第20章数据的分析导学案
- 格式:docx
- 大小:42.34 KB
- 文档页数:5
第二十章数据的分析 20.1数据的集中趋势 20.1.1平均数(第一课时)学习目标:1.理解数据的权和加权平均数的概念2.掌握加权平均数的计算方法3.通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数.学习重点:会求加权平均数 学习难点:对“权”的理解 学习过程: 一、自主学习 (一)预习指导:1。
在一次数学测试中第一小组六同学的成绩分别是:82、84、92、90、78、79,请你求出第一小组的平均成绩。
2.请你写出求算术平均数和求加权平均数的公式。
(二)预习检测1.某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶 环。
2求该校初二年级在这次数学考试中的平均成绩?下述计算方法是否合理?为什么?如果不正确请你写出正确的解答.x =41(79+80+81+82)=80.5二、合作探究探究点1:理解数据的权和加权平均数的概念1.请你自学教材P 111页的问题1,然后思考:为什么(1)问和(2)问中录取的人恰好相反?请你说说什么是“权",请你根据(1)问写出求算术平均数的公式,根据(2)问写出求加权平均数的公式。
2.请你完成P112页思考中的问题。
探究点2:掌握加权平均数的计算方法1.请你独立完成P112页例1和P113页的例22.老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、3.为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,结果如下表:(单位:求这些灯泡的平均使用寿命?三、方法小结:四、达标测评:见学习指要分数人数1596320。
1.1平均数(第二课时)学习目标:1.加深对加权平均数的理解2.会根据频数分布表求加权平均数,从而解决一些实际问题学习重点:根据频数分布表或图求加权平均数 学习难点:根据频数分布表或图求加权平均数 学习过程: 一、自主学习(一)预习指导1.请你写出求算术平均数和求加权平均数的公式.2。
第20章数据的分析小结复习导学案一、复习导入(一)导入课题:本节课我们一起复习“数据的分析”(板书课题).(二)复习目标:1.复习与回顾本章的重要知识点.2.总结本章的重要思想方法.(三)复习重、难点:重点:平均数、中位数、众数和方差.难点:运用上述知识分析数据.二、分层复习第一层次学习(一)复习指导1.复习内容:P111页到P137页.2.复习时间:10分钟.3.复习指导:通过课本和笔记复习和回顾本章的重要知识点.4.复习参考提纲:(1)n个数据x1,x2,…,xn的算术平均数x= ;如果一组数据中,x1,x2,x3,…,xk出现的次数分别是f1, f2,f3,…,fk,那么这组数据的加权平均数x= .(2)在一组数据中,出现叫做这组数据的众数(一组数据的众数有时不只一个).(3)将一组数据按的顺序排列,把处在最中间的数据(或最中间数据的)叫做这组数据的中位数.(4)数据x1,x2,x3,…,xn的方差S2= .方差是用来反映一组数据的特征数,常常用来比较两组数据的,方差越大,数据的波动;方差越小,数据的波动;方差的单位是原数据单位的 .求方差的一般步骤:第一步:求出;第二步:求出;第三步:求出 .(二)自主复习:学生可参考复习参考提纲进行自学.(三)互助学习:1.师助生:明了学情;差异指导.2.生助生:小组研讨.(四)强化:1. 平均数、中位数、众数和方差.2.强调本章的数学思想方法.第二层次学习(一)复习指导1.复习内容:典例剖析,考点跟踪.2.复习时间:15分钟.3.复习指导:完成所给例题,也可查阅资料或和其他同学研讨.4.复习参考提纲:例1某校田径运动会需要组织一支由64名女生组成的女子方队,并且要求她们个个身高相同,由于年龄的限制,只能从初三学生中选拔,现有一份从该校随机抽取的初三某班15名女生(各班女生人数均超过30人)的身高资料(单位:cm)164 163 158 157 162 154 163 160 163 155 162 162 165 164 163 (1)求出这15名学生身高的平均数、众数和中位数;(2)如果这所学校初三年级一共有10个班,那么该校能完成这项任务吗?试说明理由.例2某校八(7)班50名学生的校服尺码统计得下表:例3为了比较甲、乙两种水稻秧苗是否出苗整齐,每种秧苗各取5株并量出每株的长度如下表所示(单位:厘米)。
第二十章数据的分析20.1 数据的集中趋势20.1.1 平均数第1课时平均数和加权平均数学习目标1.使学生理解数据的权和加权平均数的概念;2.使学生掌握加权平均数的计算方法.重点:会求加权平均数.难点:对“权”的理解.学习过程1. (1)数据:4,5,6,7,8的平均数是 .(2)2、8、7、2、7、7、8、7、6的算术平均数为 .(3)一组数据中有3个x1和8个x2,这组数据中共有个数据;它们的平均数为 .小学所学平均数的计算公式是2.某次考试A、B、C、D、E这5名学生的平均分为62分,若学生A除外,其余学生的平均得分为60分,那么学生A的得分是____ ___.3. 加权平均数:(预习新知)(1)n个数据:f1个a1,f2个a2,…,f n个a n(f1+f2+…+f n=n)它的加权平均数为x(2)权反映的是二.合作探究,生成总结探讨1.某校初二年级共有4个班,在一次数学考试中参考人数和成绩如下:求该校初二年级在这次数学考试中的平均成绩?练一练:1.在一组数据中,2出现了3次,3出现了2次,4出现了5次,则2的权为,3的权为,4的权为;这组数据的平均数为 .2.某人打靶,有1次中10环, 2次中7环,3次中5环,则平均每次中靶环.3.在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分.已知该班平均成绩为80分,则该班有人.4.在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为 .5.某人打靶有a次打中x环,b次打中y环,则此人平均每次中靶环.探讨2.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占(注:权能够反映数据的相对)练一练:1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、期末考试占35%,小关和小兵的成绩如下表:求两人的平均成绩个是多少?知识点小结:本节课我们学习了……..五、达标训练1.5个数据的平均数是205,其中一个数据为201,那么其余4个数据的平均数是( ).2. 为了鼓励市民节约用水,某居民委员会表彰了100个节约用水模范户,6月份这100户用水情况是:52户各用了1吨,30户各用了1.2吨,18户各用了1.5吨,6月份这100户平均用水的吨数为______.3. 某学生5门学科考试成绩的平均分为86分,已知其中两门学科的总分为193分,则另外三科的平均分为_______分.4. 某市广播电视局欲招聘播音员一名,对A ,B 两名候选人进行了两项素质测试,两人的两项测试成绩如右表8-1-2所示.根据实际需要,广播电视局将面试、综合知识测试的得分按3∶2的比例计算两人的总成绩,那么______(填A 或B )将被录用.5. 5位同学在“心连心”献爱心捐助活动中都捐了款,他们分别捐了5元、5元、10元、6元、4元,那么这5位同学平均每人捐款( ). A.4元 B.5元 C.6元 D.8元6. 某电视台举办青年歌手演唱大赛,7位评委给1号选手的评分如下: 9.3 8.9 9.2 9.5 9.2 9.7 9.4按规定,去掉一个最高分和一个最低分后,将其余得分的平均数作为选手的最后得分.那么,1号选手的最后得分是()分.A.9.54B.9.22C.9.32D.9.427. 一组数据的平均数是3,将这组数据每个数都扩大2倍,则所得一组新数据的平均数是( ). A.3 B.5 C.6 D. 无法确定8. 某校八年级共有四个班,在一次英语测试中四个班的平均分(单位:分)与各班参考人数如表8-1-3:则本校八年级参加这次英语测试的所有学生的平均分为(保留3个有效数字)( ).9. 某公司欲招聘一名公关人员,对应聘者A,B,C,D 进行面试,并从三个方面给应聘者打分,最后打分 结果(单位:分)如表8-1-4所示:已知专业知识、工作经验、仪表形象的重要性之比为6:3:1,如果你是人事主管,会录用哪一位应聘者?试说明理由.10. 某校规定:学生期末总评成绩由卷面成绩、研究性学习成绩、平日成绩三部分构成,各部分所占比例如图8-2-5所示.小明本学期数学学科三部分成绩分别是90分、80分、85分,求小明的期末数学总评成绩?8-1-28-1-38-1-48-2-520.1.2 中位数和众数学习目标1.通过学习了解中位数和众数的含义,能够准确确定出一组数据的中位数和众数. 2.理解中位数的概念,感知其代表数据的意义,提高解决问题能力.重点:理解中位数与众数所代表数据的意义.难点:能否准确描述出具体问题中位数和众数的意义.学习过程【预习作业】:1.已知一个样本:11、11、11、6、6、6、2、2、2、2,则样本平均数为2. 600≤x<1000的组中值为;1800≤x<2200的组中值为3.在求n个数的算术平均数时,如果x1出现f1次,x2出现f2次,…,xk出现fk次(这里f1+f2+…+fk=n)那么这n个数的算术平均数= ,这也叫做x1,x2,…,xk这k个数的加权平均数,其中f1,f2,…,fk分别叫做x1,x2,…,xk的权.4.中位数和众数(预习新知)(1)将一组数据按照的顺序排列,如果数据的个数是奇数,则称为这组数据的中位数...;如果数据的个数是偶数,则称为这组数据的中位数....(2)中位数是一个代表值,利用它分析数据可获得一些信息,例如,在一组互不相等的数据中,小于和大于它们的中位数的数据各占.(3)一组数据中出现次数最多的数据称为二.合作探究,生成总结探讨1.在一次男子马拉松比赛中,抽得12名选手的成绩(单位:分)如下:136 140 129 180 124 154 146 145 158 175 165 148(1)样本数据的中位数是多少?(2)一名选手的成绩为142分,他的成绩如何?归纳:1.如何确定一组数据的中位数?第一步:;第二步:第三步:.2.求中位数时一定要注意.(平均数、中位数都是反映一组数据集中趋势的统计量,但当某些数据与平均数偏差太大时,最好选用中位数来表达这组数据的一般水平)练一练:1.-1,3,5,8,9的中位数是;2.14,10,11,15,14,17的中位数是3.一次英语口语测试中,10名学生的得分如下:90,50,80,70,80,70,90,80,90,80.这次英语口试中学生得分中位数是.4.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是5.随机抽取我市一年(按365天计)中的30天平均气温状况如下表:请你根据上述数据回答问题:(1).该组数据的中位数是什么?(2).若当气温在18℃~25℃为市民“满意温度”探讨 2. 某商店在一段时间内出售某一品牌各种规格的空调,销售台数如下表所示你能根据下面的数据为这家商店提供进货建议吗?(温馨提示:认真阅读P 132例5,然后解答此题,注意表达清楚哦!)归纳:1.众数是一组数据中出次 的数据. 众数可能是唯一的也可能是 .2.众数可以反映一定的数据信息,可以作为一组数据的代表,帮助人们在实际问题中分析并做出决策. 练一练:1.数据8、9、9、8、8、8、9、9、8、10、7、9、9、8的众数是 2.一射击运动员在一次射击练习中打出的成绩是(单位:环):• 7,8,9,8,6,8,10,7,这组数据的众数是_____ _____. 3.公园里有两群人在做游戏,两群人的年龄分别如下:甲群:13,13,15,17,15,18,12,19,11,20,17,20,14,23,25 乙群:3, 4, 4, 5, 5, 6, 6, 6,54,57,48,36,38,58,34甲群游客的年龄众数是: ,乙群游客的年龄众数是: .4.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( )A.24、25B.23、24C.25、25D.23、255.某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示: 根据表格回答问题:(1)、商店出售的各种规格空调中,众数是多少?(2)、假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?知识点小结:本节课我们学习了……..六、达标测试1.青海玉树省玉权县发生7.1级大地震后,湘江中学九年级(1)班的60名同学踊跃捐款,有15人每人捐30元、14人每人捐100元、10人每人捐70元、21人每人捐50元,在这次每人捐款的数值中,中位数是2.某班7名学生的数学考试成绩(单位:分)如下:52,76,80,76,71,92,67 则这组数据的众数..是 分.3. 长沙地区七、八月份天气较为炎热,小华对其中连续十天的最高气温进行统计,依次得到以下一组数据(单位:℃):34,35,36,34,36,37,37,36,37,37.则这组数据的中位数和众数分别是_______;________.4. 某鞋店试销一款女鞋,试销期间对不同颜色鞋的销售 情况统计如表8-2-2:鞋店经理最关心的是哪种颜色的鞋最畅销,则对鞋店经理最有意义的统计量是______. 5.如8-2-3图是光明中学乒乓球队队员年龄分布的条形图.这些年龄的众数、中位数依次分别是( ). A.15,15 B.15,15.5 C.14.5,15 D.14.5,14.56. 已知一组按大小顺序排列的数据2,3,4,x ,6,9的中位数是5,那么这组数据的众数是( ). A.5.5 B.6 C.6.5 D.77. 一名射击运动员连续打靶8次,命中的环数如图8-2-4所示,这组数据的众数与中位数分别为( ). A.9与8 B.8与9 C.8与8.5 D.8.5与98. 为筹备班级的初中毕业联合会,班长对全班学生爱吃哪几种水果作了民意调查,决定最终买什么水果,下面的调查数据中值得关注的是8-2-28-2-3 8-2-4( ).A.中位数B.平均数C.众数D.加权平均数9. 某校八年级(1)班50名学生参加2008年济南市数学质量监控考试,全班学生的成绩统计如下表8-2-5: 请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是______.(2)该班学生考试成绩的中位数是______. (3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.10. 某饭店今年5月份部分员工工资表如表8-2-6:(1)该月以上员工工资的平均数是______元,中位数是______元,众数是______元; (2)该月能用平均数来表示他们工资的集中 趋势吗?你有什么建议?20.2 数据的波动20.3 课题学习 体质健康测试中的数据分析(略)学习目标1.观察与分析数据特征,探究与发现数据波动性大小,了解与掌握数据方差公式.2.培养学生运用方差计算公式,探索解决实际问题的能力;通过探究活动来发展学生的 用能力和创新能力.重点:掌握方差计算公式.难点:会观察与分析数据的特征,理解数据波动性的实际意义及方差产生的必要性.学习过程【自学指导、合作探究】北京奥运会上,中国健儿取得了51金,21银,28铜的好成绩,位列金牌榜首位,其中,中国射击队功不可没,取得了四枚金牌如果你是教练:甲,乙两名射击手现要挑选一名射击手参加比赛.若你是教练,你认为挑选哪一位比较适宜? 甲, 乙两名射击手的测试成绩统计如下:⑴ 请分别计算两名射手的平均成绩⑵ 请根据这两名射击手的成绩在下图中画出折线统图;⑶ 现要挑选一名射击手参加比赛,若你是教练,你认为挑选哪一位比较适宜?为什么?在平均数相同的情况下,用什么数据来衡量,来决定.方差定义:设有n 个数据n x x x ,,, 21,各数据与它们的平均数的差的平方分别是2221)()(x x x x --,,…,,, 2)(x x n -我们用它们的平均数,即用])()()[(1222212x x x x x x nx n -++-+-=8-2-58-2-6乙x =8(环)=8(环) 甲 x来衡量这组数据的波动大小,并把它叫做这组数据的方差,记作2s . 意义:用来衡量一批数据的波动大小在样本容量相同的情况下,方差越大,说明数据的波动越大, 越不稳定 归纳:(1)方差应用更广泛衡量一组数据的波动大小(2)方差主要应用在平均数相等或接近时(3)方差大波动大,方差小波动小,一般选波动小的2. 因此在上一题的引入中:计算方差的步骤可概括为“先平均,后求差,平方后,再平均”.在刚才的例子中,乙选手的方差为3.2,甲选手的方差为0.4,即S 2甲< S 2乙,因此,甲选手的稳定性比较好,发挥比较稳定,在平均数相同的情况下,建议教练选甲选手参赛(1)样本方差的作用是( )(A )表示总体的平均水平 (B )表示样本的平均水平 (C )准确表示总体的波动大小 (D )表示样本的波动大小 (2)在样本方差的计算公式数字10 表示( ) 数字20 表示( ) (3)样本5、6、7、8、9、的方差是多少?(4)甲乙两个班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:某同学分析上表后得出如下结论:1 甲乙两班学生成绩平均水平相同2 乙班优秀人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀)【同步演练、拓展提升】1甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图6-28所示.(1)请填写下表:(2)请从下列四个不同的角度对这次测试结果进行分析.①从平均数和方差相结合看;()()()()()[]4.0898********1222222=-+-+-+-+-=甲S ()()()()()[]2.388868108681051222222=-+-+-+-+-=甲S ⎥⎦⎤⎢⎣⎡-++-+-=)20(2...)20(22)20(121012s x n x x②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).答:①从平均数和方差相结合看;②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).六、达标训练1.数据-2,-1,0,1,2的方差是()A.0 B C.2 D.42.某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550kg/亩,方差分别为2S=141.7,2S乙=433.3,则产量稳定,适合推广的品种为()甲A.甲、乙均可B.甲C.乙D.无法确定3.甲、乙两名学生的十次数学考试成绩的平均分分别是145和146,成绩的方差分别是8.5和60.5,现在要从两人中选择一人参加数学竞赛,下列说法正确的是()A.甲、乙两人平均分相当,选谁都可以B.乙的平均分比甲高,选乙C.乙的平均分和方差都比甲高,选乙D.两人的平均分相当,甲的方差小,成绩比乙稳定,选甲4.某校要从四名学生中选拔一名参加市“风华小主播”大赛,选拔赛中每名学生的平均成绩x及其方差s2如表所示,如果要选择一名成绩高且发5.某工程队有14现该工程队进行了人员调整:减少木工2______(填“变小”、“不变”或“变大”).6.在2017年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是()A.18,18,1 B.18,17.5,3C.18,18,3 D.18,17.5,17.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为2S甲_____2S乙(填>或<).8.为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,我国启动了“全国亿万学生阳光体育运动”.短跑运动,可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题.(1)请根据图中信息,补齐下面的表格;(2。
第二十章数据的分析(1)第一课时 20.1.1 平均数【学习目标】1.认识和理解数据的权及其作用。
2.2,通过实例了解加权平均数的意义,会根据加权平均数的计算公式进行有关计算。
【重点难点】重点:加权平均数的概念以及运用加权平均数解决实际问题。
难点:对数据的权及其作用的理解。
【导学指导】一、知识回顾:(用学过的知识完成下列填空)①.6、24、40、67、13的算术平均数为。
②.2、8、7、2、7、7、8、7、6的算术平均数为。
③. n个数据x1,x2,x3,x4,…, x n的平均数=。
④.一组数据中有3个x1和8个x2,这组数据中共有个数据;它们的平均数为。
二、课本导学(请认真阅读课本的内容,围绕学案中的问题互学、群学,讨论、)★思考与探究1、读完发现:公司在招聘英文翻译的过程中,对甲乙两名应试者进行了四个方面的测试,甲各方面的成绩是,乙各方面的成绩是,①从“听、说、读、写的成绩按2:1:3:4确定”说明比更加重要.甲的平均成绩是,乙的平均成绩是,由于,所以应录取②从“听、说、读、写的成绩按2:2:3:3确定”说明比更加重要.甲的平均成绩是,乙的平均成绩是,由于,所以应录取。
2、学习例1后我明白了:①演讲内容、演讲能力、演讲效果三项成绩的权分别为,其中的成绩是最重要的。
②两名选手的3个单项成绩总和都是分,但他们的最后得分却不一样,原因是★回顾与归纳1、n 个数据a 1,a 2,a 3,a 4,……,a n 的算术平均数=x2、n 个数据:f 1个a 1 ,f 2个a 2 ,…,f n 个a n (f 1+f 2+…+f n =n )它的加权平均数为=3、权反映的是4、算术平均数是 的加权平均数,其中各数据的权都是 ,这说明各数据的相对重要程度 .★练习与提高1、 老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、期末考试占35%,小军和小兵的成绩如右表:求小关和小兵的平均成绩各是多少?2、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,且笔试成绩:面试成绩:实习成绩=2:3:5,各项成绩如下表所示:试判断谁会被公司录取,为什么?三、达标检测:1、在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为 .(列式表示)2、某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶 环。
第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法: 1、重点:会求加权平均数 2、难点:对“权”的理解 3、难点的突破方法:首先应该复习平均数的概念:把一组数据的总和除以这组数据的个数所得的商,叫做这组数据的平均数。
复习这个概念的好处有两个:一则可以将小学阶段的关于平均数的概念加以巩固,二则便于学生理解用数据与其权数乘积后求和作为加权平均数的分子。
在教材P136“讨论”栏目中要讨论充分、得当,排除学生常见的思维障碍。
讨论问题中的错误做法是学生常见错误,尤其是中差生往往按小学学过的平均数计算公式生搬硬套。
在讨论过程中教师应注意提问学生平均数计算公式中分子是什么、分母又是什么?学生由前面复习平均数定义可答出分子是数据的总和、分母是数据的个数,这时教师可递进设疑:那么,题目中涉及的每个数据是每个占有耕地面积还是人均占有耕地面积呢?数据个数是指A 、B 、C 三个县还是三个县的总人数呢?这样看来小明的做法有道理吗,为什么? 通过以上几个问题的设计为学生充分思考和相互讨论交流就铺好了台阶。
要使学生更好的去理解权的意义,可以再举一些生活、学习中的例子。
比如:初二.五班有4个小组,在一次测验中第一组有7名同学得了99分,1名同学得了61分,第二组有1名同学得到了100分、7名同学得62分。
能否由26210026199+<+得出第二小组平均成绩这样的结论?为什么?这个例子简单明了又便于学生想象理解,能够让学生从中体会到得99分的7个人比1个得61分的学生对平均成绩影响更大,从而理解权的意义。
在讨论栏目过后,引出加权平均数。
最好让学生将公式与小学学过的平均数计算公式作比较看看意义上是否一致,这样做利于学生把新旧知识联系起来,利于对加权平均数公式的理解,也利于理解“权”的意义。
第二十章数据的分析课题20.1 数据的代表课时:六课时第一课时20.1.1 平均数【学习目标】1. 认识和理解数据的权及其作用。
2. 通过实例了解加权平均数的意义,会根据加权平均数的计算公式进行有关计算。
【重点难点】重点:加权平均数的概念以及运用加权平均数解决实际问题。
难点:对数据的权及其作用的理解。
【导学指导】学习教材P124-P127相关内容,思考、讨论、合作交流后完成下列问题:1. 你认为P124 "思考”中小明的做法有道理吗?为什么?2 .正确的解法应是怎样的?请谈谈你的看法。
3. 什么是加权平均数?4. P125 “例1”中,所求的结果已不再是各人听说读写成绩的简单平均,而是听说读写成绩的加权平均数,它们的权分别是多少?5. P126 “例2”中,两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?谈谈你对权的作用的体会。
【课堂练习】1. 教材P127练习第1,2题。
2. 某广告公司欲招聘广告策划人员一名,对甲、乙、丙三名候选人进行了三(1) 如果根据三项测试平均成绩确定录用人选,那么谁将被录取?(2) 根据实际需要,公司将创新、综合知识、语言三项测试得分按的比例确定各人的4:2:2 测试成绩,此时谁将被录用?【要点归纳】你今天有什么收获?与同伴交流一下。
【拓展训练】学校对各个班级的教室卫生情况考察包括以下几项:黑板、门窗、桌椅、地面。
三个班的各项卫生成绩情况分别如下:第二课时20.1.1 平均数【学习目标】1. 理解把算术平均数的简便算法看成加权平均数的道理,进一步加深对加权平均数的认识。
2. 能根据频数分布表利用组中值的方法计算加权平均数。
3. 掌握利用计算器计算加权平均数的方法。
【重点难点】重点:能根据频数分布表利用组中值的方法应用公式计算加权平均数。
难点:对算术平均数的简便算法与加权平均数算法一致性的理解。
【导学指导】学习教材P127-P129相关内容,思考、讨论、合作交流后完成下列问题:1. 你能为教材P127的算术平均数举一个例子吗?2. 把算术平均数的公式与上节课的加权平均数公式进行对比,思考它们的相同之处与不同之处。
平凉四中数学导学案(八年级下) 编号:2015.42 编制人:刘前平 单元(章节) 课时 课型审核人 小组评价 教师评价20.1.11问题综合解决课 王全红20.1.1平均数(一)【学习目标】1.理解加权平均数的意义;2.会用加权平均数分析一组数据的集中趋势,发展数据分析能力,逐步形 成数据分析观念 【重点难点】理解加权平均数的意义,体会权的意义. 【复习引入】1.算数平均数是指 .2.列式计算7,8,9的平均数 . 【自主学习】1.什么是加权平均数?. 2.权表示数据的 .3.设一组数据1230,1,2x x x ===,它们的权数分别为1.01=p ,6.02=p , 3.03=p ,则这组数据的加权平均数x = . 【合作探究】1.一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者 听 说 读 写 甲 85 83 7875 乙73808582⑴如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?⑵如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按2:1:3:4的比确定,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?2.一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分, 各项成绩均按百分制,然后再接演讲内容占50 %、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制). 进入决赛的前两名选手的各单项成绩如下表所示,请确定两人的名次.平凉四中数学导学案(八年级下) 编号:2015.43 编制人:刘前平 单元(章节) 课时 课型审核人 小组评价 教师评价20.1.11问题综合解决课 王全红20.1.1平均数(二)【学习目标】1.进一步加深对加权平均数的认识;2.能根据频数分布表利用组中值的方法计算加权平均数. 【重点难点】根据频数分布表利用组中值的方法计算加权平均数. 【复习引入】加权平均数的概念: . . 【自主学习】1.在n 个数据中,如果1x 出现了1f 次,2x 出现了2f 次,……k x 出现了k f 次, (n f f f k =+++ 21)则这n 个数据的算数平均数x -= 叫做12,,k x x x 这k 个数的加权平均数,其中k f f f ,,,21 分别叫做12,,k x x x 的 .2.某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下: 13岁8人,14岁16人,15岁24人,16岁2人,则这个跳水队运动员的平均年龄 是 (结果取整数)3.什么是组中值:4.利用频数分布表(图)求平均数时,如何确定每组的数据与权?5.小组121x ≤<的组中值为 .【合作探究】探究一:加权平均数的应用为了解5路公共汽车的运营情况,公交部门统计了某天5路公交车每个运营班次的载客量,得到下表:载客量/人 组中值 频数(班次)1≤x <21 11 3 21≤x <41 5 41≤x <61 20 61≤x <81 22 81≤x <101 18 101≤x <12111115⑴补全表格;⑵这天5路公交车平均每班的载客量是多少?探究二:利用样本平均数估计总体平均数某灯泡厂为了测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如下表所示:使用寿命x /时 组中值 灯泡数/个1000600<≤x 10 14001000<≤x 19 18001400<≤x 25 22001800<≤x 34 26002200<≤x12这批灯泡的平均使用寿命是多少?平凉四中数学导学案(八年级下)编号:2015.44 编制人:刘前平单元(章节)课时课型审核人小组评价教师评价20.1.2 1 问题综合解决课王全红20.1.2中位数和众数【学习目标】1.认识中位数和众数,并会求出一组数据中的众数和中位数;2.理解中位数和众数的意义和作用;3.会利用中位数、众数分析数据信息,帮助人们在实际问题中做出决策. 【重点难点】中位数、众数的概念;利用中位数、众数分析数据信息做出决策.【复习引入】某公司员工月收入的资料如下表:月收入/元45000 18000 10000 5500 5000 3400 3000 1000 人数 1 1 1 3 4 1 11 1⑴计算这个公司员工月收入的平均数;⑵若用算得的平均数反映公司全体员工月收入水平,你认为合理吗?【自主学习】1.中位数:2.下面两组数据的中位数分别是多少?⑴5 6 2 3 2 ⑵5 6 2 4 3 53.众数: .(注意:如果一组数据中有两个数据的频数一样,都是最大,那么这两个数据都是..这组数据的众数)4.面两组数据的众数分别是多少?⑴4 5 3 2 5 2 5⑵5 2 6 7 6 3 3 4 3 6 【合作探究】探究一:中位数在一次男子马拉松长跑比赛中,抽得12名选手的成绩(单位:分)如下:137 141 130 181 125 155 147 146 159 176 166 149求样本数据(12名选手的成绩)的中位数.探究二:众数一家鞋店在一段时间内销售某种女鞋30双,各种尺码销售量如下表所示:尺码/厘米22 22.5 23 23.5 24 24.5 25销售量/双 1 2 5 11 7 31你能根据上面的数据为这家鞋店提供进货建议吗?【课堂检测】1.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是 .2.数据92、96、98、X、100的众数是96,则其中位数和平均数分别是()A.97、96B.96、96.4C.96、97D.98、973.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是()A.24、25B.23、24C.25、25D.23、254.某校男子足球队的年龄分布如条形图所示.请找出这些队员年龄的平均数、众数、中位数,并解释它们的意义.单元(章节)课时课型审核人小组评价教师评价20.1.2 1 问题综合解决课王全红20.1.2平均数、中位数和众数【学习目标】1.进一步认识平均数、众数、中位数都是数据的代表;2.了解平均数、中位数、众数在描述数据时的差异;3.能灵活应用这三个数据代表解决实际问题.【重点难点】了解平均数、中位数、众数之间的差异;灵活运用这三个数据代表解决问题. 【复习引入】一组数据中,12出现了3次,8出现了5次,10出现了1次,14出现了2次.求这组数据的平均数,中位数和众数各是多少?【自主学习】平均数,众数,中位数作为数据代表的不同特点.平均数:众数:中位数:下面是某校八年级(2)班两组女生的体重(单位:kg):第1组 35 36 38 40 42 42 75第2组 35 36 38 40 42 45 42分别求这两组数据的平均数、众数、中位数,并解释它们的实际含义;【课堂检测】某公司的33名职工的月工资(以元为单位)如下:职员董事长副董事长董事总经理经理管理员职员人数 1 1 2 1 5 3 20 工资5500 5000 3500 3000 2500 2000 1500⑴求该公司职员月工资的平均数、中位数、众数?⑵假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?⑶你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平单元(章节) 课时 课型 审核人 小组评价 教师评价20.21问题综合解决课 王全红20.2方差【学习目标】1.了解方差的意义,会求一组数据的方差;2.会根据方差的大小,比较与判断具体问题中有关数据的波动情况. 【重点难点】方差的概念与计算;会用方差计算公式来比较两组数据的波动大小. 【自主学习】1.方差: .2.方差可以反应数据的 ;注意:当数据分布比较 (即数据在平均数附近波动较大)时,各个数据与 ,方差就 ;当数据分布比较 时各个数据与 ,方差就 .因此方差越 ,数据的 ;方差越 ,数据的 . 3.老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别为512=甲s ,122=乙s ,则成绩比较稳定的是 . 4.求下列两组数据的方差,体会方差是怎样刻画数据的波动程度的. ⑴0, -1 ,3 ,2,4 ⑵0,-4,2,5,-6在一次芭蕾舞比赛中,甲乙两个芭蕾舞团都表演了舞剧《天鹅舞》,参加表演的女演员的身高(单位:cm )分别是甲团 163 164 164 165 165 165 166 167 乙团 163 164 164 165 166 167 167 168 哪个芭蕾舞团女演员的身高更整齐?【课题检测】下面是两名跳远运动员的10次测验成绩(单位:m ),在这10次测验中,哪名运动员的成绩更稳定?单元(章节) 课时 课型 审核人 小组评价 教师评价20.21问题综合解决课 王全红20.2极差和标准差【学习目标】1.了解极差和标准差的意义,会求一组数据的极差和标准差;2.会根据极差和标准差的大小,判断具体问题中有关数据的波动情况. 【重点难点】极差和标准差的概念与计算;会用极差和标准差来比较数据的波动情况. 【复习引入】1.方差: .2.某快餐公司的香辣鸡腿很受消费者欢迎.现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取10个,记录它们的质量(单位:g )如下表所示.根据表中的数据,你认为快餐公司应该选购哪家加工厂的鸡腿?1.极差:2.极差可以反映数据的 .3.数据7,10,-6,-7,5的极差是 .4.平均差: .(*)5.标准差: .(*)6.平均差和标准差都可以反映数据的 . 【合作探究】一个家具厂有甲乙两个木料货源,下面是家具厂向两个货源订货后等待交货天数的样本数据: 等待天数 6 7 8 9 10 11 12 13 14 次数 甲0 0 2 8 7 3 0 0 0 乙4262222分别计算样本数据的平均数、极差、方差、平均差和标准差,根据这些计算结果,看看家具厂从哪个货源进货比较好?。
人教版八下数学第20章《数据的分析》复习教案【思维导图】【教学目标】知识与技能目标了解平均数、众数、中位数、极差、方差有关概念,掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,能进行计算和解决生产、生活中的有关问题.过程与方法目标能结合具体情境发现并提出问题,逐步具有观察、猜想、推理、归纳和合作学习能力.情感、态度与价值观目标通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质.【教学重点】掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,能进行计算和解决生产、生活中的有关问题.【教学难点】选择合适的统计量表示数据的集中趋势.【教学准备】教师准备:教学中出示的例题和图片.学生准备:复习平均数、中位数、众数,并完成本节学案中的自主学习内容. 【知识梳理与建构】专题一平均数【专题分析】平均数的计算考查频率较高,题型以选择题、填空题为主,也涉及解答题,考查形式有:①直接给一组数据或表格中的数据求平均数;②一组数据中含有未知数,已知某个数据代表求其他数据代表.例1若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是()A.44B.45C.46D.47解析:这组数据共有7个,可以采用简化公式进行计算.将这组数据的每一个数都减去40,得到一组新数据:0,2,3,5,7,7,18,这组新数据的平均数为6,所以原数据的平均数为40+6=46.故选C.[归纳总结]对于由n个数据x1,x2,…,x n组成的一组数据,如果将这组数据中的每一个数据都减去同一个常数a,这组新数据的平均数为',那么原数据的平均数为='+a.对于由n个数据x1,x2,…,x n组成的一组数据,如果x1出现了f1次,x2出现了f2次,…,x k出现了f k次,其中f1+f2+…+f k=n,那么,这组数据的平均数可用加权平均数公式=(f1x1+f2x2+…+f k x k)进行计算.【跟踪训练1】如图所示的是小芹6月1日~7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()A.1小时B.1.5小时C.2小时D.3小时解析:先从折线统计图中获取数据信息,然后用这组数据的和除以数据的个数.(2+1+1+1+1+1.5+3)÷7=1.5.故选B.专题二中位数和众数【专题分析】中位数和众数的计算考查频率较高,题型大多以选择题、填空题为主,考查形式有:①直接给出一组数据或表格中的数据求中位数和众数;②一组数据中含有未知数,已知某个数据代表求其他数据代表.例2数据1,2,4,0,5,3,5,中位数和众数分别是()A.3 和2B.3和3C.0和5D.3和5解析:这7个数据按从小到大的顺序排列,位于第4个的是3,故中位数是3;这7个数据中出现次数最多的数据是5,一共出现了2次,所以众数是5.故选D.[规律方法]找中位数要把数据按从小到大(或从大到小)的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,当数据个数为奇数时,中位数即为中间的一个,当数据个数为偶数时,中位数就是中间两个数的平均数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【跟踪训练2】空气质量状况已引起全社会的广泛关注,某市统计了2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.某市2013年每月空气质量良好以上天数折线统计图某市2013年每月空气质量良好以上天数扇形统计图根据以上信息解答下列问题:(1)该市2013年每月空气质量达到良好以上天数的中位数是天,众数是天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况.(字数不超过30字)解析:(1)将这组数据按照一定的顺序排列,取中间两个数的平均数就是中位数;取次数出现最多的那个数就是众数;(2)20天以上的一共有两个数据,360°×=60°,就是扇形A的圆心角的度数;(3)根据题意只要回答正确就可以.解:(1)由题意可得数据为8,9,12,13,13,13,15,16,17,19,21,21,最中间的是13,15,故该市2013年每月空气质量达到良好以上天数的中位数是14天,众数是13天. (2)360°×=60°,答:扇形A的圆心角的度数是60°.(3)答案不唯一,合理即可.月空气质量良好以上的天数在10~20天的占了多数.专题三方差【专题分析】方差是从不同层面反映一组数据的特征数,在解决问题时,准确掌握这些特征数的概念、对应公式,以及灵活运用公式是关键.题型以选择题、填空题为主,考查形式有:①直接给出一组数据或表格中的数据求方差;②根据比较方差值的大小,判定稳定性,解决实际问题.例1一组数据3,4,5,x,7,8的平均数为6,则这组数据的方差是.解析:可以先根据平均数求出x的值,然后根据方差公式求解.∵3,4,5,x,7,8的平均数为6,∴x=9.∴方差为s2=×[(3-6)2+(4-6)2+(5-6)2+(7-6)2+(8-6)2+(9-6)2]=.故填.[归纳总结]数据中有未知数时,一般先求出这个未知数,再根据方差公式计算即可.若一组数据是由另一组数据逐个加几或减几得到的,则这两组数据的方差相同.【跟踪训练3】我市射击队为了从甲、乙两名运动员中选出一名运动员参加省运会比赛,组织了选拔测试,两人分别进行了五次射击,成绩(单位:环)如下:甲10 9 8 9 9乙10 8 9 8 10则应选派运动员参加省运会比赛.〔解析〕甲的平均数是×(10+9+8+9+9)=9,乙的平均数是×(10+8+9+8+10)=9,甲的方差是=×[(10-9)2+(9-9)2+(8-9)2+(9-9)2+(9-9)2]=0.4,乙的方差是=×[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2]=0.8,∵<,∴甲的成绩稳定,∴应选择甲运动员参加省运会比赛.故填甲.专题四用样本估计总体【专题知识】一般情况下,如果总体的容量较大,不便分析其数据特征,我们可以通过随机抽取一定的样本,通过样本的数据特征来对总体的数据特征进行估计,但难免有一定误差.本章主要利用平均数、方差的公式,通过计算样本的平均数、方差,估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想.【专题分析】考查用样本估计总体的题目,选择题、填空题或解答题的形式均有可能出现,一般在3~5分.例4杨静在承包的果园里种植了100棵樱桃树,今年已经进入收获期,从中任意采摘了6棵树上的樱桃,分别称得每棵树的产量(单位:千克)如下表:序号 1 2 3 4 5 6产量17 21 19 18 20 19设这组数据的中位数为m,樱桃的总产量为n,则m,n分别为()A.18,2000B.19,1900C.18.5,1900D.19,1850解析:把数据17,21,19,18,20,19按从小到大的顺序排列为17,18,19,19,20,21,∴中位数为19,平均数为==19,即每棵樱桃树的产量约为19千克,∴樱桃的总产量约为19×100=1900千克.故选B.[易错点津]在求中位数时容易出现的错误是没有把数据按大小顺序排列,而是直接求了表格中从左到右中间两个数的平均数.【跟踪训练4】据省环保网发布的消息,吉首市空气质量评价连续两年居全省14个省辖市城市之首,下表是吉首市2014年5月份前10天的空气质量指数统计表.2014年5月1日~10日空气质量指数(AQI)情况(表一)日期1日2日3日4日5日6日7日8日9日10日空气质量指数(AQI) 28 38 94 53 63 149 53 90 84 35空气质量污染指数标准(AQI)(表二)污染指数等级0~50 优51~100 良101~150 轻微污染151~200 轻度污染(1)请你计算这10天吉首市空气质量指数的平均数,并据此判断这10天吉首市空气质量平均状况属于哪个等级;(用科学计算器计算或笔算,结果保留整数)(2)按规定,当空气质量指数AQI≤100时,空气质量才算“达标”,请你根据表(一)和表(二)所提供的信息,估计今年(365天)吉首市空气质量“达标”的天数.(结果保留整数)解析:(1)算出10天空气质量指数的平均数并根据对应表作出判断即可;(2)先统计出样本中“达标”的天数并算出达标率,再算出今年(365天)吉首市空气质量“达标”的天数即可.解:(1)=×(28+38+94+53+63+149+53+90+84+35)=68.7≈69,这10天空气质量平均状况属于良.(2)∵这10天中“达标”的天数为9天,∴365×=328.5≈329,∴今年吉首市空气质量“达标”的天数为329天.专题五统计思想【专题知识】统计学是用方法论科学,在所有涉及实质性现象的领域中,统计方法都发挥着越来越重要的作用.这些统计方法具有内在的联系和逻辑关系,在认识事物时存在比较通用的模式,这些认识模式是统计学的基本思想.本章中,统计思想就是通过数据收集、数据处理和数据分析,更合理地解决实际问题.【专题分析】统计学是与数据打交道的一门学科,研究如何搜集、整理、计算和分析数据,然后从中找出一些规律,统计思想是用统计知识解决现实生活中涉及数据的问题.题型可以以多种形式出现.例5 某工厂有220名员工,财务科要了解员工收入情况.现在抽测了10名员工的本月收入,结果如下:(单位:元)166001540015100167001620015800158001600016200 16200(1)这组数据的中位数和众数分别是多少?(2)员工的月平均收入是多少?(3)估算一下财务科本月应准备多少钱发工资.解:(1)将这组数据按照从小到大的顺序排列为15100,15400,15800,15800,16000, 16200,16200,16200,16600,16700,处于中间位置的两个数为16000和16200,故中位数为16100.该组数据中,出现次数最多的数为16200,故众数是16200.(2)员工的月平均收入为(15100×1+15400×1+15800×2+16000×1+16200×3+16600×1+16700×1)÷10=16000(元).(3)从(2)得到员工的月平均收入为16000元,工厂共有220名员工,所以估计财务科本月应准备16000×220=3520000(元).【针对训练5】请根据所给信息,帮助小颖同学完成她的调查报告.2013年4月叶邑八年级学生每天干家务活平均时间的调查报告调查目的了解八年级学生每天干家务活的平均时间调查内容叶邑中学八年级学生干家务活的平均时间调查方式抽样调查调查步骤1.数据的收集:(1)在回龙八年级每班随机调查5名学生(2)统计这些学生2013年4月每天干家务活的平均时间(单位: min),结果如下(其中A表示10 min,B表示20 min,C表示30 min)B A A B B B B AC B B A B B CA B A A C A B B C B A B B A C2.数据的处理:以统计图的形式呈现上述统计结果,请补全统计图3.数据的分析:列式计算随机调查的学生每天干家务活平均时间的平均数(结果保留整数)调查结论叶邑中学八年级共有240名学生,其中大约有名学生每天干家务活的平均时间是20 min解析:先从表格中得出平均每天干家务活的时间为30 min的有5名学生,从而补全统计图,再根据A表示10 min,B表示20 min,C表示30 min和学生数即可求出随机调查的学生每天干家务活的平均时间的平均数,最后根据每天干家务活的平均时间是20 min所占的百分比乘240,即可得出大约每天干家务活的平均时间是20 min的学生数.解:从表中可以看出C的学生数是5人,如图所示,每天干家务活平均时间的平均数是(10×10+15×20+5×30)÷30≈18(min),根据题意得240×=120(人),回龙八年级共有240名学生,其中大约有120名学生每天干家务活的平均时间是20 min.专题六方程思想【专题分析】本章中运用方程思想主要是将一组数据中的未知数据用x,y表示,然后根据已知条件列出方程或方程组求解.例6 八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表:参赛同学答对题数答错题数未答题数A19 0 1B17 2 1C15 2 3D17 1 2E//7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知A,B,C,D,E五位同学的成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).解析:本题考查了统计知识及二元一次方程(组)的综合应用,解题的关键是能根据题目的条件建立方程或方程组求解实际问题.(1)根据得分规则分别求得4名学生的成绩,再求平均数.(2)①根据E同学的总分和得分规则利用方程组或方程求得E同学的答对题数和答错题数;②根据题目中出现的表格计算A,B,C,D四位同学的得分,与最后获知的A,B,C,D四位同学的成绩进行比较确定记错答题情况的同学,最后求得他的实际答对题数和答错题数.解:(1)A同学的成绩为5×19-2×0+0×1=95(分),B同学的成绩为5×17-2×2+0×1=81(分),C同学的成绩为5×15-2×2+0×3=71(分),D同学的成绩为5×17-2×1+0×2=83(分).A,B,C,D四位同学成绩的平均分为=82.5(分).答:A,B,C,D四位同学成绩的平均分为82.5分.(2)①设E同学答对x题,答错y题.由题意,得解得答:E同学答对12题,答错1题.②C同学,他实际答对14题,答错3题,未答3题.[归纳总结]根据得分规则及学生答题情况建立方程或方程组解决问题.【跟踪训练6】下表是某校九年级(1)班30名学生期末考试的数学成绩表(已污损):成绩/分50 60 70 80 90 100人数/人 2 5 7 3已知该班学生期末考试的数学成绩的平均分是76分.(1)求该班成绩为80分和90分的各有多少人;(2)设该班30名学生数学成绩的众数为a,中位数为b,求a+b的值.解析:(1)根据已知条件,利用平均数的计算公式列出方程组求解即可.(2)根据众数和中位数的概念确定这组数据的众数和中位数,即可求出a +b 的值. 解:(1)设该班有x 人得80分,有y 人得90分,根据题意和平均数的意义,可列出方程组为:⎪⎩⎪⎨⎧----=+=⨯+++⨯+⨯+⨯375230763031009080770560250y x y x , 整理得⎩⎨⎧=+=+1310998y x y x ,解得⎩⎨⎧==58y x 因此该班成绩为80分的学生有8人,成绩为90分的学生有5人.(2)分析表格中的数据可知该班30名学生数学成绩的众数为80分,中位数(按从小到大排序后第15个数和第16个数的平均数)为80分,所以a +b =80+80=160.专题七 数形结合思想【专题知识】数形结合是指将数(或量)与形(图形)结合起来对问题进行研究,本章中许多题目的信息都是通过统计图给出的,有些问题将数据表现在图上,更能直观地反映数据的特点,解决此类题目我们要把抽象的数据和直观的图形结合起来,使问题达到“化难为易、化抽象为直观”.【专题分析】统计中的题目大部分都是以图表形式提供信息,所以涉及运用数形结合思想较广泛.可以以选择题、填空题或解答题的形式出现.例7 某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如下两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型号校服的学生有多少?(2)在条形统计图中,请把空缺的部分补充完整;(3)在扇形统计图中,请计算185型号校服所对应扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.解析: (1)由条形统计图确定165型号的人数,由扇形统计图确定165型号占的百分比,得出总人数,再用总人数乘175型号占的百分比求出穿175型号校服的学生人数;(2)根据人数把条形统计图补充完整;(3)由条形统计图得出穿185型号校服的人数,再计算出百分比,用360°乘百分比求出圆心角的度数;(4)观察各个数据,出现次数最多的是众数,排序后中间的两个数据的平均数是中位数.解:(1)15÷30%=50(人),50×20%=10(人),即该班共有50名学生,其中穿175型号校服的学生有10人.(2)补充如下:(3)圆心角的度数为360°×=14.4°.(4)165和170出现的次数最多,都是15次,故众数是165和170;共50个数据,第25个和第26个数据都是170,故中位数是170.[解题策略]本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,此题还需要准确掌握平均数、中位数、众数的概念及计算方法.【跟踪训练7】在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是() A.众数是90 B.中位数是90 C.平均数是90 D.极差是15解析:根据折线统计图,可以发现数据80出现次数是1,数据85出现次数是2,数据90 出现次数是5,数据95 出现次数是2,按照数据由小到大的次数累加确定中位数,根据次数出现多少判断众数,结合平均数计算方法确定平均数,极差用最大数据减去最小数据即可.易于看出众数是90,A正确,中位数是90,B正确,极差是95-80=15,D正确,运用排除法C错误,也可进一步计算平均数为(80×1+85×2+90×5+95×2)÷10=89,C错误.故选C.人教版八下数学第20章《数据的分析》复习学案【学习目标】知识与技能了解总体、个体、样本等概念,理解统计的基本思想是用样本的特征去估计总体的特征,会用平均数、中位数、众数、极差、方差进行数据处理.过程与方法经历探索数据的收集、整理、分析过程,在活动中发展学生的统计意识和数据处理的方法与能力.情感态度与价值观培养合作交流的意识与能力,提高解决简单的实际问题能力,形成一定的数据意识和解决问题的能力,体会特征数据的应用价值.【学习重点】应用样本数字特征估计总体的相应特征,处理实际问题中的统计内容.【学习难点】方差概念的理解和应用.【自主学习】Step 1:梳理知识夯实基础知识线索:平均数中位数众数极差方差集中趋势波动大小数字特征应用本章思想:平均数是衡量样本(求一组数据)和总体平均水平的特征数,通常用样本的平均数去估计总体的平均数。
第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解三、【教学过程】一、学习准备1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。
某校初二年级共有4个班,在一次数学考试中参考人数和成绩如下:班级1班2班3班4班参考人数40424532平均成绩80818279求该校初二年级在这次数学考试中的平均成绩?下述计算方法是否合理?为什么?=(79+80+81+82)=80.5x 41二、例题讲解例1和例2均为计算数据加权平均数型问题,因为是初学尤其之前与平均数计算公式已经作过比较,所以这里应该让学生搞明白问题中是否有权数,即是选择普通的平均数计算还是加权平均数计算,其次若用加权平均数计算,权数又分别是多少?例2的题意理解很重要,一定要让学生体会好这里的几个百分数在总成绩中的作用,它们的作用与权的意义相符,实际上这几个百分数分别表示几项成绩的权。
三、随堂练习:1、为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,结果如下表:(单位:小时)寿命450550600650700只数2010301525求这些灯泡的平均使用寿命?、管路敷设技术底。
管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用、电气课件中调试重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进、电气设备调试高中资料试卷技术卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。
因此,电力高中资料试卷保护装置调试技四、体会与小结 五、自我检测1、在一个样本中,2出现了x 次,3出现了x 次,4出现了x 次,5出现了x 次,则这1234个样本的平均数为 .2、某人打靶,有a 次打中环,b 次打中环,则这个人平均每次中靶 环。
第二十章复习班级 小组 姓名 一、学习目标:A . 复习本章节的知识,构建知识树。
二、问题引领 一、重点知识回顾1、加权平均数:若几个数n x x x ,,21的权分别是n m m m ,,21,则平均数x = 叫这几个数的加权平均数。
数据的 能够反映数据的相对“重要程度”。
2、中位数:将一组数据按 ,处于 或叫做这组数据的中位数。
3、众数:一组数据中 ,众数可能 也可 能 ,中位数和众数也是描述一组数据的集中趋势的特征量。
4、方差:一组数据与 的差的 的平均数。
设有n 个数据n x x x ,,21,其平均数x ,则 S 2=方差能更好地描述一组数据的波动大小或离散程度,方差越大,波动 ,方差的单位是数据单位的平方。
5、 用样本估计总体是统计的基本思想 二、知识点应用 (一)概念部分:选择题1、一组数据9,9,5,8,5,8,7,5的极差是( )A 0.5B 8.5C 2.5D 42、下列几个常见统计量中,能够反映一组数据波动大小的量是( )A 平均数B 中位数C 众数D 方差3、一组数据3,2,1,2,2的众数,中位数,方差分别是( ) A 2,1, 0.4 B 2,2,0.4 C 3,1, 2 D 2,1,0. 24、一位经销商计划进一批“运动鞋”,他到眉山的一所学校里对初二的100名男生的鞋号进行了调查,经销商最感兴趣的是这组鞋号的( )A 极差是0.4B 众数3.9C 中位数是3.98D 平均数是3.985、一组数据有8个数,各数与它们的平均数的差依次为–4,2,0,–1,1,3,–5,7,则这组数据的方差为( )A . 105B 1C 8105D 3.5 (二)填空题6、某日最高气温为8℃,气温的极差为10℃,那么该日最低气温为 。
7、已知一组数据8,4,a ,6,9,其平均数是7,则a= ,S 2=8、一组数据5,7,7,x 的中位数与平均数相等,则x 为9、某公司有一名经理和9个员工,经理月薪2万元,9个员工的工资分别是(单位:元)2000,2050,2100,2100,2150,2200,2200,2250,2300,该公司10个人的工资平均数为 ,中位数为 ,能代表这10个人的工资一般水平的是 。
2020年春人教版数学八年级下册第二十章数据的分析20.1.2 中位数和众数(第2课时)导学案一、复习在上一课中,我们学习了如何计算一组数据的算术平均数。
算术平均数是一组数据的总和除以数据的个数。
我们还学习了如何使用折线图和柱状图来表示数据的分布情况。
今天我们将继续学习数据的分析,重点是中位数和众数。
二、学习目标1.理解中位数的概念,并学会计算中位数;2.理解众数的概念,并学会找出众数;3.能够在实际问题中应用中位数和众数进行分析。
三、中位数中位数是一组数据按照从小到大的顺序排列后,位于中间位置的数值。
如果一组数据的个数为奇数,那么中位数就是这组数据排序后的中间值;如果一组数据的个数为偶数,那么中位数就是这组数据排序后中间两个数的平均值。
例如,对于数据集{1,3,5,7,9},其中共有5个数据,中位数为5。
而对于数据集{2,3,6,8},其中共有4个数据,中位数为(3+6)/2=4.5。
四、众数众数是一组数据中出现次数最多的数值。
一个数据集可能有一个或多个众数,也可能没有众数。
例如,对于数据集{2,3,3,4,5,6,6,6,7},其中出现次数最多的数字是6,因此6是这组数据的众数。
如果没有任何数字出现的次数超过其他数字,那么这组数据就没有众数。
五、中位数和众数的应用中位数和众数在实际问题中有着重要的应用。
通过计算中位数,我们可以找到一组数据的中间值,从而更好地了解这组数据的整体情况。
例如,某班级的学生考试成绩为{80,85,90,95,100},其中的中位数是90,说明大部分学生的成绩集中在90分左右。
众数可以帮助我们找到一组数据中出现次数最多的数值,从而了解这个数据集的主要特征。
例如,一个销售商想要知道他们最畅销的产品是什么,他们可以通过找出销售量最高的产品来确定众数。
六、练习1.计算以下数据集的中位数:–{2,4,6,8}–{10,20,30,40,50}–{18,24,36,42,55,69}2.找出以下数据集的众数:–{4,2,8,6,4,9,11,4,2,15}–{10,20,30,30,40,50}–{18,24,24,18,55,69,69}七、总结通过今天的学习,我们学会了如何计算中位数和找出众数。
20.1 数据的代表学习目标、重点、难点【学习目标】1、掌握平均数、中位数、众数等数据代表的概念,能根据所给信息求出相应的数据代表.2、掌握加权平均数的计算方法. 【重点难点】1、掌握中位数、众数等数据代表的概念.2、选择恰当的数据代表对数据做出判断.知识概览图某中学举行歌咏比赛,六名评委给某选手打分如下:78分,77分,82分,95分,83分,75分,去掉一个最高分,去掉一个最低分,再统计平均分作为该选手的最后得分.根据打分规则,选手的得分是:14×(78+77+82+83)=14×320=80(分),除了用平均数来衡量选手的得分外,是否还有其他的方法呢? 教材精华知识点1 平均数的概念 算术平均数.1)n k x x f n+++++…+f k )一般地,对于n 个数1x ,2x , ,…,n x ,我们把1n(1x +2x +3x +…n x )叫做这n 个数的算术平均数,简称平均数,记为x ,则x =1n(1x +2x +3x +…n x ).新数据法.当所给数据都在某一常数a 的上下波动时,一般选用简化公式:x =x '+a.其中a 通常取接近于这组数据的平均数较“整”的数,1x '=1x -a ·2x '=2x -a,…,n x '=n x - a, x '=1n(1x '+2x '+…+nx ')是新数据的平均数. 加权平均数.在求n 个数的算术平均数时,如果1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里1f +2f +…+k f =n ),则这n 个数的算术平均数x =1122k kx f x f x f n+++也叫做12,,k x x x ,这k个数的加权平均数,其中12,,,k f f f 分别叫做12,,k x x x 的权.总结:如果1231(),n x x x x x n=++++1231(),n y y y y y n=++++则有下列结论:①112233,,,,,n n x y x y x y x y ±±±±的平均数为x y ±; ②112,233,,,,,,n n x y x y x y x y 的平均数为2x y+; ③123,,,,n ax b ax b ax b ax b ++++的平均数为ax b +. 知识点2 总体、个体、样本调查中,所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体. 例如,某班10名女生的考试成绩是总体,每一名女生的考试成绩是个体.从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本.例如,要调查全县农村中学生学生平均每周每人的零花钱数,由于人数较多(一般涉与几万人),我们从中抽取500名学生进行调查,就是抽样调查,这500名学生平均每周每人的零花钱数,就是总体的一个样本.知识点3 中位数的概念将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数.知识点4 众数的概念一组数据中出现次数最多的数据就是这组数据的众数.例如:求一组数据3,2,3,5,3,1的众数.解:这组数据中3出现3次,2,5,1均出现1次.所以3是这组数据的众数.又如:求一组数据2,3,5,2,3,6的众数.解:这组数据中2出现2次,3出现2次,5,6各出现1次.所以这组数据的众数是2和3.【规律方法小结】(1)平均数、中位数、众数都是描述一组数据集中趋势的量.(2)平均数反映一组数据的平均水平,与这组数据中的每个数据都有关,是最为重要的量.(3)中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用它来描述集中趋势.(4)众数只与数据出现的频数有关,不受个别数据影响,有时是我们最为关心的统计数据.探究交流1、一组数据的中位数一定是这组数据中的一个,这句话对吗?为什么?解析:不对,一组数据的中位数不一定是这组数据中的一个,当这组数据有偶数个时,中位数由中间两个数的平均数决定,若中间两数相等,则这组数据的中位数在这组数据之中,反之,中位数不在这组数据之中.总结:(1)中位数在一组数据中是唯一的,可能是这组数据中的一个,也可能不是这组数据中的数据.(2)求中位数时,先将数据按由小到大的顺序排列(或按由大到小的顺序排列).若这组数据是奇数个,则最中间的数据是中位数;若这组数据是偶数个,则最中间的两个数据的平均数是中位数。
李文跃:备(2011-3-24)学习目标:1;使学生理解数据的权和加权 _____________ 数的概念。
2:使学生掌握加权平均数的计算方法。
3:使学生理解平均数在数据统计中的意义和作用:描述一组数据____ 趋势的特征数字,是反映一组数据平均水平的特征数。
学习重点,难点: 会求加权平均数,对“权”的理解。
学习过程一:引入新课:某校初二年级共有4个班,在一次数学考试中参考人数和成绩如下:/ 八 1 /" “ on. /C 、 乙 40X80 +40X81+45X82 +32X 79 2528(1) : X =- (+80+81+82) =80.5o ( 2) : X = ----------------------------------=----- 〜4《解:》X =在例1中:对于小关100 %其实就是80的权。
30%、,在例2中;20,10,30,15,25,分别是 __________________________ 数叫 ___________平均数。
课后练习:1、在一个样本中,2出现了 x 1次,3出现了 x 2次,4出现了 x 3次,5出现了 x 4次,则这个样本的平均数为 ______________________________ .(歹y 式表示)2、 某人打靶,有a 次打中X 环,b 次打中y 环,则这个人平均每次中靶3、 一家公司打算招聘一名部门经理,现对甲、 现进行评分,笔试占总成绩 20%、面试占例题讲解:1、老师在计算学期总平均分的时候按如下标准 :作业占100%、测验占30%、期中占35%、期末考试占35%,小关和小兵的成绩如下表:求两人的平均成绩个是多少?100 30 35 35_ 80X ——+75^——+71%——+88% ——《解》:小关的平均成绩是:X 1=——100---------- 100-------- 100------- 100=1 +0.30+0.35 + 0.3520.1.1平均数(第二课时)教学目标:加深对加权平均数的理解,来会根据频数分布表求加权平均.数,从而解■决一些实际 问题-引入新课:我们说数据的权能够反映数据的相对只要程度。
一般的:在求 n 个数的算术平均数时,如果 x j 出现f 1次,X 2出现f 2次,…x k 出现f k 次(这里f 1 + f 2 +…X k =n )那么着n 个数的算术平均数是 x =答: _______________________________________________________________________________________例1的题意理解很重要,一定要让学生体会好这里的几个百分数在总成绩中的作用, 用与权的意义相符,实际上这几个百分数分别表示几项成绩的1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是 该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表(1)、第二组数据的组中值是多少?20.1.1平均数,加权平均数(第一课时)求这些灯泡的平均使用寿命?76.1你认为上面两种计算方法中方法 是计算合理的。
二新课教学:这里应该搞明白 问题中是否有权数,我们应该选择普通的平均数计算, 数计算,其•次若用加 权平均数计算,权数又应该怎么确定!还是加权平均试判断谁会被公司录取,为什么?小兵平均的成绩是:X 2 =k 个数的加权平均数。
其中f 1 , f 2…f k o 分别叫的权。
332 80 + 81 +82 + 79= 295010035%、,35%,是 75, 71 , 88,的 ____________ o的权。
像以上两个例题中所求的平均。
答环。
乙两名应聘者从笔试、面试、实习成绩三个方面表30%、实习成绩占50%,各项成绩如表所示:X k f 1 f kO X 也叫这O它们的作二:新课教学(单位: 例:2、为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,结果如下表:小时)答:2、某班40名学生身高情况如下图, 请计算该班学生平均身高三:课后练习:2、下表是截至到2002年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?学习目标:1,认识 数和 数,并会求出一组数据中的 数和 数,理解中位数和 众数的意义和作用。
2,它们也是数据代表,可以反映一定的数据集中 和集中程度,.帮助人们 在实际问题中分析并做出决策。
3 .会利用中位数、众数分析数据信息做出_____ 。
学习重点难点:认识中位数、众数这两种数据代表,利用中位数、众数分析数据信息做出决策。
学习过程:一引入新课:平均数,中位数,众数。
都可以成为一组数据的代表。
那么什么是,中位数,众数呢?(看课本,自己找找)1。
中位数:我们将一组数据大大到小排列,(或 ___________________________ )。
如果数据的个数是奇数个数,则处于中间位置上的数就是这组数据的 ______________________ 数。
:如果数据的个数是偶数 个数,则中间两个数的 ____________ 数是这组数据的中位数。
2,众数:一组数据中出现次数最多的数就是这组数据的 ____________ 数。
如果一组数据中有几个数据的频数是一样的,也都是最大的,那么这几个数据都是这组数据的 ______________ 。
也就是说在一组数据中有几个数的出现次数是一样 多的,并且是最多的。
那么它们都是这组数据的 _ 数。
二新课教学:1某公司销售部有营销人员 15人,销售部为了制定某种商品的销售金额,统计了这量如下(单位:件)1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150求这15个销售员该月 销量的中位数和众数。
假设销售部负责人把每位营销员的月销售定额定为 一个合理的销售定额并说明理由。
分析;要得出这15个销售员该月 销量的中位数:需要将这组数据由 ____________________ 到_ 排列。
而众数容 易找到的。
第二问需要我们从两个方面分析:需要我们说这组数据的众数是多少和中位数是多少?.(2)、求该班学生平均每 天做数学作业所用时间 分析:你知道上面是组中值吗?课本 128页探究中有,你快看看吧! (1) 在数据分组后,一个小组的族中值是指:这个小组 两端点数的 _____________ 数。
(2) 各组的实际数据可以用组中值来代替,各组数据的 频数可以看作这组数据的 <解>::(1).第二组数据的组中值是 -( 2(2) X =20.1.2中位数和众数(第一课时)(李文跃:备2011-3-25)15个人的销售320件,你认为合理吗?如果不合理,请你制定规格 1份台数 1匹 1.2匹 1.5匹 2匹3月 12台 20台 8台 4台 4月 16台 30台 14台 8台2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如 表所示: 小结:平均数计算要用到所有的数据, 它能够充分利用所有的数据信息, 但它受极端值的影响较大它的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起 ______ 的变动.中位数仅与数据的 ________ 位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能_在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势 众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响, 这是它的一个优势,.中位数的.计算很少也不受 值的影响.根据表格回答问题: 商店出售的各种规格空调中,众数是多少? 假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定? 20.2.1极差学习目标: 学习重点: 理解极差的定义,知道极差是用来反映数据波动范围的一个量,会求一组数据的极差 会求一组数据的极差。
职员董事 总经理 经理 管理员 职员董事长 副董事长 人数 1 1 2 1 .5 3 20 工资 -5500 5000 3500 3000 2500 2000 1500 3、某公司的33名职工的月工资(以元为单位)如下:(1) 、求该公司职员月工资的平均数、中位数、众数?(2) 、假设副董事长的工资从 5000元提升到20000元,董事长的工资从 5500元提升到30000元, 那么新的平均数、中-位数、众数又是什么?(精确到元) (3) 、你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平? 学习过程:引入新课 问题1、 已知;某学校六年级学生的身高的一个样本如下(单位:cm )158 162 146 151 153 168 159 154 167 159 167 166 159 154160 162 164 160 157 149在这个样本中身高最高者与身高最低着的差值是多少请你列式计算二新课教学:这样我们把一组数据中最 _数据与 ____________________ 数据的差叫这组数据的极差。
极差反映一组数据的变化。
它是最简单的一种度量数据波动情况的量。
受值得影响大。
三:随堂学习:1、一组数据:473、865、368、774、539、474的极差是1350、-2114、-1736 的极差是 ________ .,一组数据1736、课后练习 数据 8、9、9、& 一组数据23、27、 数据 92、96、98、 A.97、96 B.96、 如果在一组数据中, 1. 2.3. 4.10、8、99、8、10、7、9、9、8的中位数是 _,众数是_20、18、X 、12,它的中位数是 21,贝U X 的值是 __________________ . 100、X 的众数是96,则其中位数和平均数分别是( 96.4C.96、97D.98、9723、 25、 28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,)C.25、25D.23、25 中的30天平均气温状况如下表■: 温度(C ) -8 -1 7 15 21 24 30 天数 3 5 5 7 6 2 2 5. 则这组数据的众数和中位数分别是( A.24、25 B.23、24 ■随机抽取我市一年(按 365天计) 请你根据上述数据回答问题: (1) .该组数据的中位数是什么? (2) .若当气温在18C ~25C 为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多 少天? 2、一组数 据3、-1、0、2、X 的极差是5,且X 为自然数,则3、下列几个常见统计量中能 够反映一组数据波动范围的是( 众数D 极差4、一组数据A. 8B.16 、课后学习:X=)A.平均数B.中位数C.X 1、-X 2 - X n 的极差是8,则另一组数据2X 4+1、2X 2+1…,2X n +1的极差是(C.9D.171、已知样本 A. 0.4B.16 在一次数学考试中,第一小组9.9、 10.3、10.3、9.9、10.1,则样本极差是(C.0.2D.无法确定14名学生的成绩与全组平均分的差是2、 3、 -5、 10、 12、 8、 2、 -1、4、-10、-2、5、5、-5,那么这个小组的平均成绩是( A. 87 B. 83 C. 85 D 无法确定3、 已知一组数据 2.1、1.9、1.8、X 、2.2的平均 数为2,则极差是 ________________ o4、 若10个数的平均数是3,极差-是4,则将这10个数都扩大10倍,则这组数据的平均数■是 极差是2022方差(李文跃:备 2011-3-25 )《解》:教学目标:了解方差的 __________ 和计算公式,理解方差概念的产生和形成的过程,会用方差计算公 来比较两组数据的波动大小。