m y m =-⎧⎨=--⎩, ∵x 为非正数,y 为负数,∴30240m m -≤⎧⎨--<⎩, 解得-2<m ≤3.∴m 的取值范围为-2<m ≤3.(2)解:∵不等式2mx +x <4m +2,即()()21221m x m ++<的解集为x >2,∴2m +1<0,解得m <-12,在-2<m ≤3中符合m <-12的整数为-1.∴m 为-1时,不等式2mx +x <4m +2的解集为x >2.【点睛】本题考查解二元一次方程组和一元一次不等式组,熟练掌握“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解本题的关键.18.先阅读理解下列例题,再按要求完成作业.例题:解一元二次不等式(3x ﹣6)(2x +4)>0. 由有理数的乘法法则“两数相乘,同号得正”有①360240x x ->⎧⎨+>⎩或②360240x x -<⎧⎨+<⎩. 解不等式组①得x >2,解不等式组②得x <﹣2.所以一元二次不等式(3x ﹣6)(2x +4)>0的解集是x >2或x <﹣2.(1)求不等式(2x +6)(2﹣x )<0的解集;(2)求不等式51542x x+-≥0的解集. 【答案】(1)x ﹥2或x <-3(2)32x -≤<【解析】(1)由有理数的乘法法则“两数相乘,异号得负”得出两个不等式组,求出每个不等式组的解集即可;(2)由有理数的除法法则“两数相除,同号得正”得出两个不等式组,求出每个不等式组的解集即可.(1)解:由有理数的乘法法则“两数相乘,异号得负”,得①26020xx+>⎧⎨-<⎩或②26020xx+⎧⎨-⎩<>,解不等组①得:x>2,解不等组②得:x<-3,∴不等式(2x+6)(2﹣x)<0的解集x﹥2或x<-3;(2)解:由有理数的除法法则“两数相除,同号得正”,得①5150420xx+≥⎧⎨-⎩>或②5150420xx+≤⎧⎨-⎩<,解不等组①得:-3≤x<2,解不等组②得:不等式组无解,∴不等式51542xx+-≥0的解集为-3≤x<2.【点睛】本题考查了解一元一次不等式组的应用,能根据题意得出两个不等式组是解此题的关键.1.已知关于x的不等式组320230a xa x-≥⎧⎨+>⎩恰有3个整数解,则a的取值范围是()A.2332a≤≤B.4332a≤≤C.4332a<<D.4332a≤<【答案】B 【解析】首先确定不等式组的解集,先利用含a 的式子表示,根据题意得到必定有整数解0,再根据恰有3个整数解分类讨论,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解:320230a x a x -≥⎧⎨+>⎩①② 解不等式①得32a x ≤,解不等式②得23a x ->, 由于不等式组有解,则2332a a x -<≤,必定有整数解0, ∵32||||23a a >-, ∴三个整数解不可能是﹣2,﹣1,0.若三个整数解为﹣1,0,1,则不等式组无解;若三个整数解为0,1,2,则32323102a a ⎧≤<⎪⎪⎨⎪-≤-<⎪⎩; 解得4332a ≤≤. 故选:B【点睛】本题考查不等式组的解法及整数解的确定.难度较大,理解题意,根据已知条件得到必定有整数解0,再分类讨论是解题关键.2.整数m 满足关于x ,y 的二元一次方程组214x y m x y m +=⎧⎨-=-⎩的解是正整数,且关于x 的不等式组54028x m x ->⎧⎨+≤⎩有且仅有2个整数解,则m 的值为______. 【答案】5【解析】【分析】根据题意先解二元一次方程组,根据解是正整数列出一元一次不等式组,解关于x 的不等式,进而根据是正整数的条件求得m 的范围,解一元一次不等式组54028x m x ->⎧⎨+≤⎩,根据有且仅有2个整数解,确定m 的范围,最后根据x ,y 为整数,舍去不符合题意的m 的值即可求解.【详解】解:214x y m x y m +=⎧⎨-=-⎩①② ①+②得,2213x m =-2132m x -∴= 将2132m x -=代入①,得5212m y -= x ,y 是正整数,21305210m m ->⎧∴⎨->⎩, 解得2175m <<, 54028x m x ->⎧⎨+≤⎩③④ 解不等式③得:45m x > 解不等式④得:6x ≤465m x ∴<≤ 有且仅有2个整数解,4455m ∴≤< 解得2554m ≤< 2175m << 212554m ∴≤< m 是整数5m ∴=或6当6m =时,21321183222m x --===,不合题意,故舍去 5m ∴=故答案为:5【点睛】本题考查了二元一次方程组与一元一次不等式组结合,解一元一次不等式组,求不等式的整数解,正确的计算是解题的关键.3.新定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“相依方程”,例如:方程13x -=的解为4x =,而不等式组1123x x ->⎧⎨-<⎩的解集为25x <<,不难发现4x =在25x <<的范围内,所以方程13x -=是不等式组1123x x ->⎧⎨-<⎩的“相依方程”.(1)在方程①6(2)(4)23x x +-+=;②930x -=;③230x -=中,不等式组2113(2)4x x x x ->+⎧⎨--≤⎩的“相依方程”是________;(填序号)(2)若关于x 的方程36x k -=是不等式组312121123x x x x +⎧>⎪⎪⎨-+⎪≥-⎪⎩的“相依方程”,求k 的取值范围; (3)若关于x 的方程322x m -=-是关于x 的不等式组121x m x m m 的“相依方程”,且此时不等式组有5个整数解,试求m 的取值范围.【答案】(1)①(2)9 3.k(3)35.23m 【解析】【分析】(1)分别解三个一元一次方程与不等式组,再根据新定义作判断即可;(2)分别解不等式组与方程,再根据新定义列不等式组611,3k 解不等式组可得答案; (3)先解不等式组可得131,m x m 再根据此时不等式组有5个整数解,令整数的值为:,1,2,3,4,n n n n n 再求解02,n 而n 为整数,则1,n = 可得45,33m 再解方程可得34,x m 可得134,3431m m m m 解得3,2m 从而可得答案. (1)解:①6(2)(4)23x x +-+=,整理得:515,x = 解得:3,x =②930x -=,解得:1,3x = ③230x -=,解得:3.2x =2113(2)4x x x x ->+⎧⎨--≤⎩解不等式211x x ->+可得:2,x >解不等式324x x 可得:5,x ≤所以不等式组的解集为:2 5.x根据新定义可得:方程①是不等式组的“相依方程”.故答案为:①(2) 解:312121123x xx x ①②由①得:1,x >-由②得:1,x ≤所以不等式组的解集为:11,x36x k -=,63k x根据“相依方程”的含义可得:611,3k363,k 解得:9 3.k(3)解:121x m x m m ①②由①得:1,x m由②得:31,x m∴不等式组的解集为:131,m x m此时不等式组有5个整数解,令整数的值为:,1,2,3,4,n n n n n 11,4315n m nn m n∴1,3433n m n n n m 则43,313n n n n 解得:02,n 而n 为整数,则1,n = 12,4533m m 45,33m 因为322x m -=-, 解得:34,x m 根据“相依方程”的含义可得:134,3431m m m m 解134m m 可得:3,2m而3431m m 恒成立,所以不等式组的解集为:3,2m综上:35.23m 【点睛】本题考查了解一元一次不等式组,一元一次方程的解,理解材料中的不等式组的“相依方程”是解题的关键.4.【提出问题】已知2x y -=,且1x >,0y <,试确定x y +的取值范围.【分析问题】先根据已知条件用y 去表示x ,然后根据题中已知x 的取值范围,构建y 的不等式,从而确定y 的取值范围,同理再确定x 的取值范围,最后利用不等式的性质即可解决问题.【解决问题】解:2x y -=,2x y ∴=+.1x >,21y ∴+>,1y ∴>-.0y <,10y ∴-<<,①同理,得12x <<.②由+①②,得1102y x -+<+<+,x y ∴+的取值范围是02x y <+<.【尝试应用】(1)已知3x y -=-,且1x <-,1y >,求x y +的取值范围;(2)已知1y >,1x <-,若x y a -=成立,求x y +的取值范围(结果用含a 的式子表示).【答案】(1)11x y -<+<;(2)当2a <-时,22a x y a +<+<--【解析】【分析】(1)仿照例子,运算求解即可;(2)仿照例子,注意确定不等式有解集时a 的取值范围即当2a <-时,关于x 、y 的不等式存在解集,然后运算求解即可.【详解】(1)解:∵3x y -=-,∴3x y =-,∵1x <-,∴31y -<-,∴2y <,∵1y >,∴12y <<,①同理,得21x -<<-,②由①+②,得2112x y -+<+<-+,∴x y +的取值范围是11x y -<+<.(2)解:∵x y a -=,∴x y a =+,∵1x <-,∴1y a +<-,∴1y a <--,∵1y >,∴当2a <-时,11y a <<--,①同理,得11a x +<<-,②由①+②,得22a x y a +<+<--,∴x y +的取值范围是22a x y a +<+<--.【点睛】本题考查了不等式的性质,解一元一次不等式.能够仿照例子结合不等式的基本性质作答是解题的关键.。
高二数学知识点:不等式的解法不等式的解法:(1)一元二次不等式:一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对进行讨论:(2)绝对值不等式:若,则;;注意:(1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;(2).通过两边平方去绝对值;需要注意的是不等号两边为非负值。
(3).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。
(4)分式不等式的解法:通解变形为整式不等式;(5)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。
(6)解含有参数的不等式:解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为(或更多)但含参数,要讨论几种常见不等式的解法:1.一元一次不等式的解法任何一个一元一次不等式经过变形后都可以化为axb或axb而言,当a0时,其解集为(ab,+),当a0时,其解集为(-,ba),当a=0时,b0时,期解集为R,当a=0,b0时,其解集为空集。
例1:解关于x的不等式ax-2b+2x解:原不等式化为(a-2)xb+2①当a2时,其解集为(b+2a-2,+)②当a2时,其解集为(-,b+2a-2)③当a=2,b-2时,其解集为④当a=2且b-2时,其解集为R.2.一元二次不等式的解法任何一个一元二次不等式都可化为ax?2+bx+c0或ax?2+bx+c0(a0)的形式,然后用判别式法来判断解集的各种情形(空集,全体实数,部分实数),如果是空集或实数集,那么不等式已经解出,如果是部分实数,则根据“大于号取两根之外,小于号取两根中间”分别写出解集就可以了。
高中数学不等式与不等式组的解法高中数学不等式与不等式组的解法高中数学不等式主要问题包括:大小比较(方法有作差法,作商法,图象法,函数性质法);证明题(比较法,反证法,换元法,综合法…);恒成立问题(判别式法,分离参数法…)等,下面是店铺为大家精心推荐不等式与不等式组的解法,希望能够对您有所帮助。
不等式与不等式组的数轴穿根解法数轴穿根:用根轴发解高次不等式时,就是先把不等式一端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,一次穿过这些零点,这大于零的不等式地接对应这曲线在x轴上放部分的实数x得起值集合,小于零的这相反。
做法:1.把所有X前的系数都变成正的(不用是1,但是得是正的);2.画数轴,在数轴上从小到大依次标出所有根;3.从右上角开始,一上一下依次穿过不等式的根,奇过偶不过(即遇到含X的项是奇次幂就穿过,偶次幂跨过,后面有详细介绍);4.注意看看题中不等号有没有等号,没有的话还要注意写结果时舍去使使不等式为0的根。
例如不等式:x2-3x+2≤0(最高次项系数一定要为正,不为正要化成正的)⒈分解因式:(x-1)(x-2)≤0;⒉找方程(x-1)(x-2)=0的根:x=1或x=2;⒊画数轴,并把根所在的点标上去;⒋注意了,这时候从最右边开始,从2的右上方引出一条曲线,经过点2,继续向左画,类似于抛物线,再经过点1,向点1的左上方无限延伸;⒌看题求解,题中要求求≤0的解,那么只需要在数轴上看看哪一段在数轴及数轴以下即可,观察可以得到:1≤x≤2。
高次不等式也一样.比方说一个分解因式之后的不等式:x(x+2)(x-1)(x-3)>0一样先找方程x(x+2)(x-1)(x-3)=0的根x=0,x=1,x=-2,x=3在数轴上依次标出这些点.还是从最右边的一点3的右上方引出一条曲线,经过点3,在1、3之间类似于一个开口向上的抛物线,经过点1;继续向点1的左上方延伸,这条曲线在点0、1之间类似于一条开口向下的曲线,经过点0;继续向0的左下方延伸,在0、-2之间类似于一条开口向上的抛物线,经过点-2;继续向点-2的左上方无限延伸。
不等式的概念1.不等式:用不等号表示不相等关系的式子,叫做不等式,例如:252,314,10,10,0,35a x a x a a-<-+>-++≤+>≥≠等都是不等式.2.常见的不等号有5种:“≠”、“>”、“<”、“≥”、“≤”.注意:不等式3≥2成立;而不等式3≥3也成立,因为3=3成立,所以不等式3≥3成立.3.不等号“>”和“<”称为互为相反方向的符号,所谓不等号的方向改变,就是指原来的不等号的方向改变成与其相反的方向,如:“>”改变方向后,就变成了“<”。
【例1】用不等式表示数量的不等关系.(1)a是正数(2)a是非负数(3)a的相反数不大于1(4)x与y的差是负数(5)m的4倍不小于8(6)q的相反数与q的一半的差不是正数(7)x的3倍不大于x的1 3(8)a不比0大【巩固】用不等式表示:⑴x的15与6的差大于2;⑵y的23与4的和小于x;⑶a的3倍与b的12的差是非负数;⑷x与5的和的30%不大于2-.【巩固】用不等式表示:不等式(组)的概念、性质及解法知识讲解⑴a 是非负数; ⑵y 的3倍小于2; ⑶x 与1的和大于0;⑷x 与4的和大于1不等式基本性质基本性质1:不等式两边都加上(或减去)同一个数(或式子),不等号方向不变.如果a b >,那么a c b c ±>± 如果a b <,那么32(1)x a x +≥-基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变.如果a b >,并且0c >,那么ac bc >(或a b c c >) 如果a b <,并且0c >,那么ac bc <(或a b c c<) 基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,并且0c <,那么ac bc <(或a b c c<) 如果a b <,并且0c <,那么ac bc >(或ax b >)不等式的互逆性:如果a b >,那么b a <;如果b a <,那么a b >.不等式的传递性:如果a b >,b c >,那么a c >.易错点:①不等式两边都乘(或除以)同一个负数,不等号的方向改变.②在计算的时候符号方向容易忘记改变.【例2】 ⑴如果a b >,则2a a b >+,是根据;⑵如果a b >,则33a b >,是根据; ⑶如果a b >,则a b -<-,是根据; ⑷如果1a >,则2a a >,是根据; ⑸如果1a <-,则2a a >-,是根据.【巩固】利用不等式的基本性质,用“<”或“>”号填空.⑴若a b <,则2a _______2b ;⑵若a b >,则4a -______4b -; ⑶若362x ->,则x ______4-;⑷若a b >,0c >,则ac ______bc ;⑸若0x <,0y >,0z <,则()x y z -_______0.【巩固】若a b <,用“>”或“<”填空⑴2_____2a b ++;⑵2_____2a b -- ⑶11______33a b ;⑷____a b --【巩固】若a b <,则下列各式中不正确的是()A.88a b -<+B.1188a b < C. 1212a b -<- D.22a b -<-【例3】 已知a b >,要使bm am -<-成立,则m 必须满足( )A .0m >B .0m =C .0m <D .m 为任意数【巩固】如果关于x 的不等式(1)1a x a +>+的解集为1x <,那么a 的取值范围是()A.0a >B.0a <C.1a >-D.1a <-【巩固】若0a b <<,则下列不等式成立的是( )A .11a b< B .2ab b < C .2a ab > D .||||a b < 【巩固】如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b< C .2a b b +> D .2a ab > 【巩固】如果2x >,那么下列四个式子中:①22x x >②2xy y >③2x x >④112x <正确的式子的个数共有 ( )A .4个B .3个C .2个D .1个【巩固】根据a b >,则下面哪个不等式不一定成立( )A .22a c b c +>+B .22a c b c ->-C .22ac bc >D .2211a bc c >++不等式的解集1.不等式的解:使不等式成立的每一个未知数的值叫做不等式的解.例如:4-,2-,0,1,2都是不等式2x ≤的解,当然它的解还有许多.2.不等式的解集:能使不等式成立的所有未知数的集合,叫做不等式的解集.不等式的解集是一个范围,在这个范围内的每一个值都是不等式的解. 不等式的解集可以用数轴来表示.不等式的解与不等式的解集是两个不同的概念,不等式的解是指使这个不等式成立的未知数的某个值,而不等式的解集,是指使这个不等式成立的未知数的所有的值;不等式的所有解组成了解集,解集包括了每一个解.在数轴上表示不等式的解集(示意图):【例4】 下列说法中错误的是()A.不等式28x -<的解集是4x >-;B.40-是不等式28x <-的一个解C.不等式6x <的正整数解有无数多个D.不等式6x <整数解有无限个【例5】 在数轴上表示下列不等式的解集:⑴1x <;⑵2x ≥-;⑶2x <-或1x ≥;⑷21x -≤<不等式的解集在数轴上表示的示意图不等式的解集在数轴上表示的示意图x a >x a ≥x a <x a ≤xa xa xa a x【巩固】在12-、1-、2-、0、3-、12、32-中,能使不等式32x +<成立的有()A.4个B.3个C.2个D.1个【巩固】下列不等式:①76->-;②a a >-;③1a a +>;④0a >;⑤210a +>,其中一定成立的有()A.1个B.2个C.3个D.4个一元一次不等式的解法1.一元一次不等式:经过去分母、去括号、移项、合并同类项等变形后,能化为ax b <或ax b >的形式,其中x 是未知数,,a b 是已知数,并且0a ≠,这样的不等式叫一元一次不等式.ax b <或ax b >(0a ≠)叫做一元一次不等式的标准形式.2.解一元一次不等式:去分母→去括号→移项→合并同类项(化成ax b <或ax b >形式)→系数化一(化成b x a >或bx a<的形式)【例6】 求不等式3(1)5182x x x +-+>-的解集.【巩固】解不等式:5192311236x x x +--+≤【巩固】解不等式2110155364x x x ++--≥,并把它的解集在数轴上表示出来.【巩固】解不等式2(1)34(1)5x x x+->++【巩固】当x为何值时,代数式2113x+-的值不小于354x+的值?【例7】求不等式4512x-<1的正整数解.【巩固】不等式132x x+>的负整数解是_______.【巩固】不等式111326y y y+---≥的正整数解为__________.【巩固】求不等式12123x x+-≥的非负整数解.一元一次不等式组的解法1.一元一次不等式组和它的解法一般地,几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集2.解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集:②利用数轴求出这些不等式的解集的公共部分,即可求出这个不等式组的解集 注意:①利用数轴表示不等式的解集时,要注意表示数的点的位置上是空心圆圈,还是实心圆点; ②若不等式组中各个不等式的解集没有公共部分,则这个不等式组无解 3.由两个一元一次不等式组成的不等式组的解集的情况有如下四种:不等式组(a b <)图示 解集 口诀x ax b ≥⎧⎨≥⎩x b ≥ 同大取大x ax b ≤⎧⎨≤⎩x a ≤同小取小x ab b ≥⎧⎨≤⎩a xb ≤≤ 大小,小大中间找x ax b ≤⎧⎨≥⎩空集 小小,大大找不到【例8】 解不等式组31422x x x ->-⎧⎨<+⎩,并把它的解集表示在数轴上.【巩固】求不等式组2(2)43251x x x x -≤-⎧⎨--⎩<①②的整数解.【例9】 解不等式:32122x--<≤;ba a ba ba b【巩固】解不等式:23121 42xx-≤≤+【例10】解不等式组:11141010372xx xxx⎧-+>+⎪⎪--⎨⎪+>+⎪⎩;【巩固】解不等式组:323(1)12123x xx xx +≥--⎧⎪-+⎨->-⎪⎩【例11】解不等式组:2(20)203(34)25 21623x x x x x-+≥-+⎧⎪-+⎨<⎪⎩【巩固】解不等式组:73434 2555(4)2(4) 3x xx x x-+⎧-≥-⎪⎪⎨⎪+-≤-⎪⎩【例12】 解不等式组()121123621[41]43x x x x x x x --+⎧->-⎪⎪⎨⎪---⎪⎩①≥②。
一元二次不等式组的解法过程本文介绍了一元二次不等式组的解法过程,首先介绍了解法的基本概念,然后介绍了求解一元二次不等式组的具体步骤,最后进行综合实例练习,巩固解法过程。
end{abstract}section{一元二次不等式组的解法过程}一元二次不等式组指的是满足一元二次不等式的所有解所构成的集合,广泛应用于几何、概率统计等领域。
其求解的基本思想是:先把解的范围缩小到一定程度,再综合求出所有满足条件的解。
在求解时,应根据参数的不同,分别采用不同的解法来求解。
subsection{求解步骤}求解一元二次不等式组的步骤如下:1. 将不等式整理成说服的形式,即将不等式右边化为0。
2. 求出不等式的解集,即将整理形式的方程化为一元二次方程,求出根的解析解。
3. 对解析解分析,判断此组不等式满足何种条件(有解、无解或无穷解),然后找出解的范围。
4. 求出所有满足条件的解,有时也需要求出整数解和有理解。
subsection{实例练习}begin{itemize}item 例1:求解$2xy+5>3x+7y$的解集解:设$x=t$,并将不等式化为比较形式,得$2t+7>3+5t$,化简得$t>-dfrac{2}{5}$,故解集为$x>-dfrac{2}{5}$item 例2:求整数解$x^2+3x+2>0$解:设$x=t$,将不等式化为比较形式,得$t^2+3t+2>0$,二次判别式$Delta=3^2-4times 1times2=1$,由于$Delta>0$,故有两个不重根,即$t_1=-1$,$t_2=-2$,故$t>-1$或$t<-2$,即$x>-1$或$x<-2$,又因解要求为整数,故有$x=-1,0,1$end{itemize}section{总结}本文介绍了一元二次不等式组的解法过程,解法过程主要包括整理不等式的形式、求解解析解、判断条件以及求出所有满足条件的解等步骤,针对实例练习,能够有效地熟悉求解思路,有助于深入理解求解过程。
不等式组的解法与线性规划不等式组是数学中常常出现的问题,在各个领域都有广泛应用。
解决不等式组的关键是找到满足所有不等式的解集。
本文将介绍不等式组的解法以及与之相关的线性规划问题。
一、不等式组的解法不等式组由多个不等式组成,解不等式组的目标是找到满足所有不等式的解集。
以下介绍几种常见的解法。
1. 图像法图像法是一种直观的方法,通过将不等式表示的区域绘制在坐标系中,观察交集部分即可得到解集。
以二元不等式组为例,将每个不等式表示的区域绘制在平面直角坐标系中,然后观察交集部分即为解集。
2. 代入法代入法是一种常见的解不等式组的方法。
通过将某个或几个不等式中的变量表示为其他变量的函数形式,然后代入到其他不等式中,可以简化不等式组,使得解集更容易得到。
3. 消元法消元法是应用代数运算,通过不等式的运算性质来简化不等式组,从而得到解集。
常见的消元法包括加法消元法和乘法消元法。
加法消元法通过将不等式相加来得到新的不等式,进而简化不等式组。
乘法消元法则通过将不等式相乘来得到新的不等式,从而简化不等式组。
二、线性规划与不等式组线性规划是一种常见的优化问题,其数学模型中常包含不等式组。
线性规划的目标是在一系列线性约束条件下,找到使目标函数取得最大值或最小值的变量取值。
线性规划中的约束条件通常由不等式组表示,这些不等式描述了变量的取值范围。
通过将目标函数与约束条件构建成一个线性规划模型,可以使用各种数学方法求解最优解。
例如,一个简单的线性规划问题可以表示为:```Maximize C = 3x + 2ySubject to2x + y ≤ 10x + 3y ≤ 15x, y ≥ 0```其中,C为目标函数,x和y为变量,不等式组为约束条件。
通过解这个线性规划问题,可以得到使目标函数C取得最大值的x和y的取值。
三、实例分析为了更好地理解不等式组的解法与线性规划的关系,我们来看一个简单的实例。
假设某公司生产两种产品,A和B。
二元一次方程组及解不等式组1、二元一次方程:含有两个未知数,且含未知数的项的次数为1, 二元一次方程有无数多个解.2、二元一次方程组:有一个解,可以用代入消元法和加减消元法解.3、三元一次方程组:先转化为二元一次方程组.4、应用题:解、设、列、解、验、答5、典型例题:①二元一次方程满足的条件:系数≠0,次数=1②平方+绝对值= 0③已知方程(组)的解,求其它未知数的值4、解不等式组的步骤:(1)先求出各个不等式的解集(2)将这些解集表示在同一个数轴上(3)在数轴上找出这些解集的公共部分,就是这个不等式组的解集。
5、典型例题:①已知解集求未知数范围:看解集不等号方向是否改变,不变则系数>0,改变则系数<0 ②已知不等式(组)的解求未知数的值:令所求解集等于已知解集③已知不等式(组)的整数解求未知数的值:先求出解集,令解集满足一定条件解法:消元法1)代入消元法用代入消元法的一般步骤是:1.选一个系数比较简单的方程进行变形,变成y = ax +b 或x = ay + b的形式;2.将y = ax + b 或x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;3.解这个一元一次方程,求出x 或y 值;4.将已求出的x 或y 值代入方程组中的任意一个方程(y = ax +b 或x = ay + b),求出另一个未知数;5。
把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。
[1]例:解方程组:x+y=5①6x+13y=89②解:由①得x=5-y③把③代入②,得6(5-y)+13y=89得y=59/7把y=59/7代入③,得x=5-59/7得x=-24/7∴x=-24/7y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法。
2)加减消元法①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;③解这个一元一次方程;④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。
如何解一元一次不等式组
一元一次不等式组是初等代数中的一个重要内容,解一元一次不等式组是求解一元一次不等式的集合关系的问题。
在解一元一次不等式组时,我们可以使用图像法、代入法、消元法等多种方法来求解。
下面将介绍一些解一元一次不等式组的常用方法。
我们可以使用图像法来解一元一次不等式组。
通过将不等式转化为一条直线,然后确定直线与坐标轴的交点,最终确定不等式的解集。
这种方法直观简单,适用于一些简单的不等式组求解。
代入法也是解一元一次不等式组的常用方法。
通过将一个不等式的解代入另一个不等式中,然后求解得到另一个不等式的解集,最终确定整个不等式组的解集。
这种方法适用于一些复杂的不等式组求解。
消元法也是解一元一次不等式组的有效方法。
通过将一个不等式乘以一个适当的系数,然后将两个不等式相减或相加,最终得到一个新的一元一次不等式,从而求解整个不等式组的解集。
这种方法适用于一些需要化简的不等式组求解。
除了以上方法,还可以通过分情况讨论、代数法等多种方法来解一元一次不等式组。
在解题过程中,需要注意不等式的性质,如乘除不等式两边不等号方向不变、加减不等式两边不等号方向不变等。
总的来说,解一元一次不等式组需要我们熟练掌握不等式的性质和解题方法,灵活运用各种方法来求解。
在解题过程中,需要注意化简不等式、分析不等式的关系,从而得到准确的解集。
希望通过本文的介绍,读者能够更加深入地了解如何解一元一次不等式组,提高解题能力,取得更好的学习成绩。
怎么解不等式方程组
不等式方程组是数学中的一种复杂的问题,它是由一组不等式组成的方程组,要求求解的解的范围,而不是求解的解的值。
解不等式方程组的方法有很多,其中最常用的方法是图像法。
图像法是通过将所有不等式绘制在图形上,然后找出所有不等式的交点,最后求出解的范围。
解的范围是所有不等式的交点所组成的封闭区域。
另外,还有一些其他的解法,如消元法和分段函数法。
消元法是指将不等式方程组转换为等式方程组,然后使用消元法求解;分段函数法是指将不等式方程组分割成几个函数,然后将每个函数分别求解,最后求出解的范围。
解不等式方程组的方法有很多,其中最常用的是图像法和消元法,也可以使用分段函数法求解。
根据不同的题目,可以选择不同的方法解决问题,以达到最优的解决方案。