统计过程分析控制图系数表
- 格式:docx
- 大小:214.10 KB
- 文档页数:2
控制图八大判异准则-精简顺口溜版控制图八大判异准则-精简顺口溜版口决:(就三句,很简单吧!只要记住以下兰色部分的三句话就行了,不过第一次要对照下面附件中的图看才明白。
)23456,AC连串串(连增或连减);81514,缺C全C交替转;9单侧,一点在外。
控制图八大判异准则提练(口决、图片对应项目):1、2/3A(连续3点中有2点在中心线同一侧的B区外<即A区内>)2、4/5C(连续5点中有4点在中心线同一侧的C区以外)3、6连串(连续6点递增或递减,即连成一串)4、8缺C(连续8点在中心线两侧,但没有一点在C区中)5、9单侧(连续9点落在中心线同一侧)6、14交替(连续14点相邻点上下交替)7、15全C(连续15点在C区中心线上下,即全部在C区内)8、1界外(1点落在A区以外)解说:23456,AC连串串(连增或连减);---2/3、4/5、6分别对应A、C、连串串;即2/3A;4/5C;6连串。
81514,缺C全C交替转---8、15、14分别对应缺C、全C、交替转;即8缺C;15全C;14上下交替。
9单侧,一点在外---9点在同一侧;一点出A区外。
第四节控制图1控制图——过程控制的工具。
用来表示一个过程特性的图象。
它有两个基本用途:①用来判断过程是否一直受统计控制。
②用来帮助过程保持受控状态。
2控制图的构成:UCLCLLCL取样时间①收集:收集数据并画在图上。
②控制:根据过程数据计算试验控制线识别变差特殊原因并采取措施。
③分析及改进:确定普通变差的大小,并采取减少它的措施。
重复三个阶段,从而不断改进过程。
3控制图的益处:①供正在进行过程控制的操作者使用。
②有助于过程在质量上和成本上能持续地、可预见的保持下去。
③使过程达到:——更高的质量。
——更低的单件成本。
——更高的有效能力。
④为讨论过程的性能提供共同的语言。
⑤区分变差的特殊原因和普通原因,作为采取局部措施或对系统采取措施的指南。
4.3 分析用控制图和控制用控制图4.3 分析用控制图和控制用控制图(一)分析用控制图与控制用控制图的含义先看一下为什么控制图要在稳态下进行?一道工序开始应用控制图时,几乎总不会恰巧处于稳态,也即总存在异因。
如果就以这种非稳态状态下的参数来建立控制图,控制图界限之间的间隔一定较宽,以这样的控制图来控制未来,将会导致错误的结论。
因此,一开始,总需要将非稳态的过程调整到稳态,这就是分析用控制图的阶段。
等到过程调整到稳态后,才能延长控制图的控制线作为控制用控制图,这就是控制用控制图的阶段。
故根据使用目的的不同,控制图可分为分析用和制用控制图两类。
1、分析用控制图分析用控制图主要分析以下两个方面:(1)所分析的过程是否处于统计控制状态?若达到;则称统计稳态。
(2)该过程的过程能力指数cp是否满足要求?维尔达(s.l.wierda)把过程能力指数满足要求的状态称作技术稳态。
从表可见,状态ⅳ达到状态ⅰ有两条途径:ⅳ→ⅲ→ⅰ;ⅳ→ⅱ→ⅰ,哪条好?这应由具体的技术经济分析决定,如果从计算cp值考虑,可以先达到状态ⅲ。
2、控制用控制图2、控制用控制图当统计稳态和技术稳态都达到时,分析用控制图可转为控制用控制图。
把分析用控制图的控制线延长,而且要有正式的交接手续。
经过一个阶段的使用后,可能又会出现异常,这时应查出异因,采取措施,加以消除。
(二)常规控制图的设计思想常规控制图的设计思想是先确定犯第一类错误的概率α,再看犯第二类错误的概率β。
(1)按3σ方式确定cl、ucl、lcl,就等于确定α0=0.27%。
(2)在统计中通常采用α=1%,5%,10%三级,但休哈特为了增加使用者信心把常规控制图的α取得特别小,这样β就大,这就需要增加第二类判异准则,即既使点子不出界,但当界内点排列不随机也表示存在异常因素。
(三)判异准则判异准则有点出界和界内点排列不随机两类。
由于对点子的数目未加限制,故后者的模式原则上可以有很多种,但在实际中经常使用的只有具有明显物理意义的若干种。
统计过程控制标准2007-08-30发布 2007-08-30实施统计过程控制标准1范围本标准规定了各冰箱工厂规范运用统计质量控制方法,分析、监控和改进关键工序能力,以达到对关键质量特性预警目的,控制过程质量水平。
本标准适用于工厂工作制造过程关键工序和关键特性的质量控制要求。
2引用标准GB/T4091-2001《常规控制图》3定义3.1 统计过程控制(Statistical Process Control):简称 SPC ,是指利用统计技术对过程中的各个阶段进行监控,从而达到保证产品质量的目的。
3.2过程能力:也称为工序能力,是指过程加工质量方面的能力,它是衡量过程加工内在一致性的,是稳态下的最小波动。
3.3过程(工序)能力指数:简称CPK ,是指运用统计方法计算得出,数值表示其工序稳定生产合格产品的能力,具体CPK计算方法见4.4.2。
3.4控制图(Control Chart):对过程质量特性记录评估,以监察过程是否处于受控状态的一种统计方法图,图上标有根据那个特性收集到的一些统计数据,如一条中心线,一条或两条控制限(分别用上控制限UCL和下控制限LCL表示)。
它有两个基本的用途:一是用来判定一个过程是否一直受统计控制;二是用来帮助过程保持受控状态。
3.5计量型数据:指某种量具、仪器测定的数据,这类数据可取某一区间内地的任一实数。
如轴的直径,电阻的阻值,材料的强度等,这类特性数据常服从正态分布,通常用两张图(推荐使用 Xbar-R 控制图)。
3.6 计数型数据:指通过数数的方法获得的。
常取 0 , 1 , 2 等非负整数。
如一批产品中的不合格品数,铸件上的气孔数等,这类特性数据只需要用一张控制图(推荐使用 P 控制图)。
3.7子组:用来分析过程能力的一个或多个事件或测量。
通常选用合理分组使得每个子组内的变差尽量小(代表普通原因的变差),同时使得各子组间过程能力的变化(即特殊原因变差)不一样。
合理子组一般由连续的零件组成,尽管有时采用随机抽样。
测量过程的统计控制—控制图1、控制图的概念控制图(又称休哈特控制图)是对测量过程是否处于统计控制状态的一种图形记录。
它能判断并提供测量过程中是否存在异常因素的信息,以便于查明产生异常的原因,并采取措施使测量过程重新处于统计控制状态。
对于准确度较高及比较重要的测量过程,如有可能建议尽可能采用控制图对其测量过程进行连续和长期的统计控制。
2、核查装置测量结果除了会受到测量过程的影响外,还会受测量对象的影响,因此如果能找到一个比较稳定的核查装置并对其作连续的定期观测,则根据由定期观测结果计算得到的统计控制量(例如平均值,标准偏差,极差等)的变化情况可以推断出测量过程是否处于统计控制状态。
因此采用控制图方法来对测量过程进行统计控制的前提是具有一个量值稳定的核查装置。
3、控制图的分类根据控制对象的数据性质,即所采用的统计控制量来分类,在测量过程控制中常用的控制图有平均值—标准偏差控制图(x–s图)和平均值—极差控制图(x–R图)。
控制图通常均成对地使用,平均值控制图主要用于判断测量过程中是否受到不受控的系统效应的影响。
标准偏差控制图和极差控制图主要用于判断测量过程是否受到不受控的随机效应的影响。
标准偏差控制图比极差控制图具有更高的检出率,但由于标准偏差要求重复测量次数n≥10,对于某些测量过程可能难以实现。
而极差控制图一般要求n≥5,因此在测量过程考核中推荐采用平均值—标准偏差控制图,也可以采用平均值—极差控制图。
根据控制图的用途,可以分为分析用控制图和控制用控制图两类。
(1) 分析用控制图:用于对已经设计完成的测量过程或测量阶段进行分析,以评估测量过程是否稳定或处于受控状态。
(2) 控制用控制图:对于正在进行中的测量过程,可以在进行测量的同时进行过程控制,以确保测量过程处于稳定受控状态。
具体建立控制图时,应首先建立分析用控制图,确认过程处于稳定受控状态后,将分析用控制图的时间界限延长,于是分析用控制图就转化为控制用控制图。
统计过程控制(S P C)参考手册本手册所描述控制图的选用程序第I章持续改进及统计过程控制概述本书所述的基本统计方法包括与统计过程控制及过程能力分析有关的方法。
本手册的第I章阐述了过程控制和背景知识,解释了一些重要的概念:如变差的特殊及普通原因,并介绍了控制图,这个用来分析及监控过程非常有效的工具。
第II章描述了构造和使用计量型数据控制图表(定量的数据,或测量)的X—R,X—s图,中位数图以X—MR(单值及移动极差)图。
这一章还介绍了过程能力的概念并讨论了广泛应用的指数及比值。
第III章介绍了用于计数型数据(定性数据或计数值)的几种控制图:p图、np图、c图及u图。
第IV章介绍了测量系统分析的内容并列举了适当的例子。
附录包括分组及过度调整的例子,如何使用控制图的流程图、常数及公式表、标准正态分布以及可复制的空白表等。
术语索引给出了本手册所使用的术语及符号的解释,参考文献一节向读者提供了进一步学习的材料。
在开始讨论之前,需进行六点说明:1.收集数据并用统计方法来解释它们并不是最终目标,最终目标应是对读者的过程不断加深理解。
当一个没有任何改进的技术专家是很容易的。
增加知识应成为行动的基础;2.研究变差和应用统计知识来改进性能的基本概念适用于任何领域,可以是在车间中或办公室里。
例子有:机器(性能特性)、记帐(差错率)、总销售额、浪费分析(废品率)、计算机系统(性能特性)及材料管理(运送时间)。
本手册重点放在车间应用中。
3.SPC代表统计过程控制,不幸的是在北美统计方法常用于零件而不是过程。
应用统计技术来控制输出(例如零件)应仅仅是第一步。
只有当生产输出的过程成为我们努力的重点。
这些方法才能在改进质量,提高生产率,降低成本上发挥作用;4.尽管本书的每一点是通过已完成的例子来说明,要真正理解这些知识需要进一步与过程实际相联系。
研究读者自己的工作场所或相似的部门中的实际例子是对本书的重要补充。
然而,现有过程信息不能代替实际工作经验;5.本书可看成应用统计方法的第一步。