433余角和补角(2)
- 格式:doc
- 大小:50.50 KB
- 文档页数:4
课题:余角和补角(2)
主备:南苑
【学习目标】:1、掌握余角和补角的性质。
2、了解方位角,能确定具体物体的方位。
【重点难点】掌握余角和补角的性质;方位角的应用;
学案
一、自主探究
自学课本P141——P143;练习上的内容,思考下列问题
1、互为余角的定义,并举例介绍
2、互为补角的定义,并举例介绍
3、同桌交流完成例3,理解补角和余角的性质。
4、学习例4,掌握方位角
练习:
1.70°的余角是,补角是;
2.∠α(∠α <90°)的它的余角是,它的补角是;
竞比展示
1、练习
2
1
4
3
教 案
1.探究补角的性质:
例3、如图, ∠1与∠2互补,∠3与∠4互补, ∠1= ∠3,那么∠2与∠4相等吗?为什么?
分析:(1)∠1与∠2互补,∠2等于什么?∠2=1800 - ,
∠3与∠4互补,∠4等于什么? ∠4=1800 - 。 (2)当∠1= ∠3时,∠2与∠4有什么关系?为什么?
∠2=∠4(等量减等量,差相等)
上面的结论,用文字怎么叙述?
补角的性质:等角的 相等。 2.探究余角的性质:
如图∠1 与∠2互余,∠3 与∠4互余 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?
余角性质:等角的 相等
1 2 3 4
西北
西南
东南
东北
北西
南
东
南
西
3.方位角:感受数学的应用价值,提高分析问题,解决问
题的能力。
(1)认识方位:
正东、正南、正西、正北、东南、 西南、西北、东北。 (2)找方位角:
乙地对甲地的方位角 ; 甲地对乙地的方位角
例4:如图.货轮O 在航行过程中,发现灯塔A 在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C 和海岛D.画出表示客轮B,货轮C 和海岛D 方向的射线。
(师生共同完成)
巩 固 案
1、α∠和β∠都是AOB ∠的补角,则α∠ β∠;
2、如果9031,9021=∠+∠︒=∠+∠,则32∠∠与的关系是 , 理由是 ;
3、A 看B 的方向是北偏东21°,那么B 看A 的方向( ) A 南偏东69° B 南偏西69° C 南偏东21° D 南偏西21°
4、在点O 北偏西60°的某处有一点A,在点O南偏西20°的某处有一点B,则∠AOB的度数是() A 100° B 70° C 180° D 140°
【要点归纳】:补角的性质:
余角的性质:
【拓展训练】:
1. 如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E在一条直线上,且∠2=∠4,
请说出∠1与∠3之间的关系?并试着说明理由?
【总结反思】: